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A simple algorithm is developed for unbiased parameter identification of autoregressive

(AR) signals subject to white measurement noise. It is shown that the corrupting noise

variance, which determines the bias in the standard least-squares (LS) parameter estima-

tor, can be estimated by simply using the expected LS errors when the ratio between the

driving noise variance and the corrupting noise variance is known or obtainable in some

way. Then an LS-based algorithm is established via the principle of bias compensation.

Compared with the other LS-based algorithms recently developed, the introduced algo-

rithm requires fewer computations and has a simpler algorithmic structure. Moreover,

it can produce better AR parameter estimates whenever a reasonable guess of the noise

variance ratio is available.

1. Introduction

Estimation of the parameters of autoregressive (AR) signals from noisy measurements

has been an important topic of research in the field of signal processing [2, 4, 6]. Since

the standard least-squares (LS) method is unable to produce unbiased estimates of the AR

parameters in the presence of noise, many identification algorithms have been developed

with a view to achieving unbiasedness in AR signal estimation; for instance, the modi-

fied Yule-Walker (MYW) equations method [1], the maximum likelihood (ML) method

[7], the recursive prediction error (RPE) method [3], the modified least-squares (MLS)

method [5], and the improved least-squares (ILS) methods [8, 9]. It is of interest to note

that the ILS-type algorithms are built on the simple idea of estimating the variance of

the corrupting noise in an efficient way and then removing the noise-induced bias from

the standard LS estimator in a straightforward way so as to attain unbiased AR param-

eter estimates. The good performances of the ILS-type algorithms are as follows. Firstly,

as a linear regression-based method, the ILS-types methods require much less numeri-

cal efforts than the ML method, the RPE method, and the MLS method. Secondly, the

ILS-type algorithms not only are well suited for online estimation, but also have much

better numerical robustness than the MYW method. Thirdly, unlike the ML method and
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the MYW method, the ILS-type algorithms can simultaneously estimate the corrupting

noise variance and the signal power that may be required in certain signal processing

applications.

The objective of the present paper is to develop a simple algorithm for unbiased pa-

rameter identification of AR signals subject to white measurement noise. Note that the

assumption on the measurement noise is a restriction, but it is not unrealistic. Like the

other ILS-type algorithms, central to this new algorithm is the estimation of the corrupt-

ing noise variance, which determines the bias in the LS parameter estimator. However,

it is observed that the other ILS algorithms need to compute some extra autocovariance

estimates for the purpose of getting an estimate of the corrupting noise variance. This ap-

parently requires added computations. In this paper, it is assumed that the ratio between

the AR driving noise variance and the corrupting noise variance is given or obtainable

in some way. Note that, on the one hand, this assumption may be considered as restric-

tive in some practical situations since it may be difficult to have information on both

the driving noise and the corrupting one simultaneously. On the other hand, however,

it may still conform to a number of signal processing application cases. For example, in

speech processing, the level of background noise relative to a speech signal is sometimes

predictable beforehand according to the experience so that a reasonable description of

the noisy scenario (or the noise variance ratio) is admissible [4]. Under the imposed as-

sumption, the corrupting noise variance can be estimated by simply using the expected

LS errors. Then a new LS-based algorithm is established via the principle of bias compen-

sation. Compared with the other ILS-type algorithms, the developed algorithm requires

fewer computations and has a simpler algorithmic structure. Moreover, it can produce

better AR parameter estimates once a sensible conjecture of the noise variance ratio is

given. The sensitivity of the developed algorithm with respect to the noise variance ratio

is also studied via computer simulations.

2. Signal model

Assume that the AR signal x(t) is generated by a model of the form

x(t)=

p
∑

i=1

aix(t− i) + v(t), (2.1)

where p is the order of the model, v(t) is the driving (white) noise with zero mean and

finite variance σ2
v , and {ai, i= 1, . . . , p} are the AR parameters.

Let

y(t)= x(t) +w(t) (2.2)

be a noisy measurement of the AR signal, where w(t) is the corrupting (white) noise with

zero mean and finite variance σ2
w.

The noisy AR model, which consists of (2.1) and (2.2), can be expressed in a vector

form as

y(t)= y⊤t a + ǫ(t), (2.3)



Wei Xing Zheng 95

where

a⊤ =
[

a1 ···ap
]

(2.4)

is the parameter vector which contains the p parameters of the AR signal, and

y⊤t =
[

y(t− 1)··· y(t− p)
]

(2.5)

is the regression vector which contains the p delayed noisy measurements of the AR sig-

nal. Moreover, in (2.3), ǫ(t) is the equation error which is defined by

ǫ(t)= v(t) +w(t)−w⊤
t a, (2.6)

where

w⊤
t =

[

w(t− 1)···w(t− p)
]

. (2.7)

3. LS estimation and analysis

The objective of noisy AR signal identification is to estimate the AR parameters {ai,
i = 1, . . . , p}, including the driving noise variance σ2

v and the corrupting noise variance

σ2
w, from a sample of N noisy measurements {y(t), t = 1, . . . ,N}.

To solve this parameter estimation problem, several assumptions are needed. First, the

signal order p is assumed to be known. Second, the driving noise v(t) and the corrupting

noise w(t) are statistically uncorrelated. Note that the first assumption may be relaxed

so that only an upper bound of p is given, whereas the second assumption can easily be

satisfied in practical circumstances.

The standard LS parameter estimation is based on minimizing the mean squared error

criterion

J(a)= E
[

ǫ(t)2
]

, (3.1)

which gives rise to the LS estimate of a (see [1]):

aLS = R−1r, (3.2)

where

R= E
[

yty
⊤
t

]

, r= E
[

yt y(t)
]

. (3.3)

To analyze the asymptotic property of aLS, a regression vector of the (noise-free) AR

signal x(t) is introduced:

x⊤t =
[

x(t− 1)···x(t− p)
]

. (3.4)

With (2.5), (2.7), and (3.4), the noisy measurement equation (2.2) may be rewritten in a

vector form as

yt = xt + wt. (3.5)
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Following the assumptions that v(t) and w(t) are white noises and are mutually uncorre-

lated, it is straightforward to derive

E
[

xtǫ(t)
]

= E
[

xtv(t)
]

+E
[

xtw(t)
]

−E
[

xtwt
]

a

= 0 + 0− 0a

= 0,

E
[

wtǫ(t)
]

= E
[

wtv(t)
]

+E
[

wtw(t)
]

−E
[

wtwt
]

a

= 0 + 0− σ2
wIpa

=−σ2
wa,

(3.6)

where Ip is an identity matrix of order p. By means of (3.5) and (3.6), it is easy to get

E
[

ytǫ(t)
]

= E
[

xtǫ(t)
]

+E
[

wtǫ(t)
]

= 0− σ2
wa

=−σ2
wa.

(3.7)

Equation (3.7) shows that E[ytǫ(t)] is not a zero vector, that is, ǫ(t) is no longer orthog-

onal to the projection space spanned by yt due to the presence of the corrupting noise

w(t). In fact, substituting (2.2) and (3.7) into (3.2) immediately yields

aLS = a +∆a, ∆a=−σ2
wR−1a. (3.8)

The above asymptotic expression for aLS clearly shows that aLS is biased, and the bias ∆a

is determined by the corrupting noise variance σ2
w.

4. Unbiased parameter estimation

By using the principle of bias compensation, an unbiased estimate of the AR parameter

vector a can be obtained as follows:

a= aLS−∆a. (4.1)

However, the bias ∆a still remains unknown unless the corrupting noise variance σ2
w is

given or may be estimated in some way.

To this end, it is necessary to take a close look at the expected LS errors

J
(

aLS

)

= E
[

ξ2
(

t,aLS

)]

, (4.2)

where the LS error ξ(t,aLS) is defined by

ξ
(

t,aLS

)

= y(t)− y⊤t aLS. (4.3)

As shown in [8], J(aLS) is expressible as

J
(

aLS

)

= σ2
v + σ2

w

(

1 + a⊤LSa
)

. (4.4)
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The above asymptotic expression shows that the driving noise variance σ2
v and the cor-

rupting noise variance σ2
w are closely related to each other. If one of them is known, the

other is immediately obtainable. In [8, 9], it is shown that the corrupting noise variance

σ2
w may be first estimated by using some extra autocovariances of y(t).

In this paper, in order to implement the bias compensation procedure (4.1), it is pro-

posed to assume that the ratio between the driving noise variance σ2
v and the corrupting

noise variance σ2
w, namely,

κ2 =
σ2
v

σ2
w

(4.5)

is given or a proper estimate of it is available. As explained in Section 1, although this

assumption may be considered as a restrictive condition in some practical situations, it

may still conform to a number of signal processing application cases. For example, in

quite a number of practical situations, it is possible to know that the corrupting noise

just accounts for a fraction of the signal power, so that a priori information of the ratio

κ2 may be readily available. Further, this assumption greatly simplifies the estimation

problem.

Given this assumption, substitution of (4.5) into (4.4) gives rise to

J
(

aLS

)

= σ2
w

(

κ2 + 1 + a⊤LSa
)

. (4.6)

This immediately reveals that the corrupting noise variance σ2
w can be estimated by using

the following equation:

σ2
w =

J
(

aLS

)

κ2 + 1 + a⊤LSa
. (4.7)

By means of (4.1), (4.2), and (4.7), a new ILS algorithm may be proposed for unbiased

parameter identification of AR signals subject to white measurement noise. This is called

the ILSR algorithm as it assumes the known ratio κ2.

The ILSR Algorithm

Step 0. Initialization.

(1) Make the standard LS estimation of the AR parameter vector a:

âLS = R̂−1
N r̂N , (4.8)

where the autocovariance estimates R̂N and r̂N are calculated from the noisy

observations {y(1), . . . , y(N)} as

R̂N =
1

N

N
∑

t=1

yty
⊤
t , r̂N =

1

N

N
∑

t=1

yt y(t). (4.9)

(2) Make estimation of the expected LS errors J(aLS):

ĴN
(

âLS

)

=
1

N

N
∑

t=1

(

y(t)− y⊤t âLS

)2
. (4.10)

(3) Set k = 0 and âILS(0)= âLS.
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Step 1. Make estimation of the corrupting noise variance σ2
w:

σ̂2
w(k)=

ĴN
(

âLS

)

κ2 + 1 + â⊤LSâILS(k− 1)
. (4.11)

Step 2. Make the ILS estimation of the AR parameter vector a:

âILS(k)= âLS + σ̂2
w(k)R−1

N âILS(k− 1). (4.12)

Step 3. Make estimation of the driving noise variance σ2
v :

σ̂2
v (k)= κ2σ̂2

w(k). (4.13)

Step 4. If the stop criterion

∥

∥âILS(k)− âILS(k− 1)
∥

∥

∥

∥âILS(k)
∥

∥

< δ, (4.14)

where δ is a small positive number, is satisfied, output âILS(k), σ̂2
v (k), and σ̂2

w(k) and stop;

otherwise, set k = k+ 1 and go to Step 1.

The consistent convergence of the proposed algorithm can be established in a similar

way to that for the other ILS-type algorithms (see [8, 9]). Moreover, it is easy to see that

the ILSR algorithm can retain the advantages of the ILS-type algorithms over the MYW

method, the ML method, the RPE method, and the MLS method as stated before.

A comparison is now made between the developed ILSR algorithm and the other ILS-

type algorithms. First, the ILSR algorithm has a better estimation accuracy than the other

ILS-type algorithms. Second, since the developed algorithm does not need to compute

any extra autocovariance estimates (except R, r, and J(aLS)), it is more computationally

attractive than the other ILS-type algorithms. Third, the ILSR algorithm has a simpler

and more compact algorithmic structure than the other ILS-type algorithms, which en-

ables easier implementation. Fourth, however, the other ILS-type algorithms are work-

able without the assumption of the known ratio κ2 of the noise variances, thus having a

wider domain of application than the ILSR algorithm.

5. Numerical illustrations

Computer simulations have been conducted for empirical assessment of the performance

of the ILSR algorithm, in comparison with the standard LS method, the MYW method,

the ML method, the ILSNP algorithm [8], and the ILSD algorithm [9] in terms of accu-

racy and computational complexity. The accuracy is described by bias and variance, while

the computational complexity is measured approximately by the Matlab code flops. For

an overall description of the performance, the relative error (RE) and the normalized root

mean squared error (RMSE) are introduced, respectively, as follows:

RE=

∥

∥m
(

â
)

− a
∥

∥

‖a‖
, RMSE=

√

√

√

√

√

1

M

M
∑

m=1

∥

∥âm− a
∥

∥

2

‖a‖2
, (5.1)
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where m(â) represents the sample mean of an estimator â, and âm stands for an estimator

of a in the mth test over a total of M Monte Carlo tests.

The example used for illustration is a fourth-order AR signal as in (2.1) and (2.2). The

AR parameters were selected as

a1 = 1.352, a2 =−1.338, a3 = 0.662, a4 =−0.24, (5.2)

while the noise variances were chosen as

σ2
v = 1.0, σ2

w = 0.38. (5.3)

So the signal-to-noise ratio (SNR) is set approximately at 10 dB. To examine how a priori

information on the noise variance ratio κ2 will affect the behavior of the ILSR algorithm,

the following eleven guessed values of κ2 were used:

κ̂2
0 = 2.6316,

κ̂2
a = 2.2, κ̂2

f = 2.7,

κ̂2
b = 2.3, κ̂2

g = 2.8,

κ̂2
c = 2.4, κ̂2

h = 2.9,

κ̂2
d = 2.5, κ̂2

i = 3.0,

κ̂2
e = 2.6, κ̂2

j = 3.1.

(5.4)

Note that κ̂2
0 corresponds to the case when the noise variance ratio κ2 is exactly known,

while κ̂2
a, . . . , κ̂

2
j describe the cases when an exact knowledge of κ2 is not available. In par-

ticular, κ̂2
a, . . . , κ̂

2
e show that κ2 is underestimated, with an estimation error ranging from

more serious 16.4% in κ̂2
a to smaller 1.2% in κ̂2

e . Similarly, κ̂2
f , . . . , κ̂

2
j shows that κ2 is over-

estimated, with an estimation error ranging from smaller 2.6% in κ̂2
f to more serious

17.8% in κ̂2
j . The simulation results based on 500 Monte Carlo tests using 2500 data points

each are summarized in Table 5.1.

In agreement with the analysis given in the preceding section, the computational costs

with the ILSR algorithm in all the cases considered are reduced quite significantly from

those of the ILSNP algorithm and the ILSD algorithm. When κ2 with a smaller estimation

error (e.g., κ̂2
e , κ̂2

0, or κ̂2
f ) is utilized, the ILSR algorithm also shows a better accuracy for

the parameter estimates than the other ILS-type algorithms in terms of relatively low

variance and small RMSE value. It is very interesting to note that the results of ILSRe

and ILSR f are almost the same as those of ILSR0. This illustrates that the performance

of the ILSR algorithm may not be affected by a slight error in the information about

the noise variance ratio κ2. Moreover, even in the presence of fairly serious error with

the noise variance ratio (e.g., 8.8% in κ̂2
c and 10.1% in κ̂2

h), the results given by ILSRc

and ILSRh are still quite acceptable, especially as far as the corresponding RMSE values

are concerned. These observations not only have confirmed that the ILSR algorithm can

achieve a much improved performance, but also have justified the practical applicability

of the ILSR algorithm.
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Table 5.1. Simulation results (SNR ≈ 10 dB, 2500 samples, 500 Monte Carlo tests, NFPT = number

of flops per test).

Method a1 a2 a3 a4 σ2
v σ2

w RE RMSE NFPT

LS 0.8307 −0.5342 −0.0358 0.0407 — — 60.05% 60.09% 70301

±0.0197 ±0.0271 ±0.0258 ±0.0184 — —

MYW 1.6801 −1.6064 0.8232 −0.2683 — — 22.40% 342.92% 140333

±4.5669 ±4.4074 ±2.7033 ±0.7614 — —

ML 1.0498 −0.9681 0.4020 −0.1549 — — 27.13% 58.07% 8424721

±0.5857 ±0.6901 ±0.4804 ±0.1852 — —

ILSNP 1.3440 −1.3280 0.6543 −0.2374 1.0127 0.3723 0.74% 10.71% 134295

±0.0897 ±0.1418 ±0.1263 ±0.0538 ±0.1505 ±0.0513

ILSD 1.3446 −1.3288 0.6550 −0.2376 1.0105 0.3732 0.68% 10.49% 103746

±0.0875 ±0.1388 ±0.1240 ±0.0530 ±0.1404 ±0.0472

ILSRa 1.4354 −1.4847 0.8008 −0.3048 0.8810 0.4004 11.24% 12.64% 92852

±0.0375 ±0.0705 ±0.0742 ±0.0436 ±0.0355 ±0.0161

ILSRb 1.4138 −1.4461 0.7640 −0.2872 0.9097 0.3955 8.27% 10.11% 92843

±0.0377 ±0.0710 ±0.0745 ±0.0437 ±0.0363 ±0.0157

ILSRc 1.3933 −1.4096 0.7292 −0.2707 0.9374 0.3906 5.46% 7.99% 92832

±0.0379 ±0.0712 ±0.0747 ±0.0437 ±0.0369 ±0.0154

ILSRd 1.3738 −1.3750 0.6963 −0.2552 0.9641 0.3856 2.81% 6.48% 92819

±0.0380 ±0.0713 ±0.0747 ±0.0436 ±0.0375 ±0.0150

ILSRe 1.3546 −1.3443 0.6687 −0.2436 0.9878 0.3799 0.50% 5.79% 92827

±0.0385 ±0.0715 ±0.0733 ±0.0417 ±0.0381 ±0.0146

ILSR0 1.3490 −1.3344 0.6593 −0.2392 0.9957 0.3784 0.26% 5.77% 92823

±0.0384 ±0.0714 ±0.0732 ±0.0417 ±0.0383 ±0.0145

ILSR f 1.3371 −1.3135 0.6396 −0.2299 1.0126 0.3750 1.85% 6.04% 92814

±0.0384 ±0.0712 ±0.0729 ±0.0415 ±0.0386 ±0.0143

ILSRg 1.3205 −1.2845 0.6123 −0.2172 1.0364 0.3701 4.07% 7.02% 92799

±0.0383 ±0.0709 ±0.0725 ±0.0411 ±0.0391 ±0.0139

ILSRh 1.3047 −1.2571 0.5865 −0.2052 1.0594 0.3653 6.17% 8.39% 92783

±0.0382 ±0.0705 ±0.0720 ±0.0408 ±0.0395 ±0.0136

ILSRi 1.2897 −1.2312 0.5622 −0.1940 1.0814 0.3604 8.15% 9.91% 92773

±0.0380 ±0.0700 ±0.0714 ±0.0405 ±0.0399 ±0.0133

ILSR j 1.2755 −1.2068 0.5394 −0.1835 1.1027 0.3557 10.01% 11.47% 92767

±0.0378 ±0.0695 ±0.0707 ±0.0400 ±0.0403 ±0.0130

True value 1.352 −1.338 0.662 −0.24 1.0 0.38

6. Concluding remarks

In this paper, a simple algorithm has been proposed to make unbiased parameter es-

timation of noisy AR signals. The sensitivity problem of the ILS-based estimator with

respect to the variation of the noise variance ratio has been investigated. The importance

of the work presented in this paper is that when a partial information of the driving noise

versus the corrupting noise (such as the variance ratio κ2) becomes available in realistic

situations, the use of the developed ILSR algorithm can be very appealing with regard to

estimation accuracy and numerical requirements.
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