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Abstract The main goal of this work is to provide a
comprehensive study of relativistic structures in the con-
text of recently proposed R + αA gravity, where R is
the Ricci scalar, and A is the anti-curvature scalar. For
this purpose, we examine a new classification of embed-
ded class-I solutions of compact stars. To accomplish this
goal, we consider an anisotropic matter distribution for
R + αA gravity model with static spherically symmetric
spacetime distribution. Due to highly non-linear nature of
field equations, we use the Karmarkar condition to link the
grr and gtt components of the metric. Further, we com-
pute the values of constant parameters using the observa-
tional data of different compact stars. It is worthy to men-
tion here that we choose a set of twelve important com-
pact stars from the recent literature namely 4U 1538−52,
SAX J1808.4−3658, Her X−1, LMC X−4, SMC X−4,
4U 1820−30, Cen X−3, 4U 1608−52, PSR J1903+327,
PSR J1614−2230, Vela X−1, EXO 1785−248. To eval-
uate the feasibility of R + αA gravity model, we conduct
several physical checks, such as evolution of energy density
and pressure components, stability and equilibrium condi-
tions, energy bounds, behavior of mass function and adia-
batic index. It is concluded that R + αA gravity supports
the existence of compact objects which follow observable
patterns.

1 Introduction

Investigation of relativistic stellar structures has now become
an interesting research pursuit in astrophysics. The funda-
mental features of compact stars have encouraged several
researchers not only in the prospect of usual general relativity
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(GR) but also in broadly emerging gravitational alternative
theories during the last few decades [1–10].

Compact stars are originated as the result of gravitational
collapse that happens due to the pressure of the relativistic
objects. The gravitational collapse occurs at the center of the
massive star which is highly exothermic and this happens
when the internal pressure of the stars fails to maintain the
pressure against the external force. As the result of grav-
itational collapse, either a compact star will be born, like
neutron stars, white dwarfs, or it will be extended as a black
hole. GR provides most suitable results in the study of stellar
objects and develop basic understanding about gravitational
theories. However, GR alone does not provide satisfactory
outcomes in order to determine the mysterious nature of dark
energy. Due to the limitation of GR, the modified theories
have gained the attention of researchers. As an alternative to
the theory ofGR, modified theories of gravity have played an
important role to somehow explain the accelerating expan-
sion of the universe. Various modified gravitational theories
are presented in literature, some of mostly debated are f (R),
f (R, T ), f (G), f (G, T ), f (R,G) [11–15]. A recently pro-
posed theory namely f (R,A) gravity has also gained some
popularity due to the involvement of bivariate function of
Ricci and anti-curvature scalars [16].

We require a precise solution to the Einstein field equa-
tions (EFE) to examine celestial compact structure models.
Schwarzschild [17] was the first who discovered the EFE
solution for the internal structure of compact stars in 1916.
Tolman [18] and Oppenheimer [19] explored some feasi-
ble models of stellar objects to represent the relationship
between internal pressure and the gravitational force. Bowers
and Liang [20] introduced the idea of non-zero anisotropy in
a stellar arrangement. Ruderman [21] was the first to discover
that the nuclear density becomes anisotropic at the center of
compact objects. Errehymy et al. [22] investigated the solu-
tions of dense stars in the domain of GR. A new class of
solution describing an anisotropic star which is satisfying
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Karmarker s condition was reported by Maurya et al. [23].
The discussion of compact structures in modified gravity also
seems interesting. Nojiri and Odintsov [24] discussed some
viable and stable results of different models in the frame-
work of f (R) gravity. Starobinsky [25] also presented the
outcomes of various models of f (R) gravity. Hu and Saw-
icki [26] suggested several f (R) gravity models. Cognola et
al. [27] examined the physical behavior of the compact stars
in the exponential type models of f (R) gravity. Schlai [28]
identified the embedding problem on geometrically signif-
icant spacetimes. Shamir et al. [29] explored the solutions
of dense stars using Karmarkar condition in the background
of f (R) theory of gravity. Naz et al. [30] investigated the
existence of solutions of anisotropic compact objects through
embedding approach in the context of f (R) gravity by apply-
ing Karmarkar condition.

Motivated from the interesting properties of stellar struc-
tures in modified theories of gravity, we aim to investigate
anisotropic compact structures in the background of Ricci
inverse (RI) gravity. In particular, we provide a detailed
investigation of stellar structure for twelve important com-
pact stars from the recent literature namely 4U 1538−52,
SAX J1808.4−3658, Her X−1, LMC X−4, SMC X−4,
4U 1820−30, Cen X−3, 4U 1608−52, PSR J1903+327,
PSR J1614−2230, Vela X−1, EXO 1785−248. Our work
is managed as follows: Section 2 presents the fundamen-
tal concepts, structure, and the modified field equations of
RI gravity. In Sect. 3, the matching constraints for the cho-
sen linear RI gravity model (R+ αA) are developed using
Schwarzschild’s geometry. Section 4 is devoted to calculate
and analyze physical properties such as energy density, pres-
sure profiles etc. The last section contains final remarks.

2 f (R,A) gravity and modified field equations

The inverse of the Ricci tensor known as the anticurvature
tensor helps to form an alternative theory namely f (R,A)

gravity [16], where R and A are the traces of curvature and
anticurvature respectively. This theory can be explored to
verify the widespread presence of spectral instabilities and
to understand the effects of perturbations such as the propaga-
tion of gravitational waves, perturbation growth, or the New-
tonian bound. Such theory is confirmed as a suitable choice
to be regarded as a cosmological model after deriving the
general field equations of the Lagrangian f (R,A). Accord-
ing to a no-go theorem, every Lagrangian action f (R,A)

containing terms with any positive or negative exponent of
anticurvatureA can be used to justify dark energy [16]. Thus,
it would be exceptionally intriguing to analyze this theory
further. In this work, we focus ourselves to study compact
structures in this theory. The starting point to derive the field
equations is to define a tensor Aηξ as inverse of Rηξ , such

that

AηαRαξ = δ
η
ξ . (1)

In order to develop the modified field equations, we need the
following definition of the f (R,A) gravitational action:

S =
∫

d4x
√−g[ f (R,A) + Lm], (2)

where, the arbitrary function f (R,A) depends on the Ricci
scalar R and the anticurvature scalar A, which are the traces
of the Ricci tensor and the anticurvature tensor respectively.
Here, Lm is matter Lagrangian and g represents the deter-
minant of the metric. We get the following f (R,A) gravity
field equation by varying the action mentioned in Eq. (2) with
respect to the metric tensor

fRRηξ − fAAηξ − 1

2
f gηξ + gμη∇β∇μ( fAAβ

σAξσ )

− 1

2
∇κ∇κ( fAAη

σAξσ ) − 1

2
gηξ∇β∇μ( fAAβ

σ A
μσ )

− ∇η∇ξ fR + gηξ∇κ∇κ fR = T ηξ , (3)

where, f = f (R,A), fR = ∂ f
∂R , fA = ∂ f

∂A , Aηξ is the
anticurvature tensor which is the inverse of the Ricci tensor
Rηξ . The stress–energy momentum tensor Tηξ is chosen as

Tηξ = (ρ + pt )uηuξ − pt gηξ + (pr − pt )χηχξ . (4)

Here, ρ, pr and pt are energy density, radial and trans-
verse pressure components respectively, while uη and χη are
four velocity vectors, which satisfy the relations uηuη =
−χηχη = 1. Furthermore, we consider a static spherically
symmetric line element which is represented as

ds2 = eνdt2 − eλdr2 − r2(dθ2 + sin2θdφ2), (5)

where, ν and λ are the functions of radial coordinate. Our
stress–energy tensor is assumed to be anisotropic, with rela-
tivistic geometrized units 8πG = 1. Moreover, the embed-
ded class-I family is represented by the metric tensor (5), if
it fulfills the Karmarkar condition, i.e.

R1414R2323 = R1212R3434 + R1224R1334, (6)

with R2323 �= 0. The following differential equation for the
given metric (5) is developed by using the well-known Kar-
markar condition as

λ′ν′ − 2ν′′ − (ν′)2 = λ′ν′

1 − eλ
, (7)

where eλ �= 1. Integrating Eq. (7), we obtain

eν =
[
(A + B

∫ √
eλ − 1dr)2

]
. (8)

In this case, A and B are integration constants. Further, due to
the highly non-linear nature of modified field equations, we
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have no other choice but to choose the component grr = eλ(r)

in the following shape [2,31]

eλ = 1 + a2r2(1 + br2)x , (9)

where one can choose any real value of x other than zero. It
is really important to mention here that in order to establish
embedded class-I spacetime, the parameters a and b should
not be zero. In the domain ofGR, Singh and Pant [31] investi-
gated the properties of stellar structures by considering some
positive values of x for embedding class-I solutions of dif-
ferent models of compact stars. Later, Bhar et al. [2] also
used this metric potential by taking the value of x = −4,
and the corresponding results are found stable in the context
of GR. Inspired by the work of Bhar et al. [2], we aim to
expand the study in the framework of RI gravity by choos-
ing x = −4. Interestingly, we tried some other possibilities
for the choice of x (both positive and negative), however, we
could not obtain physically acceptable results in those cases.
Manipulating Eqs. (8) and (9), the metric potential expression
becomes

eν =
[(

A − aB

2b(1 + br2)

)2
]

. (10)

Further, to analyze the properties of compact stars, we
probe the necessary conditions for the metric potentials of
static spherically symmetric spacetime, namely eλ(0) = 1
and ((eλ(r))′)r=0 = 0. The graphical response of grr should
not contain any singularities, and the curvature must be regu-
lar. From Fig. 1, it is evident that all above properties are satis-
fied and also the plot of eλ exhibits monotonically increasing
behavior, reaching its maximum value near the boundary.

3 Viable RI gravity model and matching conditions

In this section, we provide some discussions about linear
R+αA gravity model and the matching conditions. By sub-
stituting this model in Eq. (3), the field equations are simpli-
fied as

Rηξ − 1

2
Rgηξ − αAηξ − 1

2
αAgηξ

+α

2
(2gμη∇β∇μAβ

σAξσ − ∇κ∇κAη
σAξσ

−gηξ∇β∇μAβ
σAμσ ) = T ηξ . (11)

Using Eq. (11) and spacetime (5), modified field equations
turn out to be

ρ = e−ν�1 − 1

2
�2 − αeν�3 − 1

2
α�4

+ α

2

(
eν−λ�′′

5 + eν−λν′′�5 + 2eν−λν′�′
5 + eν−λ(ν′)2�5

− λ′

2
eν−λ�′

5 − ν′λ′

2
eν−λ�5 + 2

r
eν−λ�′

5 + 2ν′

r
eν−λ�5

− �′′
6 − λ′′�6 − 3

2
λ′�′

6 − (λ′)2

2
�6 − 2re−λ�′

7 − 4

r2 �6

)
,

(12)

pr = e−λ�8 + 1

2
�2 − αeλ�9 + 1

2
α�4

+ α

2

(
− (ν′)2

2
eν−λ�5 + ν′λ′

2
�6 + ν′

2
�′

6 + 4e−λ�7

+ 2λ′

r
�6 + 2

r
�′

6 − ν′

2
eν−λ�′

5 + 2re−λ�′
7

)
, (13)

pt = 1

r2 �10 + 1

2
�2 − αr2�11 + 1

2
α�4

+ α

2

(
ν′

2
r2e−λ�′

7 + re−λν′�7 + r2e−λ�′′
7 + 4e−λ�7

+ 6re−λ�′
7 − λ′

2
r2e−λ�′

7 − re−λλ′�7

− ν′

2
eν−λ�′

5 + (ν′)2

2
�6 + �′′

6

+ λ′′�6 + 3

2
λ′�′

6 + (λ′)2

2
�6 + 2

r2 �6

)
, (14)

where, the values of �i ’s (i = 1 . . . 11) are mentioned in
Appendix and the prime represents the derivative with respect
to r .

The star’s geometrical structure, whether viewed from
the outside or the inside, has no impact on the interior
boundary metric. The metric components must be continu-
ous to the boundary regardless of the referential frame in this
emerging situation. While evaluating several matching con-
ditions and exploring compact objects in the context of GR,
the Schwarzschild solution seems to be the right approach.
According to the Jebsen–Birkhoff theorem, given spherically
symmetric spacetime, the solution of the Einstein field equa-
tions (EFE) must be asymptotically flat and static. In mod-
ified gravitational theories, the exterior geometry solution
may vary from the Schwarzschild solution when we consider
modified (T OV) equations [18,19] with zero pressure and
energy density. Furthermore, the Schwarzschild solution can
be achieved in RI gravity by choosing a realistic and viable
R + αA gravity model with non-zero density and pressure
components. The Birkhoff theorem contradicts modified the-
ories as a result [32]. Numerous studies using Schwarzschild
solution in matching constraints have produced impressive
findings [33–36]. The radial pressure pr (r = R) = 0 is used
to calculate the field equations solution under the specified
boundary conditions at r = R. Thus, we compare the internal
geometry solution to the Schwarzschild external geometry
provided by

ds2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2

− r2(dθ2 + sin2θdφ2), (15)

where the entire mass contained within the star is represented
by M . The following expressions are derived at r = R by
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Fig. 1 Graphical Behavior of gtt and grr of S1 (�), S2 (�), S3 (�), S4 (�), S5 (�), S6 (�), S7 (�), S8 (�), S9 (�), S10 (�), S11 (�), S12 (�)

probing at the metric potentials as follows:

g+
t t = g−

t t , g+
rr = g−

rr ,
∂g+

t t

∂r
= ∂g−

t t

∂r
, (16)

where, (+) refers to the external geometry and (−) represents
the internal geometry. The values of the required unknown
quantities can be obtained by comparing the inner and outer
matrices as shown below:

a = (1 + bR2)2

R

√√√√ 2M
R

1 − 2M
R

, b = 4M − R

R2(9R − 20M)
, (17)

A = aB

2b(1 + bR2)
+

√
1 − 2M

R
, B =

(
1

2R

) √
2M

R
.

(18)

We will use these matching conditions to analyze different
compact star models in the background of R + αA gravity.
It is worthwhile to mention here that we provide a detailed
comparison by considering 12 compact star models namely
4U 1538−52, SAX J1808.4−3658, Her X−1, LMC X−4,
SMC X−4, 4U 1820−30, Cen X−3, 4U 1608−52,
PSR J1903+327, PSR J1614−2230, Vela X−1,
EXO 1785−248. The values of the input parameters radius
and mass of considered compact stars are given in Table 1.

By using the values of the input parameters from Table 1
and manipulating Eqs. (17, 18), the values of the output
parameters a, b, A, and B are shown in Table 2.

Further, the requirements for a well-behaved compact
structure are specified as:

• The plots of ρ, pr , and pt must always be positive, finite,
and maximum at the center.

• The gradient of ρ, pr , and pt should be negative.
• All of the energy requirements must be achieved.
• The equation of state (EoS) should satisfy the mandatory

constraints, namely 0 < ωr , ωt < 1.

Table 1 Approximated values of input parameters

Star model M(M�) R (km)

4U 1538−52 (S1) 0.87 ± 0.07 [52] 7.866 ± 0.21

SAX J1808.4−3658 (S2) 0.9 ± 0.3 [53] 7.951 ± 1.0

Her X−1 (S3) 0.85 ± 0.15 [54] 8.1 ± 0.41

LMC X−4 (S4) 1.04 ± 0.09 [52] 8.301 ± 0.2

SMC X−4 (S5) 1.29 ± 0.05 [52] 8.831 ± 0.09

4U 1820−30 (S6) 1.58 ± 0.06 [55] 9.1 ± 0.4

Cen X−3 (S7) 1.49 ± 0.08 [52] 9.178 ± 0.13

4U 1608−52 (S8) 1.74 ± 0.01 [56] 9.3 ± 0.10

PSR J1903+327 (S9) 1.667 ± 0.021 [57] 9.48 ± 0.03

PSR J1614−2230 (S10) 1.97 ± 0.04 [58] 9.69 ± 0.2

Vela X−1 (S11) 1.77 ± 0.08 [52] 9.56 ± 0.08

EXO 1785−248 (S12) 1.30 ± 0.2 [59] 10.10 ± 0.44

• The equilibrium stability condition must be fulfilled by
all of the forces.

• The parameters of speed of sound must be between [0, 1],
i.e. 0 < υ2

r , and υ2
t < 1.

• Adiabatic index must be greater than 4
3 for an anisotropic

fluid sphere.

4 Physical characteristics of the compact star models

In this section, we discuss some important physical prop-
erties of the observed compact stars in the context of con-
sidered R + αA gravity model. For this purpose, we pro-
vide the graphical representations of energy density, pres-
sure components, energy conditions, mass function, adia-
batic index, stability and equilibrium conditions. Moreover,
for our given model, we take the parameter α = 1.3 × 10−11

for various compact stars. The parameter α has a very lim-
ited range which provides us physically accepted results. We
have checked two other values of parameter α = 1.0×10−9,
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Table 2 Approximated values of output parameters with α = 1.3 × 10−11

Star model a (km) b (km) A (km) B (km)

4U 1538−52 (S1) 0.0784715 −0.00097169 −0.744456 0.0364083

SAX J1808.4−3658 (S2) 0.0793101 −0.000920891 −0.851084 0.0364385

Her X−1 (S3) 0.0726951 −0.000977202 −0.538845 0.0344393

LMC X−4 (S4) 0.0838586 −0.000705186 −1.50207 0.0367192

SMC X−4 (S5) 0.0934356 −0.000366545 −4.13713 0.0372694

4U 1820−30 (S6) 0.115014 0.0000941913 24.5842 0.039431

Cen X−3 (S7) 0.103164 −0.000104682 −18.0737 0.0378044

4U 1608−52 (S8) 0.127851 0.000368416 7.40205 0.0400518

PSR J1903+327 (S9) 0.112672 0.000126983 17.4001 0.0380914

PSR J1614−2230 (S10) 0.156003 0.0009043 3.91745 0.0413433

Vela X−1 (S11) 0.122018 0.000306813 8.16831 0.0387589

EXO 1785−248 (S12) 0.0708703 −0.000447232 −1.75321 0.0305887

Fig. 2 Behavior of ρ, pr and pt of S1 (�), S2 (�), S3 (�), S4 (�), S5 (�), S6 (�), S7 (�), S8 (�), S9 (�), S10 (�), S11 (�), S12 (�). The
magnified images in the figure show the behavior of the star Vela X−1 for two different values of parameter α = 1.0 × 10−9, α = 1.9 × 10−8

Fig. 3 Variation of dρ
dr , dpr

dr and dpt
dr of S1 (�), S2 (�), S3 (�), S4 (�), S5 (�), S6 (�), S7 (�), S8 (�), S9 (�), S10 (�), S11 (�), S12 (�)

α = 1.9 × 10−8 and found that there is a very slight differ-
ence in the behavior of the graphs towards the boundary. That
difference is shown for one star Vela X−1 as a magnified
image in Fig. 2.

4.1 Energy density and pressure profiles

We display the graphical behavior of ρ, pr and pt for
R + αA model in this subsection. The graphical action of
these aspects is presented in Fig. 2. In addition, we also show
the graphical response of gradients of ρ, pr and pt in the
Fig. 3. It is clearly seen from the Fig. 2 that plots of energy
density, radial and transverse pressures are positive as well

as finite. One can easily notice that the demonstration of ρ,
pr and pt components reach the maximum values at the cen-
ter of compact star and decline towards the stellar surface
boundary.

In Fig. 3, the gradients of ρ, pr and pt are plotted which
are finite but negative. These elements indicate the high com-
pactness character of the compact stars.

4.2 Anisotropy

In this portion, we discuss the graphical response of anisotropy
parameter [37] which is represented by � and defined as the
difference between the transverse and radial pressures i.e.
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� = pt − pr . The nature of � is attractive if pt < pr and
repulsive if pt > pr . Therefore, the anisotropy must indicate
repulsive nature [38] for the compact stars to exist. From
Fig. 4, it is obvious that anisotropy remains positive in our
case i.e. � > 0, which implies that anisotropic force is drawn
outwards.

4.3 Energy conditions

The significant role of energy conditions in describing the
existence of anisotropic compact stars is widely known in lit-
erature [39]. These energy limitations are classified namely
null energy, strong energy, weak energy and dominant energy
bounds represented by NEC, SEC, WEC and DEC, sequen-
tially and expressed as

NEC : ρ + pr ≥ 0, ρ + pt ≥ 0,

Fig. 4 Evolution of � of S1 (�), S2 (�), S3 (�), S4 (�), S5 (�), S6
(�), S7 (�), S8 (�), S9 (�), S10 (�), S11 (�), S12 (�)

WEC : ρ ≥ 0, ρ + pr ≥ 0, ρ + pt ≥ 0,

SEC : ρ + pr + 2pt ≥ 0,

DEC : ρ ≥ 0, ρ − |pr | ≥ 0, ρ − |pt | ≥ 0. (19)

From Fig. 5, it is clearly observed that all energy conditions
are satisfied for considered R + αA gravity model.

4.4 Equilibrium conditions

Now, we investigate the equilibrium condition of our model
under the existence of hydrostatic force, gravitational force
and anisotropic force. The equilibrium condition among all
these forces can be written as

MG(r)(ρ + pr )

r
e

λ−υ
2 + dpr

dr
− 2

r
(pt − pr ) = 0. (20)

Fig. 6 Behavior of Fh , Fg and Fa of S1 (�), S2 (�), S3 (�), S4 (�),
S5 (�), S6 (�), S7 (�), S8 (�), S9 (�), S10 (�), S11 (�), S12 (�)

Fig. 5 Profiles of the energy conditions of S1 (�), S2 (�), S3 (�), S4 (�), S5 (�), S6 (�), S7 (�), S8 (�), S9 (�), S10 (�), S11 (�), S12 (�)
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Fig. 7 Profiles of ωr and ωt of S1 (�), S2 (�), S3 (�), S4 (�), S5 (�), S6 (�), S7 (�), S8 (�), S9 (�), S10 (�), S11 (�), S12 (�)

Fig. 8 Behavior of speeds of sound parameters, and Abreu condition of S1 (�), S2 (�), S3 (�), S4 (�), S5 (�), S6 (�), S7 (�), S8 (�), S9 (�),
S10 (�), S11 (�), S12 (�)

The effective gravitational mass MG(r) is expressed as

MG(r) = 1

2
υ ′e

υ−λ
2 . (21)

Inserting value of MG(r) in Eq. (21), we get

υ ′

2
(ρ + pr ) + dpr

dr
− 2

r
(pt − pr ) = 0, (22)

where, Fg = −υ ′
2 (ρ + pr ), Fh = − dpr

dr and Fa = 2
r � with

Fg , Fh and Fa identified as gravitational force, hydrostatic
force and anisotropic force. The sum of these three forces
should be equal to zero for the system to be balanced. There-
fore, Eq. (23) gives

Fg + Fh + Fa = 0. (23)

It can be easily noticed from Fig. 6, that all these forces
express the required equilibrium condition.
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Fig. 9 Graphs of mass function (left panel), compactness factor (middle panel), and redshift(right panel) of S1 (�), S2 (�), S3 (�), S4 (�), S5
(�), S6 (�), S7 (�), S8 (�), S9 (�), S10 (�), S11 (�), S12 (�)

Fig. 10 Variation of γr , and γt of S1 (�), S2 (�), S3 (�), S4 (�), S5 (�), S6 (�), S7 (�), S8 (�), S9 (�), S10 (�), S11 (�), S12 (�)

4.5 Equation of state

Further, we determine EoS parameters for radial and tangen-
tial pressures, presented by

ωr = pr
ρ

, ωt = pt
ρ

. (24)

The graphical illustration of both parameters in Fig. 7, clearly
shows that 0 < ωr , ωt < 1. Thus, it is concluded that the
EoS satisfy the necessary conditions for compact stars under
discussion.

4.6 Causality condition

The causality condition is subjected to the sound speed of
both pressure components, i.e. radial and transverse pressures
which are expressed as

υ2
r = dpr

dρ
, υ2

t = dpt
dρ

. (25)

Here, υ2
r and υ2

t stand for radial and tangential sound speed.
Using the concept of Herrera [40] i.e., (0 ≤ υ2

r , υ2
t ≤ 1),

both of the sound speeds of pressure components must vary
from 0 to 1 to stabilize our system. Further, we examine the

graphical response of our selected model for the Andreasson
condition [41], |υ2

r −υ2
t | ≤ 1. The graphical representations

in Fig. 8, indicate the stability and balanced nature ofR+αA
model satisfying the causality condition.

4.7 Mass function, compactness factor and redshift analysis

The mass function [2] attained by making use of the metric
potential g−

rr = g+
rr is given as

M(r) = a2r3

2[(1 + br2)4 + a2r2] . (26)

Moreover, we compute the compactness parameterU(r) [42]
and the redshift function Z(r) [37], derived as the following
expressions

U(r) = 2M(r)

r
= a2r2

[(1 + br2)4 + a2r2] , (27)

Z(r) = e− ν
2 − 1. (28)

Figure 9 shows the graphical behavior of M(r), U(r) and
Z(r). The nature of mass function meets the Buchdahl [43]
and Bondi [44] constraint i.e., 2M

R < 8
9 . In addition, it can

be noticed that as we advance towards the boundary, mass
function and compactness parameter increase monotonically
while the plot of redshift indicates monotonically decreasing
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behavior. Therefore, we sum up that these graphs illustrate
the satisfactory behavior for our model.

4.8 Adiabatic index

The stiffness of EoS for a given energy density is described
by adiabatic index. It verifies the stability of stellar objects,
both relativistically and non relativistically. Chandrasekhar
[45] presented the theory of dynamical stability for the
infinitesimal, radial adiabatic oscillations of stellar spheres.
His idea has been tested by many authors for isotropic and
anisotropic stellar structures [46–51]. The value of adiabatic
index should be greater than 4

3 , for compact star models to
be stable. Adiabatic index of pressure components, pr and
pt have the following expressions respectively

γr = ρ + pr
pr

(
dpr
dρ

)
= ρ + pr

pr
v2
r ,

γt = ρ + pt
pt

(
dpt
dρ

)
= ρ + pt

pt
v2
t . (29)

It is concluded from Fig. 10 that the considered R + αA
model is potentially balanced under the above stability con-
dition.

5 Summary and concluding remarks

We assume a realistic R + αA gravity model by using the
Karmarkar condition to investigate a novel family of embed-
ded class-I solutions in the anisotropic framework. Since
the Karmarkar condition provides a link between grr and
gtt , it simplifies the solution generating process of EFE
to a single metric potential. Assuming the metric poten-
tial eλ = 1 + a2r2

(1+br2)4 for this purpose, we use the Kar-
markar condition to determine the second metric potential,

eν =
[(

A − aB
2b(1+br2)

)2
]

, where a, b, A, and B are arbi-

trary constants. We also determine the unknown constants
by applying matching constraints between the internal and
Schwarzschild external geometries. We examine the physi-
cal behavior of twelve different compact stars to confirm that
the discussed solutions are physically feasible. The primary
objective of our research is to study stellar structures using a
viable R+αA gravity model in the context of an anisotropic
matter source. The notable results are listed below.

• Metric potentials are frequently used to characterize the
properties of spacetime. According to Fig. 1, both the
metric potentials grr = eλ and gtt = eν exhibit graphi-
cal behavior that is finite, positive, singularity-free, and

satisfies the criteria, i.e., eλ(r=0) = 1 and eν(r=0) =[
A − aB

2b

]2
. Since these graphs expand monotonically

and reach their maximum values at the boundary, the pro-
gression of both potentials exhibits excellent outcomes,
supporting the R + αA gravity model.

• The trend of density and pressure components forR+αA
gravity model is shown in Fig. 2. For this purpose, we
consider the model parameter α = 1.3 × 10−11. It is
important to mention here that the parameter α has a
very limited range which provides us physically accepted
results. We have checked two other values of parameter
α = 1.0 × 10−9, α = 1.9 × 10−8 and found that there
is a very slight difference in the behavior of the graphs
towards the boundary. That difference is shown for one
star only Vela X−1 as a magnified image in Fig. 2. The
variations of ρ, pr , and pt with respect to r are finite and
regular at the center. It is also evident that graphs of ρ, pr ,
and pt reach their highest values at the center and show
a diminishing response toward the border, supporting the
stability of our model. The gradient of ρ, pr , and pt has
been depicted in Fig. 3. These graphs exhibit negative
behavior, demonstrating the consistency of our suggested
model.

• It is clear from Fig. 4 that anisotropy is positive through-
out the stellar objects. This behavior demonstrates that
anisotropy has a repulsive nature, confirming its exis-
tence for compact objects.

• The energy bounds for the suggested R+ αA model are
shown in Fig. 5. We observed that our given model fulfills
all energy bounds.

• The equilibrium conditions of Fg , Fh , and Fa of our
physically acceptable model show balancing behavior in
Fig. 6.

• The graphical response of EoS must fulfill the require-
ments 0 < ωr , ωt < 1 for the consistency of the stellar
objects. The corresponding graphical representation in
Fig. 7 depicts that both EoS ratios have a stable charac-
ter.

• The radial component sound velocity υ2
r plot and the

transverse component sound velocity υ2
t plot should fall

within the range [0, 1] for compact stars. According to
Fig. 8, the stability constraints for our model are stable.

• From Fig. 9, it is easy to notice that the graphs of the
mass function and the compactness parameter demon-
strate monotonically increasing responses. On the other
hand, the graphical illustration of redshift analysis reveals
monotonically decreasing behavior. The behavior shows
that our given model achieves the stability criteria.

• In Fig. 10, the adiabatic index of γr and γt for our given
model is more than 4

3 , confirming the stability of our
system.
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As a final observation, we have used the Karmarkar condi-
tion to provide a stellar system that is both well-stable and
singularity-free. We conclude thatR+αAgravity model sup-
ports the existence of compact objects which follow observ-
able patterns. Furthermore, it is worth mentioning that our
suggested results are almost similar to the outcomes inves-
tigated by Naz et al. [30] in the context of f (R) theory of
gravity. It may be noted that due to the involvement of inverse
curvature terms, we get more dense stars in our case.
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Appendix

Following are the values of �i ’s,

�1 = −a(1 + br2)(2a2r2 − (−3 + br2)(1 + br2)3)B(−2b(1 + br2)A + aB)

2b(a2r2 + (1 + br2)4)2

�2 = (2a(2a3br2(1 + br2)A − 2ab(1 + br2)4(−3 + 5br2)A − a4r2B + a2(−3 + br2)(1 + br2)3B + 2b(−3 + br2)(1 + br2)6B))

((a2r2 + (1 + br2)4)2(−2b(1 + br2)A + aB))

�3 = − 2b(a2r2 + (1 + br2)4)2

a(1 + br2)(2a2r2 − (−3 + br2)(1 + br2)3)B(−2b(1 + br2)A + aB)

�4 = (a2r2 + (1 + br2)4)2(2b(1 + br2)A − aB)

2ab(1 + br2)3(2a2r2 − (−3 + br2)(1 + br2)3)B

+ (a2r2 + (1 + br2)4)2(−2b(1 + br2)A + aB)

2a(1 + br2)3(−1 + 3br2)(−2ab(1 + br2)A + a2B + b(1 + br2)3B)

+ 2(a2r2 + (1 + br2)4)2(2b(1 + br2)A − aB)

a(−2a3br2(1 + br2)A + 4ab(−1 + br2)(1 + br2)4A + a4r2B + 2a2(1 + br2)3B + 2b(1 + br2)7B)

�5 = − (a2r2 + (1 + br2)4)4(2b(1 + br2)A − aB)

a2(1 + br2)4(2a2r2 − (−3 + br2)(1 + br2)3)2B2(−2b(1 + br2)A + aB)

�′
5 = −8r(a2r2 + (1 + br2)4)3(a4r2(−1 + br2) + b(−5 + br2)(1 + br2)7 − a2(1 + br2)3(2 + br2(−1 + 7br2)))

a2(1 + br2)5(2a2r2 − (−3 + br2)(1 + br2)3)3B2

�′′
5 = (8(a2r2 + (1 + br2)4)2(2a8r6(3 + br2(−12 + 5br2))

+ b(1 + br2)14(15 + br2(181 + br2(−67 + 7br2))) − a6r4(1 + br2)3(−25 + br2(93 + br2(−151 + 35br2)))

− 2a2(1 + br2)10(−3 + br2(−37 + br2(−71 + br2(−211 + 34br2)))) + a4r2(1 + br2)6(31

+ 3br2(−23 + br2(125 + br2(−13 + 122br2))))))/(a2(1 + br2)6(−2a2r2 + (−3 + br2)(1 + br2)3)4B2)

�6 = (a2r2 + (1 + br2)4)3(2b(1 + br2)A − aB)(−2b(1 + br2)A + aB)

4a2(1 + br2)2(−1 + 3br2)2(−2ab(1 + br2)A + a2B + b(1 + br2)3B)2

�′
6 = (r(a2r2 + (1 + br2)4)2(−48b4(−1 + br2)(1 + br2)9A2B − 6a5b(3 + br2 + b2r4 + 3b3r6)AB2 + a6(3

+ br2(−2 + 3br2))B3 + a4b(1 + br2)2B(12b(3 + br2(−2 + 3br2))A2 − (−1 + br2)

(1 + br2)(19 + 3br2)B2) + 4ab3(1 + br2)7A(16b(−2 + 3br2)A2

+ (1 + br2)(−11 + 9br2)B2) + 4b2(a + abr2)3A(−2b(3 + br2(−2 + 3br2))A2 + (1 + br2)

(−27 + br2(19 + 18br2))B2) + 2a2b2(1 + br2)5B(−6b(−17 + br2(10

+ 19br2))A2 − (−5 + 3br2)(B + br2B)2)))/(2a2(1 + br2)3(−1 + 3br2)3(−2ab(1 + br2)A + a2B + b(1 + br2)3B)3)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2023) 83 :49 Page 11 of 13 49

�′′
6 = −(((a2r2 + (1 + br2)4)(48b5(1 + br2)16(1

+ br2(23 + br2(−37 + 21br2)))A2B2 − 8a9br2(1

+ br2)(15 + br2(−8 + br2(94 + 3br2(−16

+ 9br2))))AB3 + a10r2(15

+ br2(−8 + br2(94 + 3br2(−16 + 9br2))))B4

+ 4ab4(1 + br2)14AB(−8b(7 + 25br2

(7 + 3br2(−5 + 3br2)))A2

− (1 + br2)(11 + 3br2(79 − 93br2 + 45b2r4))B2)

+ 4a3b3(1 + br2)10AB(−4b(35 + br2(1100

+ 3br2(−618 + br2(−28 + 561br2))))A2 − (1 + br2)

(43 + br2(1042 + br2(−700 − 546br2 + 513b2r4)))B2)

+ 4a7b(1 + br2)3AB(−8b2r2(15 + br2

(−8 + br2(94 + 3br2(−16 + 9br2))))A2 − (1 + br2)

(6 + br2(355 + 3br2(4 + br2(98 + 39br2(−2

+ 3br2)))))B2) + 4a5b2(1 + br2)6AB(−4b(6+
br2(325 + br2(106 + 3br2(−56 + br2(−8 + 105br2)))))

A2 − (1 + br2)(41 + br2(1376 + br2(−871 + 9br2(−31

+ 15br2(6 + 5br2)))))B2) + a8(B + br2B)2(24b2r2

(15 + br2(−8 + br2(94 + 3br2(−16 + 9br2))))A2 + (1

+ br2)(3 + br2(185 + br2(−24 + br2(280 + 3br2(−49

+ 45br2)))))B2) + 2a2b3(1 + br2)12

× (64b2(2 + br2(59 + 3br2(−56 + 45br2)))A4

+ 2b(85 + br2(2152 + 3br2(−650 − 480br2 + 603b2r4)))

× A2B2 + (1 + br2)2(5 + br2(101 + 3br2(−23 + 9br2)))B4)

+ a4b2(1 + br2)8(16b2(1 + br2)(3

+ br2(149 + 3br2(−77 + 45br2)))A4

+ 4b(114 + br2(3773 + br2(−2344

+ 3br2(−1310 + 9br2(154 + 127br2)))))A2B2

+ (1 + br2)2(29 + br2(660 + br2(−242 + 3br2(−100

+ 63br2))))B4) + a6b(1 + br2)4(16b3r2(15

+ br2(−8 + br2(94 + 3br2(−16 + 9br2))))A4

+ 8b(1 + br2)(9 + br2(510 + br2

(95 + 3br2(25 + br2(−68 + 177br2)))))

× A2B2 + (1 + br2)2(22 + br2(745 + 3br2(−174

+ br2(212 − 60br2 + 81b2r4))))B4)))/(2a2(1 − 3br2)4

× (1 + br2)4(−2ab(1 + br2)A + a2B + b(1 + br2)3B)4))

�7 = (a2r2 + (1 + br2)4)4(2b(1 + br2)A − aB)(−2b(1 + br2)A + aB)

a2r2(−2a3br2(1 + br2)A + 4ab(−1 + br2)(1 + br2)4A + a4r2B + 2a2(1 + br2)3B + 2b(1 + br2)7B)2

�′
7 = (2(a2r2 + (1 + br2)4)3(−8b3(1 + br2)12(−1

+ 3br2)A2B + 6a7br4(1 + br2)AB2 − a8r4B3

+ 2a2b(1 + br2)8B(12b(1 + br2(−12 + 7br2))A2

− (−1 + br2)(B + br2B)2) + 8ab2(1 + br2)9A(−2b(1

+ br2(−12 + 7br2))A2 + (−1 + 2br2)(B

+ br2B)2) + 2(a + abr2)4B(−2b2r2(9 + br2(8

+ 63br2))A2 + (−1 + br2)(−1 + 11br2)(B + br2B)2)

+ 4a3b(1 + br2)5A(2b2r2(3 + br2(2 + 23br2))A2

− (3 + br2(−36 + 25br2))(B + br2B)2)

− a6(r + br3)2B(3B2 + br2(12bA2 + (4

+ 13br2)B2)) + 2a5br2(1 + br2)3A(9B2 + br2(4bA2

+ (10 + 53br2)B2))))/(a2r3(−2a3br2(1 + br2)A

+ 4ab(−1 + br2)(1 + br2)4A + a4r2B

+ 2a2(1 + br2)3B + 2b(1 + br2)7B)3)

�′′
7 = (2(a2r2 + (1 + br2)4)2(−48b4(1 + br2)22(1

+ br2(−2 + 5br2))A2B2 + 8a13br8(1 + br2)AB3

− a14r8B4 + 2a12r6(1 + br2)B2(−12b2r2(1 + br2)A2

− (3 + br2(7 + 5br2(7 + 11br2)))B2)

+ 8a9b(r + br3)4AB(4b2r2(6 + br2(11 + 3br2(38

+ 67br2)))A2 + (1 + br2)(17 + br2(16 + br2(564

+ br2(270 + 257br2))))B2) + 4a8br4(1

+ br2)5(−8b3r2(3 + br2(5 + br2(61 + 107br2)))A4

− 2b(1 + br2)(51 + br2(36 + br2(1942 + 3br2(348

+ 533br2))))A2B2 + (1 + br2)3(−37 + br2(−48

+ br2(−85 + 358br2)))B4) + a10r4(1

+ br2)3(−16b4r4(1 + br2)A4 − 16b2r2(9 + br2(18

+ 7br2(22 + 39br2)))A2B2 + (1 + br2)(−17

+ br2(−20 + br2(−462 + br2(−92 + 31br2))))B4)

+ 16ab3(1 + br2)19AB(4b(3 + br2(−21 + br2(43

− 29br2)))A2 + 3(1 + br2(−1 + 2br2))(B + br2B)2)

+ 8b2r4(a + abr2)7AB(4b(17 + br2(8 + br2(712

+ br2(356 + 755br2))))A2 − (−1 + br2)(145

+ br2(448 + 1367br2))(B + br2B)2) + 16a3b2(1

+ br2)15AB(12b(2 + br2(−23 + br2(186 + br2(−195

+ 58br2))))A2 + (9 + br2(−51 + br2(−3

+ br2)))(B + br2B)2) + 16a5b(1

+ br2)11AB(2b3r4(139 + br2(455 + br2(1381

− 983br2)))A2 + (6 + br2(−63 + br2(511

+ br2(−853 + 231br2))))(B + br2B)2)
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− 4a2b2(1 + br2)16(16b2(3 + br2(−36

+ br2(290 + br2(−300 + 91br2))))A4

− 24b(1 + br2)2(−3 + br2(19 + br2(−21

+ 13br2)))A2B2 + (3 + b2r4)(B + br2B)4)

+ 8a4b(1 + br2)12(16b4r4(−17 + br2(−62

+ br2(−173 + 112br2)))A4 − 2b(1 + br2)2(18

+ br2(−198 + br2(1605 + br2(−1988 + 543br2))))A2B2

− (3 + br2(−15 + br2(−23 + 19br2)))(B + br2B)4)

+ 4a6(1 + br2)8(−4b4r4(17 + br2(4 + br2(758

+ 324br2 + 897b2r4)))A4 + 4b3r4(1 + br2)2(−213

+ br2(−586 + 3br2(−623 + 584br2)))A2B2 − (3

+ br2(−30 + br2(243 + 4br2(−147 + 50br2))))(B

+ br2B)4) + 8a11br6(1 + br2)2AB(6B2

+ br2(4b(1 + br2)A2 + (13 + br2(88

+ 153br2))B2))))/(a2r4(−2a3br2(1 + br2)A

+ 4ab(−1 + br2)(1 + br2)4A + a4r2B + 2a2(1 + br2)3B

+ 2b(1 + br2)7B)4)

�8 = 2a(−1 + 3br2)(−2ab(1 + br2)A + a2B + b(1 + br2)3B)

(1 + br2)(a2r2 + (1 + br2)4)(2b(1 + br2)A − aB)

�9 = (1 + br2)(a2r2 + (1 + br2)4)(2b(1 + br2)A − aB)

2a(−1 + 3br2)(−2ab(1 + br2)A + a2B + b(1 + br2)3B)

�10 = ar2(−2a3br2(1 + br2)A + 4ab(−1 + br2)(1 + br2)4A + a4r2B + 2a2(1 + br2)3B + 2b(1 + br2)7B)

(a2r2 + (1 + br2)4)2(−2b(1 + br2)A + aB)

�11 = (a2r2 + (1 + br2)4)2(−2b(1 + br2)A + aB)

ar2(−2a3br2(1 + br2)A + 4ab(−1 + br2)(1 + br2)4A + a4r2B + 2a2(1 + br2)3B + 2b(1 + br2)7B)
.
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