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Abstract: The cutting power consumption of milling has direct influence on the economic benefits of
manufacturing particle boards. The influence of the milling parameters on the cutting power were
investigated in this study. Experiments and data analyses were conducted based on the response
surface methodology. The results show that the input parameters had significant effects on the cutting
power. The high rake angle reduced the cutting force. Thus, the cutting power decreased with the
increase in the rake angle and the cutting energy consumption was also reduced. The cutting power
increased with the rotation speed of the main shaft and the depth of milling induced the impact
resistance between the milling tool and particle board and the material removal rate. The p-values of
the created models and input parameters were less than 0.05, which meant they were significant for
cutting power and power efficiency. The depth of milling was the most important factor, followed
by the rotation speed of the main shaft and then the rake angle. Due to the high values of R2 of
0.9926 and 0.9946, the quadratic models were chosen for creating the relationship between the input
parameters and response parameters. The predicted values of cutting power and power efficiency
were close to the actual values, which meant the models could perform good predictions. To minimize
the cutting power and maximize the power efficiency for the particle board, the optimized parameters
obtained via the response surface methodology were 2◦, 6991.7 rpm, 1.36 mm for rake angle, rotation
speed of the main shaft and depth of milling, respectively. The model further predicted that the
optimized parameters combination would achieve cutting power and power efficiency values of
52.4 W and 11.9%, respectively, with the desirability of 0.732. In this study, the influence of the input
parameters on the cutting power and power efficiency are revealed and the created models were
useful for selecting the milling parameters for particle boards, to reduce the cutting power.

Keywords: cutting power; power efficiency; particle board; milling; response surface methodology

1. Introduction

Under the environmental protection goal of carbon neutrality and carbon peak, sus-
tainable manufacturing has become the new development direction of the manufacturing
industry. This has led to a focus on recycling and the conservation of natural resources
and energy in furniture manufacturing processes [1–3]. Particle boards (PBs) as a kind
of wood-based panel, are widely applied for the manufacturing of custom furniture in
China [4–6] and milling occupies a large proportion of that manufacturing process [7,8].
Among the previous studies of material processing, most of them focused on revealing the
influences of cutting parameters, cutting tools geometry and materials properties on the
cutting tools’ conditions, cutting force, cutting efficiency and cutting qualities [9–11]. For
PB processing, Boucher et al. studied the influences of the helix angle and density variation
on the cutting force of PBs. The helix angle had positive influence on the decrease in cutting
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force and improvement of tool life [12]. In the peripheral up-milling of PBs, the higher the
cutting speed used, the higher the principal cutting forces [13]. In addition, the properties
of PBs also have influence on the cutting force. Bouzakis and Koutoupas found that the
specific cutting force increased with the increase in the particle board’s mechanical strength
critical stresses and the linear correlation between them was obvious [14].

The optimization of process parameters for reducing the final production costs is
also one of the biggest challenges in the machining process. Hence, revealing the effects
of processing parameters on the cutting power and power efficiency and achieving the
optimized parameter combination would be meaningful for the furniture manufacturing
industry [15,16]. At present, many scholars have focused on the influence of technical
parameters on power consumption, modelling techniques for predicting and optimizing
energy consumption, etc. [17–19]. From the previous research studies, the milling energy
consumption and efficiency of machining processes for heat-treated wood has been found
to be less than that for un-treated wood due to chemical degradation and reduced wood
density. Additionally, the power consumption decreased as the temperature of heat treat-
ment increased [20,21]. Normally, the specific cutting energy increases with the wood
density, but decreases with the increase in moisture content [22]. In addition to the milling
process, wood sawing power consumption has also been of interest. The influence of cutting
motion parameters and saw blade parameters on power consumption were investigated
in the past. Power consumption has been found to vary with different saw blades and
increase under higher feed rates. With the increase in the feed speed, not only the sawing
power increased, but also the waviness increased [23–25].

In addition to revealing the influencing rule of processing parameters on energy
consumption, it is also meaningful to find the trade-offs between productivity, cut quality
and power consumption. Different modelling techniques (such as artificial neural networks
(ANNs), deep learning (DL), machine learning (ML), etc.) have been studied to monitor tool
conditions, reduce cutting power consumption and increase energetic efficiency [26–31].
Tiryaki et al. employed artificial neural networks to minimize the surface roughness and
power consumption of wood abrasive machining processes. Their results showed that
the created models could give accurate prediction of power consumption and surface
roughness as a result of low values of mean absolute percentage error [32]. De Melo et al.
used the robust optimization technique to optimize the energy efficiency of the Pinus taeda
wood planning process. Their results showed that the cutting motor rotation, feed motor
rotation and cutting depth had significant influence on the specific cutting energy. They
also found that the optimal parameter combination for lower power consumption was
determined by the mean square error (MSE) [33]. The ANN modeling method is also a
common modeling technique to predict the cutting power. During the wood planning
process, the mean absolute percentage error values between the actual and predicted values
for the training data set and testing data set were very small. The R2 values were close to
the value of 1, which also meant that the ANN models could effectively be used in wood
machining optimization to reduce the cutting power [34].

However, there is no published work focusing on revealing the effects of the milling
parameters on the cutting power and power efficiency during the PB milling process.
Moreover, the explicitly quantifying relationships between input parameters and response
parameters have not been revealed either. In this paper, the cutting power and power
efficiency during a straight-tooth cylindrical milling process of PBs were studied. The rake
angle of the milling cutter, the rotation speed of the main shaft and the depth of milling
were selected as input parameters. The response surface methodology (RSM) was applied
to investigate the effects of the input parameters on the cutting power and power efficiency
and establish the relationship between the input parameters and response parameters.
These results will be beneficial in revealing the change tendency of the response parameters
and guiding the selection of the input parameters to reduce the spindle power during the
PB milling process.
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2. Materials and Methods
2.1. Materials

Samples with the size of 150 mm × 80 mm × 18 mm (length × width × thickness)
were cut randomly from commercial PB products. According to the Chinese standard
GB/T 17657-2013 [35], the tests for modulus of rupture and modulus of elasticity of
the supplied PBs were repeated five times and their mean values were 17.3 MPa and
1622 MPa, respectively. A density of 695.3 kg/m3 and a moisture content of 10.2 ± 2% were
also documented.

2.2. Experimental Setup and Cutting Tools

A computerized numerical control (CNC) machining center was applied to carry out
the milling experiments. The spindle power of the CNC machining center was measured by
a three-phase power analyzer (AN87300, Ainuo Co., Ltd., Shandong, China). In this study,
all the samples were cut by peripheral milling with a straight-tooth cylindrical milling tool.
The milling tool had three inserted knives, which were made of cemented carbide. The
diameter and wedge angle of the selected milling tool were held constant at 180 mm and
45◦, respectively. The schematic diagram of the experimental setup is shown in Figure 1.

Figure 1. The schematic diagram of experimental setup.

2.3. Methods

The RSM, with its preponderance of convenient modeling and strong ability to deal
with multi-objective optimization, was applied for the purpose of developing, improving
and optimizing the processes [36–38]. The prediction and optimization capabilities of the
RSM are highly appreciated [39]. In this paper, the Box–Behnken design (BBD) of the RSM
was selected to arrange the experiments and analyze the experimental data. The details
of the input parameters and their ranges were determined by the actual production and
reference values in the literature, which are shown in Table 1. The feed speed and cutting
length were fixed for all tests and were held constant at 5 m/min and 150 mm, respectively.
Each group of experiment was repeated five times and the mean values were used for data
analysis and modeling.
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Table 1. The input parameters and their ranges.

Parameters Codes
Ranges

−1 0 1

Rake angle (◦) A 2 6 10
Rotation speed of main shaft (rpm) B 6000 8000 10,000

Depth of milling (mm) C 0.5 1.0 1.5

Quadratic, linear and 2 FI are frequently employed to model the relationship between
input parameters and response parameters. The quadratic model is shown in Equation (1).

Y = b0 + ∑k
i=1 biXi + ∑k

i,j bijXiXj + ∑k
i=1 biiX2

i (1)

where Y represents the response parameters; b0 represents a constant coefficient; and bi, bii
and bij represent coefficients of linear, quadratic and interacting terms, respectively.

The response parameters in this study included cutting power and power efficiency,
which are defined and shown in Equations (2) and (3). In Figure 2, the schematic diagram
of dynamic power change at different cutting stages in one set of experiments is shown.

Pc = Pt − P0 (2)

η =
Pc

Pt
=

Pc

Pc+P0
=

1

1+ P0
Pc

(3)

where Pc is the cutting power (W), η is power efficiency, Pt is the total power during the PB
milling process (W) and P0 is the power during the no-load operation stage of the CNC
machine (W).

Figure 2. Spindle power plot for a single experiment.

3. Results and Discussion

All the experiments were conducted by the “Run” order shown in Table 2 to avoid the
effects of the test sequence on the results’ accuracy. The cutting power and power efficiency
were calculated by Equations (2) and (3) and their results are also recorded in Table 2.
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Table 2. The results of cutting power and power efficiency during the PB milling process.

Standard Run
Factors

Pc
(W)

η
(%)Rake

Angle (◦)
Rotation Speed of Main

Shaft (rpm)
Depth of

Milling (mm)

1 6 2 6000 1.0 41.5 10.2
2 16 10 6000 1.0 36.0 8.7
3 1 2 10,000 1.0 57.1 10.8
4 14 10 10,000 1.0 52.7 10.5
5 4 2 8000 0.5 37.1 8.0
6 5 10 8000 0.5 27.1 6.5
7 11 2 8000 1.5 59.2 12.5
8 2 10 8000 1.5 56.9 12.8
9 17 6 6000 0.5 27.5 6.8

10 12 6 10,000 0.5 38.7 6.9
11 7 6 6000 1.5 56.5 12.1
12 9 6 10,000 1.5 71.5 13.5
13 10 6 8000 1.0 39.2 10.1
14 8 6 8000 1.0 39.1 10.3
15 3 6 8000 1.0 39.2 10.5
16 13 6 8000 1.0 39.2 10.3
17 15 6 8000 1.0 39.3 10.4

3.1. Influence of Input Parameters on Pc and η

To investigate the variation in power consumption during the PB milling process, the
influences of the input parameters on Pc and η were analyzed. Figure 3 shows that Pc
increased with the increase in the rotation speed of the main shaft and depth of milling.
However, it decreased with the increase in the rake angle. A decrease in the cutting force
has been observed with the increase in the rake angle [40–42], resulting in lower cutting
power required [43]. With the increase in the depth of milling, the material removal rate
increased, which consumed more energy.

Figure 3. The plot of impact trend for cutting power and power efficiency.

PBs, which are made from a mixture of adhesive and shavings, are a heterogeneous
material. The impact force between the milling tool and PB material increases as the
rotation speed increases, which also causes an increase in the cutting power. From the plot
of interaction impact trend (as shown in Figure 4), it is easy to see that a higher cutting
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power was required when milling with the combination of a higher depth of milling, a
higher rotation speed of the main shaft and a lower rake angle.

Figure 4. The plot of interaction impact trend for cutting power.

The power efficiency was found to increase with the increase in the depth of milling
and rotation speed of the main shaft. However, the value of η decreased with the increase
in the rake angle due to reduced cutting force, resulting in reduced energy consumption.
The higher values of η meant that a higher ratio of energy was consumed in the removal of
material. In the Equation (3), P0 remains constant when the cutting motion parameters are
fixed, while the value of η increases with the increase in Pc. This explains why the value of
η increases with the increase in the depth of milling, but decreases with the increase in the
rake angle. As shown in Figure 5, the highest value of η was achieved by the combination
of the highest rotation speed of the main shaft, the highest depth of milling and the lowest
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rake angle. When the rotation speed of main shaft increased, both Pc and P0 increased.
Hence, the η change was not evident.

Figure 5. The plot of interaction impact trend for power efficiency.

3.2. Analysis of Variance

The analysis of variance (ANOVA) is a widely used technique to investigate the
significance of input parameters and evaluate a models’ adequacy. In ANOVA tables, the
p-value indicates the significance of a factor to a confidence level of 95% and the higher
F-value indicates a relatively greater importance of that factor. In Tables 3 and 4, the
p-values of the quadratic models were less than 0.0001, indicating that these two models
were extremely significant. For the same reason, all of the input parameters exhibited a
significant influence on Pc and η and many of the interaction terms also had significant
influence. For the RSM quadratic models for Pc and η, the F-value analysis revealed the
depth of milling as the most important factor, followed by the rotation speed of the main
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shaft and then the rake angle. The highest percentage contribution was exerted by the
depth of milling, which also meant the depth of milling was the most important factor [39].

Table 3. ANOVA results for Pc.

Source SS % Cont. df MS F-Value p-Value

Model 2352.99 99.26 9 261.44 103.73 <0.0001
A—Rake angle 61.61 2.60 1 61.61 24.44 0.0017

B—Rotation speed of main shaft 427.78 18.04 1 427.78 169.73 <0.0001
C—Depth of milling 1615.96 68.17 1 1615.96 641.16 <0.0001

AB 0.3025 0.01 1 0.3025 0.1200 0.7392
AC 14.82 0.63 1 14.82 5.88 0.0457
BC 3.61 0.15 1 3.61 1.43 0.2703
A2 18.13 0.76 1 18.13 7.19 0.0314
B2 129.69 5.47 1 129.69 51.46 0.0002
C2 60.80 2.56 1 60.80 24.12 0.0017

Error 37.93 1.60 7
Cor Total 2370.63 100 16

SS—Sum of squares MS—Mean square.

Table 4. ANOVA results for η.

Source SS % Cont. df MS F-Value p-Value

Model 69.59 99.46 9 7.73 142.02 <0.0001
A—Rake angle 1.15 1.64 1 1.15 21.14 0.0025

B—Rotation speed of main shaft 1.85 2.64 1 1.85 34.04 0.0006
C—Depth of milling 64.32 91.93 1 64.32 1181.49 <0.0001

AB 0.3809 0.54 1 0.3809 7.00 0.0332
AC 0.8100 1.16 1 0.8100 14.88 0.0062
BC 0.4325 0.62 1 0.4325 7.94 0.0258
A2 0.0251 0.04 1 0.0251 0.4602 0.5193
B2 0.1656 0.24 1 0.1656 3.04 0.1247
C2 0.3965 0.57 1 0.3965 7.28 0.0307

Error 0.4394 1.60 7
Cor Total 69.97 100 16

SS—Sum of squares MS—Mean square.

3.3. Regression Models

To create the relationship between the input parameters and response parameters,
quadratic models were selected over others due to their higher R2 values (Table 5). These
values reflected that the models were adequate to predict the cutting power and power
efficiency, which is demonstrated by the plot of “predicted vs. actual” (Figure 6). The
detailed models for Pc and η in terms of coded factors are shown in Equations (4) and (5).

Pc = 39.20 − 2.77 × A + 7.31 × B + 12.41 × C + 0.275 × A × B + 1.92 × A × C + 0.95 × B × C + 2.07 × A2 + 5.55 × B2 + 3.80 × C2 (4)

η = 10.33 − 0.3793 × A + 0.4813 × B + 2.84 × C + 0.3086 × A × B + 0.45 × A × C + 0.3288 × B × C − 0.0771 × A2 − 0.1983 × B2 − 0.3069 × C2 (5)

Table 5. Results of ANOVA for different models.

Response Parameters Models SD R2 Adj.
R2 Pred. R2

Pc

Linear 4.52 0.8881 0.8623 0.8246
2FI 4.97 0.8960 0.8336 0.7101

Quadratic 1.59 0.9926 0.9830 0.8810 Suggested

η
Linear 0.4508 0.9622 0.9535 0.9273

2FI 0.3192 0.9854 0.9767 0.9517
Quadratic 0.2333 0.9946 0.9876 0.9307 Suggested
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Figure 6. The plot of predicted vs. actual for (a) Pc and (b) η.

3.4. Optimization of Milling Parameters for PBs

To achieve the purposed energy savings and improved power efficiency during PB
milling processes, the lowest Pc and highest η would be expected. Even the highest rake
angle would be beneficial for decreasing cutting power, as too large of a rake angle would
cause the milling tool to rapidly wear, which would have a negative impact on its working
life. A higher depth of milling improves the material remove rate, which directly affects
milling efficiency. Hence, the detailed conditions of optimization were confirmed and are
shown in Table 6. The optimized parameters for Pc and η were 2◦, 6991.7 rpm, 1.36 mm
for rake angle, rotation speed of the main shaft and depth of milling, respectively. The
model further predicted that the optimized parameters combination would achieve Pc
and η values of 52.4 W and 11.9%, respectively, with the desirability of 0.732. To verify
the accuracy of the optimization, a validation test was performed with the parameter
combination of 2◦, 6992 rpm, 1.4 mm for rake angle, rotation speed of the main shaft and
depth of milling, respectively. In the validation test, the results of Pc and η were 53.2 W and
13.1 %, respectively.

Table 6. Goals and parameter range for optimization of PB milling process.

Conditions Goal Lower Limit Upper Limit

A minimize 2 10
B in range 6000 10,000
C maximize 0.5 1.5
Pc minimize 27.1 71.5
η maximize 6.5 13.5

4. Conclusions

Power consumption is a key index in material processing which has a direct influence
on the economic and environmental benefits of manufacturing processes. The selected
input parameters were shown to have significant influences on the response parameters
of Pc and η. Quadratic models were developed to model the relationship between input
parameters and response parameters. Detailed conclusions are as follows:

(1) The value of Pc increased with the increase in the rotation speed of the main shaft
and the depth of milling, but decreased as the rake angle increased. The influence of
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the input parameters on η was similar to that on Pc. The depth of milling was the
most important factor for the cutting power and power efficiency during PB milling,
followed by the rotation speed of the main shaft and then the rake angle.

(2) The values of the regression coefficient, for the Pc and η models, respectively, were
0.9926 and 0.9946 and these values reflected that the quadratic models accurately
predicted the values of Pc and η.

(3) Higher material removal rates consumed more cutting energy, which had a positive
effect on improving power efficiency.

(4) In this study, the optimized parameters for Pc and η were 2◦, 6992 rpm, 1.4 mm for
rake angle, rotation speed of the main shaft and depth of milling, respectively.
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CNC Computerized numerical control
ANN Artificial neural network
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