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Abstract: In this paper, we consider isotropic solution and extend it to two different exact well-
behaved spherical anisotropic solutions through minimal geometric deformation method in
f (R, T, Rρη Tρη) gravity. We only deform the radial metric component that separates the field equa-
tions into two sets corresponding to their original sources. The first set corresponds to perfect matter
distribution while the other set exhibits the effects of additional source, i.e., anisotropy. The isotropic
system is resolved by assuming the metric potentials proposed by Krori-Barua while the second
set needs one constraint to be solved. The physical acceptability and consistency of the obtained
solutions are analyzed through graphical analysis of effective matter components and energy bounds.
We also examine mass, surface redshift and compactness of the resulting solutions. For particular
values of the decoupling parameter, our both solutions turn out to be viable and stable. We con-
clude that this curvature-matter coupling gravity provides more stable solutions corresponding to a
self-gravitating geometry.

Keywords: f (R, T, Rρη Tρη) gravity; anisotropy; gravitational decoupling; self-gravitating systems
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1. Introduction

Einstein theory of general relativity (GR) has been considered as the root of cosmology
and gravitational phenomena. Cosmological findings show that the astronomical objects
are not scattered randomly in the universe but are organized in a systematic way. The
investigation of this arrangement and physical characteristics of interstellar bodies enable
us to figure out accelerated expansion of the cosmos. This expansion is presumed to
be performed by an obscure form of energy known as dark energy. Moreover, the virial
mass discrepancy at the galactic cluster level and the galaxy rotation curves [1,2], cosmic
accelerated expansion as well as other cosmological observations suggest that the standard
general relativistic gravitational field equations, based on the Einstein-Hilbert (EH) action
cannot describe the universe at large scales. From cosmological point of view, dark matter
and dark energy components are introduced by hand, in addition to ordinary matter
and energy in this theory. The modifications to GR are found to be crucial in unveiling
mysterious aspects of our universe. The f (R) theory is the immediate extension of GR,
formulated on the basis of an arbitrary function that replaces the Ricci scalar R in the EH
action. The stability of f (R) theory has been discussed by various researchers by using
different approaches [3–5]. Capozziello et al. [6] studied the stability of different stars in
f (R) theory by utilizing the Lané-Emden equation. Recently, various experiments have
been conducted on the astronomical objects to discuss their composition and stability in
this theory [7–12].

Later, Bertolami et al. [13] considered the Lagrangian depending on scalar curvature R
and Lm to study the effects of coupling in f (R) gravity. The coupling between matter and
spacetime in extended theories of GR has encouraged several theorists to focus on cosmic
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accelerated expansion. Harko et al. [14] proposed f (R, T) theory to study the non-minimal
interaction between matter and geometry, T represents trace of the energy-momentum
tensor (EMT). It has been observed that such a coupling results in the non-conservation of
EMT which may cause the accelerated interstellar expansion. Haghani et al. [15] presented
a wider and more complex theory by adding an extra term in the Lagrangian of f (R, T)
theory to study the strong effects of non-minimal coupling, referred to f (R, T, Q) theory, in
which Q ≡ RρηTρη . Indeed, examples of such couplings can be found in the Einstein-Born-
Infeld theories when one expands the square root in the Lagrangian. In this framework,
Sharif and Zubair investigated the energy bounds for some particular models [16] and
checked the feasibility of thermodynamical laws [17].

This theory was constructed on the basis of insertion of the strong non-minimal matter-
geometry coupling which is explained by the factor Q. The role of dark matter and dark
energy, without resorting to exotic matter distribution is explained through the modification
in the EH action. Several extended theories such as f (R,Lm) and f (R, T) also engage such
arbitrary coupling but their functionals cannot be considered in the most general form
to understand the effects of coupling on celestial objects in some situations. It should be
pointed out that the factor RρηTρη could interpret non-minimal interaction in the scenario
where f (R, T) theory fails to describe. In particular, one cannot explain coupling effects on
the gravitational model in f (R, T) theory when trace-free EMT (i.e., T = 0) is considered,
while f (R, T, Q) gravity studies such effects even in this context. This theory was shown to
be stable against Dolgov-Kawasaki instability and can help to explain the galactic rotation
curves due to the presence of an additional force which stops the motion of test particles in
geodesic path. Haghani et al. [15] discussed cosmological applications of three different
models in this framework, i.e., R + αQ, R(1 + αQ) and R + β

√
| T |+ αQ, where α and β

are arbitrary coupling constants. They analyzed the evolution and dynamics of the universe
for the above models with and without energy conservation.

Odintsov and Sáez-Gómez [18] found some analytical as well as numerical solutions
in f (R, T, Q) theory and compared them with the ΛCDM model. They also discussed some
problems related to the instability of fluid distribution. Ayuso et al. [19] inspected the
consistency and reliability of this complicated theory by choosing some suitable scalar
(or vector) fields. Baffou et al. [20] explored the power-law solution to understand the
early cosmic evolution and checked the stability for some specific models. Sharif and
Waseem [21,22] studied certain physical attributes of massive isotropic/anisotropic config-
ured stars and checked their stable regions. Yousaf et al. [23–27] computed several structure
scalars for static and non-static cases which are related with the fundamental properties
of matter distribution. These scalars help to illustrate the composition and expansion of
self-gravitating stellar configuration.

Owing to the inclusion of highly non-linear terms in the field equations of a compact
geometry, the development of exact solutions has always been a serious but interesting
issue. Gravitational decoupling is a recently proposed scheme which is used to find feasible
solutions corresponding to the matter distribution involving multiple sources, such as
anisotropy, heat dissipation and shear stress. The minimal geometric deformation (MGD)
technique has shown significant consequences to achieve physically well-behaved solutions.
This approach offers a variety of enticing ingredients for new exact solutions for both cos-
mology and astrophysics. Ovalle [28] initially proposed this technique to acquire analytical
solutions of stellar objects in the context of braneworld. Later, Ovalle and Linares [29] found
exact spherical isotropic solutions and concluded that these results are compatible with
the Tolman-IV solution in the braneworld. Casadio et al. [30] formed the outer spherical
solutions and noticed that these solutions contain singularity at Schwarzschild radius.

Ovalle [31] determined anisotropic solutions via gravitational decoupling approach.
Ovalle et al. [32] extended the isotropic solutions through this approach and checked the
graphical behavior of new solutions which contain effects of anisotropy. Sharif and Sadiq [33]
developed anisotropic solutions for charged spherical geometry by taking the Krori-
Barua solution and analyzed the influence of charge on their viability as well as stability.
Sharif and his collaborators [34–37] generalized this work to f (G) and f (R) theories.
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Gabbanelli et al. [38] determined different anisotropic solutions in view of the Duragpal-
Fuloria isotropic spacetime and found them physically acceptable. Estrada and Tello-Ortiz [39]
constructed various anisotropic physically consistent solutions by applying this technique
to Heintzmann solution. By taking an appropriate deformation function, Singh et al. [40]
employed embedding technique to develop anisotropic solutions via this approach. Hensh
and Stuchlik [41] deformed Tolman VII solution and found physically feasible anisotropic
solutions. Sharif and Majid [42–44] considered different known isotropic solutions and
found anisotropic spherical solutions with the help of minimal and extended version of the
decoupling scheme in Brans-Dicke theory.

This paper investigates the influence of f (R, T, Q) correction terms on two anisotropic
solutions obtained through MGD approach for spherical spacetime. The paper is structured
as follows. The basic formulation of this gravity is presented in the following section.
Section 3 discusses the MGD technique which helps to separate the gravitational field
equations into two sets which correspond to isotropic and anisotropic configurations. In
Section 4, we consider the Krori-Barua spacetime to find new analytic solutions. We also
discuss physical feasibility of the developed anisotropic solutions. Finally, we summarize
our results in the last section.

2. The f (R, T , Q) Theory

The corresponding Einstein-Hilbert action is [18]

S =
∫ 1

16π

[
f (R, T, RρηTρη) + Lm

]√
−gd4x, (1)

where Lm denotes the matter Lagrangian which in this case is considered to be negative of
the energy density of fluid and g describes determinant of the metric tensor. By adding the
Lagrangian LΘ, which corresponds to an additional source term coupled with gravity in
the action (1) and varying it with respect to the metric tensor, the field equations can be
written as

Gρη = 8πT(tot)
ρη , (2)

where Gρη is the Einstein tensor and the EMT for matter distribution is

T(tot)
ρη = T(e f f )

ρη + σΘρη =
1

fR −Lm fQ
Tρη + T(D)

ρη + σΘρη , (3)

σ represents the decoupling parameter, Θρη may contain some new fields that produce

anisotropic effects in self-gravitating structure. Also, we can stress T(e f f )
ρη as the EMT in

f (R, T, Q) gravity which contains usual as well as modified correction terms. In this case,
the value of T(D)

ρη becomes

T(D)
ρη =

1
8π( fR −Lm fQ)

[(
fT +

1
2

R fQ

)
Tρη +

{
R
2
(

f
R
− fR)−Lm fT

− 1
2
∇π∇β( fQTπβ)

}
gρη −

1
2
�( fQTρη)− (gρη�−∇ρ∇η) fR

− 2 fQRπ(ρTπ
η) +∇π∇(ρ[T

π
η) fQ] + 2( fQRπβ + fT gπβ)

∂2Lm

∂gρη∂gπβ

]
, (4)

where fR = ∂ f (R,T,Q)
∂R , fT = ∂ f (R,T,Q)

∂T , fQ = ∂ f (R,T,Q)
∂Q and ∇ν describes the covariant

derivative. Also, � ≡ gρη∇ρ∇η . The EMT for perfect fluid has the following form

Tρη = (µ + P)uρuη + Pgρη , (5)

where uρ and P are the four-velocity and isotropic pressure, respectively. In GR, the trace
of EMT provides a particular relationship between R and T. One can establish the trace of
f (R, T, Q) field equations as
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3∇η∇η fR + R
(

fR −
T
2

fQ

)
− T( fT + 1) +

1
2
∇η∇η( fQT) +∇η∇ρ( fQTρη)

− 2 f + (R fQ + 4 fT)Lm + 2RρηTρη fQ − 2gπβ ∂2Lm

∂gπβ∂gρη

(
fT gρη + fQRρη

)
= 0.

The f (R, T) gravity can be achieved from above equation by taking Q = 0, while one
can also attain f (R) theory for the vacuum case.

The geometry under consideration is distinguished by a hypersurface Σ which delin-
eates the inner and outer sectors of spherical spacetime. We define the spherical geometry
which represents the interior spacetime as

ds2 = −eνdt2 + eχdr2 + r2dθ2 + r2 sin2 θdϑ2, (6)

where ν = ν(r) and χ = χ(r). The corresponding four-velocity and four-vector in the
radial direction are

uρ = (e
−ν
2 , 0, 0, 0), wρ = (0, e

−χ
2 , 0, 0), (7)

which satisfy the relations wρuρ = 0, uρuρ = −1. The field equations are

e−χ

(
χ′

r
− 1

r2

)
+

1
r2 = 8π

(
µ(e f f ) − T0(D)

0 − σΘ0
0

)
, (8)

e−χ

(
1
r2 +

ν′

r

)
− 1

r2 = 8π
(

P(e f f ) + T1(D)
1 + σΘ1

1

)
, (9)

− e−χ

4

[
χ′ν′ − ν′2 − 2ν′′ +

2χ′

r
− 2ν′

r

]
= 8π

(
P(e f f ) + T2(D)

2 + σΘ2
2

)
, (10)

where µ(e f f ) = 1
( fR+µ fQ)

µ and P(e f f ) = 1
( fR+µ fQ)

P. Also, T0(D)
0 , T1(D)

1 and T2(D)
2 repre-

sent the f (R, T, Q) correction terms and make the field equations more complex. These
components are given in Appendix A. Here, prime means ∂

∂r .
The EMT in this theory, unlike GR and f (R), has non-zero divergence due to curvature-

matter coupling that contributes to violation of the equivalence principle. Therefore, in the
gravitational field, moving particles do not follow geodesic path due to the extra force that
acts on these particles. Thus we obtain

∇ρTρη =
2

2 fT + R fQ + 16π

[
∇η(Lm fT) +∇ρ( fQRπρTπη)− Gρη∇ρ( fQLm)

− 1
2
( fT gπβ + fQRπβ)∇ηTπβ

]
. (11)

This leads to the condition of hydrostatic equilibrium as

dP
dr

+ σ
dΘ1

1
dr

+
ν′

2
(µ + P) +

σν′

2

(
Θ1

1 −Θ0
0

)
+

2σ

r

(
Θ1

1 −Θ2
2

)
= Ω, (12)

where the term Ω on right hand side of the above equation appears due to the non-
conserved nature of f (R, T, Q) theory whose value is given in Appendix A. Equation (12)
may be referred as the generalized form of Tolman-Opphenheimer-Volkoff equation that
could help to illustrate systematic changes in the self-gravitating spherically symmetric
structure. We obtain a system of four differential Equations (8)–(10) and (12) which in-
volve non-linearity, containing seven unknown parameters (ν, χ, µ, P, Θ0

0, Θ1
1, Θ2

2), thus
this system is no more definite. We use systematic method [32] to close the above system
and determine the unknowns. For the field Equations (8)–(10), one can define the matter
variables as

µ̄(e f f ) = µ(e f f ) − σΘ0
0, P̄(e f f )

r = P(e f f ) + σΘ1
1, P̄(e f f )

⊥ = P(e f f ) + σΘ2
2. (13)
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It is obvious from the above terms that anisotropy within self-gravitating system is
induced by the source Θρ

η . This defines the effective parameter of anisotropy as

∆̄(e f f ) = P̄(e f f )
⊥ − P̄(e f f )

r = σ
(

Θ2
2 −Θ1

1

)
. (14)

It is noticeable here that the component of anisotropy disappears for σ = 0.

3. Gravitational Decoupling

In this section, we use gravitational decoupling via MGD approach to solve the
system (8)–(10). This method serves as a transformation of the field equations such that
the newly added factor Θρ

η supplies the kind of effective equations which may cause
the presence of pressure anisotropy in the interior of stellar object. The following metric
represents the solution (η, ξ, µ, P) corresponding to the perfect fluid as

ds2 = −eηdt2 +
1
ξ

dr2 + r2dθ2 + r2 sin2 θdϑ2, (15)

where η = η(r) and ξ = ξ(r) = 1− 2m
r , m is the Misner-Sharp mass of the corresponding

object. By imposing the geometrical transformations of linear form on the metric potentials,
one can determine the effects of source term Θρ

η on isotropic models as

η → ν = η + σ f , ξ → e−χ = ξ + σt, (16)

where the two geometric deformations t and f are offered to radial and temporal com-
ponents, respectively. The minimal geometric deformations ( f = 0, t→ t∗) in the above
expression guarantees only the effects of additional source in the radial component while
the temporal component remains preserved. Consequently, Equation (16) reduces to

η → ν = η, ξ → e−χ = ξ + σt∗, (17)

where t∗ = t∗(r). The characteristic feature of this approach is that the source includes the
quasi-decoupled system.

To workout the complex system, we divide the field equations into two simple systems.
Using the transformations (17) in the system (8)–(10), we obtain the first set corresponding
to σ = 0 as

8π
(

µ(e f f ) − T0(D)
0

)
= e−χ

(
χ′

r
− 1

r2

)
+

1
r2 , (18)

8π
(

P(e f f ) + T1(D)
1

)
= e−χ

(
ν′

r
+

1
r2

)
− 1

r2 , (19)

8π
(

P(e f f ) + T2(D)
2

)
= − e−χ

4

[
χ′ν′ − ν′2 − 2ν′′ +

2χ′

r
− 2ν′

r

]
, (20)

whereas the second set, which contains the source Θρ
η , becomes

8πΘ0
0 =

t∗′

r
+

t∗

r2 , (21)

8πΘ1
1 = t∗

(
ν′

r
+

1
r2

)
, (22)

8πΘ2
2 =

t∗

4

[
2ν′′ + ν′2 − ν′χ′ +

2ν′

r
− 2χ′

r

]
. (23)

The system (21)–(23) is analogous to the spherical stellar object having anisotropy with
material variables µ̄(e f f ) = Θ0

0, P̄(e f f )
r = −Θ1

1, P̄(e f f )
⊥ = −Θ2

2 express the geometry
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ds2 = −eνdt2 +
1
t∗

dr2 + r2dθ2 + r2 sin2 θdϑ2. (24)

However, Equations (21)–(23) are not typical field equations for anisotropic spher-
ical source as they differ by a single term 1

r2 and thus the matter components become

µ̄(e f f ) = Θ∗00 = Θ0
0 +

1
8πr2 , P̄(e f f )

r = Θ∗11 = Θ1
1 +

1
8πr2 , P̄(e f f )

⊥ = Θ∗22 = Θ2
2 = Θ∗33 = Θ3

3.
The MGD technique has therefore converted the complex system (8)–(10) into a set of
equations describing the isotropic fluid (µ(e f f ), P(e f f ), ν, χ) along with four unknowns
(t∗, Θ0

0, Θ1
1, Θ2

2) obeying the above anisotropic system. As a result, we have decoupled the
system (8)–(10) successfully.

The junction conditions are very significant to examine the stellar bodies. One can
determine the fundamental characteristics of a star via smooth matching of the exterior and
interior regions. In this case, MGD achieves the interior geometry expressed with the help
of following metric as

ds2 = −eνdt2 +
1(

1− 2m̃(r)
r

)dr2 + r2dθ2 + r2 sin2 θdϑ2, (25)

where the interior mass is m̃(r) = m(r)− σr
2 t∗(r). To match the inner and outer sectors of a

compact star smoothly, we take the general outer metric as

ds2 = −eνdt2 + eχdr2 + r2dθ2 + r2 sin2 θdϑ2. (26)

There are two fundamental forms of junction conditions from which the first one
([ds2]Σ = 0, where Σ is the hypersurface) yields

ν−(R) = ν+(R), e−χ+(R) = 1− 2M0

R + σt∗(R), (27)

where we have used ξ = e−χ − σt∗. The plus and minus signs represent outer and inner
geometries, respectively. Also, t∗(R) and M0 = m(R) represent the deformation and total
mass at the boundary r = R. Further, the second form ([Tρηwη ]Σ = 0) gives

P(e f f )(R) + σ
(

Θ1
1(R)

)
−
+
(

T1(D)
1 (R)

)
−
= σ

(
Θ1

1(R)
)
+
+
(

T1(D)
1 (R)

)
+

. (28)

Using Equation (27), the above equation becomes

P(e f f )(R) + σ
(

Θ1
1(R)

)
−
= σ

(
Θ1

1(R)
)
+

, (29)

which, in return, gives

P(e f f )(R) + σt∗(R)
8π

(
ν′

R +
1
R2

)
=

σh∗(R)
8πR2

(
R

R− 2M

)
, (30)

whereM is mass of the exterior geometry and h∗ denotes the exterior geometric defor-
mation in radial component for the Schwarzschild metric in the presence of Θρ

η (source)
given by

ds2 = −
(

1− 2M
r

)
dt2 +

1(
1− 2M

r + σh∗
)dr2 + r2dθ2 + r2 sin2 θdϑ2. (31)

The two Equations (27) and (30) provide the appropriate and adequate conditions for
discussing the relationship between the MGD inner and outer Schwarzschild spacetimes
included by Θρ

η . One may take the usual Schwarzschild solution, (i.e., h∗ = 0) as outer
geometry, then Equation (30) yields
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P̄(e f f )(R) ≡ P(e f f )(R) + σt∗(R)
8π

(
1
R2 +

ν′

R

)
= 0. (32)

4. Anisotropic Solutions

We take isotropic spherical solution in modified scenario to solve the field equations
corresponding to anisotropic matter configuraton by means of MGD approach. In order to
continue our analysis, we take the Krori-Barua solution [45] whose nature is non-singular.
This solution was originally developed in GR to discuss the evolution of compact stars,
but now we utilize it to construct solutions in modified theory which produce much
complicated effective physical quantities. In f (R, T, Q) framework, the solution takes
the form

eν = eBr2+C , (33)

eχ = ξ−1 = eAr2
, (34)

µ(e f f ) = − 1
8πr2

[
e−Ar2

(
1− 2Ar2

)
− 1
]
+ T0(D)

0 , (35)

P(e f f ) =
1

8πr2

[
e−Ar2

(
1 + 2Br2

)
− 1
]
− T1(D)

1 , (36)

where the unknowns A, B and C can be calculated by means of smooth matching. The
continuity of gtt, grr and gtt,r (metric components) between the inner and outer regions
takes the form

gtt = eBR
2+C = 1− 2M0

R , (37)

grr = e−AR
2
= 1− 2M0

R , (38)

∂gtt

∂r
= BReBR

2+C =
M0

R2 , (39)

which after solving simultaneously leads to

A =
1
R2 ln

(
R

R− 2M0

)
, B =

M0

R3

(
1− 2M0

R

)−1
, (40)

C = ln
(
R− 2M0

R

)
− M0

R

(
1− 2M0

R

)−1
, (41)

with compactness 2M0
R < 8

9 . At boundary, these equations guarantee consistency of the
solution (33)–(36) (which we have calculated for inner geometry) with the outer region and
will be modified undoubtedly after adding the additional source. Equations (17) and (33)
provide the radial and temporal metric components that will be used for the construction
of anisotropic solution, i.e., for σ 6= 0 in the inner geometry. The relation between source
Θρ

η and geometric deformation t∗ has been expressed through Equations (21)–(23). Further,
we study a particular compact star, namely 4U1820− 30 with mass M0 = 1.58± 0.06M⊙
and radiusR = 9.1± 0.4 km [46]. The graphical analysis of all physical attributes is done
by using this data.

Next, we make use of some constraints to develop two feasible solutions in the
following subsections.

4.1. Solution I

Here, we choose a constraint depending on Θ1
1 and calculate both t∗ as well as Θρ

η to
obtain the required solution. Equation (32) points out the compatibility of Schwarzschild
exterior geometry with interior spacetime as long as P(e f f )(R) + T1(D)

1 (R) ∼ σ
(
Θ1

1(R)
)
−.

The easiest choice is [32]
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P(e f f ) + T1(D)
1 = Θ1

1 ⇒ t∗ = ξ − 1
1 + ν′r

, (42)

where we have used Equations (19) and (22). Using this equation, we obtain

e−χ = (1 + σ)ξ − σ

1 + 2Br2 . (43)

The two Equations (33) and (43) contain the metric components which characterize the
Krori-Barua solution minimally deformed by Θρ

η . It is necessary to stress that the standard
isotropic solutions (33)–(36) can be found by taking σ → 0. The continuity of the first
fundamental form gives

ReBR
2+C = R− 2M, (44)

and
(1 + σ)ξ − σ

1 + 2BR2 = 1− 2M
R . (45)

The second fundamental form (P(e f f )(R) + T1(D)
1 (R)− σ

((
Θ1

1(R)
))
− = 0) together

with Equation (42) yields

P(e f f )(R) + T1(D)
1 (R) = 0 ⇒ A =

ln
(
1 + 2BR2)
R2 . (46)

Also, Equation (45) leads to the Schwarzschild mass as

2M
R =

2M0

R − σ

(
1− 2M0

R

)
+

σ

1 + 2BR2 . (47)

Inserting this in Equation (44), we have

eBR
2+C = (1 + σ)

(
1− 2M0

R

)
− σ

1 + 2BR2 . (48)

This equation gives the constant C in terms of B. The system of Equations (46)–(48)
offers necessary and sufficient limitations to do smooth matching between inner and outer
spacetimes. Hence, the anisotropic solution for the case (42) is constructed as

µ̄(e f f ) =
1

8πr2

[
e−Ar2

(
2Ar2 − 1

)
(1 + σ) + 1

]
+

1

8πr2(1 + 2Br2)
2

×
[
σ− 2σBr2 + 8πr2

(
1 + 4Br2 + 4B2r4

)
T0(D)

0

]
, (49)

P̄(e f f )
r =

1
8πr2

[
(1 + σ)

{
e−Ar2

(
2Br2 + 1

)
− 1
}
− 8πr2T1(D)

1

]
, (50)

P̄(e f f )
⊥ =

1
8πr2

[
e−Ar2

{
1 + 2Br2(1 + σ) + σBr4(B −A)− σAr2

}
− 1

− 8πr2T1(D)
1

]
− σ

8π(1 + 2Br2)

[
B + (B −A)

(
1 + Br2

)]
, (51)

∆̄(e f f ) =
σ

8πr2

(
e−Ar2 − 1

1 + 2Br2

)(
B2r4 −ABr4 −Ar2 − 1

)
. (52)

4.2. Solution II

In this case, we take another constraint to obtain second anisotropic solution. The
constraint is taken as

µ(e f f ) − T0(D)
0 = Θ0

0. (53)

Making use of Equations (18) and (21), we have

t∗′ +
t∗

r
− 1

r

[
e−Ar2(2Ar2−1) + 1

]
= 0, (54)
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which gives

t∗ =
a1

r
+ e−Ar2 − 1, (55)

where a1 is the constant of integration. The nature of a solution at the core of star should be
non-singular, thus we take a1 = 0 giving

t∗ = e−Ar2 − 1. (56)

One can achieve the matching conditions by implementing the same approach as for
the first solution given as

2(M−M0) + σR
(

e−Ar2 − 1
)
= 0, (57)

BR2 + C = ln
[

1− 2M0

R + σR
(

e−Ar2 − 1
)]

. (58)

Finally, the expressions of µ̄(e f f ), P̄(e f f )
r , P̄(e f f )

⊥ and ∆̄(e f f ) are

µ̄(e f f ) =
1

8πr2

[
(1 + σ)

{
e−Ar2

(
2Ar2 − 1

)
+ 1
}
+ 8πr2T0(D)

0

]
, (59)

P̄(e f f )
r =

1
8πr2

[
(1 + σ)

{
e−Ar2

(
2Br2 + 1

)
− 1
}
− 2σBr2 − 8πr2T1(D)

1

]
, (60)

P̄(e f f )
⊥ =

1
8πr2

[
e−Ar2

{
1 + 2Br2(1 + σ) + σ

(
B2r4 −ABr4 −Ar2

)}
− 1

− σr2
(

2B + B2r2 −ABr2 −A
)
− 8πr2T1(D)

1

]
, (61)

∆̄(e f f ) =
σ

8πr2

[
r2
(

e−Ar2 − 1
)(
B2r2 −ABr2 −A

)
− e−Ar2 − 4Br2 + 1

]
. (62)

4.3. Physical Interpretation of the Obtained Solutions

The mass of a sphere can be determined as

m(r) = 4π
∫ R

0
r2µ̄(e f f )dr. (63)

where the quantity µ̄(e f f ) describes the energy density in f (R, T, Q) gravity, whose value is
provided in Equations (49) and (59) in case of the solutions I and II, respectively. The mass
of anisotropic star can be obtained by solving this equation numerically with condition
at the center as m(0) = 0. The compactness factor (ζ(r)) is another significant feature of
self-gravitating system. It is defined as the ratio of mass and radius of a stellar structure.
Buchdahl [47] found the maximum value of ζ(r) by matching the inner static spherical
spacetime with outer Schwarzschild solution. For a stable star, this limit is defined as
ζ(r) = m

R < 4
9 , where m(r) = R

2 (1− e−χ). The redshift (D(r)) of a self-gravitating
body measures the increment in wavelength of electromagnetic diffusion because of the
gravitational pull practiced by that body, which is given as D(r) = 1√

1−2ζ
− 1. Buchdahl

confined its value at the surface of star as D(r) < 2 for a perfect matter distribution.
However, its upper bound becomes 5.211 for anisotropic configured stellar bodies [48].

The energy conditions are used to check the existence of ordinary matter in the interior
and viability of the resulting solutions. These constraints are followed by the parameters
governing the inner region of the stellar objects which are made of ordinary matter. We
can categorize these bounds into dominant, strong, weak and null energy conditions. The
energy conditions in f (R, T, Q) theory turn out to be

µ̄(e f f ) ≥ 0, µ̄(e f f ) + P̄(e f f )
r ≥ 0,

µ̄(e f f ) + P̄(e f f )
⊥ ≥ 0, µ̄(e f f ) − P̄(e f f )

r ≥ 0,
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µ̄(e f f ) − P̄(e f f )
⊥ ≥ 0, µ̄(e f f ) + P̄(e f f )

r + 2P̄(e f f )
⊥ ≥ 0. (64)

The stability of a stellar object is found to be a key factor in astrophysics to analyze
a feasible system. We examine stability by taking the causality condition according to
which the square of sound speed within the geometrical structure must lie in the range
[0, 1], i.e., 0 ≤ v2

s < 1. For anisotropic matter configuration, the difference between sound
speeds in tangential (v2

s⊥ = dP⊥
dµ ) and radial directions (v2

sr =
dPr
dµ ) can be used to check the

stable region of compact structures as | v2
s⊥ − v2

sr |< 1 [49]. The term v2
s = v2

sr + v2
s⊥ also

guarantees stability of the resulting solution if it is less than one throughout the structure.
An adiabatic index (Γ) also plays a crucial role in analyzing the stability of compact stars.
For a stable stellar structure, the value of Γ should not be less than 4

3 [50–52]. Here, Γ(e f f )

can be expressed as

Γ(e f f ) =
µ̄(e f f ) + P̄(e f f )

r

P̄(e f f )
r

(
dP̄(e f f )

r

dµ̄(e f f )

)
. (65)

In order to discuss physical viability and stability of the obtained solutions, we take
the following model [15]

f (R, T, RρηTρη) = R + αRρηTρη , (66)

where α works as the coupling constant. Here, α can be positive or negative. For its
positive values, the matter variables such as energy density and radial/tangential pressures
corresponding to both resulting solutions do not show acceptable behavior. Thus, we are
left only with negative values of α and we take it as −0.3 to analyze physical nature of the
solution I and fix the constant A calculated in Equation (46). The remaining two constants
B and C are given in Equations (40) and (41). Figure 1 (left) shows mass of the geometry (6)
for σ = 0.1 and 0.9. It is observed that mass increases with rise in the decoupling parameter
σ. The other two plots of Figure 1 point out that the ranges of compactness factor and
redshift parameter agree with their respective bounds.
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Figure 1. Graphical analysis of mass, compactness and redshift parameters corresponding to σ = 0.1
(pink) and σ = 0.9 (green) for solution I.

For an astrophysical object, the value of material variables (such as energy density and
radial as well as tangential pressures) should be finite, maximum and positive at the center.
Further, their behavior towards the star’s boundary must be monotonically decreasing.
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One can analyze from Figure 2 (upper left) that the energy density involving f (R, T, Q)
corrections is maximal at the center while shows linearly decreasing behavior towards
boundary. It is noted that the increment in σ also decreases energy density. The graphical
nature of P̄(e f f )

r and P̄(e f f )
⊥ is shown similar to each other for the parameter α. By increasing

the value of r, both ingredients decrease as well as there is a gradual linear increment in
P̄(e f f )
⊥ with rise in σ as compared to P̄(e f f )

r . The factor ∆̄(e f f ) in Figure 2 (lower right) shows
positive behavior and increases with the increase in the decoupling parameter σ. This
indicates that σ generates stronger anisotropy in the structure. The values of radial and
tangential pressures are equal at the center thus anisotropy disappears at that point. The
system will be considered viable if it meets all the energy bounds (64). Figure 3 shows
that our developed anisotropic solution I is physically viable as all energy conditions are
satisfied. Figure 4 demonstrates that the solution I (49)–(52) fulfills stability criteria for all
values of the decoupling parameter.

Figure 2. Graphical analysis of µ̄(e f f ), P̄(e f f )
r , P̄(e f f )

⊥ and ∆̄(e f f ) versus r and σ for solution I.

Now we explore physical features of the second solution by taking same value of
α as for solution I. The constants A and B are presented in Equations (40) and (58).
Figure 5 (upper left) indicates that the mass of self-gravitating body shows decreasing
behavior as the parameter σ increases. The parameters D(r) and ζ(r) also meet the desired
limits as can be seen from Figure 5. The physical behavior of µ̄(e f f ), P̄(e f f )

r , P̄(e f f )
⊥ and

∆̄(e f f ) is shown in Figure 6. When one increases the value of σ, µ̄(e f f ) and both effective
pressure components show increasing and decreasing behavior, respectively. The lower
right plot in Figure 6 indicates that ∆̄(e f f ) shows increasing behavior with the rise in σ
which produces stronger anisotropy in the system. Figure 7 guarantees the regular behavior
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of both solutions as dµ̄(e f f )

dr < 0, dP̄(e f f )
r
dr < 0 and P̄(e f f )

⊥
dr < 0 everywhere. Figure 8 shows

that all energy constraints (64) for solution II are satisfied and hence it is physically viable.
Figure 9 reveals that our second solution (59)–(62) is also stable everywhere. Figure 10 also
confirms stability of both the developed solutions.

Figure 3. Graphical analysis of energy bounds versus r and σ for solution I.
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Figure 4. Graphical analysis of adiabatic index and |v2
s⊥ − v2

sr| versus r and σ for solution I.
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Figure 5. Graphical analysis of mass, compactness and redshift parameters corresponding to σ = 0.1
(pink) and σ = 0.3 (green) for solution II.

Figure 6. Cont.
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Figure 6. Graphical analysis of µ̄(e f f ), P̄(e f f )
r , P̄(e f f )

⊥ and ∆̄(e f f ) versus r and σ for solution II.

Figure 7. Graphical analysis of dµ̄(e f f )

dr , dP̄(e f f )
r
dr and P̄(e f f )

⊥
dr versus r and σ corresponding to solution I

(left) and solution II (right).
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Figure 8. Graphical analysis of energy bounds versus r and σ for solution II.

Figure 9. Graphical analysis of adiabatic index and |v2
s⊥ − v2

sr| versus r and σ for solution II.
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Figure 10. Graphical analysis of v2
sr + v2

s⊥ versus r and σ for solution I (left) and solution II (right).

5. Conclusions

This paper is devoted to studying anisotropic spherical solutions of self-gravitating
object through gravitational decoupling technique in f (R, T, Q) theory. Here, we have used
a linear model R + αQ of this curvature-matter coupled gravity. Two anisotropic solutions
have been obtained by adding an extra term Θρη in the isotropic solution. We have taken
the Krori-Barua ansatz and determined unknown quantities by means of matching criteria.
There are four unknown quantities in the second sector (21)–(23) which are reduced by
implementing an extra constraint on Θρη .

We have utilized two constraints which equal the effective pressure and energy density
of the original isotropic distribution and additional anisotropic source to develop solu-
tions I and II, respectively. The physical behavior of state variables (µ̄(e f f ), P̄(e f f )

r , P̄(e f f )
⊥ ),

anisotropy (∆̄(e f f )) and energy conditions (64) are examined for α = −0.3 to assess the
acceptance of these solutions. It is found that our both solutions fulfil the needed limit
for compactness and redshift. It is obtained that stellar structure corresponding to the
solution I becomes more dense for larger values of the decoupling parameter σ, whereas
it becomes less dense for the solution II. The stability of the resulting solutions has also
been examined through cracking approach and the adiabatic index. We have found that
both solutions meet the stability criteria and also physically viable as they fulfil the energy
bounds. It is worth mentioning here that our resulting solutions are physically viable as
well as stable for larger values of σ contrary to GR and f (G) gravity [33,34]. Thus, this
technique in f (R, T, Q) gravity provides more suitable results. Our results are consistent
with f (R) theory [36]. Finally, we would like to mention here that all these findings reduce
to GR when α = 0 in the model (66).
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Appendix A

The matter components involving modified corrections appearing in Equations (8)–(10) are

T0(D)
0 =

1
8π( fR + µ fQ)

[
µ

{
fQ

(
ν′χ′

4eχ
− ν′

reχ
+

ν′2

2eχ
− ν′′

2eχ
− 1

2
R
)
+ f ′Q

(
ν′

2eχ

+
1

reχ
− χ′

4eχ

)
+

f ′′Q
2eχ
− 2 fT

}
+ µ′

{
fQ

(
ν′

2eχ
− χ′

4eχ
+

1
reχ

)
+

f ′Q
eχ

}

+
fQµ′′

2eχ
+ P

{
fQ

(
3χ′2

4eχ
− χ′′

2eχ
− 2

r2eχ

)
− f ′Q

(
5χ′

4eχ
− 1

reχ

)
+

f ′′Q
2eχ

}

+ P′
{

fQ

(
1

reχ
− 5χ′

4eχ

)
+

f ′Q
eχ

}
+

fQP′′

2eχ
+

R fR
2

+ f ′R

(
χ′

2eχ
− 2

reχ

)
−

f ′′R
eχ
− f

2

]
,

T1(D)
1 =

1
8π( fR + µ fQ)

[
µ

(
fT −

fQν′2

4eχ
+

f ′Qν′

4eχ

)
+

fQµ′ν′

4eχ
+ P

{
fT + fQ

(
ν′′

eχ

+
ν′2

2eχ
− χ′2

eχ
− 3χ′

reχ
− 3ν′χ′

4eχ
+

2
r2eχ

+
1
2

R
)
− f ′Q

(
ν′

4eχ
+

2
reχ

)}
− P′ fQ

(
ν′

4eχ
+

2
reχ

)
+

f
2
− R fR

2
− f ′R

(
ν′

2eχ
+

2
reχ

)]
,

T2(D)
2 =

1
8π( fR + µ fQ)

[
µ

(
fT −

fQν′2

4eχ
+

f ′Qν′

4eχ

)
+

fQµ′ν′

4eχ
+ P

{
fT + fQ

(
χ′′

2eχ

− 3χ′2

4eχ
+

ν′

2reχ
− χ′

2reχ
− 2

r2 +
1

r2eχ
+

1
2

R
)
+ f ′Q

(
3χ′

2eχ
− 3

reχ
− ν′

4eχ

)
−

f ′′Q
eχ

}
+ P′

{
fQ

(
3χ′

2eχ
− 3

reχ
− ν′

4eχ

)
−

2 f ′Q
eχ

}
−

fQP′′

eχ
− R fR

2
+

f
2

+ f ′R

(
χ′

2eχ
− ν′

2eχ
− 1

reχ

)
−

f ′′R
eχ

]
.

The quantity Ω in Equation (12) is given as

Ω =
2(

R fQ + 2(8π + fT)
)[ f ′Qe−χP

(
1
r2 −

eχ

r2 +
ν′

r

)
+ fQe−χP

(
ν′′

r
− ν′

r2 −
χ′

r2

− ν′χ′

r
− 2

r3 +
2eχ

r3

)
+ P′

{
fQe−χ

(
ν′χ′

8
− ν′′

8
− ν′2

8
+

χ′

2r
+

ν′

2r
+

1
r2 −

eχ

r2

)
+

3
4

fT

}
+ P f ′T − µ f ′T − µ′

{
3 fT

2
+

fQe−χ

8

(
ν′2 − ν′χ′ + 2ν′′ +

4ν′

r

)}
+

(
1
r2 −

e−χ

r2 −
ν′e−χ

r

)(
µ′ fQ + µ f ′Q

)]
.

The adiabatic index corresponding to solutions I and II are

Γ(e f f ) = −
[(

2Br2(πα
(
3Ar2 − 7

)
− σ− 1

)
+ 4παAr2 + (σ + 1)eAr2

+ 2παB2r4

− σ− 1
)(

eAr2(
8B3r6 + 4B2r4(3− 2σ) + 6Br2(σ + 1) + σ + 1

)
−
(
2Br2

+ 1
)3(− 12παA3r6 + 2A2r4(3πα

(
Br2 + 2

)
− σ− 1

)
+Ar2(18παB2r4

− 28παBr2 + σ + 1
)
− 18παB2r4 + σ + 1

))]−1[
2r2(2Br2 + 1

)(
2παA2r4
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×
(
3Br2 + 2

)
+Ar2(2παB2r4 − 2Br2(10πα + σ + 1)− σ− 1

)
+ (σ + 1)

× eAr2 − 2παB2r4 − σ− 1
)(
− 6παA2(2Br3 + r

)2
+ B

(
− 18πα− 2Br2

×
(
31πα− σeAr2

+ 2σ + 2
)
+ 3σeAr2

+ 40παB3r6 − 4B2r4(8πα + σ + 1)

− σ− 1
)
+A

(
2Br2 + 1

)2(2π
(
α + 3αBr2)− σ− 1

))]
,

Γ(e f f ) =

[(
12παA3r6 + 2A2r4(− 3πα

(
Br2 + 2

)
+ σ + 1

)
−Ar2(18παB2r4

− 28παBr2 + σ + 1
)
+ (σ + 1)eAr2

+ 18παB2r4 − σ− 1
)(

2Br2(πα

×
(
3Ar2 − 7

)
− σ− 1

)
+ eAr2(

2Br2σ + σ + 1
)
+ 4παAr2 + 2παB2r4

− σ− 1
)]−1[

2r2(6παA2r2 +A
(
− 2π

(
α + 3αBr2)+ σ + 1

)
+ B

(
− σ

× eAr2 − 2πα
(
5Br2 − 9

)
+ σ + 1

))(
2παA2r4(3Br2 + 2

)
+Ar2(2παB2r4

− 2Br2(10πα + σ + 1)− σ− 1
)
+ (σ + 1)eAr2 − 2παB2r4 − σ− 1

)]
.

The value of |v2
st − v2

sr| corresponding to solutions I and II become

|v2
st − v2

sr| =
∣∣∣∣[(2Br2 + 1

)3(− 12παA3r6 + 2A2r4(3πα
(
Br2 + 2

)
− σ− 1

)
+Ar2(18παB2r4 − 28παBr2 + σ + 1

)
− 18παB2r4 + σ + 1

)
− eAr2

×
(
8B3r6 + 4B2r4(3− 2σ) + 6Br2(σ + 1) + σ + 1

)]−1[(
2Br2 + 1

)
×
(
−B2r4(− 16πα + (16πα− 4σ + 3)eAr2

+ 5σ
)
+Ar2(4πα + Br2

×
(
16πα + eAr2 − 3σ

)
+ 4B4r8σ + 8B3r6σ + B2r4(16πα + σ)− σ

)
− 4Br2(4πα− σ)

(
eAr2 − 1

)
− r4σ

(
Br2 + 1

)(
2ABr2 +A

)2
+ (4πα

− σ)
(
1− eAr2)− 4B4r8σ− 4B3r6σ

)]∣∣∣∣,
|v2

st − v2
sr| =

∣∣∣∣[12παA3r6 + 2A2r4(− 3πα
(
Br2 + 2

)
+ σ + 1

)
−Ar2(18παB2r4

− 28παBr2 + σ + 1
)
+ (σ + 1)eAr2

+ 18παB2r4 − σ− 1
]−1[

σ
(
A2(Br6

+ r4)+ eAr2(ABr4 −B2r4 − 1
)
+A

(
−B2r6 −Br4 + r2)+ B2r4 + 1

)
+ 4πα

(
−Ar2 + eAr2 − 1

)]∣∣∣∣.
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