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 Abstract –This paper presents an acquisition method that 
comprehensively looks for the mimic configurations of the 
human hand. The data obtained through this process is further 
analyzed, transformed, and then used to synthesize a reduced 
configuration space of a robot anthropomorphic hand. The 
method rely on a dimensionality reduction technique that 
provides a new basis of the full configuration space, from which 
one can select a subset of the vectors forming that basis, and 
finally obtaining a simpler configuration subspace. These vectors 
are called Principal Motion Directions, and represent the 
coordinated motions captured by a sensorized glove on a human 
hand and transferred to the robot hand. The characteristics and 
limitations of the subspace are discussed, as well as its application 
in several scenarios within robotics such as the motion planning 
of robot hands, where the subspace has been successfully 
implemented and executed. 
 

 Index Terms – hands; motion capture; configuration space; 

principle component analysis (PCA) 

 

I.  INTRODUCTION 

 The desire to accomplish different tasks appearing in 
everyday activities or industrial processes with a single tool 
has led to the development of robot hands, pursuing the 
dexterity and flexibility of the human hand. An 
anthropomorphic robot hand is a complex mechanism with a 
large number of degrees of freedom (DOF). Several multi-
fingered robot hands have been developed so far, such as the 
Utah/MIT Hand [1], the DLR Hand [2] and the MA-I Hand 
[3] with four fingers, and the Shadow Hand [4], the GIFU 
Hand [5] and the Bolonia Hand 3 [6] with five fingers. Despite 
the advanced features of these robot hands, the automatic 
determination of their movements is still difficult, mainly due 
to the large amount of involved degrees of freedom, which 
makes the search space (the hand configurations space) to be 
of a high dimension and therefore checking for collisions and 
searching for a valid joint path has an extremely high 
computational cost. Hence, new approaches are necessary in 
this line, in order to broaden their use by introducing more 
efficient solutions to this matter. 
 An interesting contribution is due to Santello et al. [7], 
who  found  correspondence  between  different  joints  in  the  
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human hand when an individual was asked to grasp an object, 
which  suggest  that a  reduced  configuration  space  could  be 
used for practical applications. Based on this result, Ciocarlie 
and Allen [8] proposed heuristic low-dimensional posture 
subspaces for different hands using the concept of  
Eigengrasps and a simulated annealing based method to 
generate grasp configurations. Similarly, Tsoli and Jenkins [9] 
presented a robot hand telemanipulation scheme, where the 
control was performed using human hand motion capture data 
embedded in a reduced configuration space. Another proposal 
is that of Rosell et al. [10] who, based on the coordinated 
movements of the human hand while moving freely, 
introduced the concept of Principal Motion Directions to build 
a configuration subspace where a particular motion planning 
strategy was developed. These works, among others, endorse 
the necessity of revisiting how humans perform such 
complicated tasks, as clearing the right key from a key ring 
full of keys with a natural finger manipulation, and how these 
skills could be transferred to artificial hands, to complete the 
mimicking of one of the most difficult elements within 
humanoid robotics, the robot hand. 
 In relation to this perspective, this work continues 
studying the coordinated motion of the human hand and its 
application to a robotic hand. This paper focuses on providing 
a more reliable data acquisition of the human hand movements 
and performing a Principal Component Analysis (PCA) to 
build configuration subspace of the mechanical hand using 
these data, detailed in Section II, choosing and analysing the 
subspace, exposed in Section III, and applying the analysis for 
an anthropomorphic robot hand, described in Section IV. 

II.  LEARNING PRINCIPAL MOTION DIRECTIONS  

  Several researches have proved that there are systematic 
coordinated motions in the human hand [7] [8] [9] [10], which 
mean that a dimensionality reduction could be considered 
when trying to mimic the human hand poses with an 
anthropomorphic mechanical hand. In [7], the data to analyse 
are a large number of configurations of the human hand while 
grasping familiar objects. In [10], the data are obtained by 
moving all fingers arbitrarily trying to cover all the 
configuration space of the human hand. 
 The aim of this work is the determination of a subspace of 
the mechanical hand configuration space that allow motion 
planning for different tasks, thus, this subspace must consider 
a compromise between the dimension (the smaller the better) 
and the amount of actual hand configurations included in it 
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(the larger the better). With this aim, the way in which the 
human postures are sampled, how they are mapped to the 
mechanical hand, and how they are analyzed and processed 
are quite relevant steps. This section deals with the first two 
steps. 
  
A. Experimental Set-up 
 A commercial sensorized glove CyberGlove® from 
Immersion Corporation with 22 sensors is used to obtain the 
configuration data from the human hand, as shown in Fig. 1. It 
has three flexion sensors per finger, four abduction sensors, a 
palm-arc sensor, and sensors to measure the flexion and the 
abduction of the wrist. 

The Schunk Antropomorphic Hand (SAH) [11], with four 
fingers and 13 joints shown in Fig. 2 is used as the main 
workbench in this research. A standard PC is used to 
interconnect the CyberGlove® and the SAH. 

 
 B. Design of the Experiments 
  In this work, a more reliable way of obtaining 
configuration data is advanced. Based on the observation of 
the human hand motion and the results frorn [7] and [10], the 
configurations of human hand are divided into 17 groups, as 
shown in Table I. In each group, only a subset of hand joints is 
used to change the hand configuration without collision, while 
the rest of the joints are steady. For example, for the group 1, 
the user only moves the joints “thumb abduction,” “thumb 
inner” and “thumb outer” when obtaining the configuration 
data of the human hand, i.e. only the thumb is moved.  
 

 
Fig. 1 Human hand with the sensorized glove connected to the mechanical 

hand simulator used in the data acquisition procedure. This is the “0” 
configuration, which means all the joint angles are 0 in this configuration. 

 

 
Fig. 2 Schunk Antropomorphic Hand (SAH). 

TABLE I 
DIFFERENT COMBINATIONS OF JOINTS IN DATA ACQUISITION 

Id Joints Used Id Joints Used 

1 Thumb abduction + thumb 
inner + thumb outer 10 Index + middle 

2 Thumb roll + thumb abduction 
+ thumb inner 11 Middle + ring 

3 Thumb 12 Index + ring 
4 Index 13 Thumb + index + middle 
5 Middle 14 Thumb + index + ring 
6 Ring 15 Thumb + middle + ring 
7 Thumb + index 16 Index + middle + ring 
8 Thumb + middle 17 Thumb + index + middle 

+ ring 9 Thumb + ring 
  
 Since the obtained configuration data are used for the 
construction of the configuration subspace, the number of 
configurations in each group should be considered. The 
number of configurations is determined according to the 
number of joints in each group. It may seem trivial at first 
sight, since one could just fix a maximum number of data and 
divide it by the number of groups. However, there are three 
issues that suggest the use of a more methodic approach. 
Firstly, we would like to provide a reasonable value for the 
maximum number of samples, not just an arbitrary one, 
secondly, we would like to have a good coverage of the hand 
configuration space which, due to the fact that each group 
makes use of different joints, is not guaranteed, and finally, it 
would be desirable that each group have the same importance, 
in terms of the relative sizes of each group, within the whole 
data set. The reason behind this can be illustrated with an 
example: consider a grasp of type A and another of type B, 
using 2 and 13 joints, respectively. The first issue needs no 
further explanation; simply, one could not say a priori how 
many samples are needed. As for the second issue, assume 
that 100 samples are defined as the maximum number of 
samples, and then we would have 50 samples per group each. 
However, 50 samples do not represent the same in a 2D space 
than in a 13D space. If we consider a uniform covering, the 
number of samples are obtained by powering the coverage per 
joint, C, to the number of joints. In the case of the type A 
grasp, we will have 50 = C² , which yields C = 7.07 or in other 
words, an average discretization of 7 values per joint, and in 
the case of the type B grasp, this value goes down to 1.35, 
implying a worse coverage of its configuration subspace. 
Regarding the third issue, it is clear that if 99% of the samples 
are gathered performing grasps of type A, in the end, the 
analysis will conclude that the main coordinated motion of a 
human hand is that of performing grasps of type A. Our 
assumption when defining the grasp groups is that they are 
equally important, in the sense that, humans use the grasp 
types indifferently. 
 In order to overcome these issues, we propose not to 
define a maximum number of samples, but a reasonable 
number of samples per group, which fulfils the second and 
third issue requirements, and finally, they sum up to a 
reasonable total number of samples. For this, we observed that 
the maximum number of joints to be used among all grasp 
types is 13. It is necessary to find a compromise between a 
good coverage and a practical number in order to perform the 
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experiments. A minimal good discretization of one dimension, 
that is, the values a joint can take, is to have the lower, middle 
and upper value of such joint, which add up to 3 samples per 
joint. Repeating the calculation above, it yields                       
313 = 1.594.323 configurations. This number is friendly, giving 
the fact that we have 17 groups, and assuming all of them use 
13 joints, we will need at most a data set of 27.103.491 
configurations, which is still affordable. Thus, if a grasp uses 
the thirteen joints, the number of samples should be near this 
value in order to have a good coverage of the configuration 
space. The proposed expression to determine the size of   
group � is the following: 
 

�� � ��
�	 
��                                        (1) 

 

where ni stands for the number of joints used in the group, N  
stands for the number of samples required to have a good 
discretization, and 
 is a parameter to adjust the relative sizes 
between groups. Note that 	
 � � � �� � ��� , hence the 
relative sizes are 1. And 	
 � � � �� � ��� , hence the 
relative sizes are 1, again, but farther from the desired number 
of samples. Finally, the results in this paper have been 
obtained using � = 0.8 and N = 313. 
 
C. Mapping data from the data glove to the mechanical 
hand. 
 Initially, the calibration procedure described in [12] is 
followed, which leads to the determination of the “0” 
configuration shown in Fig. 1. In this configuration all joint 
angles are zero. 
 Let ��  be a sample data describing the operator hand 
position obtained with the sensorized glove, and let             
� � ��� ��� ����  be the set of data composed of the n 
samples of the 17 groups of human hand configurations. The 
samples �� in � are mapped to the mechanical hand using the 
approximate 1-1 mapping method presented in [10], obtaining 
a set � � ��� ��� ���� where �� is a sample describing the 
mechanical hand position. The mechanical hand has 13 joints, 
as shown in Table II. Since the data glove measures the 
abduction angles between the index and the middle fingers and 
between of the middle and the ring finger relatively to the 
middle finger, the joint “middle abduction” of the mechanical 
hand is considered fixed at a joint value equal 0. The values of 
the other joints of mechanical hand have a direct relation with 
the corresponding joints of the glove. In particular, the joint 
“thumb abduction” that was not used in [10] is considered in 
this mapping. 
 

TABLE II 
THE JOINTS OF SAH  

Id Name Id Name 
1 Thumb roll 8 Middle abduction 
2 Thumb abduction 9 Middle inner 
3 Thumb inner 10 Middle outer 
4 Thumb outer 11 Ring abduction 
5 Index abduction 12 Ring inner 
6 Index inner 13 Ring outer 
7 Index outer   

 
  

   
Joint Angle (rad) 

Fig. 3 Data distribution for the joint “Index Inner” of the mechanical hand. 
The two vertical red lines indicate the mechanical limits of the joint. 

  
 With this direct mapping most of the obtained 
configurations of the mechanical hand have the joint values 
within their mechanical limits. An example of the data 
distribution for the joint “Index Inner” is shown in Fig. 3. 
Analyzing the data distribution of all the joints the 
configuration with higher frequency (the most used one) was 
identified as �� = (-0.7, 0.17, -0.2, -0.12, -0.06, -0.2, -0.16, 0, -
0.24, -0.2, 0.34, -0.4, -0.2). 
 
D. Gaining Principle Motion Directions 
 Principle Component Analysis is used to obtain a new 
base of the mechanical hand configuration space. Let         
� � � � � � � �� be there presentation of                  
� � ��� ��� ���� in this new base. The transformation 
between these configurations is given by 
 

    � � !�"#�� $ ��%				� � &�'                (2) 
 

where E is the transformation matrix and ��  stands for the 
origin of the new space [13]. The vectors that define the new 
base of the hand space are called Principal Motion Directions 
(PMDs). Each PMD is a linear combination of the former axes 
of the hand configuration space. The PMDs are ordered such 
that the first one has the largest variance of the samples and, 
therefore, contains more information. The sub-space generated 
by the first m PMDs is called the m-PMD space. 

III.  ANALYSIS OF THE PMD SPACE 

 Fig. 4 shows the variance of the first PMDs. The first 
three PMDs contain 70.54% of the total variance. This 
percentage is lower than the 84.71% reported in [10], the 
difference being due to a different selection of samples (of 
course none of the works fully cover the whole hand 
configuration space). In any case, this is not critical for the 
proposed approach.  
 
A. Construction of the 3-PMD space 

The 3-PMD space already contains about 70% of the 
whole information in the data set, which is considered enough 
for  the purpose of  this work while the reduction from a space  
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Fig. 4 The variance of each PMDs and the total variance covered when using 

an increasing number of PMDs  
     

 
Fig. 5 3-PMD space. 

 
of dimension 13 to one of dimension 3 is significant. Besides, 
3-PMD space has the advantage that it can be visualized in a 
3D plot. Based on these benefits, the 3-PMD space is chosen 
as the subspace for this work. 3-PMD space is shown in     
Fig. 5. 
 
B. Characteristics of the 3-PMD Space 
 Although there has been some works using the 2-PMD 
space [7] [9], up to the authors knowledge there is no previous 
works that analyzes the main characteristics of the 3-PMD 
space, which is done in this work. As it can be seen in Fig. 5, 
there are several “lines” in the 3-PMD space, which are the 
binderies of the space, and the workspace of the mechanical 
hand looks like a hexahedron. The point of intersection of the 
“lines” is the (0.1142, 0.6373, 0.3200), which correspond to 
the “0” configuration shown in Fig.1. Each group of the data is 
now independently mapped to the 3-PMD space. The points 
representing the movements of each finger are marked in    
Fig. 6.  The vectors of the lines are listed in Table III and the 
angles between them are listed in Table IV. 
  

TABLE III 
VECTORS OF THE LINES 

Id Name Color Vector 
1 Thumb Red 0.4797, -0.5800, -0.3216 
2 Index Green -0.2351, -0.0270, -0.3195 
3 Middle Black -0.6871, -0.1497, -0.8064 
4 Ring Yellow -0.8336, -1.1917, 0.8619 

 

 
  Fig. 6 The lines representing the joints of different fingers. 

TABLE IV 
INCLUDED ANGLES BETWEEN THE LINES 

Included angle Value (degree) 
Thumb and index  89.0090 
Thumb and middle  88.9163 
Thumb and ring 89.4153 
Index and middle 5.8069 
Index and ring 85.9714 
Middle and ring 88.2218 

 
 The contribution of each joint to 3-PMD space can be 
seen in Fig. 7. The range of variation of each joint is 
represented by the direction and length of a segment. The 
joints “thumb abduction (2),” “index abduction (5),” “middle 
abduction (8)” make little contribution to 3-PMD space, and 
therefore are not represented. The segments of the thumb 
joints, 1, 2, 3 and 4, are almost in the same direction, which is 
the same of the group of data obtained with the movement of 
the thumb. The same effect happens with the index joints 5, 6 
and 7, the middle joints 8, 9 and 10, and the ring joints 11, 12, 
13. 

The configurations of typical gesture and movement are 
marked in the 3-PMD space, as shown in Fig. 8.  

 

 
Fig. 7 The contribution of each joint to 3-PMD space. 
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(a)  Naturally open 

 

 
(b)  Grasping a ball 

 

 
(c)  Grasping a bottle 

 
(d)  Four fingers move together to grasp 

 
Fig. 8 The configurations of typical gesture and movement in the 3-PMD 

space, marked by the red points. 
  

IV. ROBOT APPLICATIONS  

This section presents some applications of the resulting  
3-PMD space by defining the hand working space within it. 
The 3-PMD space is a linear space (Subsection III-A), where 
the lines representing the finger movements are binderies of 
the workspace of the mechanical hand, while other binderies 
are related with the limits of the joints and self-collisions. 
Note that any configuration in the hand workspace can be 
expressed as a linear combination of the configurations in the 
lines. The workspace is determined as a box, designed to 
contain  90%  of  all the configuration data, as shown in Fig. 9. 

 
Fig. 9 The workspace of the mechanical hand. 

 
This is done using multiples of the standard deviation of the 
data to fix the box side lengths. 

There is no doubt that using the 3-PMD space we 
constrain the possible configurations that the mechanical hand 
can adopt, but it allows a simpler and easy-to-handle 
configuration space. As application examples, the  reduction 
in the dimension of the configuration space of an  
anthropomorphic robot hand is applied in two main scenarios: 
simplify the decision making for  autonomous robots and in 
robot telemanipulation. 

 
A. Autonomous Robot Scenario 
 In this scenario, the goal is to automatically determine the 
robot movements. This is a complex problem for the case of 
an anthropomorphic robot hand mounted on an arm with (at 
least) six additional degrees of freedom. The motion planning 
of such system can be done using probabilistic sampling 
techniques to build either roadmaps or exploration trees but, 
even for these approaches, the dimensionality of the 
configuration space is too large to allow an efficient 
application. Thus, in practice, the 3-PMD space can be used 
instead of the full configuration space. Good results using 
such a reduced configuration space have been presented in 
[10] and [14], which motivated the deeper exploration of this 
work in order to improve the dimensionality reduction process 
presented there. Fig. 10 shows an example of different 
intermediate arm-hand configurations obtained with the 
planner developed at the Institute of Industrial and Control 
Engineering at the Technical University of Catalonia using the 
3-PMD space obtained in this work. 
 
B.    Telemanipulated Robot Scenario 
 The objective is to move a robot making it to follow the 
operator hand movements. An anthropomorphic robot hand 
may be similar to the human hand, but they are still different 
(especially if different operators work with the same robot 
hand).  Moreover, in our particular case, we are handling the 
information (position, velocity and acceleration) of 22 sensors 
in the user side (sensorized glove) and 13 joints in the robot 
side (SAH), which means a position mapping problem. These 
differences may be overcome if both spaces are reduced to a 
common 3-PMD space. An approach in this line was proposed 
by  Tsoli  and  Jenkins  [9].  These  results  motivate  a  further   
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Fig. 10 Example of the planner using the 3-PMD space obtained in this work. 
 
study in the coordinated motions in the human hand. 
 
C. Other scenarios 
 One of the goals in the design of prosthetic hands is the 
low-weight feature. The heaviest parts are the batteries, 
followed by the motors used to move all the hand. Usually, 
these hands are built with 2 or 3 motors at most, often used to 
open/close all the fingers and move the thumb, respectively. 
However, this open/close movement does not follow any 
particular rule, but the joints are frequently coupled in a 1:1 
ratio. A more interesting and natural design would be to 
constrain the joints to move along the principal motion 
directions. 

V.  CONCLUSIONS 

 This paper has presented an acquisition method of human 
hand configurations whose aim is to properly cover all the 
human hand configuration space. Then, the configuration data 
are  used  to  construct  the  3-PMD  space, a  subspace  of  the 
human  hand  configuration  space, by  using  PCA. The chara- 
 
 
 
 
 
 
 

cteristics of the 3-PMD space are discussed and 
experimentally tested using hand SAH.  The configuration 
data and analysis of the subspace can be used for further 
applications of anthropomorphic hands with high number of 
DOF. Future work includes the developments of a more 
efficient and accurate calibration method, further and deeper 
analysis of the 3-PMD space in order to better exploit it, and 
the development of a potential new application simplifying the 
use of anthropomorphic robot hands in the telemanipulation 
scenario. 
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