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Abstract. To provide insurance on the resistance of a system against side-channel
analysis, several national or private schemes are today promoting an evaluation
strategy, common in classical cryptography, which is focussing on the most powerful
adversary who may train to learn about the dependency between the device behaviour
and the sensitive data values. Several works have shown that this kind of analysis,
known as Template Attacks in the side-channel domain, can be rephrased as a
classical Machine Learning classification problem with learning phase. Following the
current trend in the latter area, recent works have demonstrated that deep learning
algorithms were very efficient to conduct security evaluations of embedded systems
and had many advantages compared to the other methods. Unfortunately, their
hyper-parametrization has often been kept secret by the authors who only discussed
on the main design principles and on the attack efficiencies. This is clearly an
important limitation of previous works since (1) the latter parametrization is known
to be a challenging question in Machine Learning and (2) it does not allow for the
reproducibility of the presented results. This paper aims to address these limitations
in several ways. First, completing recent works, we propose a comprehensive study of
deep learning algorithms when applied in the context of side-channel analysis and we
discuss the links with the classical template attacks. Secondly, we address the question
of the choice of the hyper-parameters for the class of multi-layer perceptron networks
and convolutional neural networks. Several benchmarks and rationales are given in
the context of the analysis of a masked implementation of the AES algorithm. To
enable perfect reproducibility of our tests, this work also introduces an open platform
including all the sources of the target implementation together with the campaign
of electromagnetic measurements exploited in our benchmarks. This open database,
named ASCAD, has been specified to serve as a common basis for further works on
this subject. Our work confirms the conclusions made by Cagli et al. at CHES 2017
about the high potential of convolutional neural networks. Interestingly, it shows that
the approach followed to design the algorithm VGG-16 used for image recognition
seems also to be sound when it comes to fix an architecture for side-channel analysis.
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1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical environment
of a cryptosystem to recover some leakage about its secrets. It is often more efficient
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than a cryptanalysis mounted in the so-called black-box model where no leakage occurs.
In particular, continuous side-channel attacks in which the adversary gets information
at each invocation of the cryptosystem are especially threatening. Common attacks
as those exploiting the running-time, the power consumption or the electromagnetic
radiations of a cryptographic computation fall into this class. Many implementations of
block ciphers have been practically broken by continuous side-channel analysis — see for
instance [KJJ99,BCO04,Mes00,MPO05] — and securing them has been a long-standing
issue for the embedded systems industry.

Side channel attacks exploit information leaked from the physical implementations
of cryptographic algorithms. Since this leakage (e.g. the power consumption or the
electromagnetic emanations) depends on some small part of the internally used secret key,
the adversary may perform an efficient key-recovery attack to reveal this sensitive data.
Amongst the Side-Channel Attacks (SCA), two classes may be distinguished:

• The set of so-called profiling SCA attacks which are actually the most powerful
ones since they assume that the adversary may priorly use an open copy of the final
target to precisely tune all the parameters of the attack. A profiling SCA consists
of two steps. First, the adversary procures a copy of the target device and uses it
to characterize the physical leakage. Second, he performs a key-recovery attack on
the target device. This category of attacks includes Templates Attacks [CRR02] and
Stochastic models (a.k.a. Linear Regression Analysis) [DPRS11,Sch08,SLP05].

• The set of so-called non-profiling SCA which corresponds to a much weaker adversary
who has only access to the physical leakage captured on the target device. To
recover the secret key used, he performs some statistical analyses to detect the
dependency between the leakage measurements and this sensitive variable. This
set of non-profiling attacks includes, among others, Differential Power Analysis
(DPA) [KJJ99], Correlation Power Analysis (CPA) [BCO04] and Mutual Information
Analysis (MIA) [GBPV09,BGP+11].

A line of works has studied new profiling attacks based on Machine Learning (ML).

1.1 Related Works.

Several works have investigated the application of Machine Learning (ML) techniques
to defeat both unprotected [BLR13, HZ12, HGM+11, LBM14, LPB+15] and protected
cryptographic implementations [GHO15,LMBM13]. These contributions focus mainly on
two techniques: the Support Vector Machine (SVM) [CV95,WW98] and Random Forest
(RF) [RM08]. Practical results on several datasets have demonstrated the ability of these
attacks to perform successful key recoveries. Besides, authors in [HZ12] have shown that the
SVM-based attack outperforms the Template Attack when applied on highly noisy traces
while [LPB+15] have experimentally argued that ML (and RF in particular) become(s)
interesting if the amount of observations available for profiling is small while the dimension
of the latter observations is high. Following the current trend in the Machine Learning
area, recent works have paid more attention to Deep Learning (DL) algorithms like multi-
layer perceptron networks (MLP) [MDM16, MHM13, MMT15] or convolutional neural
networks (CNN) [CDP17,MPP16]. In the series of papers [MDM16,MHM13,MMT15],
Martinasek and co-authors have compared methods based on MLP with other (more
classical) approaches such as Templates Attacks or Stochastic Attacks. The target is an
unprotected implementation of the AES-128 algorithm running on a PIC 8-bit micro-
controller. The hyper-parameters of the MLP are given together with some partial
information about the training. These studies show that techniques coming from Machine
Learning theory are valuable alternatives to the original profiling attacks published in
[CRR02] and even often outperform them. They moreover go further by showing that
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they can be applied to measurements with very high dimension (while e.g. Templates
Attacks are difficult to apply when the measurements dimension is greater than 100) and
are robust to signal deformation like jittering (for CNN). The counterpart of the great
efficiency of these attacks is that they are difficult to parametrized which has slowed down
their deployment in the security evaluation industry. Moreover, while the papers present
promising attack results, they do not give precise information about the parametrization
of the algorithms, nor about their training. This is an important limitation which does not
allow for the reproducibility of the analyses and hence hampers the development of the
Deep Learning approach in the embedded security community. More generally, a common
framework to study and compare the effectiveness of Machine Learning methods against
embedded implementations of cryptographic algorithms is today missing.

1.2 Contributions.

In this paper, our main objective is to conduct a comprehensive and in-depth study of the
application of Deep Learning theory in the context of side-channel attacks. In particular,
we discuss several parametrization options and we present a large variety of benchmarks
which have been used to either experimentally validate our choices or to help us to take the
adequate decision.1 The methodologies followed for the hyper-parameters’ selection may be
viewed as a proposal to help researchers to make their own choice for the design of new deep
learning models. For most of the final choices made for the configuration of our models,
we were not able to get a formal explanation and hence we of course do not claim that
they are optimal. Since the current state of Machine Learning theory does not yet provide
clear foundations to conduct such analyses, we think that having methodologies (even ad
hoc) is a first necessary step which opens the way for further research in this domain. Our
study also shows that convolutional neural networks are almost as efficient as multi-layer
perceptron networks in the context of perfectly synchronized observations, and outperform
them in presence of desynchronization/jittering. This suggests that CNN models should be
preferred in the context of SCA (even if they are more difficult to train). When it comes
to choose a base architecture for the latter models, our study shows that, surprisingly, the
16-layer network VGG-16 used by the VGG team in the ILSVRC-2014 competition [SZ14]
is a sound starting point (other public models like ResNet-50 [HZRS16] or Inception-
v3 [SVI+16] are shown to be inefficient against masked implementations). It allows us to
design architectures which, after training, are better than classical Templates Attacks even
when combined with dimension reduction techniques like Principal Component Analysis
(PCA) [Pea01]. By training (with 75 epochs) our CNNbest architecture on a subset of
50, 000 700-dimensional traces of ASCAD database, we outperformed the other tested
models on highly desynchronized traces while we achieved one of the best performances on
small desynchronized traces. Figure 1 gives a brief summary of our conclusions. MLPbest

corresponds to the most efficient multi-linear perceptrons networks we succeed to train
on ASCAD database, and the template attack has been preceded by a PCA to reduce
the dimension of the input traces from 700 to 50. A desynchronization amount of Nmax

signifies that each trace (for the training and the attack) has been randomly shifted by
δ ∈ [0..Nmax] points to the left. More detailed descriptions of this benchmark and of the
testing framework are given in Sect(s). 3, 4 and 5.

All the benchmarkings have been done with the same target (and database) which
corresponds to an AES implementation secured against first order side-channel attacks and

1Some libraries (such as hyperopt or hyperas, [BYC13]) could have been tested to automatize the
search of accurate hyper-parameters in pre-defined sets. However, since they often perform a random
search of the best parameters ( [BB12]), they do not allow studying the impact of each hyper-parameter
independently of the others on the side-channel attack success rate. Moreover, they have been defined to
maximize classical machine learning evaluation metrics and not SCA ranking functions which require a
batch of test traces.
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Figure 1: Mean ranks of the best models for a desynchronization amount in {0, 50, 100}.

developed in assembly for an ATMega8515 component. A signal-to-noise characterization
has been done to validate that there is no first-order leakage. This project has been
published on [ANS18b]. To enable perfect reproducing of our experiments and benchmarks,
we also chose to publish the electromagnetic measurements acquired during the processing
of our target AES implementation (available in [ANS18a]) together with example Python
scripts to launch some initial training and attacks based on these traces. We think that
this database may serve as a common basis for researchers willing to compare their new
architectures or their improvements of existing models.

2 Preliminaries

2.1 Notations

Throughout this paper we use calligraphic letters as X to denote sets, the corresponding
upper-case letter X to denote random variables (random vectors ~X if with an arrow) over
X , and the corresponding lower-case letter x (resp. ~x for vectors) to denote realizations
of X (resp. ~X). Matrices will be denoted with bold capital letters. The i-th entry of a
vector ~x is denoted by ~x[i], while the i-th observation of a random variable X is denoted
by xi. The probability mass function (aka the probability distribution function, pdf for
short) of a discrete random variable ~X will be denoted by f ~X

. It is defined for any possible
realization ~x of ~X by f ~X

(~x) = P[ ~X = ~x]. The symbol E[ ] denotes the expected value, and
might be subscripted by a random variable EX [ ], or by a probability distribution EfX

[ ],
to specify under which probability distribution it is computed. Side-channel traces will be
viewed as discrete realizations of a random column vector ~L with values in [0, ω]D where ω
depends on the vertical resolution of the oscilloscope used for the acquisitions (usually, we
have ω ∈ {8, 10, 12}). During their acquisition, a target sensitive variable Z = ϕ(P, K) is
handled, where P denotes some public variable, e.g. a plaintext chunk, and K the part of
a secret key the attacker aims to retrieve. The value assumed by such a variable is viewed
as a realization z ∈ Z = {z1, z2, . . . , z|Z|} of a discrete finite random variable Z. We will
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sometimes represent the values zj ∈ Z via the so-called one-hot encoding representation,
assigning to zj a |Z|-dimensional vector, with all entries equal to 0 and the j-th entry
equal to 1: zj → ~zj = (0, . . . , 0, 1

︸︷︷︸

j

, 0, . . . , 0). Under this notation, the random variable

Z turns into a random vector ~Z.

2.2 Side-Channel Analysis

Side-Channel Analysis (SCA) aims at exploiting noisy observations ~L of the processing of
an algorithm to recover its secret parameter. When the SCA adversary has the ability to
use an open device (i.e. a device on which he can control, at least partially, all the inputs
of the algorithm, including the secret parameters), a particular class of attacks named
profiling may be executed.

2.2.1 Profiling SCA.

A profiling SCA is composed of two phases: a profiling (or characterization, or training)
phase, and an attack (or matching) phase.

During the profiling step, the attacker may construct what is called in Machine Learning
language a generative model2 [Bis06], computing for every possible k ∈ K an estimation ĝk

of the following conditional probability distribution function:

gk : (~ℓ, p) 7→ P[~L = ~ℓ|(P, K) = (p, k)] . (1)

The estimation ĝk is processed on a profiling set Dprofiling
.
= {~ℓi, pi, ki}i=1,...,Np

of size
Np, which is a set of traces ~ℓi acquired under known guessable chunks pi and ki of the
cryptographic algorithm inputs. In the rest of this paper, the set of traces is denoted by L,
while the set of corresponding inputs is denoted by Y.

Remark 1. In cases where the SCA targets a particular processing in the form ϕ(P, K),
the probability in the right-hand side of (1) may w.l.g. be rewritten P[~L = ~ℓ|ϕ(P, K) = z]
and the profiling set may be rewritten Dprofiling

.
= {~ℓi, zi}i=1,...,Np

with L = {~ℓi; i 6 Np}
and Y = {zi; i 6 Np}.

During the attack step, the attacker gets a new attack set Dattack
.
= {~ℓi, pi}i=1,...,Na

for which the secret parameter, say k⋆, is fixed but unknown. His goal is to recover the
latter key. For such a purpose, the attacker who built a generative model must decide
which of the pdf estimations ĝk, k ∈ K, is the most likely knowing the attack set. It is well
known that, under realistic assumptions on the distributions’ nature, the most efficient
way to make such a decision is to follow a Maximum Likelihood strategy which amounts to
estimate the following likelihood ~dNa

[k] for every key candidate k ∈ K, and then to select
the key candidate that maximizes it:

~dNa
[k] =

Na∏

i=1

P[(P, K) = (pi, k) | ~L = ~ℓi] =
Na∏

i=1

P[~L = ~ℓi | (P, K) = (pi, k)]

f~L
(~ℓi)

× fP,K(pi, k),

(2)
where (2) is obtained via Bayes’ Theorem under the hypothesis that acquisitions are
independent.3 The estimation of (2) is simply done by replacing the probabilities P[~L =
~ℓi|(P, K) = (pi, k)] in the right-hand term by their estimations ĝk(~ℓi, pi). The vector ~dNa

is called scores vector and its kth coordinate is the score corresponding to key candidate k.
2The name generative is due to the fact that it is possible to generate synthetic traces by sampling

from such probability distributions.
3In Templates Attacks the profiling set and the attack set are assumed to be different, namely the

traces ~ℓi involved in (2) have not been used for the profiling.
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2.2.2 SCA Efficiency.

As it is classical in the context of side-channel analysis (see e.g. [SMY06]), the efficiency
of an attack at order o will be defined in this paper as the minimum size Na of the attack
set which is needed to ensure that the attack succeeds in ranking the correct key among
the o first likely ones. We will implicitly assume that the size Np of the profiling set is
fixed but sufficiently high. Clearly, for our definition of the efficiency, the more accurate
the estimations of (1), the more efficient the attack step. The latter accuracy therefore
plays a central role and we shall come back to this point in Section 2.4.

2.2.3 Leakage Dimensionality Issue.

The potentially huge dimensionality of ~L may make the estimation of (1) a very complex
problem. To circumvent it, the adversary usually priorly exploits some statistical tests (e.g.
SNR or T-Test) and/or dimensionality reduction techniques (e.g. Principal Component
Analysis [Pea01], Linear Discriminant Analysis [Fis36], Kernel Discriminant Analysis
[CDP16]) to select points of interest or an opportune combination of them. Then, denoting
ε(~L) the result of such a dimensionality reduction, the attack is performed as described
previously with the simple difference that ~L and ~ℓi are respectively replaced by ε(~L) and
ε(~ℓi) in (1) and (2).

2.2.4 (Gaussian) Template Attacks.

The most popular way adopted until now to estimate the conditional probability (1) is the
one that led to the well-established Gaussian Template Attack [CRR02]. It assumes that
~L | (P, K) (or equivalently ε(~L) | (P, K) if a dimensionality reduction has been priorly
applied) has a multivariate Gaussian distribution, and estimates the mean vector ~µp,k and
the covariance matrix Σp,k for each possible (p, k) ∈ P ×K (i.e. the so-called templates).
In this way the pdf (1) is approximated by the Gaussian pdf f~µp,k,Σp,k

. So, the Gaussian
Template Attack is a strategy that makes use of a generative model. The same multivariate
Gaussian assumption is the one that is made in Quadratic Discriminant Analysis, which is
a well-known generative strategy in the Machine Learning literature [Fis36] to perform
classification.

2.3 Machine Learning and Deep Learning

In Machine Learning theory, the problem of estimating P[~L | (P, K) = (p, k)], for some
(p, k) ∈ Y with Y .

= P ×K, is known as a prediction problem (a.k.a. generation problem),
while the estimation of P[(P, K) = (p, k) | ~L] is referred to as a classification problem.
In [LT16], the authors recall that the former pdf P[~L | (P, K) = (p, k)] “often has many
simplifying features enabling accurate approximation, because it follows from some simple
physical law or some generative model with relatively few free parameters (for example,
its dependence on (p, k) may exhibit symmetry, locality and/or be of a simple form such
as the exponential of a low-order polynomial). In contrast, the pdf P[(P, K) = (p, k) | ~L]
tends to be more complicated; [roughly speaking because] it makes no sense to speak of
symmetries or polynomials involving a pair of discrete variables.” Fortunately, the complex
pdf is determined by the hopefully simpler one via Bayes’ Theorem:

P[~L | (P, K) = (p, k)] =
P[(P, K) = (p, k) | ~L]× f~L

f(P,K)(p, k)
.

Consequently, the both problems are linked. In particular to solve a classification problem
one may or not priorly consider the prediction problem, constructing a generative model
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as it is done in Gaussian Template Attacks. Otherwise a discriminative model can be
sufficient: it consists in directly address the classification problem, i.e. directly estimate
P[(P, K) = (p, k) | ~L] without making use of the Bayes’ inversion [Bis06]. If discriminative
models have to be preferred to generative ones this is a widely debated issue in Machine
Learning communities.

Deep Learning, and in particular deep neural networks, are nowadays the privileged
tool to address the classification problem, and they can be exploited in a discriminative
way. In such a case, which corresponds to our choice, they aim at directly constructing
an approximation ĝ~L,P

of the function ~ℓ, p 7→ (P[(P, K) = (p, k) | ~L = ~ℓ])k∈K. The

classification of a new leakage ~ℓ observed for an input p is done afterwards by processing
~y = ĝ~L,P

(~ℓ, p) and by choosing the key candidate k̂ (or equivalently the label in the

formalism of Machine Learning) such that k̂ = argmaxk∈K ~y[k]. If the key-discrimination
is done from several, say Na, pairs (~ℓi, pi) then the maximum likelihood approach is
followed as in (2):

~dNa
[k] =

Na∏

i=1

~yi[k] , (3)

where ~yi denotes the output of (the model function) ĝ~L,P
input with the pair (~ℓi, pi). It

may be checked that (3) is a simple rewriting of (2) obtained by replacing the conditional
probability P[(P, K) = (pi, k) | ~L = ~ℓi] by its approximation ~yi[k] = ĝ~L,P

(~ℓi, pi)[k].

Remark 2. In the context of side-channel analysis against block cipher implementations, it
is common to label the observations/traces by an appropriate function ϕ(p, k) instead of
(p, k) (and both labelling are equivalent when the observations exactly corresponds to the
processing of ϕ(·) since p is assumed to be known). It will be the case for the database
used in the rest of the paper where ϕ(·) corresponds to the AES sbox. This leads to define
ĝ~L,P

as the approximation of the function ~ℓ, p 7→ (P[ϕ(p, K) = z | ~L = ~ℓ])z∈Im(ϕ) with
Im(ϕ) denoting the image set of ϕ. The output of the model function ĝ~L,P

input with

(~ℓ, p) is hence a vector ~y′ indexed by the values z = ϕ(p, k) for k ranges over K. To build
a second vector ~y indexed by the key candidates k it suffices to process ~y[k] = ~y′[ϕ(p, k)]
for every k ∈ K.

Remark 3. Another formulation of the classification problem could consist in directly
looking for an estimation of the pdf P[K | ~L, P ]: the deep neural networks will here
be trained to classify the key candidates knowing the public input of the cryptographic
primitive and the information leakage. However, even if this formulation may seem more
natural (it perfectly matches the problem we want to resolve), it implies that the deep
neural networks must not only recover the statistical dependency between the values of
the manipulated data and the leakage, but also the function that links it to the key (e.g.
the function ϕ−1(·, P )). Since the latter function may be complex (e.g. can be affinely
equivalent to the inverse of an sbox), this can made the task of the deep neural networks
harder, whereas the function ϕ is often already known by the adversary.

Deep Learning (DL) is a branch of Machine Learning whose characteristic is to avoid
any manual feature extraction step from the model construction work-flow. For example,
in Deep Learning the dimensionality issue discussed in Sect. 2.2.3 is not necessarily tackled
out by preprocessing a dimensionality reduction function ε. As described below, the
cascade of multiple layers that characterize DL models is indeed in charge of directly and
implicitly extracting interesting features and of estimating the classifying model ĝ~L,P

. This
approximation is searched in a family of functions (aka models in the Machine Learning
terminology) specified a priori by the data analyst according to the specificities of the
problem which is tackled out.

7



We conclude this sub-section by recalling some basic definitions and notions about
neural networks and their training.

Neural Networks. A neural network has an input layer (the identity over the input
datum ~ℓ), an output layer (the last function, whose output ~y is an estimation of the vector
of conditional probabilities) and all other layers are called hidden layers. The so-called
neurons, that give the name to the architecture, are the computational units (also named
nodes) of the network and essentially process a scalar product between the coordinates
of its input and a vector of trainable weights (or simply weights) that have to be trained.
Each layer processes some neurons and the outputs of the neuron evaluations will form new
input vectors for the subsequent layer. The numbers of layers in the neural networks, the
dimension of the elementary units or the algebraic nature of the non-linear layers form the
architecture of the network and define the family of functions/models. The identification of
the best approximating function in this family is made by solving a minimization problem
with respect to a metric which is specific to the application.

Training of Neural Networks. In a privileged setting, the training phase (i.e. the
automatic tuning of the weights of the neurons) is done via an iterative approach which
locally applies the (Stochastic) Gradient Descent algorithm [GBC16a] to minimize a loss
function quantifying the classification error of the function ĝ~L,P

over a training set which
is a part of the profiling set. The cross-entropy [LH05, GBC16b] metric is a classical
(and often by default) choice. It is smooth and decomposable, and therefore amenable
to optimization with standard gradient-based methods. However, other metrics may be
investigated and can potentially lead to better results [MHK10,SSZU15]. A training is
said to be full batch learning if the full training database is processed before one update.
At the opposite, if a single training input is processed at a time then the approach is
named stochastic. In practice, one often prefers to follow an approach in between, called
mini-batch learning, and to use small batch (aka group) of training inputs at a time during
the learning. The approach is moreover said to be online when the training examples are
drawn from a stream of continually created inputs rather than from a fixed-size training
set over which several passes are made. The size of the mini-batch is generally driven by
several efficiency/accuracy factors which are e.g. discussed in [GBC16b] (e.g. optimal use
of the multi-core architectures, parallelization with GPUs, trade-off between regularization
effect and stability, etc.).

An iteration over all the training datasets during the Stochastic Gradient Descent
is called an epoch. The number of epochs is an important parameter to tune because
small values may lead to under-fitting (the number of steps of the Gradient Descent is
not sufficient and the model is too poor to capture a trend in the training dataset) and
high values may lead to over-fitting (the model is too complex, it perfectly fit the training
dataset but is not able to generalized its predictions to other datasets).

Several extensions and variants of the Stochastic Gradient Descent have been proposed
in the context of deep learning. These variants, called optimizers, aim to adapt the learning
rate (the step size) of the Gradient Descent during the training process. More details about
the specification of neural networks will be given in the dedicated sections 3 and 4, but we
will not go further on the optimization approaches and the interested reader may refer
to [GBC16a].

Hyper-Parameters. All the parameters that define an architecture (called architecture
hyper-parameters or simply architecture parameters), together with some other parame-
ters that govern the training phase (called training hyper-parameters or simply training
parameters), have to be carefully set by the attacker. 4 This point will discussed in

4When no ambiguity is present we will call simply hyper-parameters the architecture ones.
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the following sections. Essentially, the strategy we have followed to finalize a choice of
hyper-parameters is composed of three consecutive steps. First, we perform some ad-hoc
preliminary tests to select a base model with fixed architecture parameters and then, we
study the impact of each training parameter on the accuracy and efficiency of the base
model after training. These two steps lead us to determine the hyper-parameters of a
training procedure Training(nepochs, batch_size, optimizer, learning_rate). Eventually,
a third step consists in coming back to the initial choices made for the model architecture
and to study the impact of each of them on the efficiency of the resulting attack after
training with the procedure frozen during previous step.

2.4 Model Assessment and Selection

2.4.1 Evaluation Methodology

In the Machine Learning community, several evaluation frameworks are commonly applied
to assess the performances of a model or to select the best parameters that suit to
a parametrized family of models. These methods aim to provide an estimator of the
performance of a metric (e.g. the accuracy) which does not depend on the choice of the
training set Dtrain (on which the model is trained) and of the test set Dtest (on which the
model is tested) but only on their size.

The so-called t-fold cross-validation [FHT01] is currently the preferred evaluation
method. Let c be a metric, ĝ a model to evaluate, and Dprofiling = (L,Y) a dataset with
labels, the outline of the method is the following:

1. [optional] randomize the order of the labelled traces in Dprofiling,

2. split the samples and their corresponding labels into t disjoint parts of equal size
(L1,Y1), . . . , (Lt,Yt). For each i ∈ [1..t], do:

(a) set Dtest
.
= (Li,Yi) and Dtrain

.
= (

⋃

j 6=i Lj ,
⋃

j 6=i Yj),

(b) (re-)train5 the model ĝ on Dtrain,

(c) compute the performance metric by evaluating the model on Dtest:

ci = c(ĝ,Dtest) , (4)

3. return the mean 1
t

∑t
i=1 ci.

It is known that the t-fold cross-validation estimator is an unbiased estimator of the
generalization performance. Its main drawback is its variance which may be large and
difficult to estimate [B+96,BG05]. In this paper (Sect(s). 3 and 4), we perform a 10-fold
cross-validation for each selection of the model parameters. The choice of t = 10 results in
a trade-off between evaluation complexity and accuracy, since for each choice of parameters
the model is trained 10 times with a substantial computing time, and the generalization
performance estimator is computed among 10 values on different training sets, reducing
the uncertainty on the evaluation metrics. The dataset Dprofiling on which is performed the
cross-validation is a fixed subset comprised of 50, 000 labelled traces, split at each iteration
into Ntrain = 45, 000 labelled traces for Dtrain and Ntest = 5, 000 labelled traces for Dtest.

2.4.2 Evaluation Metrics

We evaluate the performance of our models with three different metrics, which are: the
rank function, the accuracy and the computational time.

5We insist here on the fact that the model is trained from scratch at each iteration of the loop over t.
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The rank function is a commonly used metric in SCA for assessing the performance
of an attack. Let us denote by k⋆ ∈ K the key that has been used during the acquisition
of the dataset Dprofiling. The rank function corresponding to a model ĝ trained with the
dataset Dtrain and tested with the dataset Dtest is defined by:

rank(ĝ,Dtrain,Dtest, n) = |{k ∈ K | ~dn[k] > ~dn[k⋆]}| , (5)

where ~dn[k] is the score for the candidate k as defined in (3) (replacing Dattack by Dtest

and Na by n) and estimated from a modelling of the conditional probability done with
Dtrain and a test done with the n first traces in Dtest. For example, if k⋆ has the highest
score (resp. the lowest score), then its rank is 0 (resp. |K|− 1). Note that in this definition,
the rank function depends on the choices of the training and test datasets. To get a better
measure of the rank for given cardinalities Ntrain and Ntest of Dtrain and Dtest respectively,
it is therefore more suitable to estimate its mean over several pairs of datasets:6

RANKNtrain,n(ĝ) = E[rank(ĝ,Dtrain,Dtest, n)] , (6)

where the mean is defined over all the datasets Dtrain and Dtest respectively of cardinality
Ntrain and Ntest, and where n is assumed to be bounded above by Ntest. For any pair of
cardinalities, an approximation of the mean can be obtained by cross-validation as detailed
previously just by replacing c in (4) by the rank function rank(·). This is exactly what has
been done for the benchmarks discussed in Sect(s). 3 and 4. More precisely, the following
attack has been repeated t = 10 times and the average rank of the correct key is plotted:
(1) select a training set of fixed size Ntrain and (2) compute the evolution of the rank of
the correct key when the model is tested with an increasing number n of traces in Dtest

(of size Ntest).

A second metric which is commonly used in Machine Learning is the accuracy. With
the same previous notations, we can define it as:

acc(ĝ,Dtrain,Dtest) =
|{(~ℓi, pi, k⋆) ∈ Dtest | k⋆ = argmaxk∈K ~yi[k]}|

|Dtest|
, (7)

where we recall that ~yi denotes the |K|-dimensional output ĝ(~ℓi, pi). Then, similarly as
for the rank function but for possibly unbounded size of Dtest, we can define from (7) an
Expected Accuracy of the model (ACC) by:

ACCNtrain
(ĝ) = E[acc(ĝ,Dtrain,Dtest)] ,

where the mean is defined over all the datasets Dtrain of size Ntrain and all the datasets
Dtest (with unbounded size).7

Finally our selection of parameters is also guided by the computational time of the
model training. The mean of the training time is computed in the same manner as the
other evaluation metrics during the 10-fold cross-validation.

2.4.3 About the Profiling Set-Up

Our implementations of Machine Learning algorithms have been developed with Keras
library [C+15] (version 2.1.1) or directly with Tensorflow library [AAB+15] (version
1.4.0). We run the trainings over ordinary computers equipped with 16 GB of RAM and
gamer market GPUs Nvidia GTX 1080 Ti. The computation of all the benchmarks took
approximately 12 days by using 3 GPU cards.

6and also different values of k⋆ if this is relevant for the attacked algorithm.
7Another metric, the prediction error (PE), is sometimes used in combination with the accuracy: it is

defined as the expected error of the model over the training sets; PENtrain (ĝ) = 1 − ACCNtrain (ĝ).
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2.5 Target of the Attacks Experiments and Leakage Characterization

For our attack experiments, we targeted a Software protected AES implementation running
over an 8-bit AVR architecture. More precisely, the device is an ATMega8515.

2.5.1 About the Implementation

To maximize our control on the code executed by the device, we choose to implement the
AES in assembly language. We developed two versions which merely aim at defeating first-
order SCA attacks (i.e. attacks exploiting a single temporal leakage without (re-)combining
of temporal points). The first one makes use of the classical table re-computation method
(see e.g. [AG01,KJJ99,PR08] for a detailed description). The AES state is secured with
16 different masks for the linear parts and, for the SubBytes processing, the same pair of
input and output masks is used for each state element. The outlines of the implementation
are summed up in Algorithm 1. A Signal-to-Noise Ratio (SNR)8 has been done to validate
that there is no first-order leakage (snr1 in Figure 2). To help evaluators to perform
elementary attacks against the first two bytes of the AES state during the first round, the
corresponding masks of the linear parts (r[1] and r[2] in Algorithm 1) have been fixed to 0.

Attack experiments reported in the rest of the paper only target the output of the third
sbox processing during the first round (namely sbox⋆[state0[3]]

.
= sbox(p[3]⊕ k[3])⊕ rout

with i = 3 in Algorithm 1).9

2.5.2 About the Acquisition Phase

The side-channel observations were obtained by measuring the electromagnetic (EM)
radiations emitted by the device. To this aim, a sensor made of several coils of copper
was plugged into a low-noise amplifier. To sample measurements, a digital oscilloscope
was used with a sampling rate of 2G samples per second. We insist on the fact that the
temporal acquisition window was set to record the first round of the AES only. As the
MCU clock was quite stable, the resynchronization of the measurements was not difficult
and resulted in a campaign of 100, 000 traces composed of 100, 000 time samples. Among
them, we chose to finally extract only 60, 000 traces after validating that it was sufficient to
accurately realize all our benchmarks (see e.g. Sect. 3.2). To identify the leakage samples
related to the secure processing of sbox(p[3]⊕ k[3]), several SNRs have been processed:

Table 1: details of the SNR processings in Fig. 2
Name Type Definition of the target variable Z
snr1 unmasked sbox output sbox(p[3]⊕ k[3])
snr2 masked sbox output sbox(p[3]⊕ k[3])⊕ rout

snr3 common sbox output mask rout

snr4 masked sbox output in linear parts sbox(p[3]⊕ k[3])⊕ r[3]
snr5 sbox output mask in linear parts r[3]

It may be observed in Figure 2 that snr1 (in gray) is very low, which essentially shows
that there is no first-order leakage on the unmasked sbox output sbox(p[3]⊕ k[3]). The
leakages on the sbox output masked with r[3] and on the mask r[3] itself are relatively
high (snr4 and snr5 respectively). The SNR snr4 shows three peaks because the sbox
output with mask r[3] is not only manipulated during the SubBytes step but also during
the ShiftRows and the MixColumns. Eventually, one can also observe a leakage on the

8The SNR is sometimes named F -Test to refer to its original introduction by Fischer [Fis22]. For a
noisy observation Lt at time sample t of an event Z, it is defined as Var[E[Lt | Z]]/E[Var[Lt | Z]].

9Another possibility would have been to target state0[3] = sbox(p[3] ⊕ k[3]) ⊕ r[3] which is manipulated
at the end of Step 8] in Algorithm 1.
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Algorithm 1: Secure AES Implementation with Table Recomputation

Input : a 16-byte plaintext (p[1], · · · , p[16]),
an 18-byte mask vector (r[1], · · · , r[16], rin, rout),
and a 16-byte master key (mk1, · · · , mk16)

Output : a 16-byte ciphertext (c1, · · · , c16)

function MaskedAES:

// SBox recomputation

for i = 0 to 255 do

1] sbox⋆[i]← sbox[i⊕ rin]⊕ rout

// Initialization

for i = 1 to 16 do

2] state0[i]← p[i]⊕ r[i]
3] state1[i]← r[i]
4] key[i]← mki

// AES processing

for round = 1 to 10 do

/* Key scheduling */

5] (key[1], · · · , key[16]) ← KeyScheduling(key[1], · · · , key[16])
for i = 1 to 16 do

/* AddRoundKey and SubBytes */

6] state0[i] ← (state0[i]⊕ key[i]⊕ rin)⊕ state1[i]
7] state0[i]← sbox⋆[state0[i]]
8] state0[i] ← (state0[i]⊕ state1[i])⊕ rout

/* ShiftRows */

9] (state0[1], · · · , state0[16]) ← ShiftRows(state0[1], · · · , state0[16])
10] (state1[1], · · · , state1[16]) ← ShiftRows(state1[1], · · · , state1[16])

/* MixColumns except for the last round */

if round 6= 10 then

11] (state0[1], · · · , state0[16]) ← MixColumns(state0[1], · · · , state0[16])
12] (state1[1], · · · , state1[16]) ← MixColumns(state1[1], · · · , state1[16])

// Last AddRoundKey

13] (key[1], · · · , key[16]) ← KeyScheduling(key[1], · · · , key[16])
for i = 1 to 16 do

14] ci ← (state0[i]⊕ key[i])⊕ state1[i]

// Return the ciphertext

return (c1, . . . , c16)

steps]
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Figure 2: SNRs for various intermediate values related to the processing of sbox(p[3]⊕k[3]).
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Figure 3: SNRs for various intermediate values related to the processing of sbox(p[3]⊕k[3])
in the interval [45400..46100].

sbox output masked with rout and on the mask rout itself (snr2 and snr3). Since this
leakage is smaller than for the sbox with mask r[3] we found it more challenging and
preferred to focus on it in our attack experiments.

For the reasons explained in previous paragraph, we chose to enshorten the initial
traces (composed of 100, 000 samples) and to only keep, for each trace, the 700 samples
in the interval [45400..46100] which contains information on the two pairs of sbox(p[3]⊕
k[3])⊕ r[3], r[3]) and (sbox(p[3]⊕ k[3])⊕ rout, rout)) (see10 Fig. 3).

2.6 Design and Parameters of the new ASCAD Database

2.6.1 Trace Format

For the storage of the observations and the metadata (plaintext/ciphertext/key/mask
values), we chose to use the current version 5 of the Hierarchical Data Format (HDF5). The
latter one is a multi-purpose hierarchical container format capable of storing large numerical
datasets with their meta-data. The specification is open and the tools are open source.
The development of HDF5 is done by the HDF Group, a non-profit corporation [Groa]. A
HDF5 file contains a POSIX-like hierarchy of numerical arrays (aka datasets) organized
within groups and subgroups. Effectively, HDF5 may be seen as a file system within
a file, where files are datasets and folders are groups. Moreover, HDF5 also supports
lossless compression of datasets. To manipulate our HDF5 files we used the h5py python
package [Grob].

Our HDF5 file ATMega8515_raw_traces.h5 is composed of two datasets within two
groups: metadata and traces. The type of the latter one is HDF5 Scalar Dataset (i.e.
may be viewed as a 2-dimensional array of 8-bit integers, the first dimension being the

10Note that some peaks appearing in Fig. 2 have not been selected.
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Figure 4: Structure of the ATMega8515_raw_traces.h5 HDF5 data file

observation index, the second dimension being a time index and 8-bit integer being the
type of the measure). The type of metadata is HDF5 Compound Dataset which is similar
to a struct in C language. The members of the compound dataset metadata are plaintext,
ciphertext, key and mask which all are arrays of 16 unsigned 8-bit integers. The 14 first
elements of the mask array correspond to the masks r[3], · · · , r[16] in Algorithm 1 and the
two last elements respectively correspond to rin and rout (as explained before the masks
r[1] and r[2] have been forced to 0 for test/validation purpose). We give an overview of
this structure on Fig. 4.

2.6.2 MNIST database and adaptations to SCA

Our raw traces format, as described in the previous subsection, is a classical representation
of data for SCA analysis. This however suffers from some issues when considering it in the
light of ML analysis:

• When considering a classification problem, one wants to get explicit and distinct
classes where each trace is sorted (i.e. labelled) to help with the profiling phase.

• From the traces in ATMega8515_raw_traces.h5, it is not clear which dataset is to be
used for training, and which is to be used for the tests and the accuracy computation.

• Finally, the raw ATMega8515_raw_traces.h5 file does not contain explicit labels for
the SCA classification problem, though these can be computed given the plaintext
and key metadata.

The MNIST database [LCB] is a reference in the ML image classification community,
allowing any new Machine Learning algorithm to be fairly compared to the state-of-the-art
results. The efficiency of a new algorithm is tested against the classification of 28 × 28
pixels grayscale, normalized and centered images of handwritten digits. The database is
split in groups, each one containing data and labels:

1. The training dataset group (50, 000 samples) contains the samples used during the
training phase. This group is composed of the raw images in a file, and their labels
with the same index in another file.
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2. Similarly, the test dataset group (10, 000 samples) is composed of the raw images in
a file, and their labels with the same index in another file.

Following the path of the MNIST database, we propose a novel approach that fits
the needs of testing ML algorithms against the SCA classification problems described in
previous sections. We provide a database ASCAD with labelled datasets that will allow
the SCA community to objectively compare the efficiency of ML and DL methods. To
fit the SCA context, we have adapted the so-called MNIST training and test concepts
to the more appropriate profiling and attack semantics as introduced and described in
subsection 2.2.1.11

The database information is extracted from the raw ATMega8515_raw_traces.h5 data
file, and its structure is presented on Fig. 5. For the sake of efficiency and simplicity,
the HDF5 file format has been kept for our ASCAD database. The new file ASCAD.h5 is
composed of:

• two main groups: one for profiling (Profiling_traces) which contains Np infor-
mation, and one for attacking (Attack_traces) which contains Na information.12

In our case, over the 60, 000 labelled traces, we have chosen Np = 50, 000 and
Na = 10, 000.

• In each main group, we find three HDF5 datasets;

– the traces dataset contains the raw traces zoomed in on the 700 samples
window of interest, namely the [45400..46100] interval containing the relevant
information as previously described (only keeping the relevant samples in the
traces allows to have a reasonably sized database),

– the labels dataset contains the labels (following the ML classification meaning)
for each trace. In our case, the value of the byte sbox(p[3]⊕ k[3]) is the label of
interest, leading to 256 possible classes (the sequel of the article discusses this
choice, and compares it to other possible classes such as using the Hamming
weight of sbox(p[3]⊕ k[3])). In Remark 2, we explain how this labelling over
the outputs of the sbox processing can be simply converted into a labelling over
the different key candidates. It is to be noted that the masks are not used when
computing the labels.

– The metadata dataset contains the information related to each trace in a HDF5
compound (aka structure), taken from ATMega8515_raw_traces.h5 almost
without any modification (an additional field is added, see below). From a
strict ML perspective, this metadata is useless since the labels are the only
necessary information to check the efficiency of an algorithm. These data are
however useful from a SCA perspective since the plaintext byte p[3] is necessary
to extract the estimated k̂[3] from the label values, and the real value of the
key byte k[3] is useful for the key ranking with regard to each class probability.
Even though only p[3] and k[3] are useful for key ranking, we have decided to
keep all the other metadata (the other plaintext and key bytes, the ciphertext
and the masks) for the sake of completeness: the size of this metadata is very
reasonable. Finally, a desync field is added to the compound structure: this
uint32 field represents the optional random desynchronization applied to the
traces, which simulates a jitter as explained hereafter.

We feel that our ASCAD database is versatile enough to check the efficiency and
accuracy of ML and DL algorithms applied to side-channel analysis, and we also aim at
providing general purpose python scripts that will ease the process of:

11Additionally, beware that in this paper training and testing are used in the context of cross-validation
and are subsets of the profiling dataset Dprofiling.

12We recommend to perform the cross-validation only with the profiling set.
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Figure 5: Structure of the ASCAD.h5 HDF5 data file

• creating new databases following the same structure to attack other outputs in other
AES rounds (with data extracted from ATMega8515_raw_traces.h5 or any other
similarly structured HDF5 file),

• modifying the profiling and attack datasets sizes and index to check their effect,

• adding a parametrized desynchronization to the traces to check the efficiency of the
algorithm against jitter, and its impacts on the hyper-parameters. See the sequel of
the article for a discussion on this.

As a benchmarking baseline, we will actually provide three HDF5 files that form our
reference database:

• ASCAD.h5, which contains profiling and attack datasets as previously described. The
traces are synchronized and there is no jitter,

• ASCAD_desync50.h5, which contains traces with a 50 samples window maximum
jitter.

• ASCAD_desync100.h5, which contains traces with a 100 samples window maximum
jitter.

The method used to simulate the jitter is described in 4.2.3.
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3 Multi-Layer Perceptrons (MLP)

3.1 Core Principles and Constructions

Multi-Layer Perceptrons (MLPs) are associated with a model/function ĝ that is composed
of multiple linear functions and some non-linear activation functions which are efficiently-
computable and whose derivatives are bounded and efficient to evaluate. In short, an MLP
can be defined as follows:

ĝ : ~ℓ 7→ ĝ(~ℓ) = s ◦ λn ◦ αn−1 ◦ λn−1 ◦ · · · ◦ λ1(~ℓ) = ~y , (8)

where:

• the λi functions are the so-called Fully-Connected (FC) layers and are expressible as
affine functions: denoting ~v the D-dimensional input of an FC, its output is given by
A~ℓ + ~B, being A ∈ R

C×D a matrix of weights and ~B ∈ R
C a vector of biases. These

weights and biases are the trainable weights of the FC layer,13

• the αi are the so-called activation functions (ACT): an activation function is a
non-linear real function that is applied independently to each coordinate of its input
(e.g. the ReLU activation function processes max(0, x) to each coordinate x),

• s is the so-called softmax14 function (SOFT): s(~ℓ)[i] = e
~ℓ[i]

∑

j
e

~ℓ[j]
.

In the rest of the paper, MLP(nlayer, nunits, act) will denote an MLP architecture with
nlayer layers, nunits units (a.k.a. nodes or neurons) and act as activation function for each
hidden layer. Such an MLP corresponds to (8) with αi = act for every i, with n = nlayer,
and with λi defined for D = C = nunits if i ∈ [2...nlayer − 1] and for (C, D) = (nunits, 700)
if i = 1 and (C, D) = (256, nunits) for i = nlayer (indeed inputs of the model are 700-
dimensional leakage traces while the outputs are in [0..255]).

3.2 Choice of the Hyper-parameters

As explained in Sect. 2.3, our strategy for tuning the hyper-parameters is divided
into two steps. Starting from a base architecture that we denote MLPbase, we first
tune the training parameters, leading to the parametrization of a training procedure
Training(nepochs, batch_size, optimizer, learning_rate). Then, different variations of
MLPbase are tested by studying the impact of each architecture parameter on the model
efficiency after training with the procedure fixed during previous step. The full strategy
aims at providing us with an architecture MLPbest and a training procedure that are good
w.r.t. the evaluation metrics listed in Sect. 2.4.2.

3.2.1 Training Parameters

This subsection aims at studying how the mean rank of the side-channel attack involving
the trained model is impacted by the length of the training dataset, the number of epochs,
the batch size and the learning rates/optimizers. MLPbase denotes the 6-layers MLP with
200 units and the ReLU activation function for each layer, i.e. MLPbase=MLP(6, 200, ReLU).

13They are called Fully-Connected because each i-th input coordinate is connected to each j-th output via
the A[i, j] weight. FC layers can be seen as a special case of the linear layers where not all the connections
are necessarily present. The absence of some (i, j) connections can be formalized as a constraint for the
matrix A consisting in forcing to 0 its (i, j)-th coordinates.

14To prevent underflow, the log-softmax is usually preferred if several classification outputs must be
combined.
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First we evaluate the impact of the size Ntrain of the training set on the success of a
neural network based SCA. We performed a 10-fold cross validation with different sizes
of dataset, while keeping a constant computational time during the training step for fair
comparison. This is done by adapting the number of epochs to the number of traces in
the dataset. We expect that the performance of the model increases with the size of the
training set until a certain threshold that determined the optimal number of traces. The
neural network used for this experiment is MLPbase trained with RMSProp optimizer,
learning rate 10−5 and batch size 100. The initialization of the weights is performed from
an uniform distribution of mean 0 as defined in Glorot and Bengio’s article [GB10]. Fig. 6
shows the mean rank function for different sizes of training set. Our empirical results on
the full ATMega8515_raw_traces.h5 show that approximately 50, 000 training traces are
required for a full success of the attack/test in less than 1, 000 traces. That is why ASCAD
is composed of a training set Dprofiling of size 50, 000 and an attack set Dattack of size
10, 000. Based on these results, the benchmarks in the rest of the paper were performed
on ASCAD profiling traces Dprofiling.

Figure 6: Mean rank function (6) after 10-fold cross-validation of MLPbase with
Training(·, 100, RMSProp, 10−5) for different sizes of training set, for an increasing num-
ber n of test traces and for different epochs chosen to keep the overall computation time
roughly constant.

Then we select the best values for the number of epochs and the batch size of the
training step. Fig. 7 shows the empirical results for different values nepochs with a 10-fold
cross-validation on Dprofiling. We notice that the number of epochs has a significant impact
on the rank functions. Taking into account the trade-off between computation time and
SCA-efficiency, best results are obtained by choosing 400 epochs and a batch size equal
to 500 or 200 epochs and a batch size equal to 100. However, it appears that we have a
best accuracy and a best stability on the rank functions with the latter pair of parameters,
which leads us to select these values for the rest of our benchmarks on MLP. We insist on
the fact that theses values are obtained as a trade-off that allows us to perform multiple
cross-validations in a reasonable amount of time. When the batch size parameter is fixed
to 100 we can obtained better results by increasing the number of epochs and consequently
the training time. Therefore in the case of a single SCA attack in a given amount of time,
we recommend to fix the batch size to 100 and to increase progressively the number of
epochs after 200 until the dedicated amount of time for the training step is reached (in
our experimental results we did not notice any improvement in the SCA-efficiency after
800 epochs).

The last training parameters that we tune are the gradient descent optimization method
(also called optimizer) and the learning rate. Empirical results in Fig(s). 8 and 9 show that
these parameters also have a high impact on the success of the attack. We managed to
obtain good results with optimizer = RMSProp and a learning rate equal to 10−5 (which
confirms the soundness of the choices made for experiments reported in Fig(s). 6 and 7).
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Figure 7: Mean ranks and training time of MLPbase=MLP(6, 200, relu) trained
with Training(nepochs, batch_size, RMSProp, 10−5) for varying values of nepochs and
batch_size.

Figure 8: Mean ranks and accuracy of MLPbase=MLP(6, 200, ReLU) trained with
Training(200, 100, optimizer, 10−5) for different optimizers.

3.2.2 Architecture Parameters

As described in previous subsection, an MLP architecture is characterized by three architec-
ture hyper-parameters: the number of layers, the number of units of each layer and the acti-
vation functions. In this section, we use the training procedure Training(200, 100, RMSProp, 10−5)
determined in previous section and we come back on our initial choice of MLPbase to
challenge its hyper-parameters.

First we evaluate the optimal number of layers with a fixed number of nodes, namely
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Figure 9: Mean ranks and accuracy of MLPbase=MLP(6, 200, ReLU) with RMSProp opti-
mizer and different values of learning rate.

we train models MLP(nlayers, 200, ReLU) for different values nlayers ∈ [3..11]. Fig. 10 plots
the mean rank function, the mean accuracy and the average training time. All the mean
rank functions converge to 0 when the number of traces increases. However, the 6-layers
MLP has a slight advantage on less than 600 traces and has the best mean accuracy.

Figure 10: Mean ranks, mean accuracy and mean training time of MLP(nlayers, 200, ReLU)
with different numbers of nlayers.

Then we evaluate the optimal number of units per layer. Small values lead to simple
models that are not powerful enough to represent the dataset trends and high values lead
to complex models that are difficult to train and are more susceptible to over-fitting. We
limit our empirical study to MLPs with the same number of units by layer. Fig. 11 shows
the obtained results. With the previously fixed training parameters, the performance of
the attack seems to increase once the number of units per layer equals or exceeds 200.

Finally we study the effect of the activation function on the performance of the
neural network. Since its introduction in Deep Learning, Rectified Linear Units (Re-
LUs) have proved to be the best suitable choice for a number of problems, and most
specifically in image recognition [JKL+09,NH10,GBB11]. The obtained networks have
sparse representation, and the simple definition of the activation function ReLU(x) =
max(0, x) allows quick computations. Fig. 12 plots the experimental results obtained with
MLP(6, 200, activation_function) for different activation functions. The best results are
obtained with ReLU , tanh and softsign which is a variation of tanh. We select ReLU
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Figure 11: Mean ranks, mean accuracy and mean training time of MLP(6, nunits, ReLU)
with different nunits.

activation function since it provides state-of-the-art results and its computation time is
below the two other functions.

Figure 12: Mean ranks of MLP(6, 200, activation_function) with different activation func-
tions.

Benchmarks reported in this section confirms that the architecture MLP(6, 200, ReLU)
leads to good compromise efficiency versus computational time when trained with the
procedure Training(200, 100, RMSProp, 10−5). In the rest of this paper, this architecture
is denoted MLPbest. We insist on the fact that MLPbest has a decent SCA-efficiency
with 200 epochs but the latter efficiency continues to improve when the number of epochs
increases until 800 epochs (in our experiments we did not notice any significant improvement
after 800 epochs). Hence, depending on the amount of time allocated to the training of
MLPbest, it may be interesting to increase the number of epochs in the range [200..800].

3.3 Open Discussions

3.3.1 Self-Normalizing Neural Networks

Recently, a new type of MLP called Self-Normalizing Neural Networks (SNN) has been
introduced in [KUMH17]. It aims to improve the robustness of MLPs against perturbation
during the training step and to reduce the variance of the training error. Its architecture is
a slight variation of the standard MLP architecture: the activation function, called "scaled
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exponential linear units" (SELU) is given by:

selu(x) = λ

{

x if x > 0
αex − α if x ≤ 0

. (9)

Furthermore, the initialization of the weights is performed from a standard normal distri-
bution. These two modifications imply that the neural network is self-normalizing, i.e. the
mean and variance of the activation functions across the different layers stay within small
predefined intervals. This new architecture outperformed standard MLPs on a number of
benchmarks, including MNIST.

We test on the ASCAD a SNN architecture with 6 layers and 200 units for each layer
and we compare it with MLPbest. Experimental results in Fig. 13 show that rank functions
are very similar between the two architectures. This highlights the fact that there does not
seem to be any significant improvement with the SNN architecture in the context of SCA.
The accuracy is slightly higher with SNN as expected in a Machine Learning perspective,
however it does not have an influence on the overall rank function.

Figure 13: Mean ranks and accuracy of a SNN and MLPbest with different numbers of
epochs.

3.3.2 Hamming weight vs identity labelling

We test our MLPbest architecture on the SCA dataset with a labelling of the traces
modified to take the Hamming weight of the sensitive value instead of the real value itself.
This strategy of data labelling reduces the number of classes to predict (9 values for the
Hamming weight instead of 256 values for a byte). Consequently, the model trained on
the new dataset is less complex than the model trained on the full values. We also modify
the computation of the rank function in (2) by taking into account the distribution of the
Hamming weight values. In Fig. 14, the corresponding rank functions are plotted. They
show that the new labelling strategy is less interesting. Indeed, even if the Hamming weight
model is less complex and requires a smaller number of epochs for the training step, the
conditional probability approximated by the neural network is less discriminating (which
is a consequence of the reduced number of classes). Moreover, the weighting coefficients
in (2) (deduced from the Hamming weight distribution for uniform data) may increase
the variance of the rank (viewed as a random variable) since e.g. an error on a value
with Hamming weight 0 or 8 accounts for

(
8
4

)
= 70 times an error on a value of Hamming

weight 4. Eventually, assuming that the deterministic part of the leakage corresponds to
an Hamming weight may be an incorrect abstraction and induces error in the modelling.

3.3.3 Comparison with Template Attacks

We compare MLPbest with standard Template Attacks (aka Quadratic Discriminant
Analysis, or QDA in the Machine Learning community). We first perform an unsupervised
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Figure 14: Mean ranks of MLPbest with Hamming weights as labels and MLPbest with
real values as labels.

dimension reduction to extract meaningful features. For this task we use a classical PCA
which is parametrized by the number of components to extract. Then the classification
task is performed with a QDA (i.e. Template Attacks). Note that, contrary to QDA,
neural networks do not require the preprocessing feature extraction step since this task
is realized by the first layers of the networks. Figure 15 shows the results obtained with
different numbers of components extracted from the PCA.

Figure 15: Mean ranks of a PCA on n components followed by a QDA.

3.3.4 First order attacks

By using the mask values contained in the ASCAD, it is possible to compute the masked
output after the first round AES Sbox:

z = sbox(p[3]⊕ k[3])⊕ rout

where z is the sensitive value and p[3], k[3], rout are the plaintext byte, the key byte and
the mask byte.

Therefore we can mount a first order SCA by labelling the traces with the masked
output values and we can test the performance of MLPbest in this weaker context. The
results in Fig. 16 show that, without any modification in the architecture and the training
parameters, MLPbest easily succeeds in this attack. The rank functions converge to 0 with
20 epochs and only 4 traces are required to determine the correct key. We also managed
to obtain an accuracy of 0.028, and we did not notice any overfitting with 200 epochs.

4 Convolutional Neural Networks (CNN)

4.1 Core Principles and Constructions

Convolutional Neural Networks (CNNs) complete the classical principle of MLP with a
so-called convolutional layer based on a convolutional filtering, and a pooling layer. We
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Figure 16: Mean ranks and accuracy of MLPbest on a first order SCA.

describe them hereafter, together with a third one called batch-normalization layer which
has been recently introduced to improve the effectiveness of the model.

4.1.1 Convolutional (CONV) layers

CONV layers are linear layers that share weights across space. The representation is
given in Fig. 17.15 To apply a convolutional layer to an input trace, nfilter small column
vectors, called convolutional filters, of size W (aka kernel size) are slid over the trace
by some amount of units, called stride.16 The column vectors form a window17 which
define a linear transformation of the W consecutive points of the data into a new vector
~v. When the window slides over the last points, the input trace can be either padded
with 0 resulting in a vector ~v which has the same number of points than the input data
(same padding) or the data is not padded and the window only slides over the valid part
of the data, resulting in a vector ~v smaller than the input trace (valid padding). The
coordinates of the window (viewed as a matrix) are among the trainable weights which
are constrained to be unchanged for every input. This constraint is the main difference
between a CONV layer and an FC layer; it allows the former to learn shift-invariant
features. The reason why several filters are applied is that we expect each filter to extract
a different kind of characteristic from the input. As one goes along convolutional layers,
higher-level abstraction features are expected to be extracted. These high-level features
are arranged side-by-side over an additional data dimension, the so-called depth.18 This
is this geometric characteristic that makes CNNs robust to temporal deformations [LB+95].

To avoid complexity explosion due to this depth increasing, the insertion of pooling
layers is recommended.

4.1.2 Pooling (POOL) layers

POOL layers are non-linear layers that reduce the spatial size in order to limit the amount of
neurons, and by consequence the complexity of the minimization problem (see Fig. 17). As
the CONV layers, they make some filters slide across the input. Filters are 1-dimensional,
characterized by a length W and a stride, that is usually chosen equal to W ; for example
in Fig.17 both the length and the stride equal 3, so that the selected segments of the
input do not overlap. In contrast with convolutional layers, the pooling filters do not
contain trainable weights. They only slide across the input to select a segment, then a
pooling function is applied: the most common pooling functions are the max pooling which

15CNNs have been introduced for images [LB+95]. So, usually, layer interfaces are arranged in a
3D-fashion (height, weight and depth). In Fig.17 we show a 2D-CNN (length and depth) adapted to
1D-data as side-channel traces are.

16Amount of units by which a filter shifts across the trace.
17patches in the Machine Learning language
18Ambiguity: Neural networks with many layers are sometimes called Deep Neural Networks, where the

depth corresponds to the number of layers.
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Figure 17: Convolutional filtering: W = 2, nfilter = 4, stride = 1, padding = same. Max
pooling layer: W = stride = 3.

outputs the maximum values within the segment and the average pooling which outputs
the average of the coordinates of the segment.

The two previous layer types are today often completed with a so-called Batch Nor-
malization (BN) layer.

4.1.3 Batch Normalization layer

Batch Normalization has been introduced in [IS15] by Ioffe Szegedy to reduce the so-called
internal covariate shift in neural networks and to eventually allow for the usage of higher
learning rates. Covariate shift refers to the variation of the input distribution of a learning
system. If this change happens on the input of internal units of (deep) neural networks, it
is called an internal covariate shift. The reasoning behind the soundness of this layer is
well argued in [GBC16b]. Let us denote by H a batch of inputs of an internal activation
layer of the model (this means that H is composed of the outputs of several, let’s say
m, trainings which are processed in parallel). Assuming that H is arranged as a design
matrix, meaning that the ith row ~Hi of H corresponds to the input for the ith training,
the BN layer will replace ~Hi by a (normalized) new batch ~H ′

i such that:

~H ′
i =

~Hi − ~µ

~σ
, (10)

where ~µ and σ are respectively defined as:

~µ =
1
m

∑

i

~Hi (11)

and

~σ =

√

~δ +
1
m

∑

i

( ~Hi − ~µ)2 , (12)

where the processing of the division, the square and the square root is done element-wise
and where ~δ is a vector only composed of a same small positive value such as 10−8, imposed
to avoid encountering the undefined gradient of

√
z at z = 0.

During the test/matching phase, statistics ~µ and ~σ are not deduced from the batch
elements but defined as the averages that were collected during the training phase (e.g.
if the training has been done over let’s say 100 batches, then ~µ and ~σ correspond to the
average over the 100 processings of (11) and (12)).
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4.1.4 Common architecture

The main block of a CNN is a CONV layer γ directly followed by an ACT layer α. The
former locally extracts information from the input thanks to filters and the latter increases
the complexity of the learned classification function thanks to its non-linearity. After some
(α◦γ) blocks, a POOL layer δ is usually added to reduce the number of neurons: δ◦[α◦γ]n2 .
This new block is repeated in the neural network until obtaining an output of reasonable
size. Then, some FC are introduced in order to obtain a global result which depends on
the entire input. To sum-up, a common convolutional network can be characterized by the
following formula:19

s ◦ [λ]n1 ◦ [δ ◦ [α ◦ γ]n2 ]n3 , (13)

where we recall that s and λ respectively denote a softmax layer and a fully-connected
layer.

4.1.5 A Brief Overview of Current CNN architectures

The first successful CNN network, best known as LeNet, was developed in the nineties and
was mostly applied to handwritten digit recognition [LBD+89,LBBH98]. The last version
of the network, LeNet-5 [LBBH98], is a small architecture which operates on images of
32× 32 pixels split into 10 classes. The architecture is comprised of 2 convolutional layers
with respectively 6 and 16 filters of size 5× 5, and 3 final dense layers of respectively 120,
84 and 10 units. Each convolutional layer is followed by an average pooling layer and the
activation function is the hyperbolic tangent. The network achieved an accuracy of nearly
99% on the test dataset.

CNN networks gained popularity with their breakthrough as a contender in the Imagenet
Large Scale Visual Recognition Challenge (ILSVRC, [RDS+15]) and since 2012, deep CNN
networks have constantly established new records in computer vision [KSH12,SZ14,SLJ+15,
HZRS16]. ILSVRC is an image classification challenge which provides each year a labelled
dataset of roughly 1, 000, 000 images of 200×200 pixels split into 1, 000 classes. Candidates
train and validate their algorithm on the provided dataset and submit it to the competition.
Then algorithms are evaluated with an (unknown) test dataset and they are ranked
according to two metrics, the top-1 accuracy and the top-5 accuracy, where the top-5
accuracy is the fraction of the test dataset for which the correct label is amongst the best
5 predictions returned by the algorithm.

The first CNN architecture presented at ILSVRC challenge in 2012 [KSH12] obtained a
great success in the competition by outperforming all the challengers with a top-5 accuracy
rate of 84.7% (against 73.8% for the second-best entry). This CNN network, well-known
as AlexNet, has 8 layers, with 5 convolutional layers dispatched in 3 blocks and 3 dense
layers of 4, 096 units each. The convolutional layers have 3, 96, 256 and 384 filters of size
11× 11, 5× 5, and 3× 3. Each block has a final max pooling layer and ReLU activation
functions are used instead of hyperbolic tangents (as in LeNet). The subsequent winner of
ILSVRC challenge, ZFNet [ZF14], improved the previous architecture by reducing the size
of the first convolutional layer to 7× 7 and by increasing the number of filters to 1, 024 for
the last convolutional layers; it achieved a top-5 accuracy of 85.2%.

The trend of reducing the size of the filters by increasing the depth of the network was
later confirmed to be a successful strategy. The runner-up architecture of the ILSVRC
2014 challenge, VGGNet [SZ14], obtained a 92.7% top-5 accuracy with an architecture
comprised of (up to) 16 convolutional layers of 512 filters of size 3 × 3 distributed in 5
blocks (for the VGG-19 version).

The winner of ILSVRC 2014, GoogLeNet [SLJ+15], also used a deep network archi-
tecture with a total of 27 layers, but managed to decrease the number of parameters to

19where each layer of the same type appearing in the composition is not to be intended as exactly the
same function (e.g. with same input/output dimensions), but as a function of the same form.
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train by using a new element in the architecture, the Inception module, which is a stack
of small size convolutional layers (1× 1, 3× 3, 5× 5) with few parameters. Furthermore,
the last dense layers are replaced by an average pooling layer, which also decreases the
number of parameters to train. GoogLeNet obtained a top-5 accuracy rate of 93.3% with
12 times fewer parameters than AlexNet.

Finally, deep residual networks recently grow in popularity with the success of ResNet
at ILSVRC 2015 [HZRS16]. These architectures manage to overcome the degradation
problem that occurs when the depth of the network increases. They rely on residual units
that learn for each layer the residual function F(x) = H(x)− x where x is the input of the
layer and H(x) is the desired function of the layer. The top of the networks also have an
average pooling layer like GoogLeNet. ResNet has up to 152 layers and achieves a 96.6%
top-5 accuracy at ILSVRC 2015, winning the challenge.

4.2 Choice of a Base Architecture

As in Sec. 3.2.2, we will in a first time fix a CNN architecture, namely fix a CNNbase

model in the form (13), and then we will analyze the performances we can obtain with
such a model while making the training parameters vary. In a second time, fixing the best
solutions for the training parameters, we will make the network hyper-parameters vary in
order to optimize the architecture.

4.2.1 Description of the CNNbase

To get a first idea about the kind of architectures relevant in our context, we chose
to test some of state-of-the-art CNN architectures listed in previous section:20 VGG-
16 [SZ14], ResNet-50 [HZRS16] and Inception-v3 [SVI+16]. Our purpose was not to
compare their efficiency after some specific tuning but was to check whether one of
them seems straightforwardly more adapted to our context than the others. Results are
summed-up in Fig. 18 where we have plotted the evolution of the mean rank of the correct
key-hypothesis according to the number of epochs. Results are obtained with a 10-fold
cross-validation.

Figure 18: Mean ranks obtained with VGG-16, ResNet-50 and Inception-v3 w.r.t. different
epochs.

20straightforwardly customized to apply on 1-dimensional inputs of 700 units and outputs of 256 units.

27



Clearly, ResNet-50 and Inception-v3 do not seem to succeed in extracting key-dependent
information for the observations whereas VGG-16 does very well. Based on these prelimi-
nary results, we chose to apply the same design principles as in VGG-16 architecture and
we investigated the impact on several parameters’ configuration on the side-channel attack
efficiency. We hereafter gives the general structure of the CNNs studied in the rest of this
section: 21

• nblocks blocks

– nconv layers of the form CONV + (BN) + ACT

– 1 POOL layer

• ndense layers FC + ACT

• 1 softmax layer SOFT

Figure 19: Example of CNN architecture based on VGG-16

We moreover added the following rules, which are today classical in literature and
enable us to limit the number of different configurations to test.

Rule 1. CONV layers in the same block have exactly the same configuration (to keep the
global volume constant)

Rule 2. Each pooling has dimension 2 (and hence divides the size of the input by 2).

Rule 3. The number of filters nfilters,i in a CONV layer of the ith block (starting from
i = 1) satisfies for i ≥ 2:

nfilters,i = max(nfilters,1 × 2i−1, 512) .

Remark 4. The core idea behind Rule 3 is to keep the global amount of information treated
by the different layers as constant as possible. Since each pool layer divides the input
dimension by 2, the number of filters is itself multiplied by 2 to compensate it. This idea
is inspired by VGG-16.

Rule 4. All the CONV layers have the same kernel size.

An example of the tested CNN architecture is given in Fig. 20.
For the initial configuration of our CNNbase model used to test the impact of the

different hyper-parameters, we select the following values: the number of blocks of CONV
layers nblocks is equal to 4, there is only one CONV layer by block (nconv = 1), the number
of filters for the first block nfilter,1 is equal to 64, each filter has kernel size 3 (same
padding) with ReLU activation functions and a max pooling layer for each block (W = 2).
CNNbase has ndense = 2 final dense layers of 4, 096 units.

4.2.2 Choice of the Hyper-parameters in SCA context

The goal of the following benchmarks is twofold. First, it is to study, for the architecture
CNNbase presented in previous section and for our dataset, the impact of each (hyper)-
parameter on the accuracy and SCA efficiency. Secondly, it is to choose the final hyper-
parameters for a new CNN model (hopefully) better than the original one and hence

21In our case, we observed that the BN layer was not necessary to get good performances.
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Figure 20: Example of our CNNbase architecture

called CNNbest. The number of the latter parameters being too large for an exhaustive
test of all the possible configurations, we chose to arbitrarily follow a pre-determined
sequence of tests. Note that the same CNNbase architecture is used for each benchmarking
(which each focuses on a single hyper-parameter). For completeness, we also validated
the soundness of our choices when the observations are desynchronized. Our goal was
not to find the optimal configuration/training strategies but was to identify one of them
making sense in our context and leading to accurate results. Other choices are certainly
possible and we let the question of determining the most pertinent strategy as an open
problem for further studies on this subject. The roadmap followed for our benchmarks
is summarized in Table 2. Since our goal is to improve the SCA efficiency, i.e. to have
the correct hypothesis ranked first with the minimum of traces during the matching/test
phase, we always privileged rank-flavoured criteria for parameters selection.

Table 2: Benchmarks Summary

Parameter Reference Metric Range Choice

Training Parameters

Epochs - rank vs time 10, 25, 50, 60, . . . , 100, 150 up to 100

Batch Size - rank vs time 50, 100, 200 200

Architecture Parameters

Blocks nblocks rank, accuracy [2..5] 5

CONV layers nconv rank, accuracy [0..3] 1

Filters nfilters,1 rank vs time {2i; i ∈ [4..7]} 64

Kernel Size - rank {3, 6, 11} 11

FC Layers ndense rank, accuracy vs time [0..3] 2

ACT Function α rank ReLU, Sigmoid, Tanh ReLU

Pooling Layer - rank Max, Average, Stride Average

Padding - rank Same, Valid Same

4.2.3 Training Parameters

The tuning of some training parameters is inherited by the analogous study in MLP
context, in order to make results obtained with CNN models and MLP ones comparable.
In particular we fixed the training set size to 50, 000,22 and chose to use the RMSProp
optimizer with a learning rate of 10−5.

22Leading to 10 training sets of size 45, 000 and 10 test sets of size 5, 000 to perform the 10-fold
cross-validation.
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Number of epochs and batch size For our campaigns, we did not observe any over-
fitting (relatively to our rank function) when the number of epochs is increasing. As a
direct consequence, the quality of the trained model in terms of our rank function never
decreases when the number of epochs increases. Based on this observation, the following
benchmarks aim to get the best trade-off between the SCA-efficiency and the training
duration/time as a function of the number of epochs and the training batch size.

Figure 21: Mean ranks and training time of CNNbase with different values of epochs and
batch sizes.

The first benchmark series are obtained by training CNNbase with different values of
epoch and batch size. In a similar way than for MLP, the results show that the SCA-
efficiency increases not only when the number of epochs increases but also when the batch
decreases. We consider that as a natural behavior since the number of gradient descents
(and thus the number of steps in the solving of the minimization problem) increases
linearly with the number of epochs and linearly with (|Dtrain|/batch_size). However, as a
counterpart, the training duration linearly increases with the number of gradient descent
steps, as well. We selected one of the best trade-off, namely 100 epochs and a batch size
equal to 20023. This choice will allow us to test the impact of the other parameters in our
CNN experiments while keeping the training time acceptable.

The following benchmark validates, for a batch size equal to 200, that the previous
observation (namely the fact that the SCA-efficiency increases with the number of epochs)
stays true when traces are desynchronized.

23Having 50 epochs and a batch size equal to 50 is also a good trade-off, but between two options that
seem equivalent, we chose to prefer the solution with the highest number of epochs.
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Figure 22: Mean ranks of CNNbase for a desynchronization amount in {0, 50, 100} and
different numbers of epochs.

The desynchronizations of the traces are simulated by generating for each trace a
random number δ in [0..Nmax] and by shifting the original trace of δ points to the left.
The samples added to a trace by this processing directly come from the corresponding full
trace in ATMega8515_raw_traces.h5. For a chosen value Nmax we then generate a new
dataset DNmax

from the original one.
With CNNbase we manage to obtain with 5, 000 traces a mean rank close to 20 for

a maximal desynchronization value Nmax = 50, and a mean rank close to 40 for a
maximal desynchronization value Nmax = 100. These results highlight the success of CNN
architectures in the context of desynchronized traces, as studied in [CDP17]. Results
of Fig. 22 also show the impact of the epoch parameter on the SCA-efficiency with the
desynchronization amount: an epoch value of 100 is enough without desynchronization,
but it does not yield to the best performance when traces are desynchronized.

4.2.4 Architecture Parameters

In each case, we study the parameters in the context of 256 classes.

Number of Layers The architecture of our CNNbase suggests to divide the study of the
number of layers in two phases: in a first time we make the number nblocks of blocks vary
where a block is composed of convolutional layers followed by a single pooling layer. In
this phase we consider, for each block, only nconv = 1 convolutional layer per block (which
is the configuration of our CNNbase model). In a second time, we look for the optimal
number nconv of convolutional layers per block assuming that this number is fixed to for
all the blocks and that the number blocks equals 4.

Results of the first phase are plotted in Fig. 23. As expected, we notice that the
SCA-efficiency increases with the number of blocks. A large difference can be observed
in the mean rank between 4 blocks and 5 blocks when desynchronization is in the mid-
dle range. This fact can be explained in term of dimension of the input layer before
applying the dense layers. The input trace has dimension 700, i.e. contains 700 temporal
features, corresponding to its time samples. When 5 blocks are used, 5 max pooling
layers of stride 2 are applied, and the temporal input dimension is divided by 25 = 32,
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Figure 23: For a desynchronization amount in {0, 50, 100} and several numbers of blocks,
the mean ranks (left-hand side) and the mean accuracy (right-hand side) of CNNbase.

resulting in an input for the first dense layer composed of 21 temporal features times 512
abstract features (43 temporal features times 512 abstract ones if only 4 blocks). The
temporal features are those which are directly impacted by the temporal noisy effect
of desynchronization. So the less they are the more the model is robust to desynchro-
nization. This explains why adding blocks increases the SCA-efficiency in presence of
desynchronization. Thus, we choose nblocks = 5 as best parameter. However in our
further benchmarks we keep the value nblocks = 4; choosing this mid range value allows us
to have a better understanding of the impact of the other parameters on the SCA-efficiency.

Results of the second phase are plotted in Fig. 24. We observe that optimal performances
are obtained with only one CONV layer per block, even if the SCA-efficiency seems to be
dimly impacted by nconv. This is probably due to the fact that increasing number of layers,
the number of trainable weights increases as well. To observe a benefit we should let models
with more weights train longer, but for our benchmark we fixed the number of epochs (100
in our experiment). So not only we do not observe any benefit in augmenting the nconv,
but actualy we observe performances slightly decreasing for an under-fitting phenomenon
due to the lack of epochs. Observing results obtained with nconv = 0, we verify the fact
that the performance of the network is impacted by desynchronization when no CONV
layer at all is exploited. The claim of CONV layers overcoming desynchronization issue by
extracting patterns in the trace is then verified. Those conclusions are perfectly in line
with [PSH+18] which observes that CONV layers play a minor role when the observations
traces are perfectly synchronized.
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Figure 24: For a desynchronization amount in {0, 50, 100} and different numbers of CONV
layers per block, the mean ranks (left-hand side) and the mean accuracy (right-hand side)
of CNNbase.

Number of filters. Following Rule 3, the aim of the next benchmark is to test several
values for the number of filters in the CONV layers of the first block (denoted nfilters,1 in
Rule 3). Fig. 25 shows that increasing the number of filters also increases the SCA-efficiency.
However it also obviously increases the time of the training which leads us to look at a
good trade-off between efficiency and computational time.

Kernel size. We here study the impact of the kernel size (aka the dimension of the
convolutional filters) on the model efficiency. In parallel, we compare two different
approaches which either consist in combining several convolutional layers with small
dimension or in selecting one unique convolutional layer with high dimension.

Unexpectedly, the kernel size significantly impacts the SCA-efficiency. We obtain a
mean rank below 10 with a desynchronization amount of 100 by increasing the size of
the filters to 11, whereas we only obtain a mean rank of 40 by increasing the number of
convolutional layers to 3 for each block with filters of size 3. For a complete comparison
we also increased the number of epochs to 200 in our second experiment but it clearly does
not improve the efficiency in the same scale than the kernel size. This behaviour is very
different than the one expected if we refer to recent results in computer vision where the
trend is to increase the number of layers with filters of small size.

Number of fully-connected final layers For this benchmark, we train four versions of
CNNbase with different numbers of fully-connected final layers. Each of these dense layers
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Figure 25: For a desynchronization amount in {0, 50, 100} and different values of initial
number of filters, the mean ranks (left-hand side) and the mean training time (right-hand
side) of CNNbase.

has 4, 096 units. We observe from Fig. 27 that the network requires at least one dense
layer when the traces are synchronized. Roughly speaking, this suggest that, for SCA
attacks, the QDA part of CNN networks is simulated by dense layers, while convolutional
layers essentially extract information (e.g. by combining leakage points and/or by dealing
with the desynchronization). The results also confirm that the number of dense layers
increases the SCA-efficiency. Hence fully connected layers are a critical part of the CNN
network in the context of SCA, and shall be not removed. This differs from the recent
trend in computer vision where dense layers are replaced by an average pooling layer and
it explains the poor results of Inception-v3 and ResNet-50 in our experiments (Fig. 18).

Activation Functions For the three tested activation functions, Fig. 28 shows that only
ReLU can afford a good efficiency for SCA when desynchronization is below 50. Therefore
we recommend the usage of ReLU activation function for CNN architecture.

Pooling Layer We test three pooling methods which are applied in our experiment to
all the pooling layers of CNNbase: max pooling, average pooling, and stride pooling24.
Contrary to standard CNN architectures used in computer vision that rely on max pooling,
we obtain the best results with average pooling layers (Fig. 29).

24Stride pooling consists in taking the first value on each input window defined by the stride.
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Figure 26: For a desynchronization amount in {0, 50, 100}, the mean ranks for CNNbase

with different kernel sizes (left-hand side) and the mean ranks of CNNbase with 3 layers of
dimension 3 in each block for different epochs (right-hand side).

Padding Finally we test two configurations of padding. Results in Fig. 30 show that this
parameter does not have a significant impact on the SCA-efficiency.

CNNbest At the end of these benchmarks we are able to define the best CNN architecture
based on our selection of the parameters. Therefore we define CNNbest as the CNN
architecture with 5 blocks and 1 convolutional layer by block, a number of filters equal to
(64, 128, 256, 512, 512) with kernel size 11 (same padding), ReLU activation functions and
an average pooling layer for each block. The CNN has 2 final dense layers of 4, 096 units.
CNNbest is trained with a batch size equal to 200 by using RMSprop optimizer with an
initial learning rate of 10−5. According to previous benchmarks and results of Fig. 22,
a number of epochs above 130 is necessary to obtain the best results with CNNbase on
desynchronized traces. In our experiments on CNNbest, we noticed that a training with
75 epochs is sufficient. For robustness and because it had an acceptable computing time
impact, we eventually chose to benchmark until a number of epochs equal to 100.

5 Attack Comparisons on desynchronized traces

In this section we perform on desynchronized traces a last comparison of the efficiency of the
four models studied throughout this article, namely: VGG-16, PCA-QDA (aka Template
Attacks), MLPbest and CNNbest. As in the previous sections, models are evaluated with a
10-fold cross-validation on 50, 000 traces.
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Figure 27: For a desynchronization amount in {0, 50, 100} and different numbers of final
fully-connected layers, the mean ranks (left-hand side) and the mean accuracy (right-hand
side) of CNNbase.

Figure 28: For a desynchronization amount in {0, 50, 100} and activation function in
{relu, tanh, sigmoid}, the mean ranks of CNNbase.
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Figure 29: For a desynchronization amount in {0, 50, 100} and different pooling layers
(either max or average or stride pooling), the mean ranks of CNNbase.

Figure 30: For a desynchronization amount in {0, 50, 100} and a padding option either set
to same or to valid, the mean ranks of CNNbase.

VGG-16 We train VGG-16 with different numbers of epochs. The size of the batch is
equal to 200 and we use RMSprop optimizer with a initial learning rate of 10−5. The
results for different desynchronization values are plotted in Fig. 31. As expected, the
SCA-efficient increases with the number of epochs and we select 150 epochs for this model.
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Figure 31: VGG-16 mean ranks for a desynchronization amount in {0, 50, 100} and different
numbers of epochs.

Template attacks As described in Subsection 3.3.3, we first perform an unsupervised
PCA on the 700 samples of the traces in the dataset Dprofiling and we apply a QDA on the
resulting components. Fig. 32 shows the impact of the desynchronization on Template
Attacks. We note that the attack still succeeds when desynchronization is less than 50,
but fails for a desynchronization amount of 100. Best results are obtained with a PCA
reduction on 10 and 50 components with respectively a desynchronization amount of 0
and 50.

Figure 32: Template Attacks mean ranks for a desynchronization amount in {0, 50, 100}
and different values of PCA reduction.

MLPbest We train MLPbest on the desynchronized traces with different numbers of epochs.
As shown in Fig. 33, MLP is very sensitive to desynchronization and increasing the number
of epochs is not enough to get better results.
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Figure 33: Mean ranks of MLPbest for a desynchronization amount in {0, 50, 100} and
different values of epochs.

CNNbest Finally we evaluate CNNbest with the parameters described in the previous
subsection. Results are displayed in Fig. 34.

Figure 34: Mean ranks of CNNbest for a desynchronization amount in {0, 50, 100}.

Summarize of the results In Fig. 35 we compare the best results obtained from the
models. CNNbest outperforms all the other models on desynchronized traces with only 75
epochs. VGG-16 has decent results too, but with an higher number of epochs. CNNbest and
Template Attacks combined to a PCA have similar results with small desynchronization,
however this second model performs poorly with a high desynchronization amount. MLPbest

has good performances on synchronized traces, but is very sensitive to desynchronization25.

25For the sake of completeness, we have also tested the SCANet model introduced in [PSH+18]. This
did not yield to good performances on our dataset: we have obtained a mean rank of approximatively 128
for each of our desynchronizations 0, 50 and 100.
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Figure 35: Mean ranks of the best models for a desynchronization amount in {0, 50, 100}.

6 Conclusions And Perspectives

In this paper, we have conducted a thorough study of the application of deep learning
theory in the context of side-channel attacks. In particular, we have discussed several
parametrization options and we have presented a large variety of benchmarks which have
been used to either experimentally validate our choices or to help us to take the adequate
decision. The methodologies followed for the hyper-parameters selection may be viewed
as a proposal to help researchers to make their own choice for the design of new deep
learning models. They also open the way for further research in this domain. Since
convolutional neural networks are shown almost similarly efficient as multi-layer perceptron
networks in the context of perfectly synchronized observations but outperform them in
presence of desynchronization/jittering, our study suggests that CNN models should be
preferred in the context of SCA (even if they are more difficult to train). When it comes
to choose a base architecture for the latter models, our study shows that the 16-layer
network VGG-16 used by the VGG team in the ILSVRC-2014 competition [SZ14] is a sound
starting point (other public models like ResNet-50 [HZRS16] or Inception-v3 [SVI+16] are
shown to be inefficient). Our results show that VGG-16 allows to design architectures
which, after training, are better than classical Templates Attacks even when combined with
dimension reduction techniques like Principal Component Analysis (PCA) [Pea01]. All the
benchmarkings have been done with the same target (and database) which corresponds to
an AES implementation secured against first order side-channel attacks and developed in
assembly for an ATMega8515 component. This project has been published on [ANS18b].
To enable perfect reproducing of our experiments and benchmarks, we also chose to
publish the electromagnetic measurements acquired during the processing of our target
AES implementation (available in [ANS18a]) together with example Python scripts to
launch some initial training and attacks based on these traces. We think that this ASCAD
database may serve as a common basis for researchers willing to compare their new
architectures or their improvements of existing models.
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