Y73 32 326

STUDY OF AN INSTRUMENT FOR SENSING ERRORS
IN A TELESCOPE WAVEFRONT

L. J. Golden
R. V. Shack
P. N. Slater

First Year
Interim Report
Prepared for the
George C. Marshall Space Flight Center
Marshall Space Flight Center
Alabama 35812
Under National Aeronautics and
Space Administration
) Contract NAS8-27863

CASE FILE
COPY

Optical Sciences Center
University of Arizona
Tucson, Arizona 85721

July 1973




ACKNOWLEDGMENTS

The authors would like to extend their appreciation to personnel
" who made significant contributions to this study. These individuals are
Richard Buchroeder, William McKinley, Stephen Shore, Robert Tornquist,

and Dave Zachary.




ABSTRACT

This report describes the first year's work on NASA Contract
NAS8-27863 entitled ""Study of an Instrument for Sensing Errors in a
Telescope Wavefront." It.contains.the partial results of theoretical
and experimental investigations of different focal plane sensor con-

figurations for determining the error in a telescope wavefront.
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CHAPTER I
INTRODUCT ION

The purpose of our work at the Optical Sciences Center is to
conduct experimental and analytical research on optical testing concepts
suitable for application as figure sensors for the Large Spaée Telescope
(LST) program.

An optical testing device for this applicatién, which we will
refer to for brevity as a figure sensor, should have a wide dynamic range
from a few waves, so that it may serve as an absolute standard for
alignment—assdciated problems, to about a hundredth of a wave, so that it
méy serve as a means of sensing for nulling out figure errors or for
measuring wavefront errors for post-detection image processing. For
these purposes either selected wavefront samples or the entir; system
wavefront should be accessible for measurement. In order to accomplish
these goals the figure sensor has to be placed at the focal piane of the
'teiescope, and a real star source has to be used.

As there is no single test that has the range required for
alignment-associated wavefront errors and also the sensitivity required
(1/100)1) for image processing and figure correction, we have divided our

work into a study of: (1) a coarse range geometrical sensor operating

from several waves to a large fraction of a wave, and (2) a fine range



sensor useful from a large fraction of a wave to approximately 1/100A.

We have narrowed our study to one candidate in the_coarse range {(a modi-

fied Hartmann test) and to three contenders in the fine range region
(Zernike, shearing polarization test, and Zernike polarization test).
These are discussed in detail in this report. We expect that many of the

components used in the fine range sensor will also be suitable for use

with the coarse range sénsor and that the range of operation for coarse

and fine sensing will have significant overlap. ‘



CHAPTER II

ABERRATED TELESCOPE WAVEFRONT SIMULATOR

1. General.

In order to experimentally determine the performance capabilities
of the various types of figure sensors we have designed and fabricated a .
device to produce a simulated aberrated telescope wavefront. This simu-
lator includes a variable magnitude star, imaged by é specially designed
telescope which can introduce various alignment, focus and figure errors
such as may occur in the operational LST. The aberrafed star image pro-
duced can théﬁ'be evaluated by the figure sensor under study. A sketch
of the simulator appears in Fig; 1. The star source consists of a
quartz iodine tungsten filament lamp, which is run by a stabi-
lized power supply. The filament is>focused onto a 25 um pinhole,
through é narrow band interference filter if required. The star source
can be moved in the x,y direction to simulate wavefront tilt in any
‘difection. This light is collimated by a 1.2m (48'") focal length tele-
scope objective to simulate a star at infinity. The next 5 elements- (bi-
convex lens, biconcave lens, two flat plates and thick meniscus) are
collectively called the aberration generator. This group of elements
produces an f/6 beam into which various orientations and magni-

tudes of coma, astigmatism, and spherical aberration may be introduced in
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Fig. 1. Aberrated telescope wavefront simulator.



an exact manner. A relay system then reimages the f/6 image. The first
element of the'relay system is a 40 mm cemented doublet which collimates
the aberrated star image. This element can be moved along the optical
~axis of the sfstem in order to correct for focus shift produced by the
aberration generator, or in order to introduce known amounts of defocus
into the wavefront. The second element of the relay system is an 80 mm
focal length telescope objective, which converges the light to an £f/12
cone, completing the simulation of an f/12 telescope where tilt, defocus,
astigmatism, coma, and spherical aberration can be introduced into the
beam in differential amounts.of about 1/100X and over the range of *2
waves. The final collimating lens is related to the figure sensor under

test and will be discussed in detail later.

2f Aberration Generator.

At the heart of the aberrated telescope wavefront simulator is
the aberration generator. This instrument has been designed.to introduce
precisely known amounts and orientations of different primary aberration
types. What follows is a discussion of the dgsign concept, the fabri-
cated optics, the optical evaluation and the mechanical assembly of the

aberration generator.

The optical design is shown diagrammatically in Fig. 2. The
instrument consists of an achromatic air-spaced doublet with a 25.4 mm
clear aperture and a 152.4 mm focal length. The air-spaced doublet is

designed for high coma but minimum spherical and chromatic aberration.
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The residual astigmatism, inherent in a doublet design, is unavoidable
but can be readily taken into account. This doublet is tilted about its
rear nodal point (located 12.90 mm inside the last radius R4) to generate
:approximately'Z waves of third-order coma at a tilt of 1.5°. About 0.4

~ waves of sagittal astigmatism are generated unavoidably at this angle.
However, since the coma varies 1inear1y_with tilt, while the ésfigmatism
varies quadratically, tﬁe astigmatism will.be negligible for small
amounts of coma (i.e., for up'to about quarter-wave of coma,'the residual
astigmatism is less than 1/100)). Higher order aberration terms are
negligible for the objective; “Although the doublet is color corrected,
for precise work a 40 to 50 nm bandwidth filter should be used. Fol-
lowing the doublet are a set of parallel plates which can be counter
tipped to introduce astigmafism. No third-order coma is introduced, and
higher order aberrations are neéligible. These plates can be tilted up
to 15° at which point 2.2 waves of ;agittal astigmatism'are introducéd.
Again, this astigmatism contribution varies quadratically. Tﬁe last
element, a thick meniscus lens, can be moved longitudinally for genera-
tion of +2.8 to -1.2 waves of spherical aberration. However, the effect
of moving this meniscus is éomplicated since both fifth- and third-oxrder
spherical aberration are changed. A change in focal position and effec-

tive focal length must also be taken into account.



3. Design Evaluation.

a. Coma.
The air-spaced doublet has been ray traced at a field angle of
1.5° and the important coefficients for two wavelengths appear below in

Table I.

TABLE I

DESIGN COEFFICIENTS FOR DOUBLET _

A = 5461 nm, Field Angle 1.5°
SA3 SAS SA7 CMA3 CMAS AST3

-1.84587E-3 +1.70755E-3 +1.86313E-4 -2.23989E-3 -1.7334E-5 -8.95394E-4

A = 632.8 nm

-2.57982E-3  1.66305E-3  1.87093E-4 -2.22001E-3 -2.45111E-5 -8.92584E-4

The meniscus element is positioned to minimize any spherical
aberration residual, since extrinsic higher order aberration contributions
are small and higher order coma and astigﬁatism are negligible, we can
compute the Optical Path Difference (OPD) changes introduced by the

doublet by using

- < 3 1 2132
OPD  blet = ~5 CMA3r3cos¢U - 7 AST3(cos2+1)r?p?,



where r is the fractional pupil height, ¢ is the angle measured from a
direction perpendicular to the tilt axis, and U is the fractional tilt
angle. Below is the OPD calculated for these tilt effects at two wave-
iengths. As mentioned before, for OPD < l-wave, the astigmatism contribu-

)

tion is < 1/1002 and can be ignored.

b. Astigmatism.

The two plane-parallel plates were ray traced at an angle of 15°
in an’f/é convergent beam. Because of the high degree of correction in
the objective, it is expected that extrinsic contributions due to objec-
tive imperfection will be negligible. Since two counfer—tipped plates
are used the third-order coma cancels and the third-order astigmatism
dominates, with higher order aberrations inéonsequential. The meniscus
element is positioned to minimize the residual spherical. A summary of
the third- and fifth-order coefficients for the two counter-tipped plates
appears in Table II. The OPD due to astigmatism is calcﬁlated from

= -1

OPDAstigmatism T4

AST3(cos2¢+1)r2U2,

c. Spherical aberration.

The position of the meniscus element relative to the doublet will
determine the amount of spherical aberration in the system. This aberra-
tion contribution is strictly speaking very complex consisting of third,
fifth, seventh and higher order spherical coefficients to determine the

OPD in the pupil. However, fromAcomparisons of exact ray trace OPD to
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TABLE II

" DESIGN COEFFICIENTS FOR ASTIGMATISM

546.1 nm, Plate Tilt 15°

>
n

SA3 SAS " AST3 " ASTS
4.68100E-4  -1.50419E-6  4.83740E-3 -1.60639E-6
A = 632.8 nm

4.67761E-4 -1.49766E-6 4,.833908E-3  -1.599410E-6

thaf of OPD calculated by using third-, fifth- and seventh-order coeffi-
cients, the computational error is always befter than 5% or 7% in the
OPD, where tﬁe smaller percentaée refers to meniscus position changes
made to introduce small errors (~1/10)%) and the larger percentage refers
to meniscus position changes made to introduce larger errors k~1/2x),

The OPD is calculated from

=~...l S _1_ 6 - _l_ r8
OPD 8 SA3r* - 12 SAST 16 SA7T®,

As we reposition the meniscus we also change the back focal position
(BFP) .and the aberration generator effective focal length (GEFL). This
change in BFP is compensated for in the relay optics aﬁd the change in
GEFL results in an f# change which can be compensated for by stopping

down the pupil in order to maintain an f/6 cone in the generator and an



11
f/12 cone in the simulator. Figure 3 illustrates the BFP as a function
on meniscus position. ‘Figure 4 shows the GEFL as a function of meniscus
position. Figures 5-18 show the variation of third-, fifth- and seventh-

order spherical aberration with meniscus pesition for two wavelengths.

d. Overall optical path difference.

The graphical coefficients were obtained by ray tracing at vari-
ous positions of the meniscus. In order to obtain analytical expressions
for BFP, GEFL, SA3, SA5, and SA7 each of the curves was fitted to a

polynomial expressibn which resulted in the following equations:
SA3 = (2.2683572 x 10" 7)x3 —'(5.4403322.x 107 5)x2
+ (3.9624001 x 10 3)x - 0.092684628
SAS = (5.4406814 x 10 8)x3 - (1.0583634 x 10 °)x2
+ (7.0274668 x 107%)x - 0.014209098
SA7 = (7.9180215 x 10 ?)x3 - (1.4642964 x'1o'6yx2
+ (9.3790299 x 10”°)x - (1.9275608 x 107 3)
BFP = -(3.9558132 x 10" °)x® - (8.0375794 x 10™*)x2
+ (0.30452283)x + 108.12638
GEFL = (3.8922327 x 10~ %)x3 + (3.9824714 x 10" *")x?
+ (0.65624124)x + 118.61591

where X is a term in millimeters, which referes to the spacing between
the plane-parallel plates and the meniscus element. It is found by

adding the reading on the dial indicator to a constant C. This constant
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Fig. 5. Third-order spheri‘cal aberration as a
function of meniscus position for
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Fig. 6. Third-order spherical aberration as a function of meniscus
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‘Third order spherical aberration (mm)

6328 A

~2X103 —

~3X 107 [—

—4 X 1073 }—

40 45
Calibration reference x (mm)

Fig. 12, Third-order spherical aberration as a
function of meniscus position for
A = 632.8 nm.
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Third order spherical aberration (mm)
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is to be determinea experimentally in the calibration of the generator,
so as to compensate for residual manufacturing errofs. Using these
equations and the expressions for OPD contribution of the various com-
ponents of the abérration generator we can generate an overall expression

for OPD introduced by the total aberration generatof as follows:

OPD, + OPD + 0P

Total - 0PDPinhole Doublet DPlates

* OPDMeniscus ¥ OPDRelay :

where the optical path difference for the total aberration generator

QPDTotal

~ the system.

is equal to the sum of the;OPD's of the individual components of

The optical path difference contributed by lateral shifts in the

pinhole position OPD has the effect of tilting the wavefront.

Pinhole

This is expressed as:

12.7
R

OPD = - %-Br cos(¢-a) = - Bx cos(¢-a)

Pinhole

-

wbere h is the radius of the entrance pupil, R is the focal length of the
" aberration generator, B is the lateral distance the pinhole is located
from the. axial position, r is the lateral distance from the optical axis
as a fraction of the pupil radius for the point on the wavefront being
evalugted, ¢ is the angular position of the point on the wavefront as
measured from the vertical y axis, and a is the angular position of the
pinhole as measured from the vertical y axis. B and a are determined by

the readings of the micrometers that position the pinhoie X~y movement
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stage. They are:

8 VX2 + y2  /(AX-AX0)Z + (AY-AY0)2
CLEFL  ~ CLEFL
= arctan 2(- = rctan :A—'x:'A—X‘Q
o = Yy © arctan \|wWTayo

where CLEFL is the focal length of tﬁe collimating lens, and AX and AY
are the readings on the micrometers for the X and Y axes respectively,
and AXO and AYO are the positions of the micrometers when the pinhole is
iocated on the optical axis. r and ¢ are determined by the readings of
;he-micrometers on the x-y stage that positions the sampling aperture.
Tﬁe measurements made for r are divided by the radius h' of the pupil in

the plane of the sampling aperture.

(SEFL) (RIEFL)

h' = {GEFL) (R2EFL)

where SEFL is the focal length of the sampling lensf R1EFL and R2EFL are
the focal lengths of the first and second relay lenses respeétively, and

GEFL is the focal length of the aberration generator as determined above.

Then,
r = ﬁ%-/&z Ty = ﬁ%-/(px-PXO)z + (PY-PY0)2
X PX-PXO
¢ = arctan ;- = arctan PY-PYO °*

where PX and PY are the readings of the micrometers that position the
sampling aperture and PXO and PYO are the readings when the sampling

aperture is centered about the optical axis.

*This lens recollimates the light from the second relay lens as in
Fig. 1.



The optical path difference contributed by the tilt of the

doublet OPD is expressed by

Doublet

OPDp  tlet = - L(CMA3) r3U cos6

- %(CMAS)r3(chos¢ + Uysin¢)

1

_ 1 3
s (C(MA3) 1 (5570

){ (GX0-GX)cos¢ + (GY-GYO)sing}

where CMA3 is the amount of coma introduced by tilting the doublet 1.50,
U is the angle of tilt from the optical axis as a fraction of the maximum
arigle of 1.5°, and @ is the angular position of the point being sampled
on the wavefront as it relates fo the direction in which the coma is
being introduced. leand Uy are the x and y-axis components of the angle
of the doublet and are measured .by GX and GY as the readingé on the
micrometers of the orientation aevice. GXO and GYO are the micrometer
readings when there is no tilt in the doublet. The 0.040 fagtofAis the
micrometer movemént for a tilt of 1.5° and so gives the angle as a frac-
.tian of the angle for which CMA3 was determined.

The optical path diffe}ence contributed by the tilting and rota-

ting of the plane-parallel plates OPD, is expressed by

lates

oP - %(AST3)w?r2cos20"

DPlates

- %(AST3) {ZLE%%EEQQ_}Zrzco52[¢ - (RZ-RZO)],
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where AST3 is the amount of astigmatism introduced when the plates are
tilted at an angle of 15° from their position of normal to the optical
axis, w is the fraction of the 15° that they are actually tilted, and o'
is the angular position of the point being sampled on the wavefront as it
relates to the direction in which the astigmatism is being introduced and
is equal to the difference between ¢ and the angle from the vertical y
axis the plates are rotated. BZ is the reading on the tilt dial indica-
tor showing the tilt and BZO is the reading when the plates are both per-
pendicular to the optical axis. The difference is multiplied by two
because each’unif division on the dial indicator is equal to 2° then
divided by 15 to show tﬁé angle as a fraction of the angle for which AST3
was determined. RZ is the reading on the rotation indicator, and RZO is
the reading when the plates tilt so as to introduce sagittal astigmatism
in the direction of the y axis. -

The optical path difference contributed by the longitudinal move-

ment of the meniscus lens OPD is represented by

Meniscus
r
— h2 2 _1_ L i 6 _l_ 8
opDMeniscus Y SZI‘ -8 (SA3)r* - 17 (SA5)r° - 3 (SA7)r
(12.7)2

= - F(GEFL)? (BFP-BFPO)r2 - 18-(SA3)1~‘+

1 6 _ L 8
- g5 (SAS)r 1g (SA7)x®,

where §_ is the change in focal position from the paraxial spherical

aberration condition position with change of the meniscus lens position
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and Q is the focal length of .the aberration generétor. BFP is the back
focal positién of the star image and BFPO is the back focal position for
minimum spherica1~§befration. SA3, SAS5, SA7, GEFL, and éFP are defined
in detail above.

The optical path difference contributed by the movement of the

first relay lens OPD is expressed by

Relay

= - 2
OPDRelay 7 GRr | .

12.7)2
- 2(GEFL‘}2 (DZ0-DZ)r2,

where GR is the movement of the first relay lens. DZ is the reading of
the dial gauge for the position the relay lens is at and DZO is the lens
position when its focal point coincides with the focal point of the

aberration generator with the meniscus lens positioned to give minimum

spherical aberration.

4. Mechanical Components.

The air-spaced doublet in the aberration generator is mounted in
a cell that threads into a Lansing Research Model 10.203 angular orienta-
tion device with linear micrometer adjustments. Each 0.0001'" division of
linear motion of the micrometers'corresponds to a 13.5 arc second rota-
tion of the lens. The cell is threaded into the orientation device until
the rear nodal point of the lens coincides with the intersection of the
x- and y-gimbal tilt éxes. The direction and améunt of coma introduced
is calculated from the angle at which the doublet is tilted from the Sys-

tem optical axis.
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The two plane—parailelzplates are mounted into metal plates on
individual axes parallel to one another. A toothed gear on each plate V
meshes with the gear on the other plate. Since both gears are of equal

~size, a tilt of one plate will cause an equal and opposite tilt of the
other plate. One of these plates is geared to a dial indicator. Each
0.02 division on the dial is equivalent to a 2.4 minute tilt of each
plate. This whole asseﬁbly is bearing-mounted so that it will rotate
about the system optical axis. The bearing rotation is gear controlled.
These gears also operate a digit counter where a one digit change corre-
spohds to 1 degree of rotation about the optical axié. The amount of
astigmatism is computed from the angle difference between the two plates,
and the direction by tilt orientation.

The thick meniscus lens is mounted into a cell that is attached
to a micrometer slide. Initialiy the lens is positioned so as to give
minimum spherical aberration for the_system. The lens can then be moved
toward or away from the air-spaced doublet and parallel plate; to put
various amounts of positive or negative spherical aberration into the
system. The travel of the lens is measured with a dial gauge having a
25-mm travel and reading to 0.01 mm. The amount of spherical aberration
is calculated from the distance between the adjusted position of the
meniscus lens and its nominal position when the system has minimum
spherical aberration.

The two cemented doublets for the relay optics are mounted in
individual cells. The cell for the first lens is mounted on a micrometer

slide and is positioned so that its focal point coincides with the image
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formed by the aberration generator. As the image point moves along the
optical axis when the meniscus lens is moved, the first relay lens is
moved on its micromefer slide so as to keep its focal point and the image
in coincidence. This keeps the beam coming from this lens collimated.
The collimated beam is then brought to a focus by thé second lens, an
f/12 telescope object. A photograph of the complete assembly appears in

Fig. 19.
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CHAPTER III

THE COARSE RANGE SENSOR

1. General.

Several types of coarse range (geometrical) optical tests were
considered. Three of the most common are the Foucault knife-edge test,
the wire test and the Ronchi test. Effectively, in each of these types
of tests, a particular type of obscuration mask (knife edge, wire, multi-
ple wire) is placed in the vicinity of the focal plane. Knowing the mask
parameters and location and by measuring shadow locations on the pupil,
one can obtain ray slope information and, by integration, wavefront data.
However, these tests suffer from a common flaw in that the test mask has
to be rotated for nonsymmetric aberrations like astigmatism and coma.
Also, to obtain meaningful error measurements we need to scan'the pupil.
A test that is at least as sensitive as the above and which does not
require mask rotation and control, and by which we can monitor any point

on the pupil we wish is the Hartmann test.

2. The Hartmann Test.

a. General arrangement.

In the classical application of the Hartmann test a mask of pre-
cisely located holes is placed in the exit pupil of the optical system.

Each hole lets through a particular ray converging toward focus. Two

36
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photographic plates are exposed, one in front of focus and the other be-
hind. By knowing the distance between the plates and by reading out on a
comparator the positions of the rays on the plates, a slope can be
determined for each ray in the pupil.

This classical form of the Hartmann test is obviously not suited
for remote testing. However, as illustrated in Fig. 20, only a simple
modification is required. Plane A indicates the optical system exit
pupil. We position lens B so that its rear focal point lies at the sys-
tem focus. At location C we have the reimaged optical system pupil in
collimated light space. In this relayed space we can sample a particular
pupil location conveniently by means of a moveable aperture. Any depar-
ture from a perfect system wavefront will show up in the sampled ray as a
small angular deviation from collimated light. The slope error in the
system exit pupil at this corresponding point can be found easily by
multiplying the measured angular departure by the ratio of the relay lens
focal length to the system focal length. This technique allo;s us to

sample any pupil location we so desire using the full energy spectrum

available, with an increased sensitivity equal to the focal length ratio.

i. Automatic readout.

We are now left to readout the angular deviations of these vari-
ous ra}s. A suggested automatic technique involves the use of an image
dissector tube of the star tracker variety. The arrangement
is indicated in Fig. 20. The second lens D focuses the particular ray

bundle we are sampling at its rear focal plane at some position off-axis



A
C

Coils

Focal  LensB Lens D

plane Scanner Image

Reimaged dissector
pupil
System
pupil

Fig. 20 . Hartmann sensor configuration. In summary the advantages are: (1) a priori
geometric knowledge, (2) alignment insensitivity, (3) simple and efficient data
reduction, and (4) high efficiency light usage,

38
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which depends on the slope error and the sampled pupil position. The
image dissector measures this off-axis location. This position divided
by the lens D focal length is the magnified slope error at the pupil
position.

The dissector tube consists of a photocathode that has been
deposited within a transparent window. An electrostatic focusing system
refocuses the electron image produced by the sampled ray bundle within or
in the vicinity of a metallic plate containing a circular aperture in its
center. Those electrons getting through the aperture produce ‘a current.
An orthogonal set of magnetic coils are phased 906 apart with equal
deflection amplitude thus producing a circular scan of the electron image
about the metallic circular aperture. Synchronous amplification of the
resulting signal is carried out about the scanning frequency. If the ray
image is perfectly centered in its scan about the circular disc, then
there is no synchronous error signal produced. However,.if the ray
bundle is displaced, an A.C. error signal is produced with soﬁe particu-
lar phasing depending upon the ray position. From this we extract an
X,Y-axis error signal which can then be applied as an offset signal to
the deflection coils until the error signals are nulled. Knowing the

calibration on the offset deflection we obtain the ray position.

ii. Simulated automatic readout.

This scheme has been simulated in the laboratory using a Risley
prism scanner, a moveable pinhole and standard PMT. This is illustrated

in Fig. 21. Lens B focuses a particular ray bundle on or near the
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pinhole. This diffraction image is spun about the pinhole by a Risley
prism whose orientation has been adjusted to give a circular spin
diameter equal to the pinhole diameter. A mechanical chopper driven by
the prism motor at 30 cps gives a reference signal phased on the x axis.
Behind the pinhole is an E.M.R. 9858 photomultiplier tube. As the
image is moved around the pinhole any offset would produce
a 30 hertz variation in the PMT output current. As illustrated in Fig.
22 this 30 hertz signal is preamplified and converted into a voltage
signal. The voltage signal is then fed into a synchronous amplifier
which first filters and amplifies the incoming signal and then splits
the signal into two identical components 90° apart in phase. Each
component is connected to the input of a phase-sensitive demodulator
where the signal is mixed with the reference voltage signal to produce
sum and difference currents. A filter at the output of the phase-sensi-
tive demodulator rejects the high frequency (sum) frequencies and passes
the zero or DC difference component corresponding to the component of the
signal spectrum at the reference frequency. This zero-frequency current
is the error signal output. We have two of these, one in-phase, indi-
cating tﬁe x-axis displacement, and a quadrature signal, indicating the
y-axis displacement. By moving the collection pinhole we can first zero
out the x-error and then the y-error signals, read the micrometers and
calculate our wavefront slope errors. Figure 22 is a photograph of the
Hartmann test wavefront simulator being evaluated by the aberrated

telescope.



Figure 22. Hartmann Test Simulator and Aberrated Telescope Wavefront Simulator.
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b. Theoretical discussion.

We have begun to investigate several theoretical problems con-
cerning the Hartmann test. These include an examination.of the effect of
sampling aperture size in the exit pupil on measurement of primary aber-
rafions and detection sensitivity. It also includes the basis for deter-
mining the optimum size scanning pinhole for subsequent S/N ratio

calculations.

'

i. Effects of sampling aperture on third-order aberrations.

The Hartmann test is used to measure the slope of a ray in the
Iexit pupil of an optical system. By integration one may obtain the wave-
front of the optical system under test.

Ideally; we would like to make use.of information from one point
in the pupil, but since we are concerned about energy and diffraction we
need a finite aperture for each'ray; The question then arises: How does
the aperture size affect our measurement of the ray slope, since we are
integrating over a finite area of wavefront? In the following discussion
we’develép quantitatively a wavefront error measurement expression in
terms of relative Hartmann aperture size and aberration type. Diffrac-
tion effects are considered in ii.

The assumption is made that we have a measuring scheme that will
locate the centroid of the image of the Hartmann aperture. Thus we are
determining the average slope of rays in a Hartmann aperture and com-

paring it to the slope of the ray at the center of the Hartmann aperture.
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o
>

Fig. 23. Telescope system exit pupil.

The exit pupil of the system is illustrated in Fig. 23. In a
normalized system X2 + Y2 s 1. The center of the Hartmann aperture is
located at (Rc,é). Our analysis here restricts Rc s 1 - D, where D is
the radius of the Hartmann aperture. Obviously Y = R_ cos¢ + y;

X =R _ sing + x.
c
If SxxY is the x-direction slope of the wavefront at X, Y, then

the average x-direction slope in the aperture centered around Rc’ $ is:

1
+D (DZ_XZ)’i
5 Sxxydxdy
—_ -D _(Dz_xz)z
D2
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Likewise the average slope in the y-direction is:

+D (1)2--x2)11
. SyXdedy
- _ -D - (D%2x2)%

SyXiYi wD2

Now let us consider several aberration types, and their measure-

ment errors introduced in the Hartmann test.

Defocus .
W = WOZO(XZ + Y2)
Sxxy © % = 2WppoX
Syxy © %g = 2Wop0Y

In our small displaced aperture D,

- 2 4 v2 4 2 s
W _WOZO(Rc + X2 + y4 + 2Rc[x sind + y cos?])

_ W _ L

Sxxy = 3x = Wogo(2x + 2R sin¢)

JJ SxXY [J (2x + 2Rcsin®)dxdy

xXiY. mD2 mD2

w)
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The first term integrates to zero and we are left with

XY, T 2WyyoRsine = 2WyH 0K,

or -

or the average x-slope in the aperture D is equal to the actual x-slope

at the center coordinate of D for the defocus aberration. Likewise,

—_—

S = S .
'“M?xiYi yXiYi

RN

Thus defocus in the absence of other aberrations causes no shift in the

Hartmann image centroid.

Tilt
The wavefront aberration for tilt is W= W Y + W X where
| ylll x111
Wy111 is a tilt of wavefront in the Y-direction.
S = Eﬂ = W 1 X.Y
XX, Y, 35X - Wx111(x-slope at X.Y.)

W = Wylll(Rccos¢ +y) + Wo1q1 (R.sind + x)

- 3 -—
S = 3% - Yan

=

[J lelldxdy

7D2 = My

!
1
=

XY
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Thus;

We -see that in the absence of other aberrations a tilt causes no shift in
the Hartmann image centroid.

Astigmatism

The wavefront for astigmatism is

= 2 2 - 2
W W222p cosd W222Y
S = 2W,,.Y.
Yy y. 22274
11
W= Wy (2 o+ Rczcos¢ + 2yR_cos®)

S = M oW Rcosé = 2W,.Y. + 2yW
Yy 8  “222c 222'i t Y222
i ' )

+ 2yW222

fj (2W,,,Y; + 2yW,,,)dxdy

mD2

The second integral is zero. Thus,

= 2 S

YX. Y.
1 1

W,,,Y.
Yxy 22271

Again astigmatism does not cause a centroid shift.
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Spherical and Coma

Thus far with defocus, tilt and astigmatism we have seen that the
Hartmann centroid is not shifted due to the sampling aperture size. We
will see that for spherical and coma third-order aberrations, that this
is not the case. That is, the finite aperture in the Hartmann test in-
troduces a certain error of predictable form and magnitude depending on

the relative Hartmann aperture size.

SEherical
= 2 2y2
W. w040(x + Y2)
S, = 4W040X.R 2
X.Y. 1c¢
11
S = Wo,0YR 2,
YX. Y. 1ec
11

In the Hartmann aperture:

W = 040(R 2 +y2 +x2+ 2R [x sin¢ + y cos®])?
_ oW 2 2, L2
SxXY = ax T g RST YT xT 4 2R,

[x sind + y cos®]) - (2x + 2Rcsin®)

e b,
= 040[xR + Xy + x° + 2Xix + 2Yixy]
2 2 2
+ 4X. WO4O[R * (x5 yS) 22X x 4 2Yiy].
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A1l odd functions integrate to zero as indicated by the /. We are left

with:
JJ x2dxdy
- _ 2
Sx = BWpuoXy T v MXiWouoRe
X.Y
11
2n (D
j J pzpdpde
070 '
+ 4X5Wo40 w2
‘§x - S, + 21)2xiw040 + w040x.02.
X.Y. X. Y, 1
11 1l 1
By - symmetxy:
S = S + 2D2Y.w + W, .Y.D?
yx Y yx Y i 040 040
MY i'i
Y Mo
wMeasured B j S dxl ¥ J y le
X.Y, X.Y
0 i3 0 i'i
- 2 242 2 2 2
wMeasured wO4O(XM * YM ) * 3w040[D ] [XM * Y ]

- 4 "h2p 2
Weasured WoaoRy' * 3WgaoD Ry
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We see that when we measure spherical aberration with a Hartmann
array we get an additional term in our measurement, which takes the form
of a focusing error with coefficient 3W040D2. However, since we have
obtained the functional form of the associated error we can now apply

this knowledge to a correction term on our defocus measurement and thus

compensate for the finite Hartmann aperture size.

Coma
3 = 2 2
W W131p cosd lel(x + Y9)Y
oW
S = — = 2W. . .X.Y.
Xy y. X 1317171
i'i
= oW _ 2 2 ' v 2
Syxy = 3y T Win (T Y0 v 20 Y
i'i
Sx = -%g = 2W131(Xy + chcos® + yRcsinQ) + S .
XY - XY,
i'i
Since the first three terms integrate to zero
-gx = SX .
XY X.Y.
i'i
Thus there is no x-component of slope error. However,
S L R + W,..(p2 + 2R x sin¢ + 3Ry cos®)
- Yxy y Yx.y 131 c c

2
+ 2W131(y + 2yRccos®).
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Integrating we obtain:

S = S + W D2
Yxy YX.Y 131
i'i
Since
| XM ™.
W = J S + J ay
Measured Xyy Yxy
0 0
- 2 2 N2
wMeasured - w131(XM * YM )YM * w131YMD *

We thus see that in the case of coma, a finite size Hartmann ap-
erture will introduce an error which takes the form of a tilt aberration.

This information can be used as a correction on tilt measurement.

Conclusions

We see from the preceding discussion that if we.are measuring the
Hartmann centroid the only third-order aberrations that introduce errors
are spherical and coma, and that the amounts of error are extremely small.
We could predict the amounts of error for these aberration measurements
by using the error formulas developed. We can also take advantage of our
knowledge of the aberrational form of error to eliminate it. If we were
monit&ring an active system and were looking for changes, and we measured A
a change in spherical aberration we would also be able to predict the
defocus type error that would be associated with it and thus not confuse
it with an actual defocus change. The same argument holds for the coma

and tilt error.
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ii. Optimal signal recording geometry.

In order to calculate the signal generated by the slightly off-
center diffraction image of a sampled bundle of rays we must know the
nature of the diffraction pattern formed on the image dissector's face,
the impulse response of the tube and the dimensions of the collecting
aperture within the tube. The convolution of these three quantities will
give us the normalized amount of energy passing into the dissector for a
given diffraction image collecting aperture displacement. From this con-
volution curve we can determine the change inAsignal current for a change
in position of the diff?action pattern on ;he tube face due to a sloﬁe
error. Thus we will be able to make signal predictions based upon star
source chéracteristich f/no. of sampled pupil area, tube scanning aper-
ture.sizes and tube impulse response characteristics. | |

Referring té Fig. 21 let D be the sampling aperture size, f the
lens focal length and } the average wavelength of the collimated light.
The inteﬁsity distribution in the image dissector collecting plane for a

unit amplitude disturbance is

‘ x2p% | 21 (NADE )
I(x) =
: 16)12f2 (nDr)
Af

The impulse response of the dissector tube is approximately Gaussian and

can be written as
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Here o is the Gaussian width of the response. The collecting aperture

can be represented by H(r) = circ(r/£/2), which is a function such that

H(r)

n
[ury
o
n
H
IA

£
2

H(r) —g-

[}
o
H
v

The energy getting through the aperture for a displaced diffraction image
is
L(r) = I(x)*G(r)*H(r),

where * is convolution, and r is the coordinate of the diffraction

image.
. Taking the Fourier transform (F)
FL(1) ;A FI(r) *+ FG(r) +« FH(r)
where
| D2 SAf SAf SA£, 2\ %
@ Fle) = 5 foos HE-E (1- &)
wheﬁ
D
S < 3F
D
F(I(r)) = 0 whenS > T
_ 22
() FG(r) = e "2°°S
z 2 JI(TTKS)

(© B = @ Lp— .

2
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Multiplying and taking the inverse transform yields

“wD2R

-2mo2s2 1S S S 2)1/2
JO(ZnSr)Jl(WZS)e ST jeosTh = - = (1 - ds

ot
r~
2}
s
]
[\
: O‘——ﬁm

e = 2
Af

. We have evaluated this convolution forla series of pbssible €
parameters, in particular for an image dissector with a Gaussian width 2o
of 0.0035" and‘a collection aperture diameter £ of .020". This convolu-
tion data was then used to determine the peak-to-peak change in signal
per micron of displacement and finally the item of utmost importance:
tﬁé cﬁanée-in sign;i pe; aré-secoﬁd deviatiéﬁ of the sampled-réy, and a
éignal-to—noise figﬁre of merit. *

By plotting the S/N figure of merit versus focal length (Fig. 24)
we see that we do have an optimum choice of focal length. Hd@ever, the
fuhctiontis slowly varying over a large focal length range. The real
optimization choice should be made considering the displacement stability
of the coils, which can be relaxed at larger focal lengths, and residual

mechanical Vibration>prob1ems which become worse at larger focal lengths.

A good compromise for this tube is a focal length of about 50".

*Signal current is defined as the peak-to-peak difference in the A.C.
error signal generated by a ray displacement. Noise is determined by

the total current generated by photons passing through the collection
aperture £.
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HARTMANN TEST SENSITIVITY VALUES
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% Signal Change

EX "D £ per arc second S/N
.01 JAn 10" 4.3 3.2
.005 1M 20" 6.0 4.1
.002 LA 50" 7.2 5.°
.0015 | v 66" 8. 5.2
.001 LA 100" 10. 4.1
.0005 A 200" 11, . 2.9

S/N figure of merit

" |

1

50

100
Focal length of lens D (in.)

200

Fig. 24. S/N figure of merit as a function of focal length (image dissector tube).
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iii. Signal-to-noise for image dissector readout.

Assuming we have optimized according to the above argument we can
now calculate signal-to-noise ratios.

For an extended red photocathode the total signal at the cathode,
for a zero magnitude'Ao star assuming a 700 cm? sampling area collecting
aperture, is I = .50 x 10~!0 amps on the photocathode, which corresponds

to the maximum photocathode current the tube can handle. Now assuming the

parameter optimization as described in the last section:

(Shot Noise) IN = V2eAfl
I, = V35X 10-10(2) (1.6 x 10-19) (1)

= 4 x 10715 amps.

From above, for a 1 arc-sec detection, the signal is .0671.

I, = 30 x 10713 amp
-13 '
sin = 302 < 750 x 102 = 750,

where dark current noise = 10~16 amp for a .020" aperture.
We cbmpute signal-to-noise for other star magnitudes and summar-

ize the results in Table IV.




TABLE IV

BEST SIGNAL-TO-NOISE FOR DETECTING A 1 ARC-SEC SLOPE CHANGE
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, Magnitude S/N Detection Certainty
0 750 ‘ 100%
2.5 250 100%
5 .60 100%
7.5 6 | 100%

The above analysis has not considered noise problems associated with

deflection coils and field effects in image tubes.



CHAPTER 1V

FINE RANGE SENSORS

1. The Zernike Test. -

a. General discussion.

The usual interpretation of the Zernike test is based upon the spa-

i¢(x,y)

tial filtering concept. Consider a disturbance e in the pupil of

an optical system as in Fig. 25. If the aberrations are very small then

we can represent el¢(x’Y)

=1+ i¢. The important observation is that
the aberration information and pupil information are 90° out of phase.
If, in addition, the aberrations are of a high spatial frequency type,
the Fourier transform of the pupil function consists of a zero order, due
to the pupil aperture, and a separated highér order spectrum 90° out of
phase and separated from ﬁhe4zero order. (See Fig. 26.) We ihen argue
that a pﬁase delay of 90° introduced by a phase filter on the zero order
will bring the higher order information in phase with the zero order.
Lens C theﬁ re—tranéforms the filtered spectrum with the aberration
information and pupil effects in phase so that the intensity pattern in
the pupil contains a modulation proportional to the phase error in the

pupil for small aberrations. Furthermore, by attenuating the zero order,

the modulation effects can be improved.

58
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Aberrated wavefront

Transform
plane
Intensity
E lens C ) readout
ik " Reimaged
Zernike filtered

pupil

Fig. 25 Zernike phase contrast test arrangement.

Zero order
at a phase of 0°

}

Higher order spatial .
frequencies at a phase of 90°

Fig. 26 . Spatial frequency distribution.
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In the situation where we are looking for low order aberra-

tions, such as may occur in figuring errors, thermal deformation errors,
or misalignments, the problem is somewhat different. In this case the
magnitudes of the aberrations are not so small that only a first-order
expansion is permissible and, secondly, the aberration information is no
longer separated out from the zero order diffraction pattern. These
considerations lead to a slightly different interpretation of the problem
as Qell as a more general formulation of the design of the Zernike disc
itself, in terms of its size, the optimum phase shift, and the optimum
attenuation. Zernike did some work on the low order problem in terms
of a Zernike polynomial-fepresentation of tﬁe aberrations. However, he
considered only the first-order term in thé'expansion and did not gener-
alize the problem considering obscuration effects. He also assumed the
m/4 phase shift and did not consider optimization of the disc parameters.
whaf follows is a general development of the effects of a Zernike disc on
the reimaged pupil. We show.the relationship between disc si;e, phése
shifts, énd'attenuations, and how these parameters affect signal-to-noise
ratio, fringe visibility and the intensity in the reimaged pupil with and
without various types of aberrations. We will also discuss the fabrica-

tion of the disc, effects of fabrication errors and tolerancing.

b. General development of intensity equation for reimaged pupil.

. In Fig. 27 plane A represents the exit pupil, with fractional

obscuration € of an optical system with radius a and focal length f. The

exit pupil contains a general wavefront represented by e1¢(p’6? The
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Reimaged pupil

e(p0) .

Fig. 27.

¥

N

<ens‘B

1{p.0)

Pupil geometry for Zernike equation derivations.
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normalized coordinate p ranges from € to 1. The pupil amplitude is then

represented by:

RS - EE Ta:E
P = e H(z)[l (52 ],
where

%o
IA
b

®|°
A\
—

= 0

At plane B, the Fraunhofer plane, the amplitude of the diffrac-

-~

tion pattern P is:

P o= KB,
where

1 2 ' ‘

';b - Kl J J el¢ e-1[Vpcos(e-w)]pdpde
0 0

. .2
. _ia - 2ra
Ky = - 3% vV  TET

and r, y are coordinates in plane B.

In plane B we place a ciféulér mask of radius b, which produces a
phase.shift o within b and contains an amplitude attenuation (or relative
amplification factor) T outside b. Thus, after passing fhrough the mask

P, the amplitude diffraction pattern becomes:
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Br = K.TP - (X 1oy 5 oL
P _.KlTPO[l H(Zb)] + e KP(5H).
By rearranging we obtain:

51 = = io_ 5 e L
P KlTP0 + (e T)KIPOH(Zb)°
This amplitude field then passes through lens B and at plane C (the con-

jugate plane to A) the amplitude of the disturbance POi is:

where

w 27 )
x - -1 -f? .
P! = J J pre” "t cos (y-0 )rdrdw
0 0
_ 2mac<p _ i _ 2ma
¥ Ky = 3t 4 = 3F

We are assuming lens B has an aperture sufficiently large to éccept all

scattered rays. Integrating we obtain:

472K K e

i 12 ~i¢n p. b io_ ~ T
Py = 7 T e " 'I(3) [1 n(2€] + (e T)lez[pon(Zb)]
where
~ b 2m

2 ,
J J p e-iwr cos(¢-6')rdrd¢
0
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is in general a complex function X(p,¥)

= X0 = Qe

Q(p,¥) = VRe X2 + Im X2
- Im X(p,¥)
Y(p,¥) Arctan Re X(o.0) °
Thus:
p i _ TP * 4 a2 io '
o = TPy *3xzgz (e -1 - X().

We now let (elc-T) = AelY, thus,

A2 = 1+ T2 - 2T coso
tan - sino
Y cosg-T °

Substituting we obtain

. . 2 .
i * a i(y+y)
P = .
0 TPy + 5257 A Qo)e
What we have here is an expression for a two-beam interferometer
where TPO* is the test beam containing the pupil aberration information
2
. a<AQ(p)
and the second term represents a reference wave whose amplitude ——7%?7—
and phase y is determined by the Zernike disc properties. The factor ¥
as will be seen represents the effects of the aberrations on the refer-
ence wave., As it turns out, ¢ is practically constant so that its effect

is essentially one of shifting the intensity-gram by a constant. We will

come back to the evaluation of X(p) in the next section.
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Multiplying PO1 by its complex conjugate yields the intensity of

the reimaged pdpil for a unit amplitude pupil function.

L0 = Byl xPglT = 72 1é%i?;ﬂ - D7 519ﬁ§f¢'?)
(holds for e < p s 1)
where
E = y - 1/2

. A%Q%(p,0)
I(e:®) = erumm

Our development here gives us an added bonus in the intensity
prediction outside the pupil. We will see later how we can possibly use
‘thi's informatien in order ‘to “determine ‘the zero aberration profile-for an
imperfectiy manufactured Zernike disc. The question now is: how to
choose the values of T and o to.optimize the Zernike test performénce?'

If we desire to operate 6n the midpoinf of a fringe so
0. If this
sinc

is the case we then have y = £ + n/2 = n/2. Then from tany = ——— , we

we have maximum range (~* quarter-wave) we want to choose £

have the constraining condition that T = coso, and thus A = 1-T2 = sinZ?o.

" Now we have to consider fringe visibility. The visibility

_ 20AT ). [ Q2A2 _ [ 2Qsin20
Vo= <4A2F#2) f <T Y Texvret | = \ TnZFR2

. (4 Q? Q2 5
* AL+ gemErm t \l - ToneERw JC0s%9 )
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By differentiating and setting equal to zero, we obtain the condition for

maximum visibility:

Q2
1 - I oFr

— .
1+ T5aFs

Thus, by picking o to satisfy this‘equation»and the transmission to

cos20 = -

satisfy the equation T? = cos2¢, we guarantee a fringe visibility of
unity and an operating point that gives us maximum range. WE see that
the choice of o depends upon T%£%%ﬂ" which depends upon wavelength,
system F number, and the size of the Zernike disc. As we will demon-
strate 1atef, the effect of a large Zernike disc is to yield a reimaged
pupil that has large intensity graduations for a zero-aberration condi-
tion. A large Zernike disc also tends to mix aberration information into
the reference wave. Smaller discs tend to yield a uniform zero-aberra-
tion pupil profile with little aberration mixing in the reference wéve.
However the transmission factor is small and more energy is QQSted. In
Table V Qe have calculated the optimum phase shift and transmission
required for severél Zernike disc radii, corresponding to about 1/10 to

. 1/2 the size of the diffraction pattern of an £/12 system operating at a
wavelength of 0.6 pum, making use of expressions for Q derived in the
following sections. Considering signal-to-noise requirements, pupii pro-

file, and aberration mixing, the disc corresponding to about 1/3 the size

of the central diffraction lobe appears to be a good compromise.
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TABLE V

ZERNIKE DISC DESIGN PARAMETERS AT 0.6 um

Disc Size Phase Delay o IE
2y ' .228) 2%
3w 206 7%
4y .189) 13.8%
Su .178) 18.8%

c. Derivation of the effects of the Zernike disc on the reimaged
pupid. :

The effect of the Zernike disc on the reimaged pupil manifests

itself through the term X(p,0) = Q(p,e)elw(p’e). One can evaluate the

integral

m

b 2
X(0,8) = f fucr,w)e'i‘” c0s (¥-8) 1 qrqy,
0 0

' where U(r,y) is the amplitude diffraction pattern, numerically using a
good deal of computer time. We have-however, taken the approach of

- developing analytical expressions for both U(r,y) and X(p,6). The work
has provided accurate analytical expressions for U(r,y) for aberrations
of up to .22)x and accurate analytical expressions for X(p,8) for Zernike

disc sizes up to 2/5 of an Airy disc size. The range of accuracy could
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be improved by expandipg the expressions developed to include higher
orders, The derivations héve included the effects introduced by a system
obscuration. |

First we develop analytical expressions for the dif-
fraction pattern amplitude U(r,y), which includes aberration effects and
the effect of a circular obscuration. The derivations that follow are
done in terms of special functions AN(V) called Lambda functions. The

Lambda function is defined such that:

N, InW)

(v) = 2'N!
k 7

where JN(V) is an Nth order Bessel function. Using the recursion formula

for Bessel's function one can show that:

vz
AN = A ) ey A )
A (o2 N M M oM T 1 M o .
(5) (1-p%) o cos -1) " §13 (ZH)M - N+1(V) (A)

where <> represents a two-dimensional Fourier transform, and

v = 21rr1

ry = /X2 + Y2
Xoa

X = =f
Y a

Yy = -°_

>
Hh
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We can also show that:

ay™ AN+1'(V)

'dv B _— 27T
TR
d_zg_s_i_‘i)_ - _;_.v %[AN,rz(V) - 'A‘ﬁ%i"(l)‘]
T ™ - ZH-COSw[- %Vﬁ%ﬁi{]
B ha ) = - 2 (casayy N2

2 ‘ +
+ Lz%l— (1+c052w)[%%:% AN+2(V) - AN+1(V)].

(B)

The approach is now as follows.l-The pupil function e1¢‘is

expanded:to the second term = 1 + i¢ - %—¢2, where

¢ = W jpcos¢ + W 2+ W ot + W06p6 + W13p3cos¢

02° 04°

2 2
+ szp cos<éd.

This is a power series representation of the phase in the pupil where W11

is a tilt effect, W,, is a defocus effect, W04 and WO6 are spherical

02

aberration effects, W., is a coma effect, and W22 is an astigmatism

13

effect. This expansion is substituted into:
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TT

.1 2
U(r,y) = K1 j J eid)e—i[Vpcos(e_w)]pdpde
’ 0

€
where

i .
et - 1+ i¢ - ¢2/2.
After substitution we arrive at a series of transforms of terms of the

form p2N+McosM6, where N and M take on various positive values. We can

show that

p2N+McosMe L= [1 - N(l_pz) + l(—g—-'-u- (1'02)2

_ N(N-l)(N;?)(l—p2)3 . ...] . cosMGpM

By taking each term in the power expansion and putting it in to the above
form, applying the Fourier transform felationship (A) and finally making
use of the derivative relationships (B) we arrive at the following

expression for diffraction amplitude in plane B.

U = Up+ Uy *Upy * Upg * Uyz * Uss * Urpteractions

. . 2 . .
W .
here UInteractlons represent cross terms resulting from the ¢< term in
the pupil function where:

Yo

mA; (V) - ezAl(ev)] --diffraction pattern of the
‘ obstructed aperture.
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Defocus:
= (i 1 4 S
Upy = H(IKWOZ)[AI[V) - 3 A0 - i (ev) - Az(sv)]

CnK2wW. 2
02 1 :
- 5 [Al(v) - Az(v) + g-ﬁs(v)

- e¥{n. - A 1
e (fl(ey) Az(ev) * 3 As(ev;)]
Third-order spherical:

Uy, = H(iKW04)[A1(V) S WORE ¥ WS

- ee(fl(ev) - Az(ev) + %'As(sv)>}
- %-K2W042[A1(v) = 20,(v) + %-As(v) - A,
1

+ E 1y - sy - sy

+ %-As(ev) ~ A4(sv)

¢ T (ev))]
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Tilt:
U,, = T(KW ) (v c;sq;)[-l— A(V) - et (ev)]
11 11 4 "2 7 &N
B 11 1
-3 K2w112{§.Q\1 (v) - 5 AZ(V)>
-%-(Al(v) - Az(v))cosw |
q[l 1 1 |
- ey Al(_ev) -5 Az(ev) * 5 Al(ev) - Az(ev) coszw]
Astigmatism:

U2~2 = n(in22)|:%[A1 v) - %Az(v)] + -;—[Alb(v) - Az(v)]coszxp'

- eh(é_[j\l(ev) - %Az(ev)] + %[Al(ev) - Az‘(ev)]coszw>j|

_.H_Kz'w

i3 22 Ay (v) - 30, (v) + 3A (V) + cos2y-

2
[2A3(v) - 6A2(v) + 4A1(v)}
+ cos4tp[2A3(v) - 3A2(v) + A1 (v)]

- EG%As(EV) - 3h,(ev) + 3A,(ev) + cos2y-
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[ZAB(EV) - 6A2£ev} + 4/&1 (sv)}

+ cos‘tlw[ZAs(sv) - SAz(ev) + Al (ev)}}j]

Coma:

U13 = H(iKWSI) (iv cosw)[ (v) - -~ As(v)
- €6<1 [ev) - —i-z—As(ev))
2 ‘ ' A (V)
- ’“132P1(V3 AT e

+ cpsZw[AI(v) - 2h,(v) + %A_;(V)]

S A (ev)
- ég((AI(av) - -:2-;—1\2(5\1) + As(sy) - —3—3——)
+ cos2¢(ﬁ1(ev) - 2A2(ev) + %As(ev)))]
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: 3 1
_ _ 2 - - =
UinTERACTION = ~TK “’02“’04["100 7 A (V) + A3 (V) - 7 A, (V)

- €8<A1(€V) - -‘;1 Az(ev) + As(ev.) - %—A4(ev))]

- K2 : 1 oL
nK W11W02(1V cosw)[4 Az(v), 13 AS(V)

- eﬁ(% My(eV) - 35 As(ev))J
_m2 by

7~ (Wys¥yp * WOZWZZ)[AI(V) - M)

3 Az (V)
+ CcOs2y Al(v) -5 Az(v) + 5

o A (ev)
- 56<A1(ev) - Az(ev)‘+ 3 3 )

3 As(ev)
+ cos2y Al(ev)‘ -3 Az(ev) + 3

Az(v) AS(V) . A4(v)

_ k2 i
KV cosh(Wy Wg, + Wo Wy 2)l =3 3 %4

- +

. A2 (ev) As(sv) Ay (ev)
- € I 6 24
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Ay(v) A (v) A (V) A(V)

_ ik2 | - -
iK W04W13Hv cosy 7 7 + 5 0
A
Y 2(ev) ) AS(EV) . A4(ev) ] As(ev)
4 4 8 40
ik2nw, W

- lél 22 l:(( -VAL (V) + SVI\Z(V)) cosy + (V/\Z(V) - VA3(V)) cos 3y

vl\3 (ev)) cos3w>:\

- ¢b ((—VAS(EV) + SVAz(ev)) cosy + (vAz(ev)

-2
iK HW13W22

-—Tc (SAZ(V) - 2A3(v)) + % A4(v) VvV cosy + (Az(v) - AS(V)

(IR

+ —é— A4(v)>v cos3y

_ 8 (3A2(ev) -2 (ev) + 2 A4(ev)) v cosy,

+ (Az(ev) - % As(ev) + -;— A4(ev))v cos3y '

The above expression enables us to determine the diffraction pattern
amplitude in the presence of third-order aberrations less than quarter-
wave in magnitude, where the effect of a circular obscuration has been

included.



76
We now waht to détermine the analytical expression that describes
the effect of the Zernike disc on the reimaged pupil. We do this by sub-
stituting the previous derived expression for U(r,y) into the integral
expression for X(p,8). We then make use of the fact that the A functions
can be ekpanded in a power series where
e2v? eyt

A _ (EV) = 1- + +
N-1 N e v 2)

We apply the three terms of the expansion to the unaberrated pupil Uo’
and the quadratic approximation to the aberration terms. We also make

use of the recursion relationship for Bessel functions:

2N JN(V)

a1+ Iy =
and the integral relationships:

2%

J cosMee—lvpcos(e_w)de = (—i)MZ1T JM(Vp)COS My,

0
and

1

v+l 1
J P Jv(vp)dp = S I,
0

After a good deal of tedious manipulation and evaluation we obtain:

X(p,0) = X (p,8) + XAb(o,O),
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where Xo(p,e) is the effect of Zernike disc on the unaberrated pupil and

XAb(p,e) is the effect rendered on the aberrated wavefront.

= 212 - -
Xo(p,e) - 2n%b 752 Jz(wb) -

wb 8

- 2n2e2p2 Jq (WD) _bZ%e?q?(_2 (wb) - J 5 (WD)
wb 8 wbe "2 wb

-

21T2b6 Y 6 Jl(wb) 4J2(Wb) . SJS(Wb)
192 € Wb~ “w2bZ w3b3

-

J. (wb) J . (wb)
(p,0) = iKW 1 -b2q2< 2 J2(wb) - 3wb )

xAberration 02| 2wb 12 {w2b2

: 212 4
i2w<b KWOZE > 12

I o 200 <2J2(wb) Js(wb)>

w2b2 T T wh

I, b » 2 ' J . (wb)
2422y 21 _ b%g 2 73
BT K Mo2”| 3wb To~ \w2bz Y2 (") Wb

+

2.2¢2 .6 2
bencK<e®W B 5

' le(Wb) ) b2q2€2 2 3 (wb) _ JS(Wb)
02 3wb 16 272

+

iKW

Jl(wb) ) bzq? 2 T (b - Js(wb)
04| 3wb 16 \w2b2 "2 . “wb

)
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-

 ion2h2py. o6 Jl(wb) ) b2c242 2J2(wb) ) Js(wb)
04 3wb 12 w2b2 wb

-

- b2n2K2y_ 2 7100 p2q2 (2 J.(wb) - 7500
04 | Swb 24 \w2pz 2 Wb

J | (wb) b2q2e2 <2J2(wb) Js(wb))

2.2v2 2.10 - -
*+ DKW, e 5 oY) w257 T b

J ., (wb) 0. 5 J., (wb)
. 21, 2 3 q b 2 _ ___2
* 22mTKNy g cosd| = b7+ “qg \az T3P -
J, (wb) 2_2+.5 J, (wb)

- iq2nZKcosoW, " iwb b3 + S—Z—Bb— WQ'ZEZJSCWI)) - 2Wb

2 J . (wb) 2.2 J . (wb) 2,2
_ b2 T2 oo 21 _bq 2 .3 b%q”
T 12 \wpz Jo(Wb) Wb ) * €0s28 Sy J5(wWh)

L J (wb) ) b292q3< 25 by - Js(wb)>
€\ Zwb 12 wZb2 “2 wb

2.2,.2
b“e“q
+ c0s28 >ah Js(wb)>
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J., (wb) _— J.. (wb)
. 2 b 2 2
2 e b3 ¢ BT
+ 1iq2w lescose &b b3 + e1 \w77 J (wb) s
J, (wb) 2.21.5 J,, (wb)
2 b 2 2
. o2 6 3 . €
~ iq2mw KW13c056€ G b+ e 52 Js(wb) - 5 )
K2n2w132b2 Jl(wb) b2qg2 2 7. ) J3(wb) . . b2q2J3(wb)
- 2 &b " 20 |wepz T2 (WD) - g cos Z0wH

J (Wb) 2 J (Wb) 1.2 .22
1 b 2 3 b<e
- 8 _ b2qZe S 32 q
€\ awb 20 <w2b2 Jo (o) Wb ) " °°526< Zowb 7 3("P)

bZJl(wb)

3 5 (wb)

L 2

<. 2 _ b q 2 b 9

* iKW, b 12 <w2b2 J,wb) - wb )” cos26 7oy J5(Wb)

b2J . (wb) 4,22 J . (wb) 4o2.2
L 1 _b*q°e 2 J. (wb) - 3 . cosZe'b q-e Js(wb) 1
2wb 12 \w2b2 "2 wb STh
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b2J, (wb) 4 : J., (wb)
_ é 2.2 2 1 _ b q2 2 3 bqu
g Koy, b 16 \wopz 12("0) - % + cos20 S J 5 (wb)

: 2.y [ J,(wb) J., (wb)
q<b 2 3 8
- cos4b 5 wipr rav il <} - Jo(wb) 3b3 J (wb)

b2J . (wb) J . (wb)
1 blq2 2 b4q2e2
_ 6 - q2e? < b q7e”
€ b 16 w2b2 Jy(Wb) - —p | + €0528 =gy J £ (W)
vt 2 [J,(wb) T, (wb)
_ q2ble 2 3 _ 8 ) 4
cos46 > T + s TR <} Jo(wb) + ;;ﬁ;;.Jl(wb)

plus cross terms.

This equation has been programmed and the data run to obtain
X(p,8) for cases that show the effect of the Zernike disc radius on X({p).
As stated before, this iﬁformation was used to calculate ¢ and T and is
tabulated in Table V. .These data were then used to obtain the no-aberra-
tion profiles for the reimageq pupil which appear in Fig. 28. These
vividly demonstrate the tradeoff between disc size and pupil uniformity.
For an f#12 system operating at an effective wavelength of 0.6 um, a 3 to

4 ym Zernike radius appears to be a reasonable compromise.
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0 0.4 _ 1

Normalized pupil coordinate

N Fig. 28 . Reimaged pupil through Zernike disk (no aberration).
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Fig. :29.. Reimaged pupil under the following conditions: A =0.60 um,

F/no.=12.000, b = 3,000, ¢ = 0.4000, Wg2 5,0 1 , 0 = 1.3025
rad., T = 0.2605
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Fig. 30. Reimaged pupil under the following conditions: A =0.60 um,
F/no. = 12.000, b = 3.000, € = 0.4000, Wy, = 0.050, 0 = 1.3025
rad., T=0.2605
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Fig. 31. Reimaged pupil under the foltowing conditions: X = 0.60 um,

F/no. = 12.000, b = 3.000, € = 0.4000, W, = 0.0, Wp =0.100,
o =1.3025rad., T = 0.2605 '
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Fig. 32. Reimaged pupil under the following conditions: A = 0.60 um,

F/no. = 12.000, b = 3.000, € = 0.4000, Wo, = 0.200, 0 = 1.3025

rad., T = 0.2605
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Fig." 33. Reimaged pupil under the following conditions: A = 0.60 um,
F/no.=12.000, b = 3.000, ¢ = 0.4000, wg4 = 0.010, 0 = 1.3025
rad., T = 0.2605
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Fig.~35. Reimaged pupil under the following conditions: A = 0.60 um,
F/no.=12.000, b = 3.000, ¢ = 0.4000, Wg4 = 0.100, 0 = 1.3025
rad., T = 0.2605
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- The effects of aberrations upon the X(p,6) function were next
analyzed. Using X(p,8) = Q(p,ejelw(p’e) we find a very interesting and

important result. Using W 2 (defocus) as an example, the contribution to

0
the Q{(p,6) term, which governs the reimaged pupil shading, is insignifi-
cant for W02 and even less significant for higher order aberrations. The
effect of the aberration is only on the ¥(p,0) term and this effect is
for all practical purposes constant across the pupil. This tells us that
the inteﬁsity changes we observe in the pupil will be solely a-function
of ¢, the pupil aberration, except for a constant average over the refer-
ence wave passing through the Zernike disc, ‘which affects each point in
the pubil by the same constant phase shift. Indeed if we }ook at higher
oraer terms we fina the effects to be even less. We have included

Figs. 29-36 (graphs) of ;eimaged pupil intensity as influenced by varying
amounfs of defocus and spherical aberration from .01X to .2XA. A compari-

son of these graphs with the zero-aberration case (Fig. 28) points out

the sensitivity of the test.

d. Calibration of real discs.

Let us examine the graphs of the reimaged pupil, Figs. 29-36,
goncentrating our attention on the intensity profile outside the pupil.
(r<e;r>1) This area contains, practically speaking, little of the
effects of the pupil aberrations for small aberrations and is in fact the
functional representation of A;%;é%ﬁgl-. In the case of Zernike disc
manufacture we will not have perfect square-well formation of the phase

delay or exact dimensions. By measuring the diffracted intensity within
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"¢ and outside the pupil we will be able to fit a curve to determine
AQ(p,6), for our real Zernike disc. This information will tﬁen be used
in the pupil intensity equation to calculate the zero aberration profile
of the real disc. Changes in intensity due to phase errors can then be

related to this baseline.

e. Tolerancing of discs.

As mentioned before, the ideal transmission and phase delay can
be calculated from the equations developed for the Zernike disc. Depar-
tures.from the design values in the manufacturing process will result in
two main effects. The first.effect is a departure from maximum visibil-
ity, and the second effect will cause a shift in the zero-aberration
operating point away from the zero condition. Figure 37 shows the effect
on the visibility function V as a function of phase'delayiwith three
different transmission values. It can be seen that the visibility is
indeed a slowly varying function and that for gross errors of phase delay
and transmission its change is not significant.

The significant effect of fabrication errors is illustrated by
Fig. 38. Here we can see the shift in the operating point (the point
midway between the maximum and minimum of a fringe) due to departures in
phase and trénsmission from the deéign values. For example, if the phase
delay upon manufacture was found to be 0.16 waves (instead of about 0.21
waves which corresponds to the 0.00 operating point) the operating point
has moved 0.05 waves from the symmetrical position. The range in one

direction has thus been reduced from 0.25) to 0.20x. The prime purpose
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then of tight toieranciﬁg will be to maintain a maximum range of opera-
tion (see Fig. 39). The other factor that influences our.phase and
transmission tolerancing is bandwidth. The shift in the operating point
due to a finite bandwidth is % AA/ZAO at the edge of the bandwidth where
Ao is the nominal design wavelength. In Table VI we have tabulated the
effects of error in the manufacturing process on the range of operation
for the Zernike disc. For the erosion process, with careful control, and
a 20 nm Bandwidth the range of operatién will be * 1/8\ in the worst case.
For testing a well-corrected system the operating range can be reduced
from * 0.25)X to a smaller range and the bandwidth can then be increased.

For a deposition process, assuming'i 1/101 deposition control we

expect * 1/5) in the worst case.

f. Signal-to-noise calculations.

One can show that in making a measurement the statistical signal-

"to-noise ratio due to photon noise will be:

S/N = /V  /AQTNatB
T 5 T2AFF

V, A, Q, T, A, F# are properties of the Zernike disc and the
incident wavefront as defined before.

N is the number of photons per sec per cm? per A° incident on
telescope entrance pupil.

a is the pupil area sampled.
t is the sampling time.

B is the bandwidth.
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Operating point

- e ) e = -
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«—\4 >

Fig. 39. Illustration of optimum operating point.

Table vI. Error budget for Zernike disc manufacture.
Assign £ 1/120 \ transmission = * 2%
Erosion range £ 1/8 A + 1/10 X\ phase delay = +1/5 A erosion depth

* 1/60 A bandwidth = 20 nm

+ 1/120 X\ transmission = 2%

I+

Deposition range £ 1/5 \ + 1/20 A phase plate = * 1/10 A

*+ 1/60 A bandwidth = 20 nm
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For a Zernike disc designed for £ = 0,

A? 1 - T2

W Vqu—Tz)%QNatB

S/N /7 2\F#

If we make two measurements, of different phases, the percent
change in signal Will be equal to VA$ for small phase changes Ad. The
signal-to-noise (S/N) must be greater than 1/VA¢. From this we can
obtain an expression for the number of photons required to detect a phase

change A¢.

81\2F#2
1
A¢HV3QT (1-T2)*

N = (NatB) =

Figure 40 shows the minimum number of photons required to obtain
" A¢ = .01x, A¢p = .02)x for various size Zernike radii.

Assuming a collecting area a = 100 cm?, a bandwidth of 20 nm and
an Ao type star, we have determined the integration times required for
various star magnitudes. Figure 41 shows the star magnitude vs. integral
tion time per pupil point for A¢ = .01 for 3 pm and 4 um radii Zernike
discs, and Fig. 42 shows the same for A¢ = .02A. These calculations have
assumed a perfect detector. For a real detector with a qﬁantum effi-
ciency of about 0.1, the photon requirement would have to be increased by

a factor of 10 and the integration times would also have to be increased
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Fig. 41. Required star magnitude for A/100 detection
A =100 cm?, AX = 200 A
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Fig. 42, Required star magnitude for A/50 detection
' A =100 cm?, AA =200 A
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by a factor of 10. Thus for reasonable collection times in a real system
we are talking about star magnitudes of 0 or less for the Zernike test to

resolve A¢ = .01A over the full * 0.25) range.

g. Fabrication process for Zernike discs.

Below is a step-by-step procedure for manufacturing a Zernike
disc, a procedure that we developed in our clean area solid state cir-
cuitry facility. A good deal of the process is extremely sensitive to
small dust particles, chemical contamination and environmental controls.
These factors all influence the success or failure of the process. In
summary dust must be minimizéd, care must be taken to avoid chemical con-
tamination, and the temperature and humidity must be regulated in order

to achieve repeatable results.

i, Zernike Manufacture (Erosion Method)

1; Clean substrate.

2. Coat with aluminum to specified transmission.
3. Clean substrate.

4. Spin on photoresist.

Shipley: AZ-1350 ‘
Spinner: ~ 5,000 rpm for 20 sec.

5. Bake at 75°C for 10 min.
6. Expose with mask in UV,
7. Develop in AZ-Developer--45 sec.

A. (1:1 dilution),
B. Rinse in deionized water.



10.

11.

Bake 20 min. at 120°C.

Etch.

A. Aluminum Etch.

4. mg HNO,

18 mf deionized H20
80 ml H3PO

etch rate.
4

B. Glass Etch. Rate (23°C): 1.4 p/min.
5:5:1
H202NH4F2:HF

Photoresist removal.

J-100 at ~80°C
Rinse in deionized HZO

Dry - N2

Inspect.

May heat to increase

101
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ii. Zernike Manufacture - Metal Phase Shift Effect.

We have developed the equations which describe the optimum transmission
and phase delays. Ideally we would like the phase delay to be.introduced
by the erosion process and the attenuation introduced by the aluminum
coating. However, because of the complex index of refraction and finite
thickness of the metél we must make corrections to account for the phase
delay introduced by the metal. We have calculated the phase advance 6,
introduced by the metal for various values of thickness d and also the
transmissions for various values of d. This information appears in Fig.
43. By referring to this graph and table V for T2 and o we can calculate
the required depth of erosion in our substrate using the equation:

d

t= (8 + Tt ) + (n - 1)

phase advance produced by Al in waves

where 6 =
d = thickness of the Al film .
A = wave length
o = required retardation in waves
n = index of refraction of substrate.

As an example for a 3 p radius Zernike disc at 600 nm, we require that

T2 = 7%, and 0 = .206 . From Fig. 43, we obtain 6 = .121 x» and

d = 11. nm.  Taking n = 1.516 we obtain:

- 11 2
t = (.121 + Zoo * .206) + (.516)
t = .67 waves (at 600.00 nm)



103

{wu) ssawiorys w4

oy

09

08

oot

0¢clL

ovl

09l

o8t

*aInldoBRjnUBW 9YTUISZ UT posn
SUTTJ unutumie X0F 3IFTYS oseyd pue SSoUNITYI UOTISSTwsSuex] 'S¢y "3I14

(%) uoissiwsues |
0z A Gl oL G ]

L I !

wu 0°009 e |V 104 \
1Ys aseyd "sa uoissiwsups] ———

B wu 0'009 e |V 403 \

SSaUNDIY] W1} "SA UOISSILSURL] — — — _ \

600

oLo

LL0

¢Lo

€L0

(sanem uy 141ys aseyd) ¢



104

2. Polarization Interferometers.

a. General discussion.

Polarization interferometers have generally been used up to
now as devices for creating fringes. We can gain maximum sensitivity
by taking-phasé information and converting it into states of linear
polarization using a sensor which can read out the polarization state
and tﬁus obtain a phase reading. An instrument with a polarization
readout in a Twyman-Green configuration has been built at the Optical
Sciences Center and has demonstrated sensitivities of 1/500\. This
is to be compared with a 1/50) sensitivity of the traditional two-beam
fringe reading Twyman-Green interferometer. The Twyman-Green instruments,
of course, operate with an artificial source which geﬁerates a nearly
perfeét reference wave. Since we are using a real star source we have:
to generate our own reference. Two possibilities are: 1) the use of
gome sort of polarization pupil shearing technique, such as the lateral
sﬁear, which we have chosen for laboratory purposes or, 2) the use of a
method similar to the Zernike phase test, except operating in a polarizing
sense, which can generate its own nearly perfect reference wave. The
first concept we call the shearing polarization interferometer and the

second the Zernike polarization disc interferometer.

b. The Shearing Polarization Test.

There are many types of shear (lateral, radial, inverting, etc.),
which can be used to produce interference effects between two points in
the pupil of an optical system. For laboratory simplicity we have chosen

to illustrate, analyze and construct a polarizing lateral shearing device.
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Shearing

Exit pupil polarization Polarization
device .. I i; readout
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C (sheared pupil)
Fig. 44
AB -
Ap Mg _ (A.B)
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Fig. 45

Polarization shearing concepts.
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The basic idea is as follows: In Fig. 44 we have the exit pupil of

the system which in gneral will be in some partially polarizéd state.
We then reimaged this pupil at C through the polarizing interferometer
as follows. By means of a polarizer we put the wavefront into a linear
polarized state. This linear polarized pupil is then operated on by

a series of optical elements to produce at C two images of the system
exit pupil slightly displaced from one another such that one image is
right;circularly polarized and the other image is left-circularly
polarized. If we now look at a point in the sheared pupil image we
have light right-circularly polarized from point A interfering with light
left-circularly polarized from point B. If point A has phase Ap and
point B has phase AB , the two oppositely-circularly polarized coherent
beams combine to produce a linearly polarized beam such that

w_AA—AB
- AL,

where ¥ is the direction of linearly polarized light. This is illus-
trated in Fig. 45. We now use some sort of device to detect this linear
polarization state and thus can obtain a direct measurement of the

sheared phase (AA-AB) across the pupil.

i.  Ways of Producing the Sheared Polarization States.

There are many possible ways of obtaining the desired orthogonal
circularly polarized sheared pupil condition at point C, and several of

these illustrated below, with some brief comments.
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Figure 46 shows a neat, compact unit where the shear in the
pupil is produced by displacement of the two halves of the mddified
pentaprism along the polarizing beamsplitter plane A-B. Plane
polarized light at 45° is then passed through the prism and sheared
into two orthogonai states of polarization. These two orthogonal
states then emerge at D where they pass through an achromatic quarter
wave plate at 45° which in turn yields two oppositely-circularly
polarized pupils at plane C. We have a compact unit where the shear is
easily varied from zero to any value by movement along A-B. We require
manufacture using very low birefringence glass so as to maintain linear
polarization states. For greater stability one could replace the second
right angle prism with another prism. The above arrangement is achromatic
in collimated light.

Figure 4% shows a compact way of obtaining circularly-polarized
light by uéing two Wollaston prisms. The amount of shear is controlled
by the separation of the two matched prisms with the scaling factor set
by the prism angle 6, the unit being naturally achromatic with the main
advantage in the compactness. Two disadvantages are in not being able to
go to zero shear, and the large separation D required for large shears,
which may result in uncompensated path differences and coherenée length
_problems. This device appears most suitable for a small fixed shear mode
where the two prisms are made into a single unit. In this case we have a

single compact shearing mechanism.
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In Fig. 48 we have a polarizing beamsplitter A-B. The shear is
introduced by tilting a right angle prism about axis 0. The shear is

given by
2. %
_ X l-sin“u
S = 2t'51n u [1 - (-1'1_2_—_5_1_1’12;) ]

where t is the total thickness of the upper prism and u is the tilt

angle. And

S = 2tu [Eilﬂ

for small values of u.

In this case we can vary our shear from zero upwards. However,
at large shears the variation is very nonlinear and wavelength dependent
shear effects can be large. Low birefringence glass is required.

In the simple arrangement shown in Fig. 49. A Wollaston prism is
: plaéed at the system focus. We have a fixed shear determined by the prism
angle 6. Lens B will affect the polarization orthogonality of the shear
and the arrangement is very sensitive to positioning of the prism. The shear

itself is no longer achromatic.

Summary

There are other ways of introducing orthogonally-polarized sheared
pupils either with birefringent materials or by using polarizing beam--
splitters with tiltable glass plates or mirrors. Of the concepts pre-
sented, based on maximum versatility and simplicity, the fifst would be

preferred.
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Fig. 46. Pentaprism polarization shearing device.
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Fig. 49. Single Wollaston prism polarization shearing device.
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Based on simplicity with limited versatility the second would be pre-

ferred. For laboratory purposes and since we could use off-the-shelf

components we have designed our shearing unit about this second concept.

c. Ways of Reading Out Polarization States.

We discuss here two possible ways of reading out polarization

states.

i. Using a single rotatable Wollaston prism.

Assuming we have produced two oppositely-cifcularly polarized
sheared pupil images at C in Fig. 44, we know that these two coherent
beams combine to produce a state of linear polarization where the angle

is

Behind this we position a Wollaston prism and a decollimating lens D, as
~in Fig. 50. If the original zero aberration position of the Wollaston
prism was at 45°; we rotate this prism until the two oppositely—polarizedi
intensities are equal. We can measure these intensities by use of an
image dissector tube with deflection coils, in a synchronous amplifica-
tion scheme (Fig. 50). We would thus rotate the Wollaston toward a null
signal and encode the rotation, where a rotation of 1/60 radian (~1°)

172

We have chosen to simulate this scheme in the laboratory because

corresponds to a phase measurement A_-A_ of ~ A/190.

of its simplicity. However, instead of using an image dissector we

simulate the dissector with two counter-rotating prisms as illustrated in
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Fig. 50. Single channel polarization readout with image dissector.
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Fig. 51. Laboratory simulation of shearing polarization interferometer.
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Fig. 51. We thus sequentially .sample one of two beams at 28 cps and
synchronously amplify the difference signal. The Wollaston prism is

rotated until this signal is minimized and this rotation is recorded.

ii. The two-channel device.

If we use the optical arrangement illustrated in Fig. Sé we get
difference signals in each channel. In channel one, with the quarter-
wave plate fast axis located at +45°, we obtain a sinusoidally modulated
signal where AIl = Il—I2 = K sin(Al—Az) and in channel two with the

quarter-wave plate fast axis oriented at -45° we obtain AI, = K cos(Al-Az).

2
The circuits are balanced for equal gain. Then the signals are divided

so that

AI1
3L, T tenlAyhy)s
2
and then the arctan(AIl/AIZ) is taken. All of this is done electronically
without the need for movement of any components. As with the other
scheme it is insensitive to source fluctuations. This type of readout

has been utilized in a Twyman-Green configuration instrument constructed

at 0SC and phase errors of I/SOOA have been measured.

d. Discussion of the Polarization Intensity Equations Including

Alignment and Fabrication Errors.

Below we drive expressions for the intensities of the sheared
pupil signals as a function of (1) unbalanced signal amplitudes between

two pélarization states, (2) angular positioning of components and
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Fig. 52. Two-channel shearing polarization interferometer.
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(3) departure from perféct quarter-wave plate delay.
Let us assume that the polarizer-shearing combination produces a

shear in the y direction, as illustrated, Fig. 53, where the amplitude of

one polarization is

. S
1A (X,Y"f)

ELe

and the other is

A (x,y+3)

Ey© »

and where S is the total shear.

y _
EelAlxy — (821
( L
31 [ X
= E”eiA(x, y +(5/2))

Fig. 53. Sheared pupil geometry.

These signals then pass through the quarter-wave plate oriented
at some angle 6, with respect to the x axis. (Ideally 6 = *45°,
depending on whether we desire sin or cos modulation, as discussed in the
previous section.) The plate advances the phase by g_+ § for the fast axis

over the slow axis.
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The field passing through the fast axis is:

iGee) iAoy - D) 0,y + 3

Ee = e [E_Le sing + E e 2 cos8].

The field passing through the slow axis direction is:

_ ia(x,y + —g-) . A,y - D)
Lad T8+90° = 5 siné - I"i_e Fos?.
) N

“
-
] N ~I

£

I

~Eg

. e
P
[/}

Fast axis e————=fp

e

~

E”eiA(x, y + {S/2))

We now orient a Wollaston prism at an angle ¢ with respect to the x axis.

Light through this prism then produces one signal polarized in the ¥

direction and another polarized at ¢ + 90°.

Eg +90°

Wollaston orientation

Ep
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The outpilt through the Wollaston is thus

|Eg[2cos2 (8-9) + |Eg, g0|2sin?(0-y)

I, = BB =
+ 2Re E6E6+90 cos(8-y)sin(6-¢)
Tpe00° = EyrooByego” .Ee+9o|2°°52(e""j
4 |Ee|251ﬁ2(e-w)
- 2Re E_E cos(8-9)sin(6-¢).

6 7°6+90

We now substitute for Ee, and Ee+90 and assume § is small so that

. T t
J1GE L s.
This yields
- 20312 2 : 2
IIP = [[E_L sin“® + E cos% + EJ. E”ste]cos (6-v)

+ [E, 2cos?6 +'E,%sin?%0 - E_LE”sinZG]sinz(e—tp)] cosA

- E E,sin(26-2¢)sinA

+ 8. [[EJ_E,,]cosA - (E,2-E,2) 5“2‘2"]sin(2e-2w)
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Iw+90o (E, 2sin%6 + EL?COSZG - ELEHsinZS]cos?(e-w)

. [E”2c0529 + Eizsinze + §L§”sin26]sin2(e-¢) cosh

+ QLE“sin(26—2¢)sinA

s1n26

- 8[E,E,coss - (E, 2_E 2) ]sin (26-2y)

We now substract the two signals:

Iw+90° - Iw = ZQLE”51nA51n(28—2w)

—-ZELE”sinZGCOSAcos[ZG-Zw)

1n26 ]51n(26 2¢)

2
- SS[ELE”cosA - (E ﬁ— )

i. Possible Operating Conditions for Two Channel Device

Neglecting § for the present:

If 8 = 45°, v = 0 & = 0, ¥ = 45°
(
AT = 2}§L E”sinA AT = 2E E,sind
If & = -45°, ¢ = -45° & = -45°, ¢ = -45°
Al = ZELE”cosA 4 AT = ZELE”cosA

We see we have two possible operating conditions for the two-channel

device,
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ii. Departure from perfect quarter wave plate.

In the one-channel device ¥ is rotated until AI = 0, or

2_ )
tand = ormg tan(90 - * 7 TZE E,cosh

the quarter wave plate fast axis at

With>the oriéﬁfa£ion of
e = 45°,Aas far as tolerancing on § goes, we see that for small
phase errors the second error term will be é small fraction of-the
first. We can manufacture a quarter wave plate with § = * 1/100 or

less over 1000 A° bandwidth.

= 1
save<< 100 and tanA = tan2y + §.

The effect on small phase errors A = A/200 will be to introduce
a constant offset error § , the constant offset being less than * A/500.
‘This constant correction would hold beyond A becoming somewhat greater
1/20x. Beyond this, the correction would get smaller for larger aberra-
tions.' If it were desired one could measure § over the passband of the

instrument and determine the average &, §, and compensate for measured

values.

jii. Alignment of quarter wave plate.

Now let us examine small errors in 6, A6. 6 = 45° + A9,

1

‘tand cos (90-2A8)

n

tan(90 - 20+2¢)

1

tand cos (248)

tan (2¢-240).
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The cos(240) effect is negligible for small A8 of a few degrees,

. tanA tan (2¢y-246)

>
1

2y - 2A6.

We see that the effect of the quarter-wave plate misalignment is to
introduce a constant bias of 2A6 in the measurements, if A6 is kept to

+2°,

e. Bandwidth Considerations.

i. General discussion.

If 68 = 45° we arrive at an error signal AI = I(\)sin(A-2y),

A = %g-x X is physical path difference between
the sheared points.
A = Kx : K = ZTT/A

Al I(K)sin(Kx-2y)AK for monochromatic radiation of bandwidth AK.

If we have a bandwidth of * AK/2 and if we take into consideration
the weighted spectral response.of the detector, the shape of the bandpass
filter and the distribution of the radiation we obtain an integrated
effect. If‘the weighted function is symmetric about’a Kave we will show

below that
Al = sin(wa - 29)F(x, B(X),S, R)AK

Kw is the weighted average wave number.

F(x, &K, S, R) is a function depending on the spectral
distribution S, responsivity R, bandpass
filter function B(K), and x.
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It is desirable to have F = 1 and a much slower varying function
of x than the sine function. If we consider the case of narrow band-
widths S,R can be assumed constant. If we take AK to be a square bandpass

we find that:

Al = sin(K__ x - 2¢)sinc xAKAK.
ave

If AX = ¢ 250°A, and for the range of x, AKx I 0, thus:
sinc xAK const. I 1.

Aqd
Al 7 sin (Kavex - 2Y)AK, f

for a narrow band where

max min .
ave 2

ii. General Theory

<)
——
b .

L

F(K)

Ky Ko K2 K
In the above sketch F(K) represents the spectral energy dis-
tribution multiplied by the filter response multiplied by the detector

response. The error signal for a setting ¢ of our readout prism is
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.Kz
Al = J F(K)sin{Kx - 2¢)dK.
l(1
In the monochromatic case we have seen that AI = 0, if 2y - Kx.

We would like to see the effect of this general radiation function F(K)

on our error signal AI.

sin(Kx - 2x) = %T (ele e 1 | ikx e12¢)
K2 K2
AL = %E' e 12V J F(K)e X%k - 1Y I F(K) e K%gk
Ky K
. K2
AI = Imaginary part of e 12V j F(K)eledK
1
i (K _x-29) K2Ko K
Al = Ime” - F(K)e  7dK

Here we have used the fact that F(K) is real, and the shift theo-
rem of Fourier transforms, where Ko is the weighted average
Now F(K) can be written as the sum of an even and odd function.

F(K) = EF(K) + OF(K)

i(K_x-29)
Al = Ime ©° f

(EF (K) e X¥aKk + f oF (k) e X%k

The Fourier transform of an even function is real and even, and the
Fourier transform of an odd function is imaginary and odd. Thus we

obtain:

Al = sin(Kox-zw)F(EFj + i cos(K x-2y) F(OF),

where F denotes Fourier transform.
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We note that for any even distribution function our error signal
is of the same functional form as in the monochromatic case, where Ko is
the weighted average wave number. In the case of a nonsymmetric distri-
bution, the odd part of the distribution will cause in general an inability
to obtain the null condition at Kox - 2 = 0. Then condition for nulling
now becomes:

tan(Kox-Zw) = - i%%%%%—, (relationship A)

In general we can thus make the bandwidth quite large if we take the
spectral distribution function F(K) and correct for the null condition.
In particular we have our highest sensitivity requirement in

the vicinity of x Z 0. In this region p(OF) - 0, and we have 2y = Kox,

the monochromatic condition, as a solution above, and F(EF) only lowers the S/N.

iii. Summary.

In summary our polarization interferometei can be used as a
"white light" interferometer under the following conditions:
(1) 1In the near zero aberration area with no correctioné,on the
monochromatic case provided we use K = Ko.
(2) In the larger aberration area,“with no corrections, if the

asymmetry of the distribution is small. For example, if

iF(OF)] < 1

F(EF) 60 °

we would have 1/200) error. We also assume F(FE) I 1.
(3) In the larger aberration area if the spectral characteristics

are known and we make corrections as provided by relationship
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A, or if we are willing to accept lower accuracy for the
larger aberration measurements, where the above relationship
determines the measuremént degradation if we know our dis-
tribution and sensitivity functions.

f. Signal-to-Noise Ratio

In order to resolve a small change in signal we want the S/N
ratio to be greater than the ratio of signal to change in signal, pro-
duced by a phase difference, I/AI. For a very high degree of confidence

99%, three sigma,. we require that S/N > 3I/AI.

For A small, vy 2 O, 6 = 45°
AT 7 1A
1

.— = .]; and §. > .3_ .
T Al A N A
The signal-to-noise results from taking two measurements on an

approximate equal number of photons.

S = vY#Photons

N — x  DQE
V2
#Photons = NétB-E
N = number incident per unit time per A° per sec. Z 1000
a = collecting area I 100 cm?

B = bandwidth 7 500 A°
E = polarizér effect = .5 (linear polarizer efficiency)
x .5 (Wollaston prism) = .25.

DQE = Detective Quantum Efficiency of Detector = .33
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Thus
VAR . .
#Photons Required = g (=% 99% confidence
DQE?
= 720
X .

This relationship is graphed in Fig. 54.
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Fig. 54. Relationship between the required number
of incident photons versus sensitivity.
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Using:
a = 100 cm?
B = 500 A°
N =

1060 photons/cm?sec A° for AO zero magnitude star.
We obtain a graph of sampling time versus star magnitude for various

sensitivity requirements in Fig. 55.

sl

6L

4|

0 1

.01 A 1 10

Sampling time (sec)

Fig. 55. Sampling times and stellar. magnitudes required for three sensitivities.
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g. The Effect of Shearing on the Low Order Aberrations.

In the shearing interferometer we measure the difference in optical
path between two points in the pupil. Below we derive expressions in
terms of the shear S and the aberration coefficients. From these expres-
sions we wili be able to predict the minimum amounts of low érder aber-

rations we are sensitive to as a function of shear S, and instrument

sensitivity.

S/2 s/2
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. 52 S
x?2 +y? < 12 + 2 - 2 qcosy
siny = %
- A S 2 - .S
Xmax = + 7 (2) |xmaxl —"ll 2

In the nonsheared pupil, if coma is oriented at angle 6,

astigmatism at angle ¢ and tilt at angle o, all measured from the y

axis, the general wavefront expression is:

Wix,y) = Wy (XP+y2) + Wy, (x4 + 2xZy2 + y*)

040

. ) 2 . ’
+ Wy x sina + W,y cosa + Wy (x +¥§(x sind + y cos8)

+ W22 [ (x2+y2) + L(y2-x2)cos2y + xy sin2yp}.

" This is a normalized expression where x2+y2 < 1. We now shear the pupils
by an amount S, where S is a number from O to 2 (where S = 2 is a shear
of a pupil diameter). This is illustrated above. At some point A,

we now have two waves, W(+) and W(-) interfering.

W) = W %3, y)

By substituting in the previous expression for W we obtain:

= W {(x24v2) + & 1l
W) WZO{(X +y¢) + Sx + 3 S}

W02+ 222+ y%) & 2x(x24y2)S & F(3x24y2)s?

3

13 4 L g
.‘!'.—2-XS +16S}

+ Wli{x sing %—S sina + y cosa}
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+ W31{(x2+y2) (x sin6 + y cosp) = %{(3x2+y2)(sin6)
+ 2xy cos6]S
1ias s 2 . 1 a3
+-I[3x sin® + y cos8]S“ §-S sing}
+ W ([3(x24y2) + = (y2-x2) (cos2y) + (xy sin2y)]
1 .
+ Z[(1-cos2y)x + (sin2y)y]S
1 2
+ §{(1-cos2¢)]s 1.
At point A, we measure the difference between W(+) and W(-).

W(+) - W(-) = 2Wy, xS + 4 x(x2+y2)S + W, , xS3

0 040 040

W, .S sina + W31[(3x2+y2)sin6 + 2xy cos6]S

1 o 3 ' .
+ 7 Wyysines3 + W, [(1-cos2y)x + sin2yy]s.

i. Sensitivity Dilution.

We can make use of the expression above to determine our ability
to measure various amounts of the different aberration types as a function
of 1) our ability to measure W(+) - W(-)‘and 2) the amount of shear S.

- This information is summarized in Table 7 and Table 8. We see that in
general the result of shearing is to reduce the sensitivity in measuring
small amounts of aberration. This dilution, of course, is dependent upon
the functional form of the aberration, and the amount of shear. For the
LST a shear of .2 + .4 (the value of S) would be appropriate since

it would give information over most all of the pupil. The important

thing to recognize here is that the very fact of shearing dilutes the
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sensitivity of any readout one chooses and that in order to make up for
this dilution one must look for more sensitive forms of readout, as in

the case of the polarization type readout, which we are investigating.

ii. Small Shear Limit.

As we make S small we can take the division

W) - W) |y,

sina + 2W
S 2

X + 4W40x(x2+y2)

11 0

+

W31[(3x2+y2)§ine + 2xy cosf]

+

W22[(1—c052w)x + sin2wy].-‘

This is merely the expression for 8W/6x, the slope of the wave-
front (x component) at x,y. A corresponding shear in the y direction

would then give the y component slope SW/Sy.



SHEAR .2
ABERRATION

DEFOCUS ' 1/10x
TILT 1/5x
SPHERICAL 1/20%
COMA ' 1/20A
ASTIGMATISM 1/5x

TABLE VII

1/251
1/25)

1/50x

1/50x -

1/12x
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1.6

1/16X
1/40x
1/6)
1/6A

1/8x

Lateral shear, 1/501 detection capability, static, fringe position reading.

SHEAR .2

ERROR

DEFOCUS 1/60A

TILT 1/301
 SPHERICAL 1/120%

COMA | 1/120)

ASTIGMATISM  1/30

TABLE VIII

1/150x
1/150A
1/300A
1/300%

1/75)

1.6

1/90x
1/300x
1/35x
1/35x

1/50x

Shearing polarization interferometer, assuming 1/300X capability with lateral
shear (polarization or other phase reading scheme).
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3. Zernike Polarization Sensor (ZPS)

a. General Discussion

The ZPS represents a conceptual attempt to marry the Zernike test
to a polarization readout. The result can be a sensor with at least the
sensitivity of the Zernike test and a readout which provides for a
direct phase measureﬁent, in terms of linear polarization state.

The experimental arrangement is indicated in Fig. 56. The wavefront
from the system exit pupil first passes through é linear polarizer. At the
system focus we place a birefringent crystal polished with its optic axis
in the plane of the surface and adjusted to a multiple order thickness of a
quarter wave. A small circular square well (.1/3 the Airy disc diameter)
is eroded to a depth corresponding to a half-wave retardation between the
ordinary and extraordinary waves. The area surrounding the square well is
partially aluminized so that, with the Airy pattern centerea across the well,
the energy fransmitted through the well is equal tO'the_energy transmitted
through the surround. As a result of this arfangment, we generate a refer-
encé wave of one circular polarizafion_sense from the inner part of the
central core of the diffraction pattern, and a test wave of the opposite
circular polarization'sense from the outer part of the diffraction pattern.
The lens following re-images the system pupil at plane.C. In this plane,
the two oppositely circular polarized waves interfere. According to the
equations developed for the Zernike test, which are again appliéable here,
the test wave contains the wavefront deforﬁation from each point on the
pupil, and the reference wave is of essentially constant phase across the

pupil, the constant dependent on the amount and type of aberration, and the
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Quarter-waveplate

. s Angular readoyt
Reimaged Pupil Wottaston prism

‘Risley prism

| Exit pupil

SVI’IC -, NU”
PuT amp meter

/

Polarizer C .
Eroded half-waveplate , Chopper

Syne o
motor

Fig. 56. Zernike polarization sensor laboratory simulation,
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size of the eroded well. These two waves combine to produce a. linearly
polarized state (tﬁe polafization direction depending on the phase
difference at the point), at each point in the pupil. We measure this
polarization using a device of the type discussed in Chapter IV and
illustrated again in Fig. 56. We thus have a test with the simplicity

of the Zernike test where we read out phase directly.

b. Design Parameters for ZPS

Thé optimum design-parameters for the ZPS are obtained from the
same equations derived for use with the Zernike disc. The effects of the
diameter of the half-wave plate will be manifested in the phase variations
in the generated reference wave. For relatively small constant effects,
we Qant to keep this‘diameter about 1/3 the Airy core diameter. The
transmission attenuation is introduced only because of its effect on the
visibility function, since we are not concerned with the operating point

using the ZPS. The optimum T2 is obtained from Table V.

¢. Manufacture

The success of the ZPS depends upon being able to manufacture a
small half-wave plate. In order to eliminate tunneling effects we decided
to look at materials with a high birefringent index. Two we have chosen
to work with are calcite and rutile.

We have prepared several samples of both matefials cut with their
optical axis lying in the planes of the polished surfaces. We are now
trying to discover a procedure which will yield a smooth controllable sﬁr—

face erosion for these materials. We have tried many different acids on
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calcite and have discovered one combination which is giving promising results.
We have tried many combinations of acids under different conditions for ru-
tile, but have not had positive results. |

We are now in the process of obtaining etch rate data on the calcite.
After we have determined this we will continue on with the procedure in
much the same way as in Zernike disc manufacture if we can find a substi-
tute for the Shipley photo-resist (Shipley does not hold up under the acid

combination used for calcite erosion).




Chapter V
SUMMARY

1. Wavefront Error Simulator

We have designed a F/12 wavefront error simulator that will enable
us to test several types of figure sensors under varying conditions of
stellar magnitude, wavelength range, and aberration type and magnitude. The
most critical part of this work was the design of an aberration‘generator.
The design had to meet the specifications for an instrument that could
simulate the aberrational effects of misalignment as well as of various
asymmetries and orientations of small figure errors. We thus designed an
instrument that could simulate errors up to several waves and at the same
time have an incremental capability of around 1/100A. This instrument has
been optically and mechanically designed, manufactured, assembled, and align-

ed.

2. The Hartmann Test

We have considered several methods of reading out the position of
the ray being sampled and have decided that the best approach to position
determination is the circular.scan of a given ray around a small collecting
aperture. We have worked oﬁ a program that takes the diffraction image size,
sampling aperture size and the impulse response of the detector, if applif
cable (i.e., star tracker), so that the readout parameters may be optimized.

-A S/N study has been pursued so that sensitivity vs. stellar magnitude can

be predicted. Sensitivity predictions, optimum readout predictions and

136
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other data reduction corrections and methods have to be verified in the
laboratory. We are now prbceeding with the experimental evaluation of the

" Hartmann test.

3. The Shearing Polarization Interferometer

Wé have examined the general capability of the lateral shearing
interferometer andlhave reached the conclusion that a conventional lateral
shearing device will not have adequate sensitivity because of the dilution
of sensitivity inherent in a lateral shear. However, by incorporating a
polarization type readout into the interferometer we can increase the sen-
sitivity of the instrument significantly. Thus, in the laboratory, the
pyimary objective in the construction of a lateral shearing interferometer
is the experimental analysis of the polarization type readout using a star
source. We have thus designed and manufactured a white light lateral
shearing polarization interferometer in order to evaluate the polarization
readout scheme. We have done some S/N studies and subsequent predictions
on sensitivities and required stellar magnitudes. A preliminary error
analysis on the system alignment and component fabrication has also yielded
results. We plan to aiign the interferometer and evaluate it using the

wavefront error simulator.

4. Zernike Test

We have worked on the general theory of the Zernike test and have
" developed expressions that can be used in the design of an optimum Zernike
disc. We have also developed the theory that shows the effect of the finite

size of the Zernike disc on the reimaged pupil due to the miking of aberra-
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tion information in the reference wave. This theory has been programmed

and error analysis, S/N analysis, and some simulated eiperiments have been
run. We have also worked on the technique for manufacturing the Zernike
disc using an erosion process. Further work has to be done in the data
reduction procedure for the Zernike test both for the + 1/4X range and for’
larger aberrations. Work will be done on handling the effects of nonperfect
square well phase shift and other disc irregulérities. Work will also

continue on the fabrication process.

5. Zernike Polarization Test

This test marries the Zernike test to a polarization readout, the
possibilities being an extension of the sensitivity and range of the Zernike
test. Much of the theory derived for the Zernike test ié applicable here.
The task that lies ahead now is an experimental effort on the manufacture
of the device. One method we are investigating now involves erosion in
“calcite. lIf the manufacturing technique can be developed it should be

followed by an extensive experimental evaluation of aberrations.



