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Abstract. The acoustic efficiency of noise barriers has been studied using 

the developed two-dimensional finite element model in the COMSOL 

Multiphysics software package. Numerical calculations of the semi-infinite 

barrier efficiency have been compared with calculations conducted by the 

Maekawa formula. The main attention has been paid to the influence of the 

underlying surface on barrier acoustic characteristics. The barrier acoustic 

efficiency depends on its height, the position of the noise source and on the 

calculation point above the underlying surface. This dependence has been 

presented in this research.  

1 Introduction 

A One of the main methods of protection against noise on the path from a sound source to a 

protected area is a noise barrier (acoustic barrier). Barriers differ in purpose, shape and 

material of manufacture. A fairly large number of publications both in Russia and abroad 

have been devoted to study noise barriers [1-14]. They usually use the optical-diffraction 

theory of acoustics with the use of Fresnel number. This number takes into account the 

difference in the path of sound beams in the presence and absence of an acoustic barrier.   

 In practice, calculating the efficiency of acoustic barriers is carried out using Maekawa 

formula [1-3], which is the result of the experimental data approximation. This approach of 

calculation is attractive since it is simple. However; it has its limitations as it is valid only for 

a semi-infinite absolutely rigid barrier. Therefore; it cannot take into account the presence of 

an underlying (reflective) surface on which the barrier is placed. In this case, the 

characteristics of the underlying surface and the barrier material cannot be taken into account. 

It is very difficult to take these factors into account when performing calculations using 

analytical methods. Although much attention is still paid to these issues [4-14], it should be 

borne in mind that in the near future numerical methods will become the main tool for 

calculating acoustic barriers, as well as in many other areas of applied acoustics [15-19]. In 

this paper, using finite element modeling, the features of the formation of a sound field near 

a barrier located on the underlying surface are studied in order to estimate the influence of 

this surface on the acoustic efficiency of the barrier.  
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2 Finite element model  

For studying the acoustic characteristics of noise barriers, linear acoustics methods have been 

used and simulations have been performed in the COMSOL Multiphysics software package.  

Figure 1 shows a two-dimensional finite element model. A circle with a diameter of 70 meters 

was constructed with a center at the beginning of the coordinate system, in which noise source 

(NS) was also located. The boundary conditions on the circumference bounding this area 

correspond to the characteristic impedance of air Z =ρc=415 kg/cm2.                                                        

 Non-uniform partitioning with a maximum finite element size of 0.01 m has been used 

in the simulation. Total number of finite elements is 17,578,135. The calculations have been 

carried out at different frequencies. The upper frequency equals 4 kHz which corresponds to 

a wavelength of 0.086 m and exceeds the maximum element size by almost an order of 

magnitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Finite Element Model and Mesh Example. 

 At the first stage of the modeling, a semi-infinite barrier was considered. Here and further 

on, the barrier was located at a distance of 3 meters from the noise source. The distance from 

the upper edge of the barrier to the horizontal coordinate axis was considered as the effective 

height of the barrier he. 

 Figure 2 shows a picture of the sound pressure levels distribution in space on a frequency 

of 500 Hz for a model without a barrier and with a semi-infinite barrier with an effective 

height he = 2 m. In the absence of a barrier, the picture corresponds to the propagating 

cylindrical waves from the center of coordinates. Presence of the barrier significantly 

complicates the sound field. It can be seen that standing waves are formed between the source 

and the barrier. In the space behind the barrier, the level of sound pressure significantly 

decreases. 
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correspond to the characteristic impedance of air Z =ρc=415      

 

 

 

 

 

 

 

 

 

 

 

 

 

(a)                                                               (b) 

Fig. 2. Distribution of sound pressure levels in space for a model without a barrier (a) and with a 

semi-infinite barrier (b). 

 

Fig. 3. Change in sound pressure levels along the transverse axis of the barrier at a frequency 

 of 500 Hz. 

 Figure 3 shows the change in sound pressure levels along the horizontal axis 

perpendicular to the plane of the barrier at a frequency of 500 Hz. In the presented graphical 

dependencies, three areas can be distinguished. In the first area, to the left of the coordinates 
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origin, there is a gradual decrease in sound pressure levels with distance from the source. In 

the second area, located to the right of the origin, but to the left of the barrier, there are 

oscillations of sound pressure levels with a period equal to the sound wavelength. These 

oscillations are due to the appearance of standing waves associated with the reflection of the 

incident sound wave from the barrier in this area. In the third area, located to the right of the 

barrier, there is a sharp drop in sound pressure levels followed by reaching a certain constant 

level. When the barrier height he increases, the value of this level decreases. At a barrier 

height of more than two meters, fluctuations in sound pressure become noticeable on the 

constant pressure curves. At the same time, the higher the barrier height is, the lower the 

corresponding constant sound pressure level is, and the more the noticeable fluctuations 

against its background are. Presence of such fluctuations is due to the appearance of weak 

standing waves due to the imperfection of the matched load.  

 A 1: 4 scale model was used to reduce errors in the calculation of the acoustic efficiency 

of high barriers, which are associated with small reflections from the boundaries due to the 

imperfection of the agreed load. This allows to limit the height of the barrier to 3 m, which 

in reality corresponds to a 12 m barrier. Sound frequencies at which calculations were carried 

out also increased by 4 times.  This made it possible to keep the value of Fresnel number 

unchanged and therefore, ensure the equivalence of the calculation values on the model and 

the value for full-sized barriers.  

 The main acoustic characteristic of the barrier is its acoustic efficiency 

ΔL = Lwith – Lwithout,                                    (1) 

where Lwith and Lwithout are sound pressure levels at the control point without a barrier and 

with a barrier respectively. 

 Figure 4 shows the results of calculating the acoustic efficiency of barriers at a frequency 

of 125 Hz, obtained by numerical and analytical methods (according to the Maekawa 

formula).  

 The general trend in the obtained dependence is a smooth increase in the efficiency of 

the barrier with an increase in its height. In addition, as expected, its effectiveness decreases 

with increasing distance from the control point to the barrier. This behavior is typical for the 

other considered frequency of 500 Hz. The presented results show good agreement between 

numerical and analytical calculations. However, there are some differences that depend on 

the distance of the control point from the barrier. At a distance of 8 m analytical calculations 

give lower values than numerical ones. At a distance of 24 m, starting from a barrier height 

of 6 m and higher, analytical calculations begin to give larger values than numerical ones. 

 

Fig. 4. Acoustic efficiency of the barrier calculated by numerical and analytical methods for a 

frequency of 125 Hz for a distance from the control point to the barrier of 8 m (a) and 24 m (b). 
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Δ
Lwith

 When the noise source is located above the reflecting surface, for example, on the rigid 

ground, the pattern of sound pressure distribution changes significantly, becoming more 

diverse (Figure 5,a). This is due to interference of the direct wave from the source and 

reflected from the surface. As a result, fanciful interference patterns are formed with 

periodically arranged beams of maxima and minima of sound pressure. As the frequency of 

sound increases, so does the number of such rays, which is seen in Figure 5,b. 

 

                             (a)                                                                     (b) 

Fig. 5. Distribution of sound pressure levels over rigid ground with a source at a height  

h1=4 m at frequencies of 125 Hz (a) and 500 Hz (b). 

 When the barrier is placed on a reflective surface, on the ground for example, the sound 

pressure distribution pattern changes significantly and becomes more diverse. This is due to 

the interference between the direct wave from the source and the reflected waves from the 

surface. As a result, bizarre interference patterns are formed with periodically arranged beams 

of maxima and minima of sound pressure. When sound frequency increases, number of such 

rays also increases. This pattern is observed in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 
                             (a)                                                                    (b) 

Fig. 6. The distribution of sound pressure levels over a rigid ground in the presence of the barrier with 

he =12 m at a frequency of 125 Hz with source at h1=1 m (a) and h1=4 m (b)  

 Pattern of the sound pressure distribution depends both on the height of the sound source 

location, the height of the barrier, and the distance between the source and the barrier. The 

patterns depicted in Figure 6 show that the sound field behind the barrier is significantly 

reduced, however there is also an interference pattern in the form of rays of dark blue color. 
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 In addition, the acoustic efficiency of the barrier located above the reflecting surface 

significantly depends on the sound frequency, as shown by a comparison of Figures 6 and 7. 

(a)                                                                    (b) 

Fig. 7. The distribution of sound pressure levels over a rigid ground in the presence of the barrier with 

he = 12 m at a frequency of 500 Hz with source at h1=1 m (a) and h1=4 m (b). 

 

Fig.8. Change in sound pressure levels along the transverse axis of a barrier at a frequency of 125 Hz 

over a rigid ground. 
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 In order to identify the existing patterns when acoustic efficiency of the barrier changes 

in such a configuration (over the reflecting surface), the patterns of the sound pressure level 

distribution in the transverse plane, for different effective heights of the barrier, have been 

obtained as shown in Figure 8.  Here and below, all calculations were carried out for a source 

with h1 = 1 m. It was noticed that for each barrier height there is its own distance to the 

control point, at which the minimum sound pressure (dips) is observed, which corresponds 

to its maximum efficiency. At the same time, the location of these dips does not have a direct 

relationship with the barrier height. 

 The dependences of the barrier efficiency on its height he as shown in Figure 9 for three 

control points allow us to conclude the following. In contrast to a semi-infinite barrier, the 

barrier efficiency does not increase smoothly with its height. This relationship is more 

complex, in which the maximum efficiency of the barrier does not correspond to its highest 

height, as was the case when there is no reflecting surface. Its position also depends on the 

frequency of the sound. Interestingly, this maximum barrier efficiency significantly exceeds 

the corresponding efficiency of a semi-infinite barrier. 

 

 

 

 

 

 

 

 

 

 

Fig.9. Dependences of the barrier acoustic efficiency on its height he at a frequency of 125 Hz. 

 To understand the peculiarities of forming an acoustic pattern over the reflecting surface 

in the presence of a barrier, another model was studied, where the reflecting surface was 

located only behind the barrier. Patterns of sound pressure distribution were obtained at a 

frequency of 500 Hz in the vicinity of the barrier with he = 12 m without a reflecting surface 

(Figure 10,a), with a reflecting surface only behind the barrier (Figure10,b) and with a 

reflecting surface (Figure10,c).  

 From these patterns, it follows that at this frequency, the most effective barrier has a 

reflecting surface in front of and behind the barrier, while the color palette of the space behind 

the barrier corresponds to a low level of sound pressure, about 40 dB. For a barrier without a 

reflecting surface, the corresponding sound pressure increases to about 60 dB. The barrier 

with the reflecting surface behind it has the lowest acoustic efficiency when the sound 

pressure increases by about 10 dB, reaching 70 dB. 
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Fig.10. Sound pressure distribution patterns without a rigid ground (a), and with a rigid ground only 

behind the barrier (b) and a rigid ground in front and behind the barrier (c). 

 As before, the graphs of the sound pressure distribution have been obtained for the case 

of a reflective surface behind the barrier. In this case, it has been found that the coordinates 

of the sound pressure dips increase with increasing barrier height. The height dependences 

on acoustic barriers presented here also show that they have local intensity maxima. The 

position of this maxima, as before, depends on the sound frequency. A characteristic feature 

of the results obtained in this case is that the efficiency of the barrier is significantly lower 

than the efficiency of a barrier with a full reflecting surface. This is due to the presence of 

interference between the direct and the reflected waves in the area in front of the barrier. The 

result of these reflected waves is an attenuated sound wave which hits the upper edge of the 

barrier. 

 However, it should be borne in mind that such results are valid only for a given frequency 

of 125 Hz. If we consider a different frequency, there may be a completely different picture. 
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Fig. 12. Change in sound pressure levels along the transverse axis of the barrier in the presence of the 

barrier with a rigid ground behind the barrier at a frequency of 125 Hz. 

3 Conclusion 

Studies have shown that the effectiveness of an acoustic barrier depends significantly on the 

presence of a reflective surface. At the same time, the maximum efficiency does not always 

correspond to the highest barrier height. This height of the barrier depends significantly on 

the frequency of sound. 

 It is proposed to conduct further numerical studies of barriers in order to obtain the 

integral efficiency of the barrier in dBA. In addition, there is a plan to conduct experimental 

studies on barriers in an acoustic chamber in order to confirm the obtained calculated results. 
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