Study of an Extension of Sturmian Words over a Binary Alphabet

Idrissa Kaboré
Institut des Sciences Exactes et Appliquées
Université polytechnique de Bobo-Dioulasso
01 BP 1091 Bobo-Dioulasso 01, Burkina Faso
ikaborei@yahoo.fr

Abstract

In this paper, we define (k, l)-Sturmian words. Then, we study their complexity. Finally, we establish a characterization of these words via the action of particular morphisms on Sturmian words.

Mathematics Subject Classification: 68R15

Keywords: Sturmian words, special factors, complexity, morphisms

1 Introduction

A Sturmian word is an infinite binary word which possesses for any integer n, exactly $n+1$ factors of length n. The Sturmian words have been intensively studied over the past three decades (see Berstel's surveys [1, 2]). The numerous investigations established various remarkable characterizations of these words $[2,15,13]$. Considerable works have also been done on their generalizations. We have, for instance, quasi-sturmian words $[5,14,3,10]$ and episturmian words (see $[9,8,7,1]$).

Our paper deals also with a natural extension of Sturmian words over a binary alphabet: (k, l)-Sturmian words.

After preliminaries, we recall some basic results of Sturmian words (Section 3). In Section 4, we introduce first of all, (k, l)-Sturmians words. Then, we study their complexity. Lastly, we establish a characterization of these words with the aid of the action of a family of particular morphisms on Sturmian words.

2 Preliminaries

In all the sequel, except express mention, the alphabet \mathcal{A} considered is the binary alphabet $\{a, b\}$. The set of finite words over \mathcal{A} is denoted by \mathcal{A}^{*} and ε is the empty word. For any $u \in \mathcal{A}^{*},|u|$ denotes the length of $u(|\varepsilon|=0)$ and for each $x \in \mathcal{A},|u|_{x}$ is the number of occurrences of the letter x in u.

A word u of length n written with a single letter x is simply denoted by $u=x^{n}$. The n-th power of a finite word w denoted by w^{n} is the word corresponding to the concatenation $(w w w \ldots w) n$ times of w. By extension, $w^{0}=\varepsilon$.

An infinite word is a sequence of letters of \mathcal{A}. The set of infinite words over \mathcal{A} is denoted by \mathcal{A}^{ω}.

A finite word v is a factor of u if there exist two words u_{1} and u_{2} over \mathcal{A} such that $u=u_{1} v u_{2}$; we also say that u contains v. The factor v is said to be a prefix (resp. a suffix) if u_{1} (resp. u_{2}) is the empty word.

An infinite word w is ultimately periodic if there exist two words u and v such that $w=u v^{\omega}$, where v^{ω} is the infinite concatenation of the word v. It is periodic if u is the empty word. If the infinite word w does not have any of the previous forms we say that it is aperiodic.

Let u be an infinite word over \mathcal{A}. The set of factors of u of length n is denoted by $\mathcal{L}_{n}(u)$ and the set of all factors of u is denoted by $\mathcal{L}(u)$. The set $\mathcal{L}(u)$ is usually called the language of u.

A non empty factor v of an infinite word u is said to be a right (resp. a left) special factor of u if $v a$ and $v b$ (resp. $a v$ and $b v$) are factors of u. The set of right special factors of u of length n will be denoted by $\mathcal{R S}(n)$. We say that a is a right (resp. a left) extension of v in u if $v a$ (resp. $a v$) is in u.

An infinite word u is recurrent if each of its factors appears infinitely many times.

The complexity of an infinite word u is the map of \mathbb{N} to \mathbb{N}^{*} defined by $\mathbf{p}_{u}(n)=\# \mathcal{L}_{n}(u)$, where $\# \mathcal{L}_{n}(u)$ is the cardinality of $\mathcal{L}_{n}(u)$. The complexity of a word u is increasing and the ultimately periodic words are the only ones whose complexity is bounded. For more details on the complexity, we refer the reader to [4]. In whatever follows, the complexity \mathbf{p}_{u} of u will be simply denoted by \mathbf{p}.

On a binary alphabet, the function s computes the number of right special factors of a given length in u. It is the same for left special factors if the word u is recurrent. It is used to determine the complexity through the following formula:

$$
\begin{equation*}
\mathbf{p}(n)=\mathbf{p}\left(n_{0}\right)+\sum_{m=n_{0}}^{n-1} \mathbf{s}(m) \tag{1}
\end{equation*}
$$

A morphism f is a map from \mathcal{A}^{*} to itself such that $f(u v)=f(u) f(v)$ for all $u, v \in \mathcal{A}^{*}$.

It is said that an infinite word u is generated by a morphism f if there exists a letter $x \in \mathcal{A}$ such that the words $x, f(x), f^{2}(x), \cdots, f^{n}(x), \cdots$ are longer and longer prefixes of u. We denote $u=f^{\omega}(x)$.

The shift function is the map δ from \mathcal{A}^{ω} to \mathcal{A}^{ω} which consists in erasing the first letter of the word, for instance $\delta($ abaabaaaa $\cdots)=$ baabaaaa \cdots. By extension, $\delta^{0}(u)=u$.

3 Sturmian words

In this section, we recall basic results on Stumian words which will be useful in Section 4.

Definition 3.1. An infinite word u over \mathcal{A} is Sturmian if for all $n \geq 0$, $\mathbf{p}(n)=n+1$.

The most known Sturmian word is the famous Fibonacci word generated by the morphism Φ defined by $\Phi(a)=a b$ and $\Phi(b)=a$. Its first few terms are:

$$
F=a b a a b a b a a b a a b a b a a b a b a a b a a b a b a a b a \cdots .
$$

Every Sturmian word is recurrent. An infinite word u over \mathcal{A} is Sturmian if and only if, for all $n \geq 0, u$ admits a unique right (resp. left) special factor of length n.

Every Sturmian word contains the words $a b, b a$ and one of the two words a^{2} and b^{2}.

A Sturmian word will be said to be a-Sturmian (resp. b-Sturmian) when it contains a^{2} (resp. b^{2}).

We say that a word u over \mathcal{A} is balanced if, for all $n \geq 0$ and all $v, w \in$ $\mathcal{L}_{n}(u)$, we have $\left||v|_{x}-|w|_{x}\right| \leq 1$ for all $x \in \mathcal{A}$. In the opposite case, we say that u is unbalanced.

The following lemma is useful.
Lemma 3.2. [6] An infinite word u over \mathcal{A} is unbalanced if and only if, there exists a word t with minimal length such that u contains ata and btb.

The following characterization is well known.
Theorem 3.3. [6] An infinite word u is Sturmian if and only if, it is aperiodic and balanced.

Theorem 3.4. [12] Let u be a recurrent word over \mathcal{A}. Then, u is Sturmian if and only if, up to a permutation of letters, it takes the following form:

$$
\begin{equation*}
a^{m_{0}} b a^{m+\epsilon_{1}} b a^{m+\epsilon_{2}} b a^{m+\epsilon_{3}} b \ldots \tag{2}
\end{equation*}
$$

where $\left(\epsilon_{i}\right)_{i}$ is a Sturmian sequence in $\{0,1\}, m_{0}$ and m are two integers satisfying $m_{0} \leq m+1$.

This property will inspire us the introduction of (k, l)-Sturmian words which will be studied in the next section.

4 (k, l)-Sturmian words

4.1 Definition

In all the sequel, (k, l) will designate a pair of positive integers such that $k l \geq 2$.

Definition 4.1. Let u be a recurrent word over \mathcal{A}. We say that u is a (k, l)-Sturmian word if u takes the following form, up to a permutation of letters:

$$
\begin{equation*}
u=\delta^{j_{1}}\left(a^{m_{0}} b^{l} a^{m+\epsilon_{1}} b^{l} a^{m+\epsilon_{2}} b^{l} a^{m+\epsilon_{3}} b^{l} \cdots\right) \tag{3}
\end{equation*}
$$

where $\left(\epsilon_{i}\right)_{i \geq 1}$ is a Sturmian sequence over the alphabet $\{0, k\}$ and j_{1}, m_{0}, m are integers satisfying $m \geq 1, m_{0} \leq m+k$ and $j_{1} \leq m+k+l$.

This definition provides an extension of Sturmian words which correspond henceforth to $(1,1)$-Sturmian words.

The following result is shown in [11].
Theorem 4.2. Let u be a recurrent word over \mathcal{A}. Then, u is a word with complexity ultimately $n+2$ if and only if, it takes one of the two following forms, up to a permutation of letters:

$$
\begin{equation*}
a^{m_{0}} b a^{m+\epsilon_{1}} b a^{m+\epsilon_{2}} b a^{m+\epsilon_{3}} b \cdots \tag{4}
\end{equation*}
$$

where $\left(\epsilon_{i}\right)_{i}$ is a Sturmian sequence in $\{0,2\}, m_{0}$ and m are two integers such that $m \geq 1$ and $m_{0} \leq m+2$.

$$
\begin{equation*}
\delta^{j_{1}}\left(a^{m_{0}} b^{2} a^{m+\epsilon_{1}} b^{2} a^{m+\epsilon_{2}} b^{2} a^{m+\epsilon_{3}} b^{2} \cdots\right) \tag{5}
\end{equation*}
$$

where $\left(\epsilon_{i}\right)_{i}$ is a Sturmian sequence in $\{0,1\}$ and j_{1}, m_{0} and m are integers such that $m \geq 1, m_{0} \leq m+1$ and $j_{1} \leq m+1$.

From the above result, every recurrent binary word with complexity $n+2$ is either $(1,2)$-Sturmian or $(2,1)$-Sturmian.

Remark 4.3. Every (k, l)-Sturmian word u is aperiodic.
This remark stems from the fact that the underlying sequence $\left(\epsilon_{i}\right)$ is aperiodic since it is Sturmian.

4.2 Complexity

In this section, we show that the complexity of any (k, l)-Sturmian word is ultimately $n+k+l-1$.

Lemma 4.4. Let u be a recurrent word over \mathcal{A} having the form

$$
u=a^{m_{0}} b^{l} a^{m+\epsilon_{1}} b^{l} a^{n_{0}+\epsilon_{2}} b^{l} a^{n_{0}+\epsilon_{3}} b^{l} \ldots
$$

where $\left(\epsilon_{i}\right)_{i}$ is a Sturmian sequence in $\{0,1\}, l, m_{0}$ and m are integers such that $l \geq 2, m \geq 1$ and $m_{0} \leq m+1$. Then, $\mathbf{p}(l)=2 l$.

Proof. Observe that for all $n \in\{1, \cdots, l-1\}$, u possesses exactly two right special factors of length n. More precisely, we have:

- If $l \leq m+1$ then, for all $n<l, \mathcal{R S}(n)=\left\{a^{n}, b^{n}\right\}$.
- If $l>m+1$ then, $\mathcal{R S}(n)=\left\{\begin{array}{ll}\left\{a^{n}, b^{n}\right\} & \text { if } n<m+1 \\ \left\{b^{n}, b^{n-m} a^{m}\right\} & \text { if } m+1 \leq n<l .\end{array}\right.$.

Thus, by applying the formula 1 , we have: $\mathbf{p}(l)=\mathbf{p}(1)+2(l-1)=2 l$.
Lemma 4.5. Let u be a recurrent word over \mathcal{A} having the form

$$
u=a^{m_{0}} b^{l} a^{m+\epsilon_{1}} b^{l} a^{m+\epsilon_{2}} b^{l} a^{m+\epsilon_{3}} b^{l} \ldots
$$

where $\left(\epsilon_{i}\right)_{i}$ is a Sturmian sequence in $\{0, k\}$ and, k, l, m_{0} and m are integers such that $k \geq 2, l \geq 1, m \geq 1$ and $m_{0} \leq m+1$. Then, $\mathbf{p}\left(n_{0}\right)=n_{0}+k+l-1$ for $n_{0}=\max (m+k, l)$.

Proof. We have six cases to distinguish according to the values of l. In each of these cases, we shall present the table of values of $\mathcal{R S}(n)$ and $\mathbf{s}(n)$ according to n with $n \leq \max (m+k, l)$, in order to deduce $\mathbf{p}\left(n_{0}\right)$.
Case 1. $l=1$

n	$[1, m+1[$	$[m+1, m+k[$
$\mathcal{R S}(n)$	$\left\{a^{n}\right\}$	$\left\{a^{n}, a^{n-1-m} b a^{m}\right\}$
$\mathbf{s}(n)$	1	2

We get

$$
\begin{aligned}
\mathbf{p}(m+k) & =\mathbf{p}(1)+(m+1-1)+2(m+k-m-1) \\
& =(m+k)+k+1-1 .
\end{aligned}
$$

Case 2. $\quad 1<l<m+1$

n	$[1, l[$	$[l, m+1[$	$[m+1, m+k[$
$\mathcal{R S}(n)$	$\left\{a^{n}, b^{n}\right\}$	$\left\{a^{n}\right\}$	$\left\{a^{n}, X_{n} a^{m}\right\}$
$\mathbf{s}(n)$	2	1	2

In this table, $X_{n} a^{m}$ represents the suffix of length n of $a^{m+k} V a^{m}$ where V is the shortest factor of u separating two consecutive occurrences of a^{m+k} in u.

$$
\begin{aligned}
\mathbf{p}(m+k) & =\mathbf{p}(1)+2(l-1)+(m+1-l)+2(m+k-m-1) \\
& =(m+k)+k+l-1 .
\end{aligned}
$$

Case 3. $l=m+1$

n	$[1, m+1[$	$[m+1, m+k[$
$\mathcal{R S}(n)$	$\left\{a^{n}, b^{n}\right\}$	$\left\{a^{n}, X_{n} a^{m}\right\}$
$\mathbf{s}(n)$	2	2

In this table $X_{n} a^{m}$ represents the suffix of length n of $a^{m+k} V a^{m}$ where V is the shortest factor of u separating two consecutive occurrences of a^{m+k} in u. We get

$$
\begin{aligned}
\mathbf{p}(m+k) & =\mathbf{p}(1)+2(m+1-1)+2(m+k-m-1) \\
& =(m+k)+k+(m+1)-1
\end{aligned}
$$

Case 4. $m+1<l<m+k$

n	$[1, m+1[$	$[m+1, l[$	$[l, m+k[$
$\mathcal{R S}(n)$	$\left\{a^{n}, b^{n}\right\}$	$\left\{a^{n}, b^{n}, b^{n-m} a^{m}\right\}$	$\left\{a^{n}, X_{n} a^{m}\right\}$
$\mathbf{s}(n)$	2	3	2

In this table $X_{n} a^{m}$ represents the suffix of length n of $a^{m+k} V a^{m}$ where V is the shortest factor of u separating two consecutive occurrences of a^{m+k} in u. We get

$$
\begin{aligned}
\mathbf{p}(m+k) & =\mathbf{p}(1)+2(m+1-1)+3(l-m-1)+2(m+k-l) \\
& =(m+k)+k+l-1 .
\end{aligned}
$$

Case 5. $l=m+k$

n	$[1, m+1[$	$[m+1, m+k[$
$\mathcal{R S}(n)$	$\left\{a^{n}, b^{n}\right\}$	$\left\{a^{n}, b^{n}, b^{n-m} a^{m}\right\}$
$\mathbf{s}(n)$	2	3

Hence

$$
\begin{aligned}
\mathbf{p}(m+k) & =\mathbf{p}(1)+2(m+1-1)+3(m+k-m-1) \\
& =(m+k)+k+(m+k)-1 .
\end{aligned}
$$

Case 6. $m+k<l$

n	$[1, m+1[$	$[m+1, m+k[$	$[m+k, l[$
$\mathcal{R S}(n)$	$\left\{a^{n}, b^{n}\right\}$	$\left\{a^{n}, b^{n}, b^{n-m} a^{m}\right\}$	$\left\{b^{n}, b^{n-m} a^{m}\right\}$
$\mathbf{s}(n)$	2	3	2

Hence

$$
\begin{aligned}
\mathbf{p}(l) & =\mathbf{p}(1)+2(m+1-1)+3(m+k-m-1)+2(l-m-k) \\
& =l+k+l-1 .
\end{aligned}
$$

The proof of the lemma is complete.

Theorem 4.6. Let u be a (k, l)-Sturmian word. Then, there exists n_{0} such that

$$
\forall n \geq n_{0}, \mathbf{p}(n)=n+k+l-1
$$

Proof. Case 1. $k=1$. From Lemma 4.4, for $n=l$ we have $\mathbf{p}(l)=l+k+l-1$. We will show that

$$
\forall n \geq l, \mathbf{p}(n)=n+k+l-1
$$

It amounts to show that u admits a unique right special factor for any length $n \geq l$.

- For $n \in[l, l+m+1[$, observe that u admits a unique right special factor of length n. Indeed, if $l \leq m$ then, for $n \in[l, m+1[$ (resp. $n \in\left[m+1, l+m+1\left[\right.\right.$), the word a^{n} (resp. $\left.b^{n-m} a^{m}\right)$ is the unique right special factor of length n of u. Similarly, if $l \geq m+1$ then, for $n \in\left[l, l+m+1\left[\right.\right.$, the word $b^{n-m} a^{m}$ is the unique right special factor of length n of u.
- Suppose that there exists a integer $n \geq l+m+1$ such that u possesses two right special factors, D_{n} and D_{n}^{\prime}, of length n. Consider, in this case, n minimal. Then, we can write D_{n} and D_{n}^{\prime} respectively in the form $a D$ and $b D$. Thus, D is a right special factor of u such that $|D| \geq l+m+1$. Therefore, D ends by $b^{l} a^{m}$, the unique right special factor of u of length $l+m$. Similarly, we verify that D begins with $a^{m} b^{l}$ in reasoning with left special factors. So, it will be possible to write $D=a^{m} T a^{m}$ where T is a factor of u beginning and ending by b^{l}. Thus, it follows that $b^{l} a^{m+1} T a^{m+1} b^{l}$ and $b^{l} a^{m} T a^{m} b^{l}$ will be in u since $a D a$ and $b D b$ are in u by assumption and a^{m+1} is always preceded or followed by b^{l} in u. Consequently, the underlying factors of $\left(\epsilon_{i}\right)_{i}$ in these two factors of u are respectively of the form $1 t 1$ and $0 t 0$. It is impossible because the sequence $\left(\epsilon_{i}\right)_{i}$ is Sturmian.

Case 2. $k \geq 2$. From Lemma 4.5, for $n=\max (m+k, l)$, we have $\mathbf{p}(n)=$ $n+k+l-1$. Let us put $n_{0}=\max (m+k, l)$. We shall show that

$$
\forall n \geq n_{0}, \mathbf{p}(n)=n+k+l-1
$$

As in the previous case, it suffices to show that, for all $n \geq n_{0}, u$ admits a unique right special factor of length n.
Suppose that there exists $n \geq n_{0}$ such that u possesses two right special factors D_{n} and D_{n}^{\prime} of length n. Consider, in this case, n minimal. Then, D_{n} and D_{n}^{\prime} can be written respectively in the form $a D$ and $b D$. Hence, $a D a$ and $b D b$ will be in u. This requires that the factor D begins and ends by a^{m}. Let us check that D contains at least one occurrence of the letter b. If b were not in D then, since $b D b$ is in u and $|D| \geq \max (m+k, l)$, D would be necessarily a^{m+k}. Consequently, a^{m+k+2} would be in u since $a D a$ is in u. Therefore, D contains at least one occurrence of b and can be written in the form $D=a^{m} T a^{m}$, where T begins and ends by b.
We deduce, as in Case 1, that $b^{l} a^{m+1} T a^{m+1} b^{l}$ and $b^{l} a^{m} T a^{m} b^{l}$ will be in u. Then, we conclude in the same way.

In Theorem 4.6, the smallest n_{0} verifies:

$$
n_{0}=\left\{\begin{array}{lll}
l & \text { if } & k=1 \\
\max (l, m+k) & \text { if } \quad k \geq 2
\end{array}\right.
$$

4.3 Morphic interpretation

In this section, we shall provide a family of morphisms which allow us to state a characterization of (k, l)-Sturmian words via Sturmian words under their action.

Let k, l and r be positive integers such that $k l \geq 2$, and $0 \leq r<k$. Consider the following morphisms:

$$
\begin{aligned}
\varphi_{(k ; r, l)}:\{a, b\} & \longrightarrow\{a, b\}, \quad \overline{\varphi_{(k ; r, l)}}:\{a, b\} \\
a & \longrightarrow\{a, b\} \\
a & \longmapsto a^{k} \\
b & \longmapsto a^{r} b^{l}
\end{aligned}
$$

where $0 \leq r<k$. For any morphism φ of \mathcal{A}^{*}, let us put

$$
<\varphi>=\{\varphi, E \varphi, \varphi E, E \varphi E\}
$$

where E (called exchange morphism) is defined by $E(a)=b$ and $E(b)=a$. Consider the set

$$
\mathcal{F}_{(k ; r, l)}=\cup_{\varphi \in\left\{\varphi_{(k ; r, l)}, \overline{\varphi_{(k ; r, l)}}\right\}}<\varphi>
$$

Lemma 4.7. Let u be a Sturmian word and $\varphi \in \mathcal{F}_{(k ; r, l)}$. Then, $\varphi(u)$ is a (k, l)-Sturmian word.

Proof. Let u be a Sturmian word and $\varphi \in \mathcal{F}_{(k ; r, l)}$. Then, we have

$$
\varphi \in<\varphi_{(k ; r, l)}>\cup<\overline{\varphi_{(k ; r, l)}}>.
$$

Since the reasoning is similar for all $\varphi \in<\varphi_{(k ; r, l)}>\cup<\overline{\varphi_{(k ; r, l)}}>$, we carry on the proof with $\varphi=\varphi_{(k ; r, l)}$.
case 1. Suppose that u can be written in the form:

$$
u=\delta^{j_{1}}\left(a^{m_{0}} b^{l} a^{m+\epsilon_{1}} b^{l} a^{m+\epsilon_{2}} b^{l} a^{m+\epsilon_{3}} b^{l} \cdots\right)
$$

with $m_{0} \leq m+k, j_{1} \leq m+k+l$ and $\left(\epsilon_{i}\right)_{i \geq 1}$, a Sturmian sequence over $\{0,1\}$. We can take without loss of generality $j_{1}=0$. We get

$$
\varphi_{(k ; r, l)}(u)=a^{k m_{0}+r} b^{l} a^{(k m+r)+k \epsilon_{1}} b^{l} a^{(k m+r)+k \epsilon_{2}} b^{l} a^{(k m+r)+k \epsilon_{3}} b^{l} \ldots
$$

where the sequence $\left(k \epsilon_{i}\right)_{i \geq 1}$ is Sturmian over $\{0, k\}$ since the sequence $\left(\epsilon_{i}\right)_{i \geq 1}$ is Sturmian over $\{0,1\}$. Morever, $\varphi_{(k ; r, l)}(u)$ is recurrent because u is recurrent. Thus, by definition, $\varphi_{(k ; r, l)}(u)$ is a (k, l)-Sturmian word.
case 2. Suppose that u can be written in the form:

$$
u=\delta^{j_{1}}\left(b^{m_{0}} a^{l} b^{m+\epsilon_{1}} a^{l} b^{m+\epsilon_{2}} a^{l} b^{m+\epsilon_{3}} a^{l} \cdots\right)
$$

with $m_{0} \leq m+1, j_{1} \leq m+k+l$ and $\left(\epsilon_{i}\right)_{i \geq 1}$, a Sturmian sequence over $\{0,1\}$. As in Case 1, we can take $j_{1}=0$. Hence

$$
\varphi_{(k ; r l)}(u)=\left(a^{r} b^{l}\right)^{m_{0}} a^{k}\left(a^{r} b^{l}\right)^{m+\epsilon_{1}} a^{k}\left(a^{r} b^{l}\right)^{m+\epsilon_{2}} a^{k}\left(a^{r} b^{l}\right)^{m+\epsilon_{3}} a^{k} \cdots .
$$

Let us notice that $\varphi_{(k ; r, l)}(u)$ is an infinite concatenation of $a^{r} b^{l}$ and $a^{r+k} b^{l}$: $\varphi_{(k ; r, l)}(u) \in\left\{a^{r} b^{l}, a^{r+k} b^{l}\right\}^{\omega}$. Furthermore, $\varphi_{(k ; r, l)}(u)$ is modulated after the prefix of length $(r+l) m_{0}$ by the factors in the form

$$
a^{k}\left(a^{r} b^{l}\right)^{m+\epsilon}=a^{k+r} \underbrace{\left(b^{l} a^{r} b^{l}\right) \cdots\left(b^{l} a^{r} b^{l}\right)}_{m-1+\epsilon \text { occurrences of } b^{l} a^{r} b^{l}}
$$

which possess, each, exactly $m-1+\epsilon$ occurrences of $b^{l} a^{r} b^{l}$. Thus, $\varphi_{(k ; r, l)}(u)$ will be rewritten in the form

$$
\varphi_{(k ; r, l)}(u)=a^{r} b^{l} a^{r+\epsilon_{1}^{\prime}} b^{l} a^{r+\epsilon_{2}^{\prime}} b^{l} a^{r+\epsilon_{3}^{\prime}} b^{l} \ldots
$$

where $r \leq k$ and the sequence $\left(\epsilon_{i}^{\prime}\right)_{i}$ is defined over $\{0, k\}$ by

$$
0^{m_{0}} k 0^{m-1+\epsilon_{1}} k 0^{m-1+\epsilon_{2}} k 0^{m-1+\epsilon_{3}} k \cdots .
$$

It follows that the sequence $\left(\epsilon_{i}^{\prime}\right)_{i}$ is Sturmian over $\{0, k\}$ since on the one hand it is recurrent and on the other hand the sequence $\left(\epsilon_{i}\right)_{i}$ is Sturmian over $\{0,1\}$.

Remark 4.8. Lemma 4.7 is also valid for all $r \geq k$.
Theorem 4.9. Let u be a recurrent word over \mathcal{A}. Then, u is a (k, l) Sturmian word if and only if, there exist $\varphi \in \mathcal{F}_{(k ; r, l)}$, a Sturmian word v and $j_{0} \in \mathbb{N}$ such that $u=\delta^{j_{0}}(\varphi(v))$.

Proof. $\Longrightarrow)$ Let u be a recurrent word over \mathcal{A}. Assume that u is a (k, l) Sturmian word. Up to a permutation of letters, u can be written in the following form

$$
u=\delta^{j_{1}}\left(a^{m_{0}} b^{l} a^{m+\epsilon_{1}} b^{l} a^{m+\epsilon_{2}} b^{l} a^{m+\epsilon_{3}} b^{l} \cdots\right)
$$

with $m_{0} \leq m+k, j_{1} \leq m+k+l$ and $\left(\epsilon_{i}\right)_{i \geq 1}$, a Sturmian sequence over $\{0, k\}$. Let us put

$$
\hat{u}=\left\{\begin{array}{ll}
\delta^{j_{2}}\left(a^{m} b^{l} a^{m+\epsilon_{1}} b^{l} a^{m+\epsilon_{2}} b^{l} a^{m+\epsilon_{3}} b^{l} \cdots\right) & \text { if } m_{0} \leq m \\
\delta^{j_{2}}\left(a^{m+k} b^{l} a^{m+\epsilon_{1}} b^{l} a^{m+\epsilon_{2}} b^{l} a^{m+\epsilon_{3}} b^{l} \cdots\right) & \text { otherwise }
\end{array} .\right.
$$

Then, if (q, r) is the pair of integers such that $m=q k+r$ with $0 \leq r<k$, the word \hat{u} can be rewritten

$$
\hat{u}=\delta^{j_{2}}\left(a^{k\left(q+\epsilon_{0}^{\prime}\right)+r} b^{l} a^{k\left(q+\epsilon_{1}^{\prime}\right)+r} b^{l} a^{k\left(q+\epsilon_{2}^{\prime}\right)+r} b^{l} a^{k\left(q+\epsilon_{3}^{\prime}\right)+r} b^{l} \cdots\right)
$$

where $\left(\epsilon_{i}^{\prime}\right)_{i \geq 0}$ verifies $\left(\epsilon_{i}\right)_{i \geq 0}=\left(k \epsilon_{i}^{\prime}\right)_{i \geq 0}$ and

$$
j_{2}=\left\{\begin{array}{ll}
m-m_{0} & \text { if } m_{0} \leq m \\
m+k-m_{0} & \text { otherwise }
\end{array} .\right.
$$

Thus, the sequence $\left(\epsilon_{i}^{\prime}\right)_{i \geq 1}$ is Sturmian over $\{0,1\}$ since the sequence $\left(\epsilon_{i}\right)_{i \geq 1}$ is Sturmian over $\{0, k\}$. Furthermore, \hat{u} can be written $\hat{u}=\delta^{j_{2}}(\varphi(v))$ where

$$
v=a^{(q+r)+\epsilon_{1}^{\prime}} b a^{(q+r)+\epsilon_{1}^{\prime}} b a^{(q+r)+\epsilon_{2}^{\prime}} b^{l} a^{(q+r)+\epsilon_{3}^{\prime}} b^{l} \ldots
$$

with $\left(\epsilon_{i}^{\prime}\right)_{i \geq 1}$, a Sturmian sequence over $\{0,1\}$. Therefore, v is Sturmian. Now, $u=\delta^{j_{1}}(\hat{u})$ and $\hat{u}=\delta^{j_{2}}(\varphi(v))$. So, $u=\delta^{j_{0}}(\varphi(v))$ with $j_{0}=j_{1}+j_{2}$.
$\Longleftarrow)$ The converse is due to Lemma 4.7.

References

[1] Berstel, J., Sturmian and episturmian words (a survey of some recent results), in: Proceedings of CAI 2007, vol. 4728 of Lecture Notes in Computer Science, Springer-Verlag, 2007.
[2] Berstel, J., Recent results on Sturmian words, in Developments in Language Theory II, eds. J. Dassow and A. Salomaa, World Scientific, 1996, pp. 13-24.
[3] Cassaigne, J., Sequences with grouped factors, in Developments in Language Theory III (DLT'97) pp. 211-222, Aristotle University of Thessaloniki, 1998.
[4] Cassaigne, J., Nicolas, F., Factors complexity, Combinatorics, Automata and Number Theory, V. Berth, M. Rigo (Eds), Encyclopedia of Mathematics and its Applications 135, Cambridge University Press (2010).
[5] Coven, E. M., Sequences with minimal block growth, II, Math. Systems Theory 8 (1975), 376-382.
[6] Coven, E. M., Hedlund, G. A., Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153.
[7] Droubay, X., Justin, J., Pirillo, G., Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001), 539-553.
[8] Glen, A., Justin, J., Episturmian words: a survey, RAIRO-Theoretical Informatics and Applications 43 (2009), 402-433.
[9] Glen, A., Levé, F., Richomme, G., Directive words of episturmian words: equivalences and normalization, RAIRO-Theoretical Informatics and Applications 43 (2009), 299-319.
[10] Heinis, A., Arithmetics and combinatorics of words of low complexity, PhD Thesis, University of Leiden, 2001.
[11] Kaboré, I., Tapsoba, T., Mots binaires récurrents de complexité ultimement $n+2$, Annales Mathématiques Africaines Serie 1, 2 (2011) pp. 47-57.
[12] Kaboré, I., Tapsoba, T., Combinatoire de mots récurrents de complexité $n+2$, RAIRO-Theoret. Inform. Appl. 41 (2007), 425-446.
[13] Lothaire, M., Algebraic combinatorics on words, Cambridge University Press, 2002.
[14] Paul, M. E., Minimal symbolic flows having minimal block growth, Math. Systems Theory 8 (1975), 309-315.
[15] Pytheas Fogg, N., Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics vol. 1794, Springer-Verlag, Berlin, 2002.

Received: April, 2012

