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An isothermal model describing the separation of the components of a binary metallic

alloy is considered. A process of phase transition is also assumed to occur in the solder;

hence, the state of the material is described by two order parameters, i.e. the concentration

c of the first component and the phase field ϕ. A physical derivation is provided starting

from energy balance considerations. The resulting system of PDEs consists of a rather

regular second-order parabolic equation for ϕ coupled with a fourth-order relation of

Cahn–Hilliard type for c with constraint and solution-dependent mobility. Global existence

of solutions is proved and several regularity properties are discussed under more restrictive

assumptions on the physical parameters. Continuous dependence on data is shown in a

special case. An asymptotic analysis of the model is also performed, yielding at the limit

step a coupling of the original phase field equation with a Stefan-like system for c.

Keywords: binary alloy; phase transition; fourth-order parabolic system; constraint;

variational formulation; maximum principle; Faedo–Galerkin scheme.

1. Introduction

In this paper, we aim to study a model describing the diffusive separation of components

in a binary metallic alloy possibly undergoing a phase transition phenomenon. As a

basic simplification, the whole process is assumed to be isothermal. The system is then
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described on the one hand by the relative concentration c of one component with respect

to the mixture and on the other hand by a phase field parameter ϕ which stands for the

solidification state of the system (ϕ = 0 indicates a solid phase whereas ϕ = 1 is for a

liquid phase). The functions c and ϕ satisfy the system

∂tϕ − ∆ϕ = F1(ϕ) + c F2(ϕ), (1.1)

∂t c − div(µ(ϕ, c)∇w) = 0, (1.2)

w ∈ −∆c + β(c) + γ (c) + g(ϕ), (1.3)

that will be coupled with the no-flux conditions and with the Cauchy conditions for ϕ and

c. Here, we have set β := ∂ I[0,1] the subdifferential of the indicator function of [0, 1];

anyway, we point out that a wider class of constraints will be allowed in our analysis. The

functions F1 and F2 are smooth and vanish at ϕ = 0 and ϕ = 1. This system is composed

of a Cahn–Hilliard equation for the concentration (Cahn & Hilliard, 1958) coupled with a

second-order parabolic equation for the phase field function (Warren & Boettinger, 1995;

Wheeler et al., 1992). The mobility coefficient µ is allowed to depend on both c and ϕ, but

assumed to have a nondegenerate character as in Barrett & Blowey (1999). In the rest of

this section, we give the modelling leading to (1.1)–(1.3).

Modelling. Let us consider a binary mixture composed by two pure elements A and B

which can be in both liquid and solid states inside a domain Ω . The composition of the

system is characterized by the relative concentration c ∈ [0, 1] of the component B with

respect to the mixture. The solidification state of the alloy is described by a phase field

parameter ϕ which is equal to 1 in a liquid phase and 0 in a solid phase. When ϕ is strictly

between 0 and 1, this indicates the presence of a mushy region. We do not take into account

thermal effects, so the temperature θ of the system is assumed to be constant and fixed

between the two melting temperatures θ A
m and θ B

m of the components A and B. In that way,

we consider that the system is fully determined by the knowledge of the scalar fields c =

c(x, t) and ϕ = ϕ(x, t) for each point x ∈ Ω at time t . Then, in order to obtain evolution

equations for c and ϕ, we introduce a Ginzburg–Landau type free energy depending on

both the gradients of c and ϕ and also on a free energy density f (θ, c, ϕ). This total free

energy F is given by Cahn & Hilliard (1958)

F(θ, c, ϕ) =

∫

Ω

(
ε2
ϕ

2
|∇ϕ|2 +

ε2
c

2
|∇c|2 + f (θ, c, ϕ)

)
dx, (1.4)

where εϕ and εc are given positive parameters. We assume the total mass of the system is

conserved. Thus, denoting by q the mass flux, the mass balance equation reads

∂t c + div q = 0 in Ω , (1.5)

with the no-flux boundary condition

q · n = 0 on ∂Ω , (1.6)

where n is the unit normal vector to the boundary ∂Ω . Since we assume no external

exchange, we also impose the boundary conditions

∂nϕ = ∂nc = 0 on ∂Ω . (1.7)
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Now, we compute the time derivative of the total free energy. By the use of Green’s formula

with boundary conditions (1.6), (1.7) and recalling that the temperature θ is constant, we

obtain

dF

dt
=

∫

Ω

(
−ε2

ϕ∆ϕ +
∂ f

∂ϕ

)
∂tϕ + ∇

(
−ε2

c∆c +
∂ f

∂c

)
· q. (1.8)

Then, we have to introduce suitable constitutive laws for ∂tϕ and q. Namely, for suitable

M, µ > 0, we assume

∂tϕ = −MδϕF = −M

(
−ε2

ϕ∆ϕ +
∂ f

∂ϕ

)
in Ω (1.9)

and

q = −µ∇δcF = −µ∇

(
−ε2

c∆c +
∂ f

∂c

)
in Ω , (1.10)

where, of course, δϕF , δcF denote the first variations of F w.r.t. ϕ, c, respectively. Then, it

is easy to see that the second principle of thermodynamics is satisfied; actually (1.8) entails

dF/dt � 0.

More in detail, we take M as a positive constant (Kessler, 2001; Warren & Boettinger,

1995), whereas µ = µ(ϕ, c) is a positive function of c and ϕ which expresses a

concentration and phase field dependent mobility. Indeed, the concentration dependence

appears in the original derivation of the Cahn–Hilliard equation (Cahn & Hilliard, 1958)

and we shall discuss relevant choices for µ later on this section. Then, from the mass

balance equation (1.5) together with (1.10) we deduce the equation for c

∂t c + div

(
µ(ϕ, c)∇

(
ε2

c∆c −
∂ f

∂c

))
= 0 on Ω . (1.11)

Now, let us turn to the free energy density f . This is supposed to be the sum of two

contributions, namely

f (θ, c, ϕ) =
[
(1 − c) f A(θ, ϕ) + c f B(θ, ϕ)

]
+ j (c). (1.12)

The first one arises as a convex combination of the free energies f A = f A(θ, ϕ) and

f B = f B(θ, ϕ) of the pure components weighted by the concentration c; the second

term is the potential energy j of the mixing process (Kessler, 2001; Warren & Boettinger,

1995), assumed to depend only on c. In contrast to Kessler (2001) and Warren & Boettinger

(1995), here j might be nonconvex in order to describe a separation process of the two

components. To be precise, our basic choice for j is

j (c) = I[0,1](c) + j0(c), (1.13)

where I[0,1] is the indicator function of [0, 1] (I[0,1](c) = 0 if c ∈ [0, 1], I[0,1](c) = +∞

otherwise) and j0 is a regular function that possesses two local minima at c = 0 and c = 1.

A typical form of j0 is given for example by the double-well potential

j0(c) = 16τ c2(1 − c)2, (1.14)
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where τ > 0 is a given parameter (Elliott & Garcke, 1996); anyway, we remark that other

choices are possible (see e.g. Blowey & Elliott, 1991, 1992; Elliott & Garcke, 1996). The

above setting, indeed, turns out to prescribe lower energy levels in presence of the pure

states A and B than in the mixture. We point out that considering potentials with infinite

barriers is a common choice when dealing with Cahn–Hilliard-like systems. Indeed, an

expression like (1.13) is usually noted as a double obstacle potential. A potential of this

kind was first proposed by Blowey & Elliott (1993, 1994) and has been considered in

several papers (e.g. Kenmochi et al., 1995, and references therein).

We remark that another and probably more usual expression for the potential is the

logarithmic

χ(c) = c log c + (1 − c) log(1 − c), (1.15)

that has been considered also for phase separation problems (Elliott & Luckhaus, 1991).

Indeed, in our analysis it is also possible to take χ , instead of I[0,1], in (1.13). We notice

anyway that this logarithmic potential is more usually considered in the non-double-well

case (i.e. j = χ without the nonconvex term j0). This means that the mixed configurations

are assumed to attain a lower energy level than the pure ones, and this is not the case of our

model.

Since the dependence on ϕ in relation (1.12) for the free energy density f is exactly

the same as in the Warren–Boettinger model (Warren & Boettinger, 1995), we proceed as

in Kessler (2001) and Warren & Boettinger (1995) to determine f A and f B and obtain

−
∂ f

∂ϕ
= F1(ϕ) + cF2(ϕ), (1.16)

where F1, F2 are smooth functions which vanish for ϕ = 0 and ϕ = 1. Hence, equation

(1.9) for the phase field becomes

∂tϕ = M
(
ε2
ϕ∆ϕ + F1(ϕ) + cF2(ϕ)

)
in Ω . (1.17)

Moreover, with the choice (1.12) for f , equation (1.11) for the concentration can be

read as

∂t c − div(µ(ϕ, c)∇w) = 0, (1.18)

w ∈ −ε2
c∆c + g(ϕ) + ∂ I[0,1](c) + j ′0(c), (1.19)

where g(ϕ) = f B(ϕ) − f A(ϕ) (note that g′(ϕ) = −F2(ϕ) and g(ϕ) = 0 for ϕ = 0 and

ϕ = 1) and the new auxiliary variable w is often named as the chemical potential.

Finally, a thermodynamically reasonable choice for the mobility in the case where it

only depends on the concentration is given by

µ = µ(c) = c(1 − c) (1.20)

(see Elliott & Garcke, 1996, and references therein). This prescribes that the diffusion

effect for c vanishes in the pure components A and B; however, we remark that (1.20) is

generally assumed in case j = χ (cf. (1.15)), so that µ cancels out with the denominator

of the term ∇ j ′(c) and the degenerate character of the evolution of c is actually lost.
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Hence, our mathematically easier choice of a nondegenerate µ seems not to be severely

restrictive. In more detail, we assume µ to be a continuous, positive, and bounded function

allowed to depend also on ϕ as in Kessler et al. (1998) and Rappaz & Scheid (2000). A

realistic expression for µ is given by

µ(c, ϕ) = D(ϕ)(1 − α(2c − 1)2), for c ∈ [0, 1], (1.21)

where α ∈ [0, 1) is a given parameter, the case α = 1 giving the degeneration. The function

D is a non-decreasing positive and bounded function such that D(0) = µs > 0 and

D(1) = µl > 0 are respectively the solid and liquid mobility coefficients with µs � µl .

Without any loss of generality, we put M = ε2
c = ε2

ϕ = 1 so that, setting γ := j ′0 and

β := ∂ I[0,1], the equations (1.17)–(1.19) reduce to (1.1)–(1.3), respectively. Let us also

mention that for ϕ = 0 and ϕ = 1, we have g(ϕ) = 0 and we recover the Cahn–Hilliard

equation for c with a concentration dependent mobility studied in Barrett & Blowey (1999)

(see also Elliott & Garcke, 1996).

We finally quote the paper of Elder et al. (2001), where a coupled system with a

nonconserved phase field and a conserved concentration field is considered. The authors

deal with the same generic equations as (1.9), (1.11) but with a slightly different free energy

density f and they obtain sharp interface limits. In this concern, we analyse a singular limit

problem related to the system (1.1)–(1.3), where the fourth-order diffusion term −∆c and

the derivative γ (c) = j ′0(c) of the nonconvex part of the mixing energy are set equal to 0

in the limit. In order to motivate this analysis, let us notice that the total free energy F of

the system can be broken down into two contributions Fϕ and Fc, where

Fϕ =

∫

Ω

(
ε2
ϕ

2
|∇ϕ|2 + (1 − c) f A(ϕ) + c f B(ϕ)

)

is the excess energy due to solid–liquid phase mixing, indicating that the system wants to

separate its liquid and solid phases (ϕ = 0 and ϕ = 1), and

Fc =

∫

Ω

(
ε2

c

2
|∇c|2 + I[0,1](c) + j0(c)

)

is the excess energy due to concentration phase mixing, indicating that the system wants

to separate into pure element phases (c = 0 and c = 1). The term I[0,1](c) provides the

physical barriers at c = 0, 1.

Up to now, we have considered that solid–liquid phase separation and concentration

phase separation can be described by energies of comparable magnitude, or equivalently

that they act at the same time scale. Nevertheless, it is reasonable to assume that in fact

solid–liquid phase separation occurs much faster than the coarsening of concentration

phases. One way of describing this situation is to consider that the full contribution of

Fc to the energy is much smaller than the contribution of Fϕ , even infinitesimally smaller.

This leads us to introduce the new energy

Fλ = Fϕ + λFc

and let the parameter λ be very small and eventually converge to 0. Actually, the

introduction of this artificial parameter λ, which is convenient for the forthcoming analysis,



238 D. KESSLER ET AL.

is equivalent to rescaling both ε2
c and γ . Let us note that the constraint I[0,1] is not modified

in the multiplication by λ and hence it is conserved at the limit.

We are able to prove the convergence of the solutions of the original system (1.1)–

(1.3) to a weak solution of the limit one provided that µ is allowed to depend only on ϕ

(corresponding to α = 0 in (1.21)). Let us note that the limit system is formally equivalent

to a Stefan problem with zero specific heat for the unknown c, which is coupled with

the regular diffusion equation (1.1) for ϕ. Hence, at the limit and at least for β = I[0,1],

the evolution of c does no longer account for a separation of components, but just for a

diffusive behaviour as c stays in between the physical barriers c = 0, 1.

Outline of the paper. In the next section we provide some analytical preliminaries that are

required for stating the precise mathematical abstract formulation of the problem. This is

presented in Section 3 together with our main related results. In Section 4 we approximate

the system by regularizing the subdifferential term, by use of the Yosida approximation.

Then we exploit a Faedo–Galerkin technique and prove global existence by an a priori

estimates and passage to the limit argument. Section 5 is devoted to the analysis of

further properties of the solution, as additional regularity, continuous dependence on data,

uniqueness, and physical interpretation. Finally, in Section 6, the singular limit problem is

considered and a related convergence result is proved.

2. Mathematical preliminaries

Let Ω be a smooth, bounded, and connected domain in R
d , 1 � d � 3, and let T > 0.

Set Γ := ∂Ω , Σ := Γ × (0, T ), Qt := Ω × (0, t) for t ∈ (0, T ], and Q := QT . Set also

H := L2(Ω) and V := H1(Ω) and endow the latter space with the usual scalar product

((v, w)) :=

∫

Ω

vw dx +

∫

Ω

∇v · ∇w dx . (2.1)

We identify H and its dual, in order that the compact inclusion H ⊂ V ′ holds and

(V, H, V ′) form a Hilbert triplet (Lions & Magenes, 1972, p. 202). We denote by (·, ·)

the scalar product of both H and Hd and by | · | the associated norms. Finally, we indicate

by 〈·, ·〉 the duality pairing between V ′ and V and by ((·, ·))∗ the associated scalar product

on V ′.

Let us introduce some notation for functions and functionals with zero mean value.

Namely, for any ζ ∈ V ′, let us set

ζΩ :=
1

|Ω |
〈ζ, 1〉, (2.2)

V ′
0 := {ζ ∈ V ′ : ζΩ = 0}, V0 := V ∩ V ′

0. (2.3)

Let now 0 < α � µ0 be assigned constants and let

µ ∈ Lip loc(R
2), with α � µ � µ0 a.e. in R

2. (2.4)
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Let also v, z : Ω → R be measurable functions. Then, we can naturally associate with the

couple (v, z) the elliptic operator

B(v,z) : V → V ′, 〈B(v,z)u, y〉 :=

∫

Ω

µ(v, z)∇u · ∇ y dx for u, y ∈ V . (2.5)

Note indeed that

µ(v, z) ∈ L∞(Ω) with α � µ(v, z) � µ0 a.e. in Ω . (2.6)

Analogously, we introduce the realization of the Laplace operator with homogeneous

Neumann boundary conditions as

B : V → V ′, 〈Bu, y〉 :=

∫

Ω

∇u · ∇ y dx for u, y ∈ V . (2.7)

Clearly, B, B(v,z) map V onto V ′
0 and their restrictions to V0 turn out to be isomorphisms

of V0 onto V ′
0. Then, we can denote by N : V ′

0 → V0 the inverse of B and by N(v,z) :

V ′
0 → V0 the inverse of B(v,z). Just by applying the definition (2.5), one can readily check

that for any u ∈ V and ζ ∈ V ′
0, there holds

〈B(v,z)u,N(v,z)ζ 〉 = 〈B(v,z)N(v,z)ζ, u〉 = 〈ζ, u〉. (2.8)

The next result (cf. Bonetti et al., 2003, Lemmas 2.2, 2.3) is an easy consequence of the

Poincaré–Wirtinger inequality.

LEMMA 2.1 There exist constants κ1, κ2 > 0 depending only on Ω , α, µ, such that for all

ζ ∈ V ′
0 and for all measurable functions v, z : Ω → R it is

‖N(v,z)ζ‖V � κ1‖ζ‖V ′ , 〈ζ,N(v,z)ζ 〉 � κ2‖ζ‖2
V ′ . (2.9)

We also note that, as v, z : Q → R are measurable functions, we can set, for a.e. t ∈ (0, T ),

B(v,z)(t) := B(v(t),z(t)) and N(v,z)(t) := N(v(t),z(t)) and the operators B(v,z) and N(v,z) can

be actually intended to work on time-dependent functions. Namely, it is easy to show that

(Bonetti et al., 2003, Lemma 3.1)

‖B(v,z)‖L(L p(0,T ;V ),L p(0,T ;V ′
0))

� µ0, ‖N(v,z)‖L(L p(0,T ;V ′
0),L

p(0,T ;V0))
� κ1, (2.10)

where κ1 is as in (2.9), p ∈ [1, ∞], and by the notation L(X, Y ) we mean the space

of the linear and continuous operators between the Banach spaces X and Y . Finally, let

J : H → [0, +∞] be a convex, lower semicontinuous, and proper function and A be its

subdifferential, regarded as a (multivalued) operator of H into itself. We need in the sequel

a couple of integration by parts formulae, that are stated in the following two lemmas. We

prove the first one, while the second is in Brezis & Strauss (1973, Lemma 2).

LEMMA 2.2 Let T > 0, u ∈ H1(0, T ; V ′) ∩ L2(0, T ; V ), η ∈ L2(0, T ; V ). Let also

η(t) ∈ Au(t) for a.e. t ∈ (0, T ). Moreover, let us suppose that there exist κ1, κ2 > 0 such

that

J (v) � κ1|v|2 − κ2 for all v ∈ H . (2.11)
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Then, the function t 
→ J (u(t)) is absolutely continuous in (0, T ) and

∫ t

s

〈∂t u(r), η(r)〉 dr = J (u(t)) − J (u(s)) ∀ s, t ∈ (0, T ). (2.12)

Proof. Let us define a new convex functional Jext : V ′ → R as

Jext(v) := J (v) if v ∈ H , Jext(v) := +∞ otherwise. (2.13)

Owing to (2.11), it is not difficult to prove that Jext is lower semicontinuous on V ′.

Furthermore, by definition of subdifferential and using that η ∈ V , for any ζ ∈ H we

have

〈ζ − u, η〉 = (η, ζ − u) � J (ζ ) − J (u) = Jext(ζ ) − Jext(u). (2.14)

Note that this relation still holds if ζ ∈ V ′. Actually, due to (2.13), if ζ ∈ V ′ \ H ,

then Jext(ζ ) = +∞, and (2.14) is trivial. Then, denoting by R : V → V ′ the Riesz

isomorphism, it is not difficult to infer that

Rη ∈ ∂V ′ Jext(u),

where ∂V ′ Jext of course denotes the subdifferential of Jext with respect to the Hilbert

structure of V ′. Then, Brezis (1973, Lemma 3.3, p. 73) can be applied in the space V ′.

Furthermore, for all s, t ∈ [0, T ], a simple integration yields

∫ t

s

〈∂t u(r), η(r)〉 dr =

∫ t

s

((∂t u(r),Rη(r)))∗ dr

= Jext(u(t)) − Jext(u(s)) = J (u(t)) − J (u(s)),

since it is known that u(·) ∈ H a.e. in (0, T ). �

LEMMA 2.3 Let z, ξ ∈ H , and let J be the realization in H of a convex, lower

semicontinuous, and proper function j : R → [0, +∞], e.g.

J (v) :=

∫

Ω

j (v(x)) dx for v ∈ H ,

where it is intended that the value of the integral might be +∞ for some v. Then, let

ξ ∈ ∂ J (z). Let also µ as in (2.4), u, v, B(u,v) as in (2.5). Finally, let B(u,v)z ∈ H . Then,

(B(u,v)z, ξ) � 0.

3. Main results

Let us give the main assumptions on the data of the problem. Let K > 0 and let

F1, F2, γ, g ∈ W 1,∞(R), (3.1)

|F1|, |F2|, |γ |, |g|, |F ′
1|, |F

′
2|, |γ

′|, |g′| � K a.e. in R, (3.2)

ϕ0 ∈ H, c0 ∈ V, (3.3)

β ⊂ R × R maximal monotone graph such that 0 ∈ β(0). (3.4)
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Let us fix a convex and lower semicontinuous function ψ : R → [0, +∞] such that

β = ∂ψ and ψ(0) = 0. Moreover, we recall that the domain of the graph β is defined as

D(β) := {r ∈ R : β(r) �= ∅}.

Then, we also require

ψ(c0) ∈ L1(Ω), (3.5)

cΩ ∈ int D(β), where cΩ := (c0)Ω . (3.6)

We are now able to state our main existence result.

THEOREM 3.1 Let assumptions (2.4) and (3.1)–(3.6) hold. Then, there exists a quadruple

(ϕ, c, w, ξ) such that

ϕ ∈ H1(0, T ; V ′) ∩ L2(0, T ; V ), (3.7)

c ∈ H1(0, T ; V ′) ∩ L∞(0, T ; V ) ∩ L2(0, T ; H2(Ω)), (3.8)

w ∈ L2(0, T ; V ), (3.9)

ξ ∈ L2(0, T ; H). (3.10)

The quadruple (ϕ, c, w, ξ) satisfies

∂tϕ + Bϕ = F1(ϕ) + c F2(ϕ) in V ′ a.e. in (0, T ), (3.11)

∂t c + B(ϕ,c)w = 0 in V ′ a.e. in (0, T ), (3.12)

w = Bc + ξ + γ (c) + g(ϕ) in V ′ a.e. in (0, T ), (3.13)

ξ ∈ β(c) a.e. in Q, (3.14)

ϕ(·, 0) = ϕ0(·), c(·, 0) = c0(·) a.e. in Ω . (3.15)

Moreover, c is a conserved order parameter, i.e.

c(t)Ω = cΩ for all t ∈ [0, T ]. (3.16)

REMARK 3.2 Using (3.10) and the last of (3.8), one can see that (3.13) turns out to hold

a.e. in Q. However, we prefer to state it in V ′, since this is the natural output space for the

operator B.

Let us come to some regularity results.

THEOREM 3.3 In addition to (2.4) and (3.1)–(3.6), let

ϕ0 ∈ V . (3.17)

Then, the function ϕ whose existence is ensured by Theorem 3.1 satisfies

ϕ ∈ H1(0, T ; H) ∩ C0([0, T ]; V ) ∩ L2(0, T ; H2(Ω)). (3.18)



242 D. KESSLER ET AL.

THEOREM 3.4 In addition to (2.4) and (3.1)–(3.6), let

ϕ0 ∈ H2(Ω), ∂nϕ0 = 0 a.e. on Γ , (3.19)

where n denotes the outer unit normal vector to Ω . Then, the function ϕ given by

Theorem 3.1 satisfies

ϕ ∈ W 1,∞(0, T ; H) ∩ H1(0, T ; V ) ∩ L∞(0, T ; H2(Ω)) ∩ L2(0, T ; H3(Ω)). (3.20)

The following continuous dependence results hold in the regularity setting of

Theorem 3.1, but only in case the function µ in (2.4) is replaced by a constant.

THEOREM 3.5 Let us assume (3.1)–(3.2) and (3.4), and two pairs of initial data

(ϕ0,1, c0,1) and (ϕ0,2, c0,2), satisfying (3.3) and (3.5), (3.6). Moreover, let us assume that

(c0,1)Ω = (c0,2)Ω . (3.21)

Then, let us consider the system given by (3.11), (3.13)–(3.15), and

∂t c + Bw = 0 in V ′ a.e. in (0, T ). (3.22)

and, for i = 1, 2, let (ϕi , ci , wi , ξi ) be two solutions of such a system, related to the initial

data (ϕ0,1, c0,1) and (ϕ0,2, c0,2), respectively. Moreover, let us assume that R > 0 is a

constant such that

‖c1‖L1(0,T ;H2(Ω)) � R. (3.23)

Then, there exists a constant C > 0 only depending on Ω , T, R, and K , such that

‖ϕ1 − ϕ2‖C0([0,T ];H)∩L2(0,T ;V ) + ‖c1 − c2‖C0([0,T ];V ′)∩L2(0,T ;V )

� C
(
|ϕ0,1 − ϕ0,2| + ‖c0,1 − c0,2‖V ′

)
. (3.24)

In particular, the solution to the modified system provided by Theorem 3.1 is unique.

Finally, let us prove that more restrictive assumptions on F1, F2 ensure that the

component ϕ of at least one solution admits a ‘physical’ interpretation as a phase variable.

THEOREM 3.6 Keeping the hypotheses of Theorem 3.1, let us also suppose

F1(0) = F1(1) = F2(0) = F2(1) = 0, (3.25)

0 � ϕ0 � 1 a.e. in Ω . (3.26)

Then, there exists at least a solution to (3.11)–(3.15) in the regularity setting of Theorem 3.1

whose component ϕ fulfils

ϕ ∈ L∞(Q), with 0 � ϕ � 1 a.e. in Q. (3.27)
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REMARK 3.7 We observe that assumptions (3.4)–(3.6) actually generalize the natural

physical assumptions on the graph β and the initial datum c0, that we now report in a

rigorous mathematical form for the sake of completeness:

0 � c0 � 1 a.e. in Ω , (3.28)

0 < cΩ < 1, where cΩ := (c0)Ω , (3.29)

β = ∂ I[0,1]. (3.30)

Indeed, it is clear that, if (3.28)–(3.30) are fulfilled, then any solution c to (3.13), (3.14)

satisfies, in addition,

c ∈ L∞(Q), with 0 � c � 1 a.e. in Q. (3.31)

4. Proof of Theorem 3.1

4.1 Local existence

We aim to prove existence for (3.11)–(3.15) by exploiting a Faedo–Galerkin approxima-

tion. Since the argument is standard we just sketch it briefly. First of all, we regularize the

system by replacing β with its Yosida approximation βε (Brezis, 1973, p. 28). We denote

by ψε the primitive of βε such that ψε(0) = 0. Then, we take a complete and ordered

system of eigenvectors {vi } of the standard Neumann problem for the Laplace operator.

We set Vn := span{v1, . . . , vn} and V∞ := ∪∞
n=1Vn , which is a dense subspace of V , of

course. For any n ∈ N, we look for approximate solutions of the form

ϕn
ε =

n∑

i=1

ϕi (t)vi , cn
ε =

n∑

i=1

ci (t)vi , wn
ε =

n∑

i=1

wi (t)vi . (4.1)

Indeed, denoting by ϕ, c, w the vectors {ϕi }i=1,...,n , {ci }i=1,...,n , {wi }i=1,...,n , the finite-

dimensional approximation of (3.11)–(3.14) becomes

ϕ′ = −Λϕ + F(ϕ, c), (4.2)

c′ = −M(ϕ, c)w, (4.3)

w = Λc + βε(c) + γ(c) + g(ϕ). (4.4)

Here, the functions, F, βε, γ and g are constructed in a natural way from F1 and F2, βε,

γ and g, respectively. Moreover, Λ and M are the elliptic matrices resulting from B and

B(ϕ,c).

It is easy to see that the right-hand sides of the system above are locally Lipschitz

functions of their arguments. Then, approximating also the Cauchy condition (3.15) by

choosing ϕ0n ∈ Vn , c0n ∈ Vn with

ϕ0n → ϕ0 in H , c0n → c0 in V , (4.5)

and requiring of course

ϕn
ε (0) = ϕ0n, cn

ε (0) = c0n a.e. in Ω , (4.6)

Cauchy’s local existence theorem for ODEs yields a final time T0, possibly < T , and

a unique triplet (ϕ, c, w) ∈ C1([0, T0]; V 3
n ), solving (4.2)–(4.4) up to T0 and satisfying

(4.6).
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4.2 A priori estimates

We now aim to prove some a priori estimates on the solution of the approximated

system given by (4.2)–(4.4) and (4.6). Hence, let us rewrite (4.2)–(4.4) by replacing the

expressions (4.1) therein:

〈∂tϕ
n
ε + Bϕn

ε , v〉 = 〈F1(ϕ
n
ε ) + cn

ε F2(ϕ
n
ε ), v〉 ∀ v ∈ Vn , ∀ t ∈ (0, T ), (4.7)

〈∂t c
n
ε + B(ϕn

ε ,cn
ε )w

n
ε , v〉 = 0 ∀ v ∈ Vn , ∀ t ∈ (0, T ), (4.8)

〈wn
ε , v〉 = 〈Bcn

ε + βε(c
n
ε ) + γ (cn

ε ) + g(ϕn
ε ), v〉 ∀ v ∈ Vn , ∀ t ∈ (0, T ). (4.9)

In the sequel, k will be a positive constant, possibly varying even inside a single row, but

allowed to depend only on Ω , α, µ0, K , T and, in particular, not on T0, n, ε. Symbols like,

for example, kσ are intended to mean that the constant kσ might also depend on one, or

more, additional parameters (in this case σ ). The elementary Young inequality

rs � σr2 + s2/4σ for any r, s ∈ R, σ > 0 (4.10)

will be used repeatedly in the following. Finally, we observe that, since our estimates do

not depend on T0, the limit solution will turn out to be defined up to the final time T . For

this reason, we shall directly work in the interval (0, T ).

Energy estimate. Take t ∈ (0, T ], choose v = wn
ε in (4.8) and v = ∂t c

n
ε in (4.9), integrate

over (0, t) and sum together the results. Owing to (2.4), observing that two terms cancel,

and integrating in time the term with βε, it is easy to infer

α‖∇wn
ε ‖2

L2(Qt )
+

1

2
|∇cn

ε (t)|2 +

∫

Ω

ψε(c
n
ε (t)) dx �

1

2
|∇c0n|2

+

∫

Ω

ψε(c0n) dx −

∫ t

0

∫

Ω

γ (cn
ε )∂t c

n
ε dx ds −

∫ t

0

∫

Ω

g(ϕn
ε )∂t c

n
ε dx ds. (4.11)

The last two integrals on the right-hand side above can be estimated in several ways. For

instance, splitting the former in the duality (V, V ′), we have

∣∣∣
∫ t

0

∫

Ω

γ (cn
ε )∂t c

n
ε dx ds

∣∣∣ � σ‖∂t c
n
ε‖2

L2(0,t;V ′)
+ kσ + kσ ‖∇cn

ε‖2
L2(Qt )

(4.12)

and, analogously,

∣∣∣
∫ t

0

∫

Ω

g(ϕn
ε )∂t c

n
ε dx ds

∣∣∣ � σ‖∂t c
n
ε‖2

L2(0,t;V ′)
+ kσ + kσ ‖∇ϕn

ε ‖2
L2(Qt )

, (4.13)

where, of course, σ is as in (4.10) and the above kσ also depend on the bound K to γ, g

and their first derivatives.

Now, in order to estimate the norm of ϕn
ε appearing in (4.13), we choose v = ϕn

ε in

(4.7) and integrate again over (0, t). Taking advantage of (3.1), (3.2) again, it is immediate

to infer

1

2
|ϕn

ε (t)|2 + ‖∇ϕn
ε ‖2

L2(Qt )
�

1

2
|ϕ0n|2 + k

(
1 + ‖ϕn

ε ‖2
L2(Qt )

+ ‖cn
ε‖2

L2(Qt )

)
. (4.14)
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We now have to estimate the norms of ∂t c
n
ε on the right-hand side of (4.12), (4.13).

Then, note that λ1 = 0, so that 1 ∈ Vn for every n and we can choose v = 1 in (4.8),

obtaining

〈∂t c
n
ε , 1〉 = 0.

Thus, ∂t c
n
ε ∈ Vn ∩ V0. Noting that Vn ∩ V0 = span{v2, . . . , vn} by orthogonality, one can

readily see that the appropriate restriction of N is an isomorphism of Vn ∩ V0 onto itself

(in coordinates it is the inverse of the diagonal matrix obtained by suppressing the first row

and column of Λ). Hence, we can choose v = N ∂t c
n
ε in (4.8). Integrating over (0, t) and

owing to (2.9), (2.10), (4.10), and to the Poincaré–Wirtinger inequality, we get

‖∂t c
n
ε‖2

L2(0,t;V ′)
� k‖B(ϕn

ε ,cn
ε )w

n
ε ‖2

L2(0,t;V ′)
� k

∥∥B(ϕn
ε ,cn

ε )

(
wn

ε − (wn
ε )Ω

)∥∥2

L2(0,t;V ′)

� k
∥∥wn

ε − (wn
ε )Ω

∥∥2

L2(0,t;V )
� k‖∇wn

ε ‖2
L2(Qt )

. (4.15)

Before collecting the above computations, we still have to recover the full V -norm of cn
ε

on the left-hand side of (4.11) and we do this by noting that

1

2
|cn

ε (t)|2 =
1

2
|c0n|2 +

∫ t

0

(∂t c
n
ε , cn

ε ) ds

�
1

2
|c0n|2 +

1

4
‖∂t c

n
ε‖2

L2(0,t;V ′)
+ k‖cn

ε‖2
L2(Qt )

+ k‖∇cn
ε‖2

L2(Qt )
. (4.16)

Now, let us multiply (4.11) by m1 > 0 and (4.14) by m2 > 0, where m1 and m2 will

be chosen later. Then, we take the sum of the resulting relations and add also (4.15) and

(4.16). Taking (4.12) and (4.13) into account, we infer

m1α‖∇wn
ε ‖2

L2(Qt )
+

m1

2
|∇cn

ε (t)|2 + m1

∫

Ω

ψε(c
n
ε (t)) dx +

m2

2
|ϕn

ε (t)|2

+ m2‖∇ϕn
ε ‖2

L2(Qt )
+ ‖∂t c

n
ε‖2

L2(0,t;V ′)
+

1

2
|cn

ε (t)|2

� kσ,m1,m2
+

m1

2
|∇c0n|2 + m1

∫

Ω

ψε(c0n) dx + kσ,m2
‖cn

ε‖2
L2(Qt )

+ kσ,m2
‖ϕn

ε ‖2
L2(Qt )

+
(1

4
+ 2m1σ

)
‖∂t c

n
ε‖2

L2(0,t;V ′)
+ (m1 kσ + k)‖∇cn

ε‖2
L2(Qt )

+ m1 k∗
σ ‖∇ϕn

ε ‖2
L2(Qt )

+
m2

2
|ϕ0n|2 + k∗‖∇wn

ε ‖2
L2(Qt )

+
1

2
|c0n|2, (4.17)

where k∗
σ is the constant kσ multiplying the last norm in (4.13) and k∗ is the constant k on

the right-hand side of (4.15).

Now, let us choose successively m1, σ , and m2, in order that

m1 �
2k∗

α
, σ �

1

4m1
, m2 � 2m1 k∗

σ .

Then, all the terms on the right-hand side of (4.17) are controlled. Indeed, (4.5) holds and

we notice that, by (3.5) and Brezis (1973, Proposition 2.11, p. 39),
∫

Ω

ψε(c0n) dx � 1 +

∫

Ω

ψ(c0) dx � k,
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at least for n large enough, depending on ε. Hence, we readily see that Gronwall’s lemma

can be applied to the function

t 
→ ‖cn
ε (t)‖2

V + |ϕn
ε (t)|2

in order to derive a bound. Since we need an estimate for the full V -norm of wn
ε , we take

v = wn
ε in (4.9) and integrate over (0, t). Owing to the Lipschitz continuity of γ , g and βε

and noting that, due to the estimates given by (4.17),

∣∣∣∣
∫ t

0

〈Bcn
ε , wn

ε 〉 ds

∣∣∣∣ �
1

2
‖∇wn

ε ‖2
L2(Qt )

+
1

2
‖∇cn

ε‖2
L2(Qt )

� k,

we readily get

‖wn
ε ‖2

L2(Q)
� kε + k, (4.18)

where the constant kε resulting from the term βε(cε) is quadratically dependent on the

Lipschitz constant of βε and explodes as ε ց 0.

4.3 Passage to the limit

Passage to the limit as n ր ∞. We now aim to pass to the limit firstly as n ր ∞ and

then as ε ց 0. Henceforth, all the convergence relations will be meant to hold up to the

extraction of suitable subsequences, generally not relabelled. Then, from relations (4.17),

(4.18), we see that there exists a triplet (ϕε, cε, wε), such that

ϕn
ε → ϕε weakly star in L∞(0, T ; H) ∩ L2(0, T ; V ), (4.19)

cn
ε → cε weakly star in H1(0, T ; V ′) ∩ L∞(0, T ; V ), (4.20)

wn
ε → wε weakly in L2(0, T ; V ). (4.21)

Then, standard interpolation and compact embedding results for vector-valued functions

(see e.g. Simon, 1987, Section 8) ensure that

cn
ε → cε strongly in C0([0, T ]; H). (4.22)

In order to derive some strong convergence for ϕn
ε we need an estimate of its time

derivative. Due to the finite-dimensional setting, we cannot proceed by a direct comparison

in (4.7); then, we choose v = N
(
∂tϕ

n
ε − (∂tϕ

n
ε )Ω

)
∈ Vn in (4.7) and integrate over (0, t),

t � T , deriving

∫ t

0

〈
∂tϕ

n
ε ,N

(
∂tϕ

n
ε − (∂tϕ

n
ε )Ω

)〉
ds +

∫ t

0

〈
Bϕn

ε ,N
(
∂tϕ

n
ε − (∂tϕ

n
ε )Ω

)〉
ds

=

∫ t

0

〈
F1(ϕ

n
ε ) + cn

ε F2(ϕ
n
ε ),N

(
∂tϕ

n
ε − (∂tϕ

n
ε )Ω

)〉
ds. (4.23)
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Note now that, since N
(
∂tϕ

n
ε − (∂tϕ

n
ε )Ω

)
∈ V0 a.e. in (0, T ), we can rely on (2.9) and

obtain

∫ t

0

〈
∂tϕ

n
ε ,N

(
∂tϕ

n
ε − (∂tϕ

n
ε )Ω

)〉
ds

=

∫ t

0

〈
∂tϕ

n
ε − (∂tϕ

n
ε )Ω ,N

(
∂tϕ

n
ε − (∂tϕ

n
ε )Ω

)〉
ds

� k
∥∥∂tϕ

n
ε − (∂tϕ

n
ε )Ω

∥∥2

L2(0,T ;V ′)
. (4.24)

Moreover, by (2.8), it is easy to check that

∫ t

0

〈
Bϕn

ε ,N
(
∂tϕ

n
ε − (∂tϕ

n
ε )Ω

)〉
ds = |ϕn

ε (t) − (ϕn
ε )Ω |2 − |ϕ0n − (ϕ0n)Ω |2,

and the latter norm is bounded, of course. Finally, the terms on the right-hand side of (4.23)

can be split in the duality (V ′, V ) and estimated by taking account of (3.1)–(3.2), estimates

(4.19), (4.20), and the continuous embedding V ⊂ H . This allows us to derive from (4.23),

(4.24) the relation

∥∥∂tϕ
n
ε − (∂tϕ

n
ε )Ω

∥∥2

L2(0,T ;V ′)
� k. (4.25)

Next, we notice that, (∂tϕ
n
ε )Ω is constant in Ω everywhere in [0, T ]. Let us now take

v = ±1 in (4.7) and note that, by (3.2) and the second of (4.20),

∣∣(∂tϕ
n
ε )Ω (t)

∣∣ � k
(
1 + ‖cn

ε‖L∞(0,T ;L1(Ω))

)
� k (4.26)

for all t ∈ [0, T ]. Then, (4.25) yields

∂tϕ
n
ε → ∂tϕε weakly in L2(0, T ; V ′) (4.27)

and, using (4.19) and Simon (1987, Section 8) again,

ϕn
ε → ϕε strongly in L2(0, T ; H) ∩ C0([0, T ]; V ′). (4.28)

Now, the boundedness and Lipschitz continuity of F1, F2, γ , g, and βε, together with

relations (4.22) and (4.28), allow us to take the limits of the nonlinearities in (4.7) and

(4.9). As for dealing with (4.8), we have to rewrite it as

〈∂t c
n
ε , v〉 +

∫

Ω

µ(ϕn
ε , cn

ε )∇wn
ε · ∇v dx ∀ v ∈ Vn a.e. in (0, T ).

Then, we note that, by (2.4) and Lebesgue’s dominated convergence theorem,

µ(ϕn
ε , cn

ε ) → µ(ϕε, cε) weakly star in L∞(Q), and strongly in L p(Q) (4.29)

for any p < ∞. Thus, recalling (4.21),

µ(ϕn
ε , cn

ε )∇wn
ε → µ(ϕε, cε)∇wε weakly in L2(Q) (4.30)
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and this permits us to pass to the limit in (4.8). We still have to prove the H2 regularity

for cε. Then, it is enough to set v = Bcn
ε in (4.9), integrate in time, and note that, by

monotonicity,

∫ t

0

〈βε(c
n
ε ), Bcn

ε 〉 ds =

∫ t

0

∫

Ω

β ′
ε(c

n
ε )|∇cn

ε |2 dx ds � 0 (4.31)

and that

∣∣∣
∫ t

0

〈wn
ε , Bcn

ε 〉 ds

∣∣∣ � ‖∇wn
ε ‖L2(Qt )

‖∇cn
ε‖L2(Qt )

� k. (4.32)

We point out that this estimate depends just on the L2-norm of ∇wn
ε and not on the full

V -norm of wn
ε ; in particular, the k on the right-hand side does not explode as ε ց 0.

Finally, we observe that, if v ∈ V∞ is fixed, system (4.7)–(4.9) surely makes sense for

sufficiently large n. Then, by the density of V∞ in V , in the limit we are allowed to take

any v ∈ V as a test function. As for the Cauchy conditions (4.6), they pass to the limit too,

since (4.5), (4.22) and the second of (4.28) hold.

Passage to the limit as ε ց 0. We would like to repeat the above procedure; however,

we can no longer take advantage of the Lipschitz continuity of βε and in particular of

the bound (4.18). Hence, we have to perform a new estimate of βε(cε), consisting of a

variant of an argument devised in Kenmochi et al. (1995, Lemma 5.2). Namely, we set

xε := (βε(cε))Ω and take v = βε(cε) − xε in the n-limit of (4.9). Moreover, we choose

v = N(ϕε,cε)

(
βε(cε)−xε

)
in (4.8), subtract from the above, and integrate over (0, t), where

t � T . Proceeding as in Colli et al. (2001, Section 4), we can prove that

‖βε(cε) − xε‖
2
L2(Q)

� k. (4.33)

Note in particular that, by (2.10), (4.10), and the continuous embedding V ⊂ H ,

∫ t

0

〈
∂t cε,N(ϕε,cε)

(
βε(cε) − xε

)〉
ds �

1

4
‖βε(cε) − xε‖

2
L2(Qt )

+ k‖∂t cε‖
2
L2(0,t;V ′)

and the latter quantity is bounded by (4.20).

The second part of the procedure consists in the estimation of the average xε, that can

be performed exactly as in Bonetti et al. (2003, Section 5.3). Observe that, at this step,

hypothesis (3.6) turns out to be crucial. This means that, in the physical case β = ∂ I[0,1],

we cannot start by concentrations c0 a.e. equal to 0 or to 1. By this argument, it follows the

existence of a function ξ such that

βε(cε) → ξ weakly in L2(0, T ; H). (4.34)

Now, we can improve the bound (4.18) by taking v = wε in the n-limit of (4.9). We readily

obtain

‖wε‖
2
L2(Q)

� k, (4.35)
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where k no longer depends on ε, thanks to (4.34). Now the passage to the limit as ε ց 0 can

be performed as in the previous section and suitable limit functions (ϕ, c, w) are obtained

as limits of (ϕε, cε, wε), respectively. The only difference concerns the identification of the

function ξ . Indeed, by (4.34), the analogue of (4.22), namely

cε → c strongly in C0([0, T ]; H), (4.36)

and the monotonicity argument of Barbu (1976, Proposition 1.1, p. 42), one can actually

prove (3.14). Finally, to conclude the proof of Theorem 3.1, it suffices to show (3.16) and,

of course, it is enough to take v = 1 ∈ V1 in (4.8) of the approximate statement, and pass

to the limit in ε, n.

5. Regularity and uniqueness

Proof of Theorem 3.3. We derive additional a priori estimates, independent of ε, n, for the

solutions of the system (4.7)–(4.9). We just give the highlights of this procedure, since it

is rather similar to the analogous argument in Rappaz & Scheid (2000, Section 3). Thus,

we first have to take v = ∂tϕ
n
ε on the right-hand side of (4.7) and integrate over (0, t), for

t � T . Then, performing standard integrations by parts, using the uniform boundedness of

F1 and F2 and (4.22), and taking advantage of (3.17), it is easy to arrive at

‖ϕn
ε ‖H1(0,T ;H) + ‖ϕn

ε ‖L∞(0,T ;V ) � k. (5.1)

Of course, to make the procedure rigorous, we have to improve (4.5), by requiring

ϕ0n ∈ Vn, ϕ0n → ϕ0 in V . (5.2)

Finally, choosing v = Bϕn
ε in (4.7) and working as above, we get the bound

‖Bϕn
ε ‖L2(0,T ;H) � k. (5.3)

The above relations can be taken into account in order to get the convergences yielding

(3.18) at the limit. Indeed, the H2-regularity follows from (5.3) and the standard elliptic

regularity theorems, while the C0([0, T ]; V ) regularity in (3.18) is a consequence of, for

example, Baiocchi (1967, Lemma 6.3). �

Proof of Theorem 3.4. Again, we proceed similarly to (Rappaz & Scheid, 2000, Sec-

tion 4). Anyway, our conditions on cn
ε are slightly different from those of Rappaz & Scheid

(2000); so, we briefly detail the computations. Thus, we take v = B2ϕn
ε in (4.7) and

integrate again over (0, t). Then, by the Gauss–Green formula we get

1

2
|Bϕn

ε (t)|2 + ‖∇ Bϕn
ε ‖2

L2(Qt )
�

1

2
|Bϕ0n(t)|2 +

∫ t

0

〈F1(ϕ
n
ε ) + cn

ε F2(ϕ
n
ε ), B2ϕn

ε 〉 ds

(5.4)

and we have to estimate the right-hand side above. The initial datum can be controlled just

by postulating

ϕ0n ∈ Vn, ϕ0n → ϕ0 in H2(Ω). (5.5)
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Furthermore, integrating by parts the latter term in (5.4) and using (3.2) and (4.10), we

easily get

∫ t

0

〈F1(ϕ
n
ε ) + cn

ε F2(ϕ
n
ε ), B2ϕn

ε 〉 ds �
1

2
‖∇ Bϕn

ε ‖2
L2(Qt )

+ k‖∇ϕn
ε ‖2

L2(Qt )
+ k‖∇cn

ε‖2
L2(Qt )

+ k

∫ t

0

∫

Ω

|cn
ε |2|∇ϕn

ε |2 dx ds. (5.6)

Of course, recalling (4.19), (4.20), we just have to control the last term. Thus, using some

standard three-dimensional embedding theorems, we get

k

∫ t

0

∫

Ω

|cn
ε |2|∇ϕn

ε |2 dx ds � k

∫ t

0

‖cn
ε (s)‖2

L4(Ω)
‖∇ϕn

ε (s)‖2
L4(Ω)

ds

� k

∫ t

0

‖cn
ε (s)‖2

H1(Ω)
‖ϕn

ε (s)‖2
H2(Ω)

ds

� k

∫ t

0

‖cn
ε (s)‖2

H1(Ω)
|ϕn

ε (s)|2 ds + k

∫ t

0

‖cn
ε (s)‖2

H1(Ω)
|Bϕn

ε (s)|2 ds. (5.7)

Now, the first integral on the right-hand side is bounded by (4.19)–(4.20), while we can

control the latter with the first term on the left-hand side of (5.4) if we take advantage of

the second of (4.20) and of the Gronwall lemma in the form of, for example, Brezis (1973,

Lemma A.4, p. 156).

Then, passing to the limit we derive the third and the fourth of (3.20). Now, we have to

choose v = ∂t Bϕn
ε in (4.7) and integrate again in time. Proceeding as before, we obtain

‖∂t∇ϕn
ε ‖2

L2(Qt )
+

1

2
|Bϕn

ε (t)|2 �
1

2
|Bϕ0n(t)|2 +

∫ t

0

〈F1(ϕ
n
ε ) + cn

ε F2(ϕ
n
ε ), ∂t Bϕn

ε 〉 ds

(5.8)

and we readily see that the right-hand side can be estimated as above. In particular, working

as in (5.6), (5.7), we arrive at

∫ t

0

∫

Ω

cn
ε F ′

2(ϕ
n
ε )∇ϕn

ε · ∂t∇ϕn
ε dx ds

�
1

4
‖∂t∇ϕn

ε ‖2
L2(Qt )

+ k

∫ t

0

‖cn
ε (s)‖2

H1(Ω)

(
|ϕn

ε (s)|2 + |Bϕn
ε (s)|2

)
ds. (5.9)

Then, (5.8) yields the second regularity in (3.20). To prove the first one, we differentiate in

time (4.7) and test the result by ∂tϕ
n
ε . Note that this procedure is rigorous. Indeed, referring

to the formulation (4.2), we see that the right-hand side is at least locally C0,1. Thus, we

get

1

2
|∂tϕ

n
ε (t)|2 + ‖∂t∇ϕn

ε ‖2
L2(Qt )

�
1

2
|∂tϕ

n
ε (0)|2 +

∫ t

0

〈F ′
1(ϕ

n
ε )∂tϕ

n
ε , ∂tϕ

n
ε 〉 ds

+

∫ t

0

〈cn
ε F ′

2(ϕ
n
ε )∂tϕ

n
ε , ∂tϕ

n
ε 〉 ds +

∫ t

0

〈∂t c
n
ε F2(ϕ

n
ε ), ∂tϕ

n
ε 〉 ds (5.10)
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and we have to bound the four terms on the right-hand side. As for the initial datum, we

note that, by (4.7), (5.5), the second of (4.5), and the boundedness of F1 and F2,

|∂tϕ
n
ε (0)|2 � k

(
|Bϕ0n|2 + |c0n|2 + 1

)
� k. (5.11)

By Hölder’s inequality and the continuous embedding H2(Ω) ⊂ L∞(Ω), we see that the

first couple of integrals I1 + I2 can be estimated as follows:

|I1 + I2| � k

∫ t

0

(
1 + ‖cn

ε (s)‖H2(Ω)

)
|∂tϕ

n
ε (s)|2 ds. (5.12)

The latter integral I3 on the right-hand side of (5.10) has to be split in the duality between

V ′ and V and gives

|I3| �
1

2
‖∂t c

n
ε‖2

L2(0,t;V ′)
+

1

2
‖F2(ϕ

n
ε )∂tϕ

n
ε ‖2

L2(0,t;V )

� k + k‖∂tϕ
n
ε ‖2

L2(0,t;V )
+ k

∫ t

0

∫

Ω

|∇ϕn
ε |2 |∂tϕ

n
ε |2 dx ds (5.13)

� k + k

∫ t

0

‖ϕn
ε ‖2

H3(Ω)
|∂tϕ

n
ε (s)|2 dx ds. (5.14)

Thus, collecting (5.10)–(5.14) and using the third of (3.8) and the fourth of (3.20), we see

that Gronwall’s lemma applies to t 
→ |∂tϕ
n
ε (t)|2, so that the proof of Theorem 3.4 turns

out to be complete. �

We now come to the ‘physical’ interpretation of the solution and assume (3.25), (3.26)

in addition to (3.1)–(3.6). Then, we modify F1 and F2, by effecting a truncation. Namely,

we set, for i = 1, 2,

F̃i (r) := 0 if r < 0 or r > 1, F̃i (r) := Fi (r) if 0 � r � 1. (5.15)

Thanks to (3.25), it is clear that F̃1, F̃2 still satisfy (3.1), (3.2). Thus, Theorem 3.1

guarantees the existence of a solution to the system (3.11)–(3.15), where F̃1, F̃2 replace

F1, F2 in (3.11). Now, we state a maximum principle argument ensuring that, under the

regularity assumptions of Theorem 3.1, any solution to the modified system (3.11)–(3.15)

is actually a solution also to the original one.

LEMMA 5.1 Under the assumptions (3.1)–(3.6) and (3.25), (3.26), the component ϕ of

any solution to (3.11)–(3.15)—with F̃1, F̃2 in place of F1, F2—satisfies

0 � ϕ � 1 a.e. in Q. (5.16)

We do not report the proof of this lemma, that is rather standard and actually identical

to the proof of Rappaz & Scheid (2000, Theorem. 3). Anyway, we note that Theorem 3.6

follows as an easy consequence. Moreover, we observe that of course assumption (3.2) on

g can be dropped in the statement of Theorem 3.6, that holds for any locally Lipschitz g.

REMARK 5.2 It is worthwhile discussing an important consequence of the above property.

Of course, we would like to prove the well-posedness of the system (3.11)–(3.15) in the
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physical case ensuring the bounds 0 � ϕ, c � 1 a.e. in Q. The above lemma guarantees

that any solution of the truncated system is a solution of the original one in the very general

regularity setting of Theorem 3.1. Of course, if we were able to show the uniqueness of

the solution to the original system, this would mean that this unique solution is physically

meaningful, since it has to coincide with a solution of the truncated system, which surely

exists. However, the uniqueness result provided by Theorem 3.5 holds just in case µ is

a constant function. Hence, we cannot exclude that there exists some solution to (3.11)–

(3.15) whose component ϕ attains its values also outside [0, 1].

Proof of Theorem 3.5. Let us set ϕ := ϕ1 −ϕ2, c := c1 − c2, w := w1 −w2, ξ := ξ1 − ξ2,

ϕ0 := ϕ0,1 −ϕ0,2, c0 := c0,1 −c0,2. Then, write (3.11) firstly for ϕ1, c1 and then for ϕ2, c2,

take the difference, multiply it by ϕ, and integrate over (0, t), for t � T . Then, owing to

(3.1), (3.2), it is easy to get

1

2
|ϕ(t)|2 + ‖∇ϕ‖2

L2(Qt )
�

1

2
|ϕ0|

2 +
3K

2

∫ t

0

|ϕ(s)|2 ds

+
K

2

∫ t

0

|c(s)|2 ds +

∫ t

0

∫

Ω

|c1| |F2(ϕ1) − F2(ϕ2)| |ϕ| dx ds (5.17)

and by the continuous embedding H2(Ω) ⊂ L∞(Ω), holding for d � 3, the latter integral

can be estimated as

� K

∫ t

0

‖c1(s)‖L∞(Ω)|ϕ(s)|2 ds � k

∫ t

0

‖c1(s)‖H2(Ω)|ϕ(s)|2 ds, (5.18)

where K is as in (3.2). Now, take the difference of (3.13) written for the two solutions,

multiply it by c, and integrate again over (0, t). Then, note that, by (3.21) and (3.16),

c(s) ∈ V0 for a.e. s ∈ [0, T ] and it makes sense to test the difference of the relations (3.22)

by N c. Moreover, using Lemma 2.1 it is not difficult to prove that

∫ t

0

〈ct ,N c〉 �
Cα,Ω ,µ

2
‖c(t)‖2

V ′ −
Cα,Ω

2
‖c0‖

2
V ′ .

Thus, comparing with the relation obtained from (3.13) and exploiting the monotonicity of

β, we readily obtain

Cα,Ω ,µ

2
‖c(t)‖2

V ′ + ‖∇c‖2
L2(Qt )

�
Cα,Ω

2
‖c0‖

2
V ′ + k‖ϕ‖2

L2(Qt )
+ k‖c‖2

L2(Qt )
. (5.19)

Then, we note that, by the compact embedding V ⊂ H and the Poincaré–Wirtinger

inequality, for any σ > 0 there exists kσ > 0 such that

‖c‖2
L2(Qt )

� σ‖∇c‖2
L2(Qt )

+ kσ ‖c‖2
L2(0,t;V ′)

. (5.20)

Then, summing together the expressions (5.17) and (5.19), taking (5.18) and (5.20) into

account, choosing σ suitably small, and using hypothesis (3.23), we note that the Gronwall

lemma in the form of, for example, Brezis (1973, Lemma A.4, p. 156) can be applied to

the function

t 
→ |ϕ(t)|2 + ‖c(t)‖2
V ′ ,

so that relation (3.24) can be inferred by standard considerations. �
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REMARK 5.3 In the physical case (3.30), or just assuming that D(β) is bounded,

assumption (3.23) can be avoided, since one can just take R = sup{|r |, r ∈ D(β)} to

estimate the term in (5.18).

6. Singular limit problem

Let us now study the singular limit problem for (3.11)–(3.15) described in the Introduction.

Henceforth, we assume that the function µ defined in (2.4) depends only on ϕ,

corresponding to α = 0 in (1.21), take a parameter λ > 0 that is supposed to go to 0

in the limit, and consider a solution (ϕλ, cλ, wλ, ξλ) to the system

∂tϕλ + Bϕλ = F1(ϕλ) + cλ F2(ϕλ) in V ′ a.e. in (0, T ), (6.1)

∂t cλ + Bϕλ
wλ = 0 in V ′ a.e. in (0, T ), (6.2)

wλ = λBcλ + ξλ + λγ (cλ) + g(ϕλ) in V ′ a.e. in (0, T ), (6.3)

ξλ ∈ β(cλ) a.e. in Q, (6.4)

ϕλ(·, 0) = ϕ0(·), cλ(·, 0) = c0(·) a.e. in Ω . (6.5)

Here, ϕ0, c0, F1, F2, γ , g and β are as in Theorem 3.1 that, of course, can be used to deduce

the existence of such a solution. Moreover, the operator Bϕλ
is defined as in (2.5) with the

only difference that it has to depend only on one function ϕλ. Hence, also the inverse map

Nϕλ
of V ′

0 to V0 retains the natural properties stated in Section 2. We have the following

result.

THEOREM 6.1 Beyond the above stated hypotheses, let us assume that there exist k1, k2 >

0 such that

ψ(r) � k1r2 − k2 ∀ r ∈ D(ψ). (6.6)

Then, there exists a quadruple (ϕ, c, w, ξ), such that, as λ ց 0, the following relations

hold:

ϕλ → ϕ weakly star in H1(0, T ; V ′) ∩ L∞(0, T ; H) ∩ L2(0, T ; V ), (6.7)

cλ → c weakly star in H1(0, T ; V ′) ∩ L∞(0, T ; H), (6.8)

λcλ → 0 strongly in L2(0, T ; V ) and weakly in L2(0, T ; H2(Ω)), (6.9)

wλ → w weakly in L2(0, T ; V ), (6.10)

ξλ → ξ weakly in L2(0, T ; H). (6.11)

Moreover, the quadruple (ϕ, c, w, ξ) satisfies

∂tϕ + Bϕ = F1(ϕ) + c F2(ϕ) in V ′ a.e. in (0, T ), (6.12)

∂t c + Bϕw = 0 in V ′ a.e. in (0, T ), (6.13)

w = ξ + g(ϕ) a.e. in Q, (6.14)

ξ ∈ β(c) a.e. in Q, (6.15)

ϕ(·, 0) = ϕ0(·), c(·, 0) = c0(·) a.e. in Ω . (6.16)
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REMARK 6.2 We notice that (6.6) is a standard assumption, that ensures the well-

posedness of this kind of degenerate parabolic systems (Damlamian, 1977; Kenmochi,

1990). Of course, it is verified in the physical case (3.30), where the second of (6.8) can be

straightforwardly improved as

cλ → c weakly star in L∞(Q) and 0 � c � 1 a.e. in Q. (6.17)

Proof. As usual, we proceed by compactness methods and start by deriving one new a

priori estimate. To this aim, test (6.1) by ϕλ and integrate as usual over Qt , t � T , easily

obtaining

1

2
|ϕλ(t)|

2 + ‖∇ϕλ‖
2
L2(Qt )

�
1

2
|ϕ0|

2 + k + k‖ϕλ‖
2
L2(Qt )

+ k‖cλ‖
2
L2(Qt )

. (6.18)

Now, test (6.2) by wλ and (6.3) by ∂t cλ, integrate over Qt and sum the results. Note that

this procedure makes sense as the right-hand side of (6.3) lies in L2(0, T ; V ). Then, we

formally have

α‖∇wλ‖
2
L2(Qt )

+
λ

2
|∇cλ(t)|

2 +

∫

Ω

ψ(cλ(t)) dx

�
λ

2
|∇c0|

2 +

∫

Ω

ψ(c0) dx + λ

∫ t

0

〈∂t cλ, γ (cλ)〉 ds +

∫ t

0

〈∂t cλ, g(ϕλ)〉 ds. (6.19)

Note anyway that the integration in time of the term with ξλ has to be justified, and this

can be done by applying Lemma 2.2 (in particular, the integration formula (2.12)) with the

choices of

J (v) :=

∫

Ω

(
ψ(v(x)) +

λ

2
|∇v(x)|2

)
dx, for v ∈ H , (6.20)

u := cλ, η := wλ − λγ (cλ) − g(ϕλ)· (6.21)

Indeed, it is easy to show that η ∈ L2(0, T ; V ) for all λ and that

η(t) ∈ ∂ J (u(t)) for a.e. t ∈ (0, T ).

Finally, (2.11) is a consequence of (6.6), so that the lemma can be applied.

Now, proceeding as in (4.15), one readily sees that there exists a constant kα > 0 such

that

α

2
‖∇wλ‖

2
L2(Qt )

� kα‖∂t cλ‖
2
L2(0,t;V ′)

. (6.22)

Then, we have to split the last two integrals in (6.19) w.r.t. the duality (V ′, V ). Namely, for

some k∗ dependent on α, but not on λ, we have

λ

∫ t

0

〈∂t cλ, γ (cλ)〉 ds �
kα

4
‖∂t cλ‖

2
L2(0,t;V ′)

+ k∗λ2‖cλ‖
2
L2(0,t;V )

+ kλ2 (6.23)
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and

∫ t

0

〈∂t cλ, g(ϕλ)〉 ds �
kα

4
‖∂t cλ‖

2
L2(0,t;V ′)

+ k∗‖ϕλ‖
2
L2(0,t;V )

+ k. (6.24)

Now, let us multiply (6.18) by m > 0 (to be chosen at the end), and sum the result to (6.19),

so that, collecting also (6.22)–(6.24), we infer

m

2
|ϕλ(t)|

2 + (m − k∗)‖∇ϕλ‖
2
L2(Qt )

+
α

2
‖∇wλ‖

2
L2(Qt )

+
kα

2
‖∂t cλ‖

2
L2(0,t;V ′)

+
λ

2
|∇cλ(t)|

2 +

∫

Ω

ψ(cλ(t)) dx

�
m

2
|ϕ0|

2 + k(1 + m + λ2) +
λ

2
|∇c0|

2 +

∫

Ω

ψ(c0) dx +
(
mk + k∗

)
‖ϕλ‖

2
L2(Qt )

+
(
mk + k∗λ2

)
‖cλ‖

2
L2(Qt )

+ k∗λ2‖∇cλ‖
2
L2(Qt )

. (6.25)

Now, using (6.6), we immediately have

∫

Ω

ψ(cλ(t)) dx � k1|cλ(t)|
2 − k2, (6.26)

so that, upon choosing m � 2k∗, we see that, at least for λ sufficiently small, Gronwall’s

lemma applies once more to

t 
→ |ϕλ(t)|
2 + |cλ(t)|

2 + λ|∇cλ(t)|
2,

so that (6.8), the second and the third of (6.7), and the first of (6.9) readily follow from

(6.25). Moreover, the first of (6.7) can be deduced by a direct comparison in (6.1), while

for the other relations it is necessary to repeat the argument leading to the estimation of ξλ

and this can be performed as in Section 4, with minor modifications. Note indeed that in

this setting the function β is no longer regular; hence, to integrate by parts the term with

Bcλ, Lemma 2.3 has to be used. Actually, this procedure gives relation (6.11). Now, to

deduce (6.10), it suffices to estimate the L2(0, T ; H) norm of wλ. Thus, test (6.3) by wλ,

integrate over (0, t), and note that

∣∣∣
∫ t

0

λ〈Bcλ, wλ〉 ds

∣∣∣ � k‖∇wλ‖
2
L2(Qt )

+ λ2‖∇cλ‖
2
L2(Qt )

� k, (6.27)

thanks to (6.25) and the first of (6.9). At this point, (6.10) is a consequence of the other

convergence relations and the second of (6.9) can be proved by a comparison in (6.3).

Finally, we have to show that the limit functions (ϕ, c, w, ξ) fulfil system (6.12)–(6.16)

and actually this can be performed similarly as in the proof of Theorem 3.1, with the

complication that (6.8) by (Simon, 1987, Corollary 4, Section 8) just implies

cλ → c strongly in C0([0, T ]; V ′); (6.28)

so, we do not have pointwise convergence for cλ. However, (6.7) yields

ϕλ → ϕ strongly in L2(0, T ; H) and pointwise. (6.29)
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Thus, the continuity and boundedness of F2, Lebesgue’s dominated convergence theorem,

and the second of (6.8) entail

cλ F2(ϕλ) → c F2(ϕ) weakly in L p(Q) for any p ∈ [1, 2) (6.30)

and this permits us to pass to the limit in (6.1). Moreover, the passage to the limit in (6.2),

(6.3) does not present difficulties, since of course λγ (cλ) tends to 0, for example, strongly

in L∞(Q) and the Cauchy conditions (6.16) are recovered as in Section 4.

Thus, to conclude the proof, we just have to identify ξ , i.e. to show (6.15). Note that

we cannot proceed as before, since we do not have the strong convergence of cλ in L2(Q).

Hence, we have to test again (6.3) by cλ and integrate over (0, T ), deriving

∫ T

0

(ξλ(t), cλ(t)) dt =

∫ T

0

〈cλ(t), wλ(t)〉 dt − λ

∫ T

0

|∇cλ(t)|
2 dt

− λ

∫ T

0

∫

Ω

cλ γ (cλ) dx dt −

∫ T

0

∫

Ω

cλ g(ϕλ) dx dt . (6.31)

Then, we take the lim sup of the relation above as λ ց 0 and notice that, thanks to (6.28)

and (6.10), it is

lim
λց0

∫ T

0

〈cλ(t), wλ(t)〉 dt =

∫ T

0

〈c(t), w(t)〉 dt .

Consequently, using the strong convergence in (6.29) and performing a comparison in the

already deduced relation (6.14), we derive

lim sup
λց0

∫ T

0

(ξλ(t), cλ(t)) dt �

∫ T

0

〈c(t), w(t)〉 dt −

∫ T

0

∫

Ω

c g(ϕ) dx dt

=

∫ T

0

(ξ(t), c(t)) dt, (6.32)

so that (6.15) is once more a consequence of Barbu (1976, Proposition 1.1, p. 42). �
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