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Abstract

In this paper, we define (k, [)-Sturmian words. Then, we study their
complexity. Finally, we establish a characterization of these words via
the action of particular morphisms on Sturmian words.
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1 Introduction

A Sturmian word is an infinite binary word which possesses for any integer n,
exactly n 4 1 factors of length n. The Sturmian words have been intensively
studied over the past three decades (see Berstel’s surveys [1, 2]). The numerous
investigations established various remarkable characterizations of these words
2, 15, 13]. Considerable works have also been done on their generalizations.
We have, for instance, quasi-sturmian words [5, 14, 3, 10] and episturmian
words (see [9, 8, 7, 1]).

Our paper deals also with a natural extension of Sturmian words over a
binary alphabet: (k, [)-Sturmian words.

After preliminaries, we recall some basic results of Sturmian words (Section
3). In Section 4, we introduce first of all, (k, [)-Sturmians words. Then, we
study their complexity. Lastly, we establish a characterization of these words
with the aid of the action of a family of particular morphisms on Sturmian
words.
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2 Preliminaries

In all the sequel, except express mention, the alphabet A considered is the
binary alphabet {a, b}. The set of finite words over A is denoted by A* and ¢
is the empty word. For any u € A*, |u| denotes the length of u (|e] = 0) and
for each z € A, |u|, is the number of occurrences of the letter = in w.

A word u of length n written with a single letter = is simply denoted
by u = ™. The n-th power of a finite word w denoted by w" is the word
corresponding to the concatenation (www . ..w) n times of w . By extension,
w? = e.

An infinite word is a sequence of letters of A. The set of infinite words over
A is denoted by A%,

A finite word v is a factor of w if there exist two words u; and us over A
such that u = ujvus; we also say that u contains v. The factor v is said to be
a prefix (resp. a suffix) if u; (resp. us) is the empty word.

An infinite word w is ultimately periodic if there exist two words u and v
such that w = uv®, where v* is the infinite concatenation of the word v. It is
periodic if u is the empty word. If the infinite word w does not have any of
the previous forms we say that it is aperiodic.

Let uw be an infinite word over 4. The set of factors of u of length n is
denoted by L, (u) and the set of all factors of u is denoted by L£(u). The set
L(u) is usually called the language of w.

A non empty factor v of an infinite word w is said to be a right (resp. a
left) special factor of w if va and vb (resp. av and bv) are factors of u. The
set of right special factors of u of length n will be denoted by RS(n). We say
that a is a right (resp. a left) extension of v in w if va (resp. av) is in u.

An infinite word w is recurrent if each of its factors appears infinitely many
times.

The complexity of an infinite word u is the map of N to N* defined by
pu(n) = #L,(u), where #L,(u) is the cardinality of £, (u). The complexity
of a word w is increasing and the ultimately periodic words are the only ones
whose complexity is bounded. For more details on the complexity, we refer
the reader to [4]. In whatever follows, the complexity p, of u will be simply
denoted by p.

On a binary alphabet, the function s computes the number of right special
factors of a given length in u. It is the same for left special factors if the word
u is recurrent. It is used to determine the complexity through the following
formula:
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A morphism f is a map from A* to itself such that f(uv) = f(u)f(v) for
all u, v e A*.

It is said that an infinite word w is generated by a morphism f if there
exists a letter z € A such that the words z, f(z), f*(z), ---, f*(x), --- are
longer and longer prefixes of u. We denote u = f“(z).

The shift function is the map § from A“ to A“ which consists in erasing
the first letter of the word, for instance d(abaabaaaa - ) = baabaaaa- - -. By
extension, 6%(u) = w.

3 Sturmian words

In this section, we recall basic results on Stumian words which will be useful
in Section 4.

Definition 3.1. An infinite word u over A is Sturmian if for all n > 0,
p(n) =n+1.

The most known Sturmian word is the famous Fibonacci word generated
by the morphism @ defined by ®(a) = ab and ®(b) = a. Its first few terms
are:

F = abaababaabaababaababaabaababaaba- - - .

Every Sturmian word is recurrent. An infinite word u over A is Sturmian if
and only if, for all n > 0, v admits a unique right (resp. left) special factor of
length n.

Every Sturmian word contains the words ab, ba and one of the two words
a? and b?.

A Sturmian word will be said to be a-Sturmian (resp. b-Sturmian) when
it contains a? (resp. b?).

We say that a word u over A is balanced if, for all n > 0 and all v, w €
L, (u), we have ’ lv], — |wl, ’ < 1 for all z € A. In the opposite case, we say

that u is unbalanced.
The following lemma is useful.

Lemma 3.2. [6/ An infinite word u over A is unbalanced if and only if,
there exists a word t with minimal length such that u contains ata and btb.

The following characterization is well known.

Theorem 3.3. [6] An infinite word u is Sturmian if and only if, it is ape-
riodic and balanced.
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Theorem 3.4. [12] Let u be a recurrent word over A. Then, u is Sturmian
if and only if, up to a permutation of letters, it takes the following form.:

a0 ba" 1 b e pa e - 2)

where (€;); is a Sturmian sequence in {0, 1}, mo and m are two integers sat-
1sfying mo < m + 1.

This property will inspire us the introduction of (k, [)-Sturmian words
which will be studied in the next section.

4 (k,l)-Sturmian words

4.1 Definition
In all the sequel, (k, 1) will designate a pair of positive integers such that
kl > 2.

Definition 4.1. Let u be a recurrent word over A. We say that u is a
(k, 1)-Sturmian word if u takes the following form, up to a permutation of
letters:

u=06" (a™bam T e ey ) (3)
where (€;);>1 is a Sturmian sequence over the alphabet {0, k} and ji, mg, m
are integers satisfyingm > 1, mg < m+k and j1 < m+k+1.

This definition provides an extension of Sturmian words which correspond
henceforth to (1, 1)-Sturmian words.
The following result is shown in [11].

Theorem 4.2. Let u be a recurrent word over A. Then, u is a word with
complexity ultimately n + 2 if and only if, it takes one of the two following
forms, up to a permutation of letters:

a™ba" T ba™ T2 ba™ T3 - - - (4)

where (€;); is a Sturmian sequence in {0, 2}, my and m are two integers such
that m > 1 and mg < m + 2.

5]‘1 (amo b2am+51 b2am+egb2am+63b2 . ) (5>
where (€;); is a Sturmian sequence in {0, 1} and ji, mo and m are integers
such thatm > 1, mg<m+1 and j; < m + 1.

From the above result, every recurrent binary word with complexity n + 2
is either (1, 2)-Sturmian or (2, 1)-Sturmian.

Remark 4.3. Every (k, l)-Sturmian word u is aperiodic.

This remark stems from the fact that the underlying sequence (¢;) is ape-
riodic since it is Sturmian.
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4.2 Complexity

In this section, we show that the complexity of any (k, [)-Sturmian word is
ultimately n + k41 — 1.

Lemma 4.4. Let u be a recurrent word over A having the form

u = a™ blam+51 blano—i—ez blano-l—eg bl .

where (€&); is a Sturmian sequence in {0, 1}, I, my and m are integers such
that 1 > 2, m >1 and mo < m+ 1. Then, p(l) = 21.

Proof. Observe that for all n € {1, ---, [ — 1}, u possesses exactly two right
special factors of length n. More precisely, we have:

e If | <m+1 then, for all n <, RS(n) = {a", b"}.

an7bn ifn<m+1

Thus, by applying the formula 1, we have: p(l) = p(1)+2(I—1) =2]. O
Lemma 4.5. Let u be a recurrent word over A having the form

u= amo bl&erq bl&m+62 blam+63 bl L.

where (€;); is a Sturmian sequence in {0, k} and, k, [, my and m are integers

such that k> 2,1>1,m>1 and mg <m+1. Then, p(ng) =no+k+1—1
for ng = max(m + k, I).

Proof. We have six cases to distinguish according to the values of [. In each of
these cases, we shall present the table of values of RS(n) and s(n) according
to n with n < max(m + k, 1), in order to deduce p(nyg).

Case 1. | =1
n [L,m+1]| [m+1, m+ k|
RS(n) {a"} {a™, "~ 1""ba™}
s(n) 1 2

We get

pim+k)=p(l)+(m+1-1)+2(m+k—m—1)
—(m+k)+k+1—1.

Case 2. 1<l<m+1

n LI [[L,m+1[|[m+1, m+E|
RS(n) | {a™, b} {a"} {a", X,a™}
s(n) 2 1
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In this table, X,,a™ represents the suffix of length n of a™**Va™ where V is
the shortest factor of u separating two consecutive occurrences of a™* in .

pm+k)=p(l)+2(0(—-1)+(m+1-0)+2(m+k—m—1)
=(m+k)+k+1-1

Case 8. l=m+1

n 1, m+1[|[m+1, m+ k[
RS(n)| {a™, 0"} | {a", X,a™}
s(n) 2 2

In this table X, a™ represents the suffix of length n of a™**Va™ where V is
the shortest factor of u separating two consecutive occurrences of a™**
We get

n u.

pim+k)=p1)+2m+1—-1)+2(m+k—m—1)
=m+k)+k+(m+1) -1

Case 4. m+1<l<m+k

n (1, m+ 1] m+1, (] [, m+ k|
RS(n) | {a™, "} |{a™ b, " "a™} | {a", X,a™}
s(n) 2 3 2

In this table X, a™ represents the suffix of length n of a™**Va™ where V is
the shortest factor of u separating two consecutive occurrences of a™** in u.
We get

pim+k)=p(l)+2m+1-1)+3(l—m—1)+2(m+k—1)
=(m+k)+k+1-1

Case 5. l=m+k

n [L,m+1[] [m+1, m+k|
RS(n) | {a™ 0} | {a™, b, " ™a™}
s(n) 2 3

Hence

pim+k)=p1)+2m+1-1)+3(m+k—m—1)
=m+k)+k+(m+k)—1.
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Case 6. m +k <

n [L,m4+1[| [m+1, m+k| m+k, 1]
RS(n) | {a™ 0"} | {a™ b, 0" ™a™} | {b", 0" ™a™}
s(n) 2 3 2

Hence

pl)=p)+2m+1-1)+3m+k—m—1)+2(l—m—k)
=l+k+1-1

The proof of the lemma is complete.
O

Theorem 4.6. Let u be a (k,l)-Sturmian word. Then, there exists ny such
that
Vn >ng, p(n)=n+k+1—1

Proof. Case 1. k = 1. From Lemma 4.4, for n = [ we have p(l) = I+ k+1—1.
We will show that

Vn>1, p(n)=n+k+1—1.

It amounts to show that u admits a unique right special factor for any
length n > (.

e For n € [, 1 +m + 1], observe that u admits a unique right special
factor of length n. Indeed, if [ < m then, for n € [, m + 1] (resp.
n € [m+ 1,1 +m+ 1[), the word a™ (resp. b"™a™) is the unique
right special factor of length n of w. Similarly, if [ > m + 1 then, for
n € [l, [ +m + 1], the word 6" "a™ is the unique right special factor of
length n of u.

e Suppose that there exists a integer n > [+ m + 1 such that u possesses
two right special factors, D,, and D}, of length n. Consider, in this case,
n minimal. Then, we can write D,, and D), respectively in the form aD
and bD. Thus, D is a right special factor of u such that |D| > [+m+ 1.
Therefore, D ends by b'a™, the unique right special factor of u of length
[ + m. Similarly, we verify that D begins with a™b' in reasoning with
left special factors. So, it will be possible to write D = a™Ta™ where
T is a factor of u beginning and ending by ¢'. Thus, it follows that
blam ' Ta™Hp and bla™Ta™b will be in u since aDa and bDb are in
u by assumption and a™*! is always preceded or followed by b' in u.
Consequently, the underlying factors of (¢;); in these two factors of u
are respectively of the form 1¢1 and 0t0. It is impossible because the
sequence (€;); is Sturmian.
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Case 2. k > 2. From Lemma 4.5, for n = max(m + k, l), we have p(n) =
n+k+1— 1. Let us put ng = max(m + k, [). We shall show that

Vn >ng, p(n)=n+k+1—1

As in the previous case, it suffices to show that, for all n > ng, u admits
a unique right special factor of length n.

Suppose that there exists n > ng such that u possesses two right special
factors D,, and D), of length n. Consider, in this case, n minimal. Then,
D,, and D), can be written respectively in the form aD and bD. Hence,
aDa and bDb will be in u. This requires that the factor D begins and ends
by a™. Let us check that D contains at least one occurrence of the letter
b. If b were not in D then, since bDb is in w and |D| > max(m + k, 1),
D would be necessarily a™*. Consequently, a™**+? would be in u since
aDa is in u. Therefore, D contains at least one occurrence of b and can
be written in the form D = a™Ta™, where T begins and ends by b.

We deduce, as in Case 1, that b'a™ ' Ta™ b and bla™Ta™b will be in
u. Then, we conclude in the same way.
[

In Theorem 4.6, the smallest ng verifies:

Ny if k=1
o= max(l, m+k) if k>2"

4.3 Morphic interpretation

In this section, we shall provide a family of morphisms which allow us to state
a characterization of (k, [)-Sturmian words via Sturmian words under their
action.

Let k, [ and r be positive integers such that kI > 2, and 0 < r < k.
Consider the following morphisms:

(p(k;r,l) : {G, b} B {&, b}a Sp(k;r,l) : {CL, b} - {CL, b}
a —— ak a —— &k

br— a’b br— bla"
where 0 < r < k. For any morphism ¢ of A*, let us put
< ¢ >={p, Ep, pE, EpL}

where E (called exchange morphism) is defined by E(a) = b and E(b) = a.
Consider the set

Flksry = Usoe{m;r,mm} R



Study of an extension of Sturmian words 2175

Lemma 4.7. Let u be a Sturmian word and ¢ € Fry. Then, o(u) is a
(k, 1)-Sturmian word.

Proof. Let u be a Sturmian word and ¢ € F,, ;). Then, we have

pe< Pk;r, 1) >U< P(k;r,1) >
Since the reasoning is similar for all ¢ €< @y ) > U < Pr ) >, We carry
on the proof with ¢ = ., 1.
case 1. Suppose that u can be written in the form:
u = 5]'1 (amOblam+el blam+62blam+63bl . )

with mg <m+k, j1 <m+k+1 and (¢);>1, a Sturmian sequence over
{0, 1}. We can take without loss of generality j; = 0. We get

Plhir1) (U) _ &kmoJrrbla(karr)Jrkq bla(km+r)+k62bla(km+r)+kegbl .

where the sequence (ke;);>1 is Sturmian over {0, k} since the sequence
(€i)i>1 is Sturmian over {0, 1} . Morever, @, ;) (u) is recurrent because
w is recurrent. Thus, by definition, ¢,y (u) is a (k, [)-Sturmian word.

case 2. Suppose that u can be written in the form:
u = 5]'1 (bmo&lbm+el&lbm+€2albm+€3&l . )

with mg <m+1, j1 <m+k+1 and (¢);>1, a Sturmian sequence over
{0, 1}. As in Case 1, we can take j; = 0. Hence

Plor ) = (W)™ a )" b ()™ 0 (a1)

Let us notice that ¢ 1) (u) is an infinite concatenation of a"bt and a"tFt:
Olies 1) (1) € {a’"bl, a”kbl}w. Furthermore, ¢, )(u) is modulated after
the prefix of length (r 4 1) mg by the factors in the form

ak(arbl)m+e — akJrr (blarbl> L (bl&rbl)

N J/
-~

m—1+e€ occurrences of bla”b!

which possess, each, exactly m — 1 + € occurrences of b'a"b'. Thus,
©(k;r,1)(u) will be rewritten in the form

Ok (U) _ arblar—f—e’l blar+e’2 blar-l—eé bl .
where 7 < k and the sequence (€}); is defined over {0, k} by
Om0k0m71+61 k0m71+62 k0m71+63k R

It follows that the sequence (¢}), is Sturmian over {0, k} since on the one
hand it is recurrent and on the other hand the sequence (¢;), is Sturmian
over {0, 1}.
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Remark 4.8. Lemma 4.7 is also valid for all r > k.

Theorem 4.9. Let u be a recurrent word over A. Then, u is a (k,1)-
Sturmian word if and only if, there exist ¢ € Fy;r,1), @ Sturmian word v and
Jo € N such that u = 6 (p (v)).

Proof. =) Let u be a recurrent word over A. Assume that u is a (k, [)-
Sturmian word. Up to a permutation of letters, u can be written in the fol-
lowing form

u = o1 (&mo bl&m+€1 blam+e2 blam—i-es bl . )

with mg < m+k, j1 <m-+k+1and (¢);>1, a Sturmian sequence over {0, k}.
Let us put

N 52 (amblamraplgmreplgmrepl. ) if mg <m
U= » :
52 (amtRplgmtaplgmtepigmtepl .. .)  otherwise

Then, if (¢, r) is the pair of integers such that m = gk +r with 0 < r < k, the
word u can be rewritten

0 = 5]’2 <ak(q+66)+rblak(q+e’1)+rblak(q+e’2)+rblak(q+eé)+rbl . )
where (€});>0 verifies (&;);>0 = (ke});>0 and

. m—=myg if mg<m
J2 m+k—mg otherwise

Thus, the sequence (€});>1 is Sturmian over {0, 1} since the sequence (¢;);>; is
Sturmian over {0, k}. Furthermore, 4 can be written @ = 672 (¢ (v)) where

v = glatrtepglatr)terp (atr)+espl  (a+r)+espl

with (€});>1, a Sturmian sequence over {0, 1}. Therefore, v is Sturmian. Now,
u= 0" (a) and @ = 672 (¢ (v)). So, u = §° (p (v)) with jo = j; + Jo.

<=) The converse is due to Lemma 4.7. O
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