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Abstract

In this paper, we define (k, l)-Sturmian words. Then, we study their
complexity. Finally, we establish a characterization of these words via
the action of particular morphisms on Sturmian words.
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1 Introduction

A Sturmian word is an infinite binary word which possesses for any integer n,
exactly n + 1 factors of length n. The Sturmian words have been intensively
studied over the past three decades (see Berstel’s surveys [1, 2]). The numerous
investigations established various remarkable characterizations of these words
[2, 15, 13]. Considerable works have also been done on their generalizations.
We have, for instance, quasi-sturmian words [5, 14, 3, 10] and episturmian
words (see [9, 8, 7, 1]).

Our paper deals also with a natural extension of Sturmian words over a
binary alphabet: (k, l)-Sturmian words.

After preliminaries, we recall some basic results of Sturmian words (Section
3). In Section 4, we introduce first of all, (k, l)-Sturmians words. Then, we
study their complexity. Lastly, we establish a characterization of these words
with the aid of the action of a family of particular morphisms on Sturmian
words.
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2 Preliminaries

In all the sequel, except express mention, the alphabet A considered is the
binary alphabet {a, b}. The set of finite words over A is denoted by A∗ and ε
is the empty word. For any u ∈ A∗, |u| denotes the length of u (|ε| = 0) and
for each x ∈ A, |u|x is the number of occurrences of the letter x in u.

A word u of length n written with a single letter x is simply denoted
by u = xn. The n-th power of a finite word w denoted by wn is the word
corresponding to the concatenation (www . . . w) n times of w . By extension,
w0 = ε.

An infinite word is a sequence of letters of A. The set of infinite words over
A is denoted by Aω.

A finite word v is a factor of u if there exist two words u1 and u2 over A
such that u = u1vu2; we also say that u contains v. The factor v is said to be
a prefix (resp. a suffix) if u1 (resp. u2) is the empty word.

An infinite word w is ultimately periodic if there exist two words u and v
such that w = uvω, where vω is the infinite concatenation of the word v. It is
periodic if u is the empty word. If the infinite word w does not have any of
the previous forms we say that it is aperiodic.

Let u be an infinite word over A. The set of factors of u of length n is
denoted by Ln(u) and the set of all factors of u is denoted by L(u). The set
L(u) is usually called the language of u.

A non empty factor v of an infinite word u is said to be a right (resp. a
left) special factor of u if va and vb (resp. av and bv) are factors of u. The
set of right special factors of u of length n will be denoted by RS(n). We say
that a is a right (resp. a left) extension of v in u if va (resp. av) is in u.

An infinite word u is recurrent if each of its factors appears infinitely many
times.

The complexity of an infinite word u is the map of N to N
∗ defined by

pu(n) = #Ln(u), where #Ln(u) is the cardinality of Ln(u). The complexity
of a word u is increasing and the ultimately periodic words are the only ones
whose complexity is bounded. For more details on the complexity, we refer
the reader to [4]. In whatever follows, the complexity pu of u will be simply
denoted by p.

On a binary alphabet, the function s computes the number of right special
factors of a given length in u. It is the same for left special factors if the word
u is recurrent. It is used to determine the complexity through the following
formula:

p(n) = p(n0) +

n−1∑
m=n0

s(m). (1)
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A morphism f is a map from A∗ to itself such that f(uv) = f(u)f (v) for
all u, v ∈ A∗.

It is said that an infinite word u is generated by a morphism f if there
exists a letter x ∈ A such that the words x, f(x), f 2(x), · · · , fn(x), · · · are
longer and longer prefixes of u. We denote u = fω(x).

The shift function is the map δ from Aω to Aω which consists in erasing
the first letter of the word, for instance δ(abaabaaaa · · · ) = baabaaaa · · · . By
extension, δ0(u) = u.

3 Sturmian words

In this section, we recall basic results on Stumian words which will be useful
in Section 4.

Definition 3.1. An infinite word u over A is Sturmian if for all n ≥ 0,
p(n) = n + 1.

The most known Sturmian word is the famous Fibonacci word generated
by the morphism Φ defined by Φ(a) = ab and Φ(b) = a. Its first few terms
are:

F = abaababaabaababaababaabaababaaba· · · .

Every Sturmian word is recurrent. An infinite word u over A is Sturmian if
and only if, for all n ≥ 0, u admits a unique right (resp. left) special factor of
length n.

Every Sturmian word contains the words ab, ba and one of the two words
a2 and b2.

A Sturmian word will be said to be a-Sturmian (resp. b-Sturmian) when
it contains a2 (resp. b2).

We say that a word u over A is balanced if, for all n ≥ 0 and all v, w ∈
Ln(u), we have

∣∣∣ |v|x − |w|x
∣∣∣ ≤ 1 for all x ∈ A. In the opposite case, we say

that u is unbalanced.

The following lemma is useful.

Lemma 3.2. [6] An infinite word u over A is unbalanced if and only if,
there exists a word t with minimal length such that u contains ata and btb.

The following characterization is well known.

Theorem 3.3. [6] An infinite word u is Sturmian if and only if, it is ape-
riodic and balanced.
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Theorem 3.4. [12] Let u be a recurrent word over A. Then, u is Sturmian
if and only if, up to a permutation of letters, it takes the following form:

am0bam+ε1bam+ε2bam+ε3b · · · (2)

where (εi)i is a Sturmian sequence in {0, 1}, m0 and m are two integers sat-
isfying m0 ≤ m + 1.

This property will inspire us the introduction of (k, l)-Sturmian words
which will be studied in the next section.

4 (k, l)-Sturmian words

4.1 Definition

In all the sequel, (k, l) will designate a pair of positive integers such that
kl ≥ 2.

Definition 4.1. Let u be a recurrent word over A. We say that u is a
(k, l)-Sturmian word if u takes the following form, up to a permutation of
letters:

u = δj1
(
am0blam+ε1blam+ε2blam+ε3bl · · · ) (3)

where (εi)i≥1 is a Sturmian sequence over the alphabet {0, k} and j1, m0, m
are integers satisfying m ≥ 1, m0 ≤ m + k and j1 ≤ m + k + l.

This definition provides an extension of Sturmian words which correspond
henceforth to (1, 1)-Sturmian words.

The following result is shown in [11].

Theorem 4.2. Let u be a recurrent word over A. Then, u is a word with
complexity ultimately n + 2 if and only if, it takes one of the two following
forms, up to a permutation of letters:

am0bam+ε1bam+ε2bam+ε3b · · · (4)

where (εi)i is a Sturmian sequence in {0, 2}, m0 and m are two integers such
that m ≥ 1 and m0 ≤ m + 2.

δj1
(
am0b2am+ε1b2am+ε2b2am+ε3b2 · · · ) (5)

where (εi)i is a Sturmian sequence in {0, 1} and j1, m0 and m are integers
such that m ≥ 1, m0 ≤ m + 1 and j1 ≤ m + 1.

From the above result, every recurrent binary word with complexity n + 2
is either (1, 2)-Sturmian or (2, 1)-Sturmian.

Remark 4.3. Every (k, l)-Sturmian word u is aperiodic.

This remark stems from the fact that the underlying sequence (εi) is ape-
riodic since it is Sturmian.
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4.2 Complexity

In this section, we show that the complexity of any (k, l)-Sturmian word is
ultimately n + k + l − 1.

Lemma 4.4. Let u be a recurrent word over A having the form

u = am0blam+ε1blan0+ε2blan0+ε3bl · · ·
where (εi)i is a Sturmian sequence in {0, 1}, l, m0 and m are integers such
that l ≥ 2, m ≥ 1 and m0 ≤ m + 1. Then, p(l) = 2l.

Proof. Observe that for all n ∈ {1, · · · , l − 1}, u possesses exactly two right
special factors of length n. More precisely, we have:

• If l ≤ m + 1 then, for all n < l, RS(n) = {an, bn}.

• If l > m + 1 then, RS(n) =

{ {an, bn} if n < m + 1
{bn, bn−mam} if m + 1 ≤ n < l

.

Thus, by applying the formula 1, we have: p(l) = p(1) + 2(l− 1) = 2l.

Lemma 4.5. Let u be a recurrent word over A having the form

u = am0blam+ε1blam+ε2blam+ε3bl · · ·
where (εi)i is a Sturmian sequence in {0, k} and, k, l, m0 and m are integers
such that k ≥ 2, l ≥ 1, m ≥ 1 and m0 ≤ m + 1. Then, p(n0) = n0 + k + l − 1
for n0 = max(m + k, l).

Proof. We have six cases to distinguish according to the values of l. In each of
these cases, we shall present the table of values of RS(n) and s(n) according
to n with n ≤ max(m + k, l), in order to deduce p(n0).

Case 1. l = 1
n [1, m + 1[ [m + 1, m + k[
RS(n) {an} {an, an−1−mbam}
s(n) 1 2

We get

p(m + k) = p(1) + (m + 1 − 1) + 2(m + k − m − 1)

= (m + k) + k + 1 − 1.

Case 2. 1 < l < m + 1

n [1, l[ [l, m + 1[ [m + 1, m + k[
RS(n) {an, bn} {an} {an, Xnam}
s(n) 2 1 2
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In this table, Xnam represents the suffix of length n of am+kV am where V is
the shortest factor of u separating two consecutive occurrences of am+k in u.

p(m + k) = p(1) + 2(l − 1) + (m + 1 − l) + 2(m + k − m − 1)

= (m + k) + k + l − 1.

Case 3. l = m + 1

n [1, m + 1[ [m + 1, m + k[
RS(n) {an, bn} {an, Xnam}
s(n) 2 2

In this table Xnam represents the suffix of length n of am+kV am where V is
the shortest factor of u separating two consecutive occurrences of am+k in u.
We get

p(m + k) = p(1) + 2(m + 1 − 1) + 2(m + k − m − 1)

= (m + k) + k + (m + 1) − 1.

Case 4. m + 1 < l < m + k

n [1, m + 1[ [m + 1, l[ [l, m + k[
RS(n) {an, bn} {an, bn, bn−mam} {an, Xnam}
s(n) 2 3 2

In this table Xnam represents the suffix of length n of am+kV am where V is
the shortest factor of u separating two consecutive occurrences of am+k in u.
We get

p(m + k) = p(1) + 2(m + 1 − 1) + 3(l − m − 1) + 2(m + k − l)

= (m + k) + k + l − 1.

Case 5. l = m + k

n [1, m + 1[ [m + 1, m + k[
RS(n) {an, bn} {an, bn, bn−mam}
s(n) 2 3

Hence

p(m + k) = p(1) + 2(m + 1 − 1) + 3(m + k − m − 1)

= (m + k) + k + (m + k) − 1.
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Case 6. m + k < l

n [1, m + 1[ [m + 1, m + k[ [m + k, l[
RS(n) {an, bn} {an, bn, bn−mam} {bn, bn−mam}
s(n) 2 3 2

Hence

p(l) = p(1) + 2(m + 1 − 1) + 3(m + k − m − 1) + 2(l − m − k)

= l + k + l − 1.

The proof of the lemma is complete.

Theorem 4.6. Let u be a (k, l)-Sturmian word. Then, there exists n0 such
that

∀n ≥ n0, p(n) = n + k + l − 1.

Proof. Case 1. k = 1. From Lemma 4.4, for n = l we have p(l) = l+k+ l−1.
We will show that

∀n ≥ l, p(n) = n + k + l − 1.

It amounts to show that u admits a unique right special factor for any
length n ≥ l.

• For n ∈ [l, l + m + 1[, observe that u admits a unique right special
factor of length n. Indeed, if l ≤ m then, for n ∈ [l, m + 1[ (resp.
n ∈ [m + 1, l + m + 1[), the word an (resp. bn−mam) is the unique
right special factor of length n of u. Similarly, if l ≥ m + 1 then, for
n ∈ [l, l + m + 1[, the word bn−mam is the unique right special factor of
length n of u.

• Suppose that there exists a integer n ≥ l +m+1 such that u possesses
two right special factors, Dn and D′

n, of length n. Consider, in this case,
n minimal. Then, we can write Dn and D′

n respectively in the form aD
and bD. Thus, D is a right special factor of u such that |D| ≥ l +m+1.
Therefore, D ends by blam, the unique right special factor of u of length
l + m. Similarly, we verify that D begins with ambl in reasoning with
left special factors. So, it will be possible to write D = amTam where
T is a factor of u beginning and ending by bl. Thus, it follows that
blam+1Tam+1bl and blamTambl will be in u since aDa and bDb are in
u by assumption and am+1 is always preceded or followed by bl in u.
Consequently, the underlying factors of (εi)i in these two factors of u
are respectively of the form 1t1 and 0t0. It is impossible because the
sequence (εi)i is Sturmian.
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Case 2. k ≥ 2. From Lemma 4.5, for n = max(m + k, l), we have p(n) =
n + k + l − 1. Let us put n0 = max(m + k, l). We shall show that

∀n ≥ n0, p(n) = n + k + l − 1.

As in the previous case, it suffices to show that, for all n ≥ n0, u admits
a unique right special factor of length n.

Suppose that there exists n ≥ n0 such that u possesses two right special
factors Dn and D′

n of length n. Consider, in this case, n minimal. Then,
Dn and D′

n can be written respectively in the form aD and bD. Hence,
aDa and bDb will be in u. This requires that the factor D begins and ends
by am. Let us check that D contains at least one occurrence of the letter
b. If b were not in D then, since bDb is in u and |D| ≥ max(m + k, l),
D would be necessarily am+k. Consequently, am+k+2 would be in u since
aDa is in u. Therefore, D contains at least one occurrence of b and can
be written in the form D = amTam, where T begins and ends by b.

We deduce, as in Case 1, that blam+1Tam+1bl and blamTambl will be in
u. Then, we conclude in the same way.

In Theorem 4.6, the smallest n0 verifies:

n0 =

{
l if k = 1
max(l, m + k) if k ≥ 2

.

4.3 Morphic interpretation

In this section, we shall provide a family of morphisms which allow us to state
a characterization of (k, l)-Sturmian words via Sturmian words under their
action.

Let k, l and r be positive integers such that kl ≥ 2, and 0 ≤ r < k.
Consider the following morphisms:

ϕ(k; r, l) : {a, b} −→ {a, b} , ϕ(k; r, l) : {a, b} −→ {a, b}
a �−→ ak a �−→ ak

b �−→ arbl b �−→ blar

where 0 ≤ r < k. For any morphism ϕ of A∗, let us put

< ϕ >= {ϕ, Eϕ, ϕE, EϕE}
where E (called exchange morphism) is defined by E(a) = b and E(b) = a.
Consider the set

F(k; r, l) = ∪ϕ∈{ϕ(k; r, l), ϕ(k; r, l)} < ϕ > .
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Lemma 4.7. Let u be a Sturmian word and ϕ ∈ F(k; r, l). Then, ϕ(u) is a
(k, l)-Sturmian word.

Proof. Let u be a Sturmian word and ϕ ∈ F(k; r, l). Then, we have

ϕ ∈< ϕ(k; r, l) > ∪ < ϕ(k; r, l) > .

Since the reasoning is similar for all ϕ ∈< ϕ(k; r, l) > ∪ < ϕ(k; r, l) >, we carry
on the proof with ϕ = ϕ(k; r, l).

case 1. Suppose that u can be written in the form:

u = δj1
(
am0blam+ε1blam+ε2blam+ε3bl · · · )

with m0 ≤ m + k, j1 ≤ m + k + l and (εi)i≥1, a Sturmian sequence over
{0, 1}. We can take without loss of generality j1 = 0. We get

ϕ(k; r, l)(u) = akm0+rbla(km+r)+kε1bla(km+r)+kε2bla(km+r)+kε3bl · · ·
where the sequence (kεi)i≥1 is Sturmian over {0, k} since the sequence
(εi)i≥1 is Sturmian over {0, 1} . Morever, ϕ(k; r, l)(u) is recurrent because
u is recurrent. Thus, by definition, ϕ(k; r, l)(u) is a (k, l)-Sturmian word.

case 2. Suppose that u can be written in the form:

u = δj1
(
bm0albm+ε1albm+ε2albm+ε3al · · · )

with m0 ≤ m + 1, j1 ≤ m + k + l and (εi)i≥1, a Sturmian sequence over
{0, 1}. As in Case 1, we can take j1 = 0. Hence

ϕ(k; r l)(u) =
(
arbl

)m0
ak

(
arbl

)m+ε1
ak

(
arbl

)m+ε2
ak

(
arbl

)m+ε3
ak · · · .

Let us notice that ϕ(k; r, l)(u) is an infinite concatenation of arbl and ar+kbl:
ϕ(k; r, l)(u) ∈ {

arbl, ar+kbl
}ω

. Furthermore, ϕ(k; r, l)(u) is modulated after
the prefix of length (r + l)m0 by the factors in the form

ak(arbl)m+ε = ak+r
(
blarbl

) · · · (blarbl
)

︸ ︷︷ ︸
m−1+ε occurrences of blarbl

which possess, each, exactly m − 1 + ε occurrences of blarbl. Thus,
ϕ(k; r, l)(u) will be rewritten in the form

ϕ(k; r, l)(u) = arblar+ε′1blar+ε′2blar+ε′3bl · · ·
where r ≤ k and the sequence (ε′i)i is defined over {0, k} by

0m0k0m−1+ε1k0m−1+ε2k0m−1+ε3k · · · .

It follows that the sequence (ε′i)i is Sturmian over {0, k} since on the one
hand it is recurrent and on the other hand the sequence (εi)i is Sturmian
over {0, 1}.
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Remark 4.8. Lemma 4.7 is also valid for all r ≥ k.

Theorem 4.9. Let u be a recurrent word over A. Then, u is a (k, l)-
Sturmian word if and only if, there exist ϕ ∈ F(k; r, l), a Sturmian word v and
j0 ∈ N such that u = δj0 (ϕ (v)).

Proof. =⇒) Let u be a recurrent word over A. Assume that u is a (k, l)-
Sturmian word. Up to a permutation of letters, u can be written in the fol-
lowing form

u = δj1(am0blam+ε1blam+ε2blam+ε3bl · · · )

with m0 ≤ m+k, j1 ≤ m+k + l and (εi)i≥1, a Sturmian sequence over {0, k}.
Let us put

û =

{
δj2(amblam+ε1blam+ε2blam+ε3bl · · · ) if m0 ≤ m
δj2(am+kblam+ε1blam+ε2blam+ε3bl · · · ) otherwise

.

Then, if (q, r) is the pair of integers such that m = qk + r with 0 ≤ r < k, the
word û can be rewritten

û = δj2
(
ak(q+ε′0)+rblak(q+ε′1)+rblak(q+ε′2)+rblak(q+ε′3)+rbl · · ·

)

where (ε′i)i≥0 verifies (εi)i≥0 = (kε′i)i≥0 and

j2 =

{
m − m0 if m0 ≤ m
m + k − m0 otherwise

.

Thus, the sequence (ε′i)i≥1 is Sturmian over {0, 1} since the sequence (εi)i≥1 is
Sturmian over {0, k}. Furthermore, û can be written û = δj2 (ϕ (v)) where

v = a(q+r)+ε′1ba(q+r)+ε′1ba(q+r)+ε′2bla(q+r)+ε′3bl · · ·

with (ε′i)i≥1, a Sturmian sequence over {0, 1}. Therefore, v is Sturmian. Now,
u = δj1(û) and û = δj2 (ϕ (v)). So, u = δj0 (ϕ (v)) with j0 = j1 + j2.

⇐=) The converse is due to Lemma 4.7.
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