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The basic equations of the coupled channel method for (d,p) reactions derived in a pre­

vious paper, I [T. Ohmura, B. Imanishi, M. Ichimura and M. Kawai, Prog. Theor. Phys. 41 

(1969), 391], are transformed into forms which are convenient for practical calculations in 

which the interactoin kernels are symmetric with respect to channels. The calculated S­

matrix is then also shown to be symmetric, despite the presence of the imaginary part of 

the optical potentials. An explicit form of the interaction kernel is given and some numeri­

cal examples are presented. The properties of the kernel is discussed in detail. The method 

of numerical solution of the basic equations is described in detail and examples of the cal­

culated cross section are presented. In the calculations the non-orthogonality term in the in­

teraction kernel is neglected. Rather detailed discussions are given on the Pauli principle 

between the participating nucleons. It is shown that the effect of the Pauli principle is ex­

pressed in a certain approximation by a multiplication of the interaction kernel by the square 

root of the spectroscopic factor. 

§ 1. Introduction 

The purpose of the present series of papers is to study the deuteron stripping 

reaction in terms of the method of coupled channels in order to investigate the 

theoretical back ground of distorted wave Born approximation (DWBA) for 

the nuclear rearrangement collision which has been studied only inadequately 

compared with the nuclear inelastic scattering, in contrast to the great success 

of DWBA in the actual analysis of the experiment. 

In a previous paper1
) (hereafter referred to as I) we have derived a set of 

close coupling equations for the deuteron stripping reaction by explicitly using 

a variational principle for the rearrangement collision. The generalized Kato 

identity2
) was also given for the error in the calculated S-matrix by applying 

t) deceased. 
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348 T. Ohmura, B. ];nanishi, M. Ichimura and M. J(awai 

the theory of finite variations. The coupled equations are considerably different 

from those for the inelastic scattering because of the non-orthogonality of the 

initial and final channels. Discussio1i.s were given there on various aspects of 

the basic equations, namely, 1) the effects of non-orthogonality term in the in­

teraction kernel on the S-matrix elements, 2) relation of the present method to 

DWBA and to the method of projection operators, 3) the non-uniqueness in 

defining the wave functions of relative motion in the deuteron and proton chan­

nels which gives rise to an ambiguity in the optical potentials and so on. 

In the present paper we transform the basic equations into a form which 

is convenient for practical calculations. We discuss the nature of the equations, 

especially the interaction kernels, in detail and describe the method of numerical 

solution of the equations. Some examples of numerical calculations are shown. 

In application to the actual (d, p) process one encounters the problem of taking 

into account the Pauli principle between the captured neutron and the target 

neutrons in the same orbit. We discuss this point in detail. 

In § 2 the basic equation is brought into a form in which the interaction 

kernels are explicitly symmetric with respect to channels, which were not so in 

the original form of the equations given in I. One can then show that the S-matrix 

in the present approximation is also symmetric. In § 3 the interaction kernels 

are given by expressions which are convenient for practical calculations. Some 

examples of the calculated kernels are presented and the nature of the kernels 

is discussed in some detail. The kernel is decomposed into the interaction term 

and the non-orthogonality term. The interaction term which is used in the cal­

culation in § 6 is illustrated separately and is shown to be well behaved compared 

to the non-orthogonality term which is rapidly oscillating and has a very long 

range. In § 4 the Pauli principle between the captured and target neutrons is 

discussed in detail. In § 5 a method of numerical solution of the basic equations 

is described. A cutoff procedure is introduced to avoid the difficulty encountered 

in the numerical calculations caused by the singularity of the centrifugal potential 

at the origin. In § 6 examples of calculated cross sections are presented and 

the results are briefly discussed for (d, p) reactions on 4°Ca, 160 and 12C in which 

the non-orthogonality terms are neglected from the interaction kernel. A summary 

is given in § 7. 

§ 2. Transformation of the basic equations and the 

symmetry properties of the interaction kernels and the S-matrix 

First, let us review the notation and the basic equations given in 1.1
) Neg­

lecting the spin of nucleons and the D-state of the deuteron, the L-th partial 

wave of the total wave funtcion, ?JI La, with the z-component of the angular mo­

mentum zero has the form 
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Study of Deuteron StrijJping Reaction by Coupled Channel Theory. II 349 

(2 ·1) 

where (jj 0 ~ (~), ¢rZ (rnp) and (jjr~~ (~, r 11) are the internal wave functions of the target 

nucleus A, the deuteron and the residual nucleus B respectively. We assume 

(jjl~ (~, rn) to be of the form 

(jj~ (~, rn) = (jjto (~) ¢znmn (rn) · 

The wave function of relative motion in the deuteron 

channel is given by (uL(R) / R) YLo (R) and that of the 

proton channel by ( v~<L> (r) /r) Y~rn (r). The notation 

[(jjr~, Y~]Lo is defined by 

[(jjf,t, Y~JLM= :E CZnlmnmiLM)(jj~nmnY~m · 
mnrn 

The function cfho vanishes asymptotically in the deu­

teron and proton channels and has only outgoing 

@ 

?1 ' 

,'' ~ 
/ IR/~ 

;rn/ L~® 

, K___ lr 

~~centre of mass of 8 

ce~tre of mass of A 

Fig. 1. Coordinate system for 

the reaction A(d,p)B. 

waves in the asymptotic region of all the other open channels. The coordinate 

system used in Eq. (2 ·1) is shown in Fig. 1. Taking ?Jf Lo with cfho put equal 

to zero as the trial function of a variational principle, one gets, according to I, 

the basic equations for the radial wave functions uL and v~<L\ 

and 

+ s (]Jto*¢a*Y1o(R) [ -a'P(.drln+kp
2

) + V'PA(r'P') + Vnp(rnp)J 

X :E [(jjf,~ (~, rn), Y~(r) ]Lo-~{L) (r) __ d~drnpdR = 0 
z r 

(2 ·2) 

+ S [(jjf,,*(~, rn), Y/(r)]Lo[ -a'P(.drln+kp
2

) + VpA(r'P') + Vnp(rnp)] 

X (jj~ 0 (~)¢cZ(rnp) YLo(R) }!Lk_~ld~drndr=O, (2·3) 

where ap=h2/2/f.p, aa=h2/2fl.a and .drln stands for the Laplacian with respect to 

r with rn kept constant when r and rn are taken to be independent variables. 

The potentials UaA (R) and upB (r) are suitably chosen complex phenomenological 

potentials in the d- and p-channels respectively and the potentials VpA (r /) and 

Vnp (rnp) represents the interaction of the outgoing proton with the core A and 

the captured neutron n respectively. 

In the case of a (d, p) reaction, the set of boundary condition imposed on 
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350 T. Ohmura, B. Imanishi, 1\1. Ichimura and 1\1. Kawai 

uL(R) and vL<L) (r) is that they should vanish at the origin of the respective 

arguments and have the asymptotic forms 

(2 · 4a) 

and 

v <L) (r) ""-./!' PT(L) H <+) (k r) L '-:, L pl, rlT, L 1> , (2'• 4b) 

respectively, where FL and 1--JL<+) are the regular and outgoing wave Coulomb 

functions defined in Eq. (2 · 34) of I and (/z = iL exp(iO' Ld)/ J va and (t = iL exp(iO't)/ 

Jvv where the O''s are the Coulomb phase shifts and the v's the speeds of the 

particles at the infinite distances. Equations (2 · 4) define the reaction amplitudes 

T,iJ:!rtr, and T~f:;n the values of which are obtained by solving Eqs. (2 · 2) and 

(2 ·3). 

More generally the reaction amplitude TJ~-) for the total angular momentum 

L is defined by the asymptotic form of the radial wave function uJ~) as 

(L) c ~ ) f' c-~ F + r<L)J:I (+)) 
Upa 1 (3 r"--/'-:,(3 U (3a (3 {1a (3 , (2. 5) 

where a and {3 stand for (d, L), (jJ, l), etc., and ui{;) (r13 ) is the radial wave 

function in the {3-channel of the solution with the incoming wave only in the 

a-channel. The S-matrix element corresponding to T 11<[;) is given by 

(2 ·6) 

Now, Eqs. (2 · 2) and (2 · 3) are not explicitly symmetric with respect to 

channels. Furthermore, the integration kernels contain differential operators 

operating on the unknown functions u1, (R) and v,,<I-) (r). These features are 

very inconvenient in practical calculations. Fortunately, however, the derivatives 

of unknown functions can be eliminated from the integral term by the procedure 

described below. 

Let us first consider the quantities I!l1> (R) and 11)(z (r) defined, respectively, by 

Lzp(R) = f (/J~o*(~)¢r~*(rnp)Pr 2 ln([J4.mn(~, rn)XP(r)d~drnp, (2 ·7) 

where 

X (r) = Y (r) r--lv <L) (r) 
p l.?n " ' 

(2 ·8) 

and 

(2 ·9) 

where 

(2 ·10) 

Let us change the integration variables into r and R using the relations 

1'n=sR+tr, 

where s, t, s' and t 1 are given by 

1'np=s
1
R+t'r, (2 ·11) 
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Study of Deuteron StrijYjYing Reaction by CoujJled Channel Theory. II 351 

s= 2(A+1) 

A+2 ' 

A+1 t= -~----
A+2' 

I 2A 
s = ------------

A+2' 
t' = - ~JA ±~~)_ , (2 ·12) 

A+2 

A being the mass of the target nucleus. In the following we omit the subscripts 

denoting the magnetic quantum numbers to simplify notations. The integral in 

Eq. (2 · 7) can then be transformed as 

IcZp(R) = (-t'Y J (h,(sR+tr)¢cZ*(s'R+t'r)flr
2 lnXv(r)dr 

= ( -t')3 J ¢~ 11 ¢a*(l7r 2 IR-2ts- 1 17riR·f7RJr+t 2 S- 2 flR 2 Ir)Xv(r)dr 

= ( -t'Y J Xv(r)flr 2 IR[¢~n(sR+tr)¢a*(:<;'R+t'r)]dr, (2 ·13) 

where in the step leading to the last line Green's theorem is used together with 

the fact ¢~n¢<z* tends to zero as r goes to infinity. 

A similar transformation can be carried out also for Ipd· First, one writes 

it in the form 

Ip<Z (r) = s3 J ¢tt (sR + tr) (17 r
2l R- 2ts-

1
17rJ R · f7 Rl r + t

2
S-

2fl R
2l r) r/JcZ (s' R + t'r) XcZ (R) dR . 

(2 ·14) 

By means of Green's theorem, one can rewrite Eq. (2 ·14) by integration by 

part as follows. Using an abbreviated notation f(r, R) =¢cZ(s'R+t'r)Xd(R), one 

has for the second term of the integrand in Eq. (2 ·14), 

-2ts- 1 J ¢t,(sR+tr)flriR·f7Rirf(r, R)dR 

= 2ts-1 J [fl Rlr¢~ (sR + tr)] f7 r J Rf(r, R) dR 

=2 s [VrJR¢tt(sR+tr)]PrJRf(r, R)dR, (2 ·15) 

smce the surface integral at infinity vanishes on account of the factor ¢zn and 

the factor ¢a in f(r, R). Similarly, the third term of the integrand in Eq. (2 ·14) 

can be rewritten as 

t 2s- 2 J ¢tJsR+tr)f7R
2
Irf(r, R)dR= fJ(r, R)flr

2 IR¢zn(sR+tr)dR; (2·16) 

Hence, from Eqs. (2 ·14), (2 ·15) and (2 · 16) one has 

Ipa (r) = S
3 S [¢t,P r2

1Rf + 2 (fl riR¢tJ f7 riRJ +_JV r
2
JR¢tJdR 

= s3 S Xa (R) f7 /JR[¢~ (sR + tr) ¢a(s' R + t'r) ]dR, 

$InCe the factor Xa(R) in f(r, R) is independent of r. 

(2 ·17) 
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352 

and 

T. Ohmura, B. Imanishi, M. Ichimura and M. Kawai 

Now, using Eqs. (2 ·13) and (2 ·17) one can rewrite Eqs. (2 · 2) and (2 · 3) as 

-aa {-1~2- +ka2 L(~; 1 )}zh(R) + UflA(R)uJ,(R) 

+ ~ roo K,Jf: pl. (R, r) Vt(L) (r) dr = 0 ' 
I. Jo 

+ rooK~{;;n(r, R)u[,(R)dR=O, 

(2 ·18) 

(2 ·19) 

respectively. Here the kernels K,if! pl (R, r) and K~t:n (r, R) are given by 

and 

K,ff!pl(R, r) = -~-/:++zS~~"[;Clln-nzmiLO)rR S Ylo(R) Yt-m(r) 

X {[ -ap(Pr 2
IR+kv

2
) + UJJB] + [Vnv+ u1JA- Uvn]} 

X [¢rz* (s' R + t'r) ¢tnm (sR + tr) ]drdR 

K <T.) ( R)- K<I,) (R ·) pl., rtT. r, - ,u,, pl , 7 , 

(2 ·20) 

(2. 21) 

where 

UPA = fiai~I 2 VvAd~. (2. 22) 

Equations (2 ·18) and (2 ·19) constitute the basic equations of our theory. 
Equation (2 · 21) manifestly expresses the symmetry of the interaction kernel. 
One sees from Eq. (2 · 20) that the kernel consists of two parts, one coming 
from the usual Vnp + upA- upB term and the other due to the non-orthogonality 
of the initial and final channel wave functions. As in I, we call these terms 
the interaction term and the non-orthogonality term respectively. In the actual 
calculation We make further aSSUmption that UpA can be replaced by UpB in 
Eqs. (2 · 20) and (2 · 21), which corresponds to the assumption in ordinary DWBA 
that ( upA- UvB) can be neglected in the residual interaction.*) The kernel is 
symmetric also in this approximation. The parameters of the complex "dis­
torting" potentials UaA and UvB should be determined so that the calculated 
cross sections agree with the experiment. 

Now, let us examine the symmetry property of the S-matrix calculated by 
the present method. Because of the imaginary part of the distorting potentials 
the flux is not conserved and the time reversal invariance does not hold. Nev­
ertheless one can show that the S-matrix is symmetric if one writes Eqs. (2 ·18) 

*l Validity of this ;:tssumption is being examined by K. Kubo (priv;:tte c;ornn.wnication). 
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Study of Deuteron Stripping Reaction by Coupled Channel Theory. II 353 

and (2 ·19) in an abbreviated form 

(E-H)</J<L)=O, (2. 23) 

using fxf dimensional matrices E and H and a vector </J(L) whose components 

are f radial wave functions uL, vl<L\ ···, where f is the number of channels 

coupled in Eqs. (2 ·18) and (2 ·19). The "energy matrix" E is a diagonal 

matrix of the form 

(2. 24) 

Explicit form of the "Hamiltonian matrix" H will not be given here but should 

be clear from Eqs. (2 ·18), (2 ·19) and the definitions of </J<L) and E given above. 

The matrix H contains a diagonal matrix of the differential operators 

T= d2 
0 

(2 ·25) 
aa dR2 

0 
d2 

av-
dr2 

and a matrix of integral operators which contain the potential term and the in­

teraction kernels. The Hamiltonian matrix is not real but is symmetric in the 

sense that 

(2 ·26) 

where Hr is the transpose of H with respect to channel indices. 

According to Bilhorn et al. a),
4
) Eq. (2 · 26) is sufficient for the symmetry of 

the calculated S-matrix. To show this, let us define two solutions of Eq. (2 · 23), 

</JJ£) and </Jif) which have the asymptotic forms of the incoming wave only in 

the dL- and pl-channels, respectively, plus outgoing waves in all channels. The 

asymptotic forms of the component functions of </JrZ<f;) and </J~f) are given by Eq. 

(2 · 5) with a= dL and a= pl, respectively. Then, the identity 

s dr {</JWr (H-E) </J~~I;}- </J~I;}r (H-E) </JCf£)} = 0 (2. 27) 

holds where the </Jr's are the transpose of the </J's. Using Green~'s theorem to 

convert the volume integral containing the matrix T, which are the only remammg 

integral on the left-hand side of Eq. (2 · 27), and using Eqs. (2 · 4) and (2 · 6) 

one gets, after a little manipulation, 

( 1)LS (L) - ( 1)LS (L) 
- pL,flL- - rlL,pl, (2 ·28) 

which 1s the symmetry of the S-matrix which we set out to prove. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/4

3
/2

/3
4
7
/1

9
2
1
1
8
6
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



354 T. Ohmura, B. Imanishi, M. Ichimur~ and Af. Kawai 

§ 3. The Interaction kernel 

In this section we derive an expression for the interaction kernel, KB";?pl(R, r), 
which is useful for practical calculations, and discuss some of the properties of 

KJJ:!pz which are revealed by the numerical calculation using that expression. 

To evaluate the integral on the right-hand side of Eq. (2 · 20) with the· ap­

proximation, U:pA = upB, we first transform the Laplacian in the integrand as 

P' /I R (¢a* (/JlnnJ = (t
2
J7n

2
! np + 2tt' J7 nlnp · J7 np In+ t'

2
J7;tp! n) ¢fl * (r np) ¢znm (r n) • 

We then obtain 

where 

(3 ·1) 

(3·2) 

F(r, R) = apan- 1
!

2 (En- VnA) + apa;;~t' 2 (Erz- Vnp) + UpR + Vnp -- apkp2
• (3 · 3) 

If one puts 

(3 ·4) 

one can carry out the differentiation on the right-hand side of Eq. (3 · 2) as 5
) 

(J7np¢a*(rnp)) · (J7n¢z,.mn(rn)) = (rnp·rn)¢a*'w~nrntnyln(rn) 

(3 ·5) 

where 

To carry out integration with respect to R and r in Eq. (3 · 2), let us expand 

the quantity, (F(r, R) - 2aptt'J7nlnP · Pnpln) ¢d* (rnp) Wzn (rn) in spherical harmonics 

of R and r. We first note that each factor of this quantity is scalar with respect 

to rotation of the coordinate space so that they are functions of the scalar, 

/I.= r · RjrR and so can be expanded in the series of the Legendre function, 

PL(/1). Let us therefore put 

= ~ [ (2L + 1) /2]JIYn) (r, R) PL(/1) (3 · 6a) 
J; 

and 

(3. 6b) 

PL(/1) can then be expressed by YL(r) and YL(R). 

The coordinates rn and rnp are related to r and R through Eqs. (2 ·11) as 

rn= (s 2R 2 + t 2r 2 + 2strRp)112 

and 
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Study of Deuteron Stripping Reaction by Coupled Channel Theory. II 355 

One also has 

(rn 1) • rn) = {ss' R 2 + tt'r2 + (s't + st') Rrfl.} /r nrn1) • 

Putting (3 · 5) through (3 · 7) into (3 · 2) and using the formulae'') 

~zy (")-~j 4n(2l+l)! (R)z-"( )"[Y (R/'.) Y(")] 
7 n Zrn r n - fj (2)- + 1)! (2[- 2). + 1)! S tr Z-}. · , }, T _ Zrn 

and 
1 

rnv Y1nz (rnv) = ~.J 4n (s' RY-" (t'r)"[ Y1-" (R), Y,. (r) J1m, 
.l=O 

one finally obtains the desired expression for KJJ:;; P'- (R, r): 

where 

B[lnlL; AV] = (- )v (2ln + 1) (2v + 1) j--~~~~ l)JitA~z~~;;~~-;~); 

X CZn-},vOOILO) UvOOilO) W(Llln-AA; lnv), 

K[ln; },v; rR] = (sRYn-~(tr)"JYn)(r, R), 

D [lnlL; 01-v] = (- 1)" (2ln + 1) (2v + 1) J~(2L~-f)(ffi~t)~If;;~-~f~~:~2; 

(3·7) 

(3 · 8a) 

(3. 8b) 

(3·9) 

(3 ·lOa) 

(3 ·lOb) 

X (J.vOOilO) ~.J2k+1 Cln- A -lvOOihO) (klOOILO) W(klln- }, -1}.; ln -lv) 
k 

X 1{1 (kln -lLln; ll), (3 ·lOc) 

D[lnlL; l},v] 

and 

= C -1)"+
1 

(2ln + 1) (2v + 1) J/-C2L +-l)~{~T~tiff~ ~r=- 2)! Cln- il-lvOOILO) 

X ~.J2k + l (}.vOOikO)(klOOIZO) W(Lkln -}. -1,.\; ln -lv) VV(ln -lklnl; Ll) 
k 

(3 ·lOd) 

(3 ·lOe) 

From Eqs. (3·10a), (3·10c) and (3·10d) it is seen that B and D vanish if 

ln+ l+L= odd. 

Let us now discuss some properties of the kernels. Let us first investigate 

the kernel for small r or small R. For this purpose let us consider an arbitrary, 
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356 T. Ohmura, B. Imanishi, M. IchiJnura and M. Kawai 

well behaved function of rn. f(rn). We first note that we can always write 

rn= xJf~~J?;+-2h/L-, 

where x=max(lsRI, !trl) and h=min(lsRI, ltrl)/x. For a small value of hone 
can expand f(rn) in powers of (h2 + 2hj1) as 

f(rn) = t _0m (~)_ (h2 + 2hjl)m, 
m=O m! 

where am (x) is a function of x. Now, (h 2 + 2hf1Yn can be written as a polynomial 
of f1 of degree 1n in which the coefficient of flm is 2mhm. Since this polynomial 
of f1 can , be written as a linear combination of Legendre polynomials, Pv (!1), 
with v<m, f(rn) can be rewritten in the form 

00 00 

f(rn) = L:Cl: aji(x)l/)Pi(/1). (3 ·11) 
i=O j=i 

Similarly, an arbitrary, well-behaved function g (rnp) of rnp can be written in 
the form 

00 00 

g(rnp) = L:CL: bji(x')h'i)Pi(/1), (3 ·12) 
i=O j=i 

where x' =max (is' Rl, lt'rl) and h' =min (Is' Rl, lt'rl) / x'. 

The product of f(rn) and g (rnp) can then be written m the form 

00 

f(rn)g(rnp) =~I:; ~ Cij,k(x, x')hih'iPk(fl). (3 ·13) 
k=O ic=O j=k---i 

Equation (3 ·13) shows that the coefficient of P~.; (fl) in the expansion of f(rn) 
g (rnp) is rk in the lowest order for sufficiently small r which satisfies I trl <!sRI 
and lt'rl<ls'RI and Rk in the lowest order if !sRI<Itrl, ls'RI<It'rl. Applying 
the above considerations to E'qs. (3 · 6a) and (3 · 6b) with Eq. (3 · 7), one sees 
that }v Un) (r, R) and qv Un-

1
) (r, R) are rv and Rv in the lowest order according as 

r<_R or R<_r. Equation (3·10b) then shows that K[ln;Av;rR] is at least of 
the order or r>c-t-v for small r and Rln-A-+v for small R. Because of the Clebsch­
Gordan coefficients in B[lnlL; AV J' however, z> A+)) and L> ln- A+)). Hence, 
the contribution of the first term in the curly brackets on the right-hand side 
of Eq. (3 · 9) gives rl-t-

1 in the lowest possible order of r for small r and RL+l 
for small R. Similarly, the second term on the right-hand side of Eq. (3 · 9) 
gives the same dependence on r and R for small r and R respectively. Hence, 
K<Yf!pz (R, r) is at least of the order of rl-i- 1 for small r and RL-+ 1 for small R. 

In the limit r->co and/or R->co, the kernel is expected to decrease expo­
nentially since cPlnm and/ or ¢a decrease in that limit. In fact, ¢zn (sR + tr) is large 
only when rn= lsR + trl is within about the radius of the single particle orbit 
while ¢a(s'R+t'r) is large only for rnp= !s'R+t'rl within about the deuteron 
radius and they decay exponentially outside these ranges. Since, however, 
lt/sl=1/2 and lt'/s'i=(A+1)/A according to Eqs. (2·11), at least one of rn 
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Study of Deuteron Stripping Reaction by Coupled Channel Theory. II 357 

and r np must be large in the limit of r and/ or R tending to infinity. 

The interaction kernel, KH;!v~ (R, r), is a continuous function of R and r but 

its first derivative is in general discontinuous along the lines in r-R plane cor­

responding to r 1t = 0 and r 1 ~p = 0. This is due to the cusps which occur when 

r 1 ~ and rnp are expanded in PL(f-1). The lines of the cusps in the r-R plane is 

given by the equations 

and R= it's'- 1 ir= (A+ 1)r/A. (3 ·14) 

However, the cusps are not prominent, in fact unrecognizable, in the cases which 

we discuss in the present paper because of the following reasons. First, UnA 

is presumably nearly constant at the nuclear centre, rn= 0. Then, the function 

w~n (rn), when expanded in a power series of r,n around the origin, has only even 

powers of rn in the lower order terms. The cusps, therefore, are not prominent. 

On the other hand, Eq. (3 · 8) shows that rn~Y~ 7 n (rn) is a smooth function of r 

and R. If Vnp is a function of r~v alone it is obviously a smooth function of 

r and R since r 1;p is a bilinear function of r and R. This is the case when 

Vnv has a Gaussian form. Under these circumstances, therefore, KJi,>vl(R, r) has 

practically no cusps and is a smooth function of r and R. 

The imaginary part of KJ£! P~ arises from the imaginary part of Uvn· Since 

the latter is presumably. peaked at the nuclear surface, Im (J(ri};; pl) is appreciable 

only for r::::::::r0A
113

• The absolute value of Im (KB;;~P) is in general much smaller 

than Re (KJ.i!v~) as long as one assumes the optical potential Upn to have an 

imaginary part which is much smaller than the real part. 

Some of the examples of KJi!pl(R, r) with UvA= Uvn calculated by Eq. (3·9) 

are shown in Figs. 2, 3 and 4. The optical potentials were assumed to be of 

the form 

U(r) =- Vofw-s(r; ro, a) -4iWoa' -~-fw-8(r; ro', a')+ Uu; 
dr • 

(3 ·15) 

where 

[ 

r- r A lf3 J ~1 
fw-s(r; r 0 , a)= 1+exp ~ , (3 ·16) 

and Ua IS the Coulomb potential due to a uniformly charged sphere of radius 

roAlf3. 

As is clear from these figures, the real part of the interaction kernel has 

a very long range and often changes sign as a function of r and R. The long 

range of the kernel is due to the fact that the deuteron wave function ¢d (rnp) 

spreads over a long range of rnp because of the low binding energy of deuteron. 

Figure 3 and the dotted lines in Fig. 4 show the contribution of Vn1, alone 

to K/ii!pl(R, r). DWBA is equivalent to taking this as the interaction kernel 

and making a first order perturbation calculation. In zero range DWBA, the 

kernel is further approximated by a delta function, Do (rnv) ¢~,. (rn) where D is 
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358 T. Ohmura, B. lmanishi, M. !chimura and M. Kawai 

the strength of the coupling. These figures show how the terms other than 
V 1 ~v give complicated features to the interaction kernel. We have called in I 

the part of KaCf!vl(R, r) which is due to these terms the non-orthogonality term, 

R 
-10-4 

(fml 

20f--------+-

1 "C(d, p) '"C ( !p) 

L"-'0, t -~! 

!c--------~-------,;,;-----:--:-;--·-1 
0 10 r(fm) 30 

Fig. 2. The interaction kernel K~~pl (R, r) in fm-2 MeV for 
the reaction 12C(d,p) 13C with Eilab)=11.8 MeV, Q=2.722 
MeV and ln = 1. The distorting and the binding potentials 
appearing in the kernel are as follows: Vnp= -72.15 
exp[ -r2np/(1.484)2], VnA = -33.92 fw-sCrn; 1.32, 0.57) and 
the parameters used for U pB listed in Table II. Since 12C 
is not a closed shell nucleus in the sense of the LS­

coupling, K~lj},pl in Eq. (3·9) is multiplied by the factor 
1/v3 coming from c.f.p. (see § 4). 

Fig. 3. The interaction kernel 

K,)~v 1 (R, r), coming from 

the Vnp term in (2·20) only, 
in fm - 2 MeV for the reaction 
12C(d, p) 13C with Ed<lab) 

=11.8 MeV, Q=2.722 MeV 

and ln = 1. V np is the same 

as given in Fig. 2. 

..... 
3, 5 

i 
(!) 

.< 

4 °Ca(d,p) 41Ca(2p) 

Q=4.19MeV 

~ 0~-L~~~b---~=---~---~ 

II 

"' 3 

0 5 r(fm) 10:----' 

Fig. 4. The interaction kernel K~2, pl (R, r) in fm -2 

MeV for R=3 fm for the reaction (i) 40Ca(d,p) 
41Ca (Q=4.19 MeV and ln=1) with Ed(lab)=ll 

MeV, and VnA=-58.83fw-sCrn;l.20,0.65) and 
(ii) 16Q(d,p)170 (Q=l.046 MeV and ln=O) with 

Ed(lab)=ll.8MeV and VnA = -51.25fw-sCrn; 1.25, 
0.58). Vnp is the same as given in Fig. 2 for 
both cases and the parameters used for U pB 

are listed in Table II. The real and imaginary 
parts of the kernel are represented by the full 
and dashed curve, respectively. The dotted lines 
shows the kernels coming up from the term 
Vnp in (2·20) only. 
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Study of Deuteron Stripping Reaction by Coupled Channel Theory. II 359 

since it is given rise to by the non-orthogonality of the deuteron and proton 

channels. 

§ 4. Many valence nucleons and the Pauli principle~ 

So far we have considered the (d, p) reaction in which the neutron is trans­

ferred into an empty orbit outside an inert even-even core of the target nucleus. 

In the general (d, p) reaction, however, the capturing orbit in the target nucleus 

is not necessarily empty but is already occupied by several neutrons. It then 

becomes necessary to consider the effect of the Pauli principle between the captured 

neutron and the target neutrons in the same orbit. In the ordinary DWBA cal­

culations this effect is taken into account by the spectroscopic factor in the cross 

section formula. 

In this section we investigate how the effect of the Pauli principle is taken 

into account in the coupled equations. We treat only the neutrons in the outer 

orbit as participating in the reaction and treat the rest of the target nucleus as 

an inert even-even core. We neglect the Pauli principle between the nucleons 

in the deuteron and those in the core. Hence, we still assume the stripping 

process as the sole reaction mechanism. We entirely suppress the coordinates 

of the nucleons in the core in the notations throughout the subsequent paragraphs 

in this section. We still neglect the intrinsic spin of nucleons. 

Now, let us assume that the outer orbit of the target nucleus with the or­

bital angular momentum ln is occupied by N -1 neutrons and gives rise to the 

spin IA and its z-component MA of the nucleus A. The anti-symmetrized wave 

function of A is written in the form 

mA=mA(l N-1] M \r (1) ••. r (N-1)) 
IJ! IJ! n AAn, ,n , (4·1) 

where rnCi) is the coordinate of the i-th neutron. The captured neutron goes 

into the orbit ln to form the residual nucleus B with spm IB and its z-component 

MB whose antisymmetrized wave function is written as 

mB = mB (l NI M \r (1) .•• r (N-1) r (N)) 
IJ! !1.1 nB Bn, ,n >1~ • 

(4·2) 

The Pauli principle between the captured neutron and the target neutrons 

m the ln-orbit can be taken into account by anti-symmetrizing the trial wave 

function as 

(4·3) 

where 

f (d,N) = [mA (l N-1] \ r (1) ... r (N-1)) "-- (r(N)) y (RCN)) J 
L,JM IJ! n A n , ' n 'f'd np ' L ,JM, (4·4) 

with 

r
(N)=r (N)_r' 
np n p and (4·5) 
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T. Ohmura, B. Imanishi, M. Ichimura and M. Kawai 

and 

(4·6) 

and Jl is the anti-symmetrization operator with respect to the N-th neutron and 
other neutrons in the ln-orbit. We assume here that the mass of the inert core 
is much larger than the sum of the masses of the outer neutrons so that the 
centre of mass of the inert core coincides with that of the target A. We there­
fore neglect the dependence of r/ on the particle number, (N). Henceforth, 
we omit the suffices J and M to simplify notations and write Ji~/{1\ Jz;:;k, uLCJ) 
and v/J) simply as JLCd,N>, fLCv>, uL and VL respectively. 

One then gets 

(4· 7) 

and 

(4·8) 

where 

( 4 · 9a) 

and 

(4 ·9b) 

where 

N-1 

dr(A) =IT dr n (i). ( 4 · 9c) 
i=1 

Let us introduce the notations A' and B' to indicate the outer nucleons in 
A and B, so that A consits of A' and C, the inert core, and B consists of B' 
and C. Let us assume that the Hamiltonian is of the form 

(4·10a) 

where 

N-1 

V - "" v ( (i)) + v ( (N)) pB' - .L..J np r np np rnp , (4·10b) 
i=1 

and 

N N 

Hn=~(Ki+ Uw) + ~ Vij+l--Ia, 
i=l i>j=l 

(4·10c) 

where KP and Ki are the kinetic energies of the proton and the i-th neutron 
respectively, Upo and Uw are the interaction of the core with the outgoing proton 
and the i-th neutron respectively, Vnp (r 1 ~~) is the interaction between the proton 
and the i-th neutron and vij is the interaction between the i-th and j-th neutrons. 
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Study of Deuteron Stripping Reaction by Coupled Channel Theory. II 361 

and 

Using Eq. (4·3) in Eqs. (4·7) and (4·8) one gets 

[ -a {~ + k 2- L (L + 1)} + U. a (R) J u (R) 
d dR2 d R2 d L 

+ 1f{Ua,LY(R)uy(R) + s Ud,LL'(R, R')uL'(R')dR'} 

=- JN :E roo Kit) (R, r)v~(r)dr 
l Jo 

[ -a»{:;2+kp
2
- l(lr~ 1 )}+Up 0 (r)]vt(r)+~ Up,w(r)v;v(r) 

=- JN :E rooK/];) (r, R) uL(R)dR' 
L Jo 

( 4 ·11) 

(4·12) 

where JN IS written out explicitly on the right-hand side of the above equations 

for the sake of later convenience. In Eq. ( 4 ·11) Ul (R) represents the inter­

action between d and C and is given by 

(4 ·13) 

In the same equation Ud,LL' (R) represents the direct part of the interaction 

between d and A' and is given by 

Ua,LL' (R<N)) = J dr<d,N)JL<d,N)* (V~lj) + ~ VNi)fLSd,N), (4·14) 

where v~~) = :E!11 Vnp (r1~~). The non-local operator Ud,LL' (R, R')' which appears 

in the same equation is the exchange part of the same interaction as Ua,LL' (R) 

and is given by 

100 

Ua,LL' (R<N\ R') Uy (R') dR' 

= R<N) J dr<d,N)jL<d,N)* (H-E) (JL -1) (fLSd,N) R<N)-!uL' (R<N))). (4 ·15) 

In Eq. ( 4 ·12), Up,w (r) is the interaction between p and B' and IS given by 

U ( ) - sd (P)+(»)*V +(P) 
», w r - r J ~ pB' J l' • (4·16) 

One sees from Eq. ( 4 ·14) through Eq. ( 4 ·16) that the interaction between 

two complex particles or between a complex particle and a nucleon is spherically 

non-symmetrical and non-local. The interaction kernels Kl1) and .Kll) are given 

by 

(4 ·17) 
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362 T. Ohmura, B. Imanishi, M. Ichimura and M. Kawai 

and 

S K/fl (r, R<N>) uL(R<N>) dR<N> = r f dr<P>J/Pl* (1-I- E)JL<d,N) R<N)-!uL(R<N>), 

( 4 ·18) 

where use has been made of [cA, I-i] = 0 and cA([JB = N([Jn. Explicit form of the 
interaction kernels can be obtained by the procedure described in § 2 and can 
be shown to be symmetric, 

~(d) ~() ) 
KLt (R, r) = f(tl (r, R . 

Next, let us investigate the kernels in Eqs. ( 4 ·17) and ( 4 ·18) further. If 
one expands ([JB using c.f.p., one has for ft<P> the expression 

-f'(p)_'\,1 <l N-l(J )ll}l NJ >·+(r>,N) J t - L..J n A' n n B '.J l, I A' ' 
IA' 

( 4 ·19) 

where 

+ (p, N) [ [([JA (l N -lJ I (1) • (N -1)) ,/, ( (N)) J y (~) J Jl,IA' = n A' rn ·•·ln , 'f'ln rn In' t r hi'J, (4 ·20) 

where IA' stands not only for the angular momentum but also for the quantum 
numbers necessary for specifying the state of the N -1 particle system. Using 
Eq. ( 4 ·19) in Eq. ( 4 ·17) one obtains 

Klfl(R, r) = <ZnN-I(JA) lnl}l?~Nls)Kl'f.>£~(R, r) + I.; <zN- 1(IA') ln!}lnNis)Kl~?i-~,(R, r), 
1A')JA 

(<'1· 21) 

where 

Sj(<d),l (R<N> r) v (r) dr Lt,IA ' t 

=R<N> fdr<d,N)+ (d,N)* (J( + U 0 -t- V(N) -E + V (r<N>)) +(r>,N)r-1v (r) J L P p pA' p ?bP np J l, I A t 

(4 ·22) 

and 

SK(d), 2 (R<N> r)v (r)dr Ll,IA' , l 

(4 ·23) 

Comparing Eq. ( 4 · 22) with Eq. (2 · 20) one sees that Kl1,)J~ is just a generali­
zation of Ka<i!pl to the case where the target nucleus has a finite spin. 

The kernel Kif.>£~,, on the other hand, corresponds to the rearrangement 
process due to VvA' in which the target nucleus is brought into an excited state 
with the spin JA, while the transferred neutron plays a role of a spectator. 

If the terms with Kit,>} can be neglected in KH> the latter becomes just 
the kernel obtained in the previous sections, provided up a+ v~~') is approximated 
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Study of Deuteron Stripping Reaction by Coupled Channel Theory. 11 363 

by the optical potential upB• Then the Pauli principle is expressed by the factor, 

(4·24) 

multiplying the interaction kernels. Such is the case, for instance, when 

ClnN-1 (IA) IB!} lnNIB) = 1. If Klt,)r~' cannot be neglected, the interaction kernels 

take on complicated expressions containing terms with CZn N- 1 (IA') IB!} ln NIB). 

§ 5. Method of numerical calculations 

In this section we describe the method of numerical calculation of the scat­

tering amplitude. We describe in § 5.1 the principle of the method and in § 5.2 

the numerical method of solution. In § 5.3 the effect of the singularity of Green's 

function at the origin is discussed and a cutoff procedure to avoid the difficulty 

due to such a singularity is described. 

5.1 The principle of the method 

Let us use the notations a, {3 · · · introduced in § 2 for the channel suffices. 

The basic equations (2 ·18) and (2 ·19) then read 

(Ef:J-Hf3(rf3))uf3a(rf3) = ~ S Km(r/3, rr)Ura(rr)drr, (5·1) 

where u 13 a is the radial wave function in the channel {3 when the incident wave 

is in the channel a and 

(5·2) 

The asymptotic form of ua13 (r 13 ) for large r 13 , which we denote by Rp, is given 

by Eq. (2 · 5) as 

(5·3) 

which defines the scattering amplitude T 13a. 

Now the form of Eq. (5 ·1) is independent of a. Therefore, the wave 

functions corresponding to the different a's are actually the linearly independent 

solutions of the same set of equations satisfying different sets of boundary con­

dition, Eq. (5 · 3). If f is the number of coupled channels there are f such 

linearly independent sets of solutions. 

The principle of the present method is to solve Eq. (5 ·1) J5.rst under f 
appropriately chosen sets of boundary condition to get f linearly independent solu­

tions u13 i (i = 1rv f). The choice of boundary condition is made so as to facilitate 

the subsequent numerical works. The wave functions u are then obtained from 

the u's by a linear transformation 

(5 ·4) 

where the transformation matrix y = [Yia] is determined by the condition that 
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364 T. Ohmura, B. Imanishi, M. Ichimura and M. Kawai 

the u's satisfy boundary condition (5 · 3) which leads to 

and 

where 

P!3 = (f-Lf3kf3Jt-1Y12i~f3ei6f3 

and f/ = df13/ dr 13 • Using the Wronskian relation 

W[F H (+)]=F H (+)I -H (+)L" '-k 
(3, (3 - (3 (3 (3 .L' (3 - (3 ' 

one obtains from Eqs. (5 · 5) and (5 · 6) 

p13T 13a = ~ W[F13 , u 13 i]Yia 
i 

and 

for {3 running over all the coupled channels. 

(5·5) 

(5 ·6) 

(5·7) 

(5·8) 

(5·9) 

Equation (5 · 9) is a linear simultaneous equation for Yia for a given a, from 

which y = [Yia] is determined. The scattering amplitude T 13a is then determined 

from Eq. (5 · 8) using the Yia's and the S-matrix element, S13m is obtained from 

T 13 a using Eq. (2 · 6). 

5.2 · Numerical solution 

In the actual calculation we choose the following boundary condition for 

the u's: 

Uf3a (0) = 0 (5 ·10) 

and 

(5 ·11) 

for all a and {3 where c13 is a constant. The values of L1r13 and c13 are determined 

according to computational convenience. 

For the numerical solution of the equation 

(5 ·12) 

the (r, R) space is divided into mesh. The differential operator contained in 

H 13 is approximated by an appropriate difference operator and the integral is 

approximated by a weighted sum using appropriate formulae of numerical dif­

ferentiation and integration respectively. Equation (5 ·12) is then approximated 
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by a set of linear simultaneous equations 

(5 ·13) 

where u 13 (j) is the value of u13 ( r 13 ) at the j-th mesh point, with j = 1 corre­

sponding to the origin, and N 13 is the number of mesh points on the r 13-axis. 

Since the form of Eq. (5 ·12) is independent of a, the subscript a is dropped 

in Eq. (5 ·13). The coefficients A 13 (i, j) and C 13r (i, j) correspond to (E13 - H 13 ) 

and K 13r in Eq. (5 ·12) respectively and their explicit forms depend on the 

choice of the difference operator and the integration formula which one adopts 

in the approximation as are shown in the Appendix. 

Now, let us take Llr 13 as the first mesh point from the origin and c13 = J~ik 13 L1r 13 ), 

where j~ is the spherical Bessel function. Equations (5 ·10) and (5 ·11) then 

become 

and 

U(3a(2) =0(3a·C(3, 

respectively, and Eq. (5 ·13) can be written as 

where 

(5 ·14) 

(5 ·15) 

(5·17) 

Equation (5 ·16) with Eq. (5 ·17), which gives U13 (i) because of Eqs. (5 ·14) 

and (5 ·15), is a set of linear inhomogeneous simultaneous equations for u 13 (j) 

(3< j<N13 ) which may be rewritten in a matrix form as 

A 13u13 + ~ C13riir = U 13 , (5 ·18) 
r 

where (A 13)ij=A 13 (i+1,j+2), (C13r)ij=C13r(i+1,j+2), (u)j=u(j+2) and (U13)i 

=U13 (i+1). 

Now we notice that K 13 r is zero if (3 = r and if both (3 and r refer to the 

proton channel. Also, for a given total angular momentum J there is only one 

deuteron channel present. Hence, if one uses d, p, p', etc., in place of a, (3, y, 

etc., Eq. (5 ·18) can be written in the form 

and 

Adua+ ~ Caviiv= Ua 
p 

(5 ·19) 

(5 ·20) 
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366 T. Ohmura, B. Imanishi, M. Ichimura and M. Kawai 

The equation for ila is therefore 

(Aa- ~ CapAp - 1Cpa) ua = Ua- ~ CapAp -
1
up . (5. 21) 

p 'P 

Carrying out a matrix inversion (Aa- ~pCctPAP -
1
Cpa)-

1
, one can get the required 

solution ila. Equation (5 · 20) then gives up. 

Now, there is a difficulty in carrying out the procedure described above in 
the actual numerical calculation because of the singularity of HP at the ongm 
due to the centrifugal potential lp (lp + 1) /r p 2

• This singularity makes (Ap)ii 
extremely large near the origin, i.e. for small i, especially for large lP. This 
gives rise to a difficulty in evaluating (Aa- ~CapAp - 1Cpa)-1 

because of the 
presence of AP - 1

• The situation is analogous to the dif-ficulty encountered in 
numerically evaluating the Green function (EP +is- HP)- 1 near the origin because 
of the singularity of the irregular solution for HP at the origin. 

The difficulty described above can be avoided by cutting off the region of 
small r P from the domain of integration of Kpa which corresponds to cutting off 
small i and j from the summation containing Cva(i,j) and Cap(i,j) in the nu­
merical calculation. We shall describe such a cutoff procedure in more detail 
in the next subsection. 

5.3 The cutoff procedure 

Let us consider the right-hand side of the basic equation (5 ·1). 

(5 ·22) 

The radial wave function Ur~+) (rr) is zero at the origin. The value of Ur~+) (rr) 
for small values of rr depends presumably on the angular momentum lr of the 
channel such that the larger lr is, the smaller is the value of Ur~+) (rr) for rr'""-'0 
because of the higher centrifugal barrier present in the channel. Further, 
Krn(r!3,rr) is zero if ri3 and/or rr=O because of the factor r!3rr as is seen in 
Eq. (3 · 9). One expects, therefore, that one can safely cut off from the region 
of integration in Eq. (5 · 22) the region near the origin, say (0, 7\). 

Now, K!3r(r!3,rr) isappreciable only within the region in which /ri3-rr/<o­
where (} is a constant. If the non-orthogonality term is neglected (} is essentially 
the range of Vnv· The smallness of (} enables one to neglect K!3r (ri3, rr) for 
small values of r !3, say r !3<r !3r, since for such values r !3 the values rr in the 
region /ri3- rr/ <0" nearly always fall into the region rr <r\. If one denotes the 
smallest of all rj3r's by ri3, Fj3a(rj3) is then negligible for rj3<rj3. 

The above considerations show that one can cut off small values of r !3 and 
rr's in Eq. (5 · 22). For practical calculation it is convenient to take a symmetric 
cutoff in the sense that the cutoff radius for a channel is the same whether the 
coordinate corresponding to that channel appears as the first or the second ar­
gument of the kernel. Let us denote the cutoff radius by attaching a bar. Then, 
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our approximation consists in using for F 13 a the approximate one, F13 a, defined 

by 

where 

with 

O(x) = { ~ 
if x<O, 

if x>O. 

(5 ·23) 

(5. 24) 

(5. 25) 

The actual values of the cutoff radii are empirically determined in the course of 

calculation. The ensuing error in the calculated S-matrix can be estimated by 

the method described later. For practical purpose it is convenient to take the 

cutoff radius as large as possible under the condition that the error in the S­

matrix be smaller than certain limit. 

That the kernel has a finite, small range is important for the validity of 

the assumption that u's are small in the neighbourhood of the origin. In fact, 

if the kernel had an infinite range, F 13 a (r 13) could be large even for small values 

of rr since the integration extends over whole space of rr. Equation (5 ·1) then 

shovvs that u 13 a operated on by the operator (E13 - H 13) could be large. This may 

invalidate the assumption that u 13 a be small for small r 13 , except for very special 

cases. 

Let us now estimate the error introduced by the cutoff procedure. The 

cutoff is equivalent to approximating the integration kernel Km by K13r which 

is equal to the right-hand side of Eq. (5 · 24). Let us denote the approximate 

wave function corresponding to this approximation by Ura and the S-matrix element 

by S13 a. Then the error is given by 

(5. 26) 

From Eq. (5 ·1) one has the expression for the form of the S-matrix elements, 

S =S<o)~ _4i(-)£f3+1<+<->J"·K u<+)) 
{3a f3 U {3a ft J f3 ~ {3r ra , (5 ·27) 

where j 13 <-> is the regular solution of homogeneous equation corresponding to 

Eq. (5 ·1) with the asymptotic form of the incident plus incoming scattering 

wave. Hence, LiS13 a is written as 

(5 ·28) 

Approximating ur~+) in the above equation by flr~+>, one obtains 
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368 T. Ohmura~ B. Imanishi, M. Ichimura and M. Kawai 

Table I. The relative error of S~f!dL due to the cutoff procedure for 4DCa(d,p) 41Ca(1f). 

L RdL(fm) l rpl (fm) IS~f.>dLI 

4 1.4 1 0.6 0.120 

3 1.2 0.107 

5 1.8 0.0738 

7 2.4 0.0286 

6 2.0 3 1.2 0.0838 

5 1.8 0.0662 

7 2.4 0.0297 

9 3.0 0.00920 

8 3.8 5 2.6 0.0281 

7 3.4 0.0156 

9 4.4 0.00611 

11 5.2 0.00208 

10 5.8 7 4.2 0.00652 

9 5.4 0.00308 

11 6.4 0.00118 

13 7.6 0.000403 

AS ,..__.4i(-)L.s+1<+<->I"'(K -K )u<+>> 
-'J .sa- h J .S "T .sr .sr ra . 

Another estimate of L1S.sa is obtained by using 

+ <->- ~<-> "' G *K"' * ~<-> J B - Upp - ~ .S fJrUra ' 
r 

I LIS~f.> dd S~f! dLI 

9.1 xw-a 

6.0 xl0-5 

l.lOxl0-4 

3.3 xw-6 

4.0 xw-a 

3.6 xw-s 

6.9 xl0-6 

2.3 xl0-6 

7.5 xw-a 

2.01xl0-4 

4.0 xl0-5 

2.7 xl0-5 

1.93xl0-3 

2.02xl0-4 

7.8 xw-5 

2.4 xl0-4 

(5 ·29) 

on the right-hand side of Eq. (5 · 28) where G .s is the outgoing Green function 
for channel /3. Then Eq. (5 · 28) becomes 

~ (- y.s+t ~ {(u~p> I (K.srui"};>- K.srui"};>)) 

(5 ·30) 

The second term in the curly bracket of Eq. (5 · 30) can be written as 

<K"' *u~<-> ju<+>- u~<+)> fJr ra {:Ja {:Ja 

because of the symmetry of Green's function G,s. Hence, 

AS =
4i(-)L.S+1"'{(u<->j(K u<+>-K"' :u<+)))-(K"'*u~<->ju<+>-:u<+>)} -'J .Sa h ~ {:J{:J .sr ra .sr ra fJr ra {:Ja {:Ja · 

(5. 31) 

If one approximates m this expression as ur~+>~ur~+> and u;:>~uf?<;:> one obtains 
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AS ~4i C-)~,e+l<a<-)1 "CK -K"' )u<+)> 
a ;3a- ft /3/3 "7" ,er ,er ra • 

(5. 32) 

In Table I examples of cutoff and the estimate of the ensuing error using 

Eq. (5 · 32) are shown for the case of 4°Ca (d, p) 41 Ca transition to the If state of 
41 Ca with the 0-value 6.14 MeV at the incident energy 11.0 MeV (lab.). The 

values of parameters used in the calculation are listed in Table II. The cal­

culated I s~t~LI and the estimated relative error I LJS~t~L/ s~t~LI are shown in Table I 

for the deuteron angular momentum L = 4, 6, 8 and 10 and the corresponding 

proton angular momentum l. It is seen that the relative error is the largest 

for the smallest l for each L and is of the order of 10-2 or less. For the other 

combinations of L and l the error is of the order of 10-4 or less. These results 

are sufficient to justify the cutoff procedure employed here. In actual calculations 

the cutoff radii are determined by the condition that the calculated S-matrix 

element is insensitive to the small variation of the radii in the neighbourhood of 

the chosen values and the estimated error is small. 

§ 6. Numerical examples 

In this section, we give some examples of the numerical results obtained 

for 4°Ca (d, p) 41 Ca (If), 4°Ca (d, p) 41 Ca (2p), 160 (d, p) 170 (2s) and 12C (d, p) 13C (lp). 

For simplicity, we neglected the non-orthogonality term and UPA- UpB and kept 

only Vnp in the interaction kernel. The kernel used is, therefore, that which is 

Table II. Parameters for potential used in the calculations (Energy is in MeV; length in fm). 

nucleus E(c.m.) Vo ro a Wo ro' a' roc 

for deuteron 

12Ca) 10.11 118.0 0.886 0.907 5.80 1.57 0.777 1.30 

16Qb) 10.49 118.0 0.934 0.792 5.95 1.58 0.777 1.30 

4DCad) 10.48 120.7 0.966 0.846 16.4 1.48 0.492: 1.30 

for proton 

13Ca) 12.83 45.0 1.32 0.57 11.0 1.32 0.34Ei 1.30 

17Qc) 11.54 49.3 1.25 0.58 11.1 1.25 0.143 1.25 

41Cad) 14.67 51.7 1.20 0.65 11.0 1.25 0.470 1.25 

41Cad) 16.62 52.7 1.20 0.65 11.0 1.25 0.470 1.25 

for neutron 

12Ca) -4.95 33.93 1.32 0.57 

160 -3.27 51.25 1.25 0.58 

4DCad) -6.42 58.83 1.20 0.65 

40Cad) -8.37 60.29 1.20 0.65 

a) Reference 8). 

b) Type I in reference 9). 

c) Based on Table III of reference 10). 

d) Reference 11). 
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101------

30 

T. Ohmura, B. Imanishi, M. Ichimura and M. Kawai 

--FRCC 

---- fRDW 

-- -ZRCC 

----- ZRDW 

- 1·---f----i-

1 

" I 

60 90 

4 °Ca (d, p) "'Ca (2p) 

Q=4.19MeV 

()'_,. 

used in the ordinary DWBA calcu­

lation. The difference between the 

coupled channel (CC) calculation and 

the corresponding DWBA calcula­

tion is due entirely to the higher 

Order termS in V~LP in the cc CalCU­

lation. 

For Vnp, a potential of a Gaus­

sian form with a range of 1.484 fm 

and the depth of 72.15 MeV was 

used. Zero-range approximation with 

the strength D= 124.7 MeV fm 3
/

2 was 

also used for comparison in both 

DWBA and CC calculations. 

The results of the calculation 

are shown in Fig. 5. The values 

of the parameters used in the calcu­

lation are listed in Table II. It is 

apparent from these figures that 

the difference between the results 

of the CC and DWBA calculations 

is much larger than that between 

the finite-range and zero-range 

DWBA calculations. In other words 

the zero-range approximation in the 

frame work of DWBA gives rise to 

an error which is less than the error 

inherent in DWBA itself caused by 

neglect of higher order terms m 

Vnp· 

The deviation of DWBA cross 

section from CC cross section is 

large in backward angles. This in­

dicates that the effect of the strong 

Fig. 5. Angular distributions of (d,p) reac­

tions 12C (d,p) 13C (lp), 160 (d,p) 170 (2s), 

40Ca (d, p) 41 Ca(2p) and 4°Ca (d, p) 41Ca (lf) 

calculated by the method of FRCC, 

FRDW, ZRCC and ZRDW. The incident 

energies in laboratory frame are 11.8 

MeV for 12C and 160 and 11.0 MeV for 

40Ca. The parameters of the distorting 

potenti(lls are listed in Table II, 
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coupling of channels is large for low angular momentum states of L affecting 

the lower partial waves of the outgoing particle p. These as well as other 

features of the CC calculations will be discussed in detail in a future publication. 

§ 7. Summary and conclusion 

The set of close coupling equations for the (d, p) reaction derived in I by 

the variational method is inconvenient for numerical calculations since the in­

teraction kernel includes a differential operator acting· on the unknown function. 

In the present paper the equations were rewritten in the forms in which the 

differential operator in the kernels is eliminated and the kernels are explicitly 

symmetric with respect to channels. The S-matrix was then shown to be sym­

metric despite the fact that the effective Hamiltonian is not hermitian because 

of the imaginary part in the optical potentials. 

The explicit form of the kernel, Kd_i;pl(R, r), was given for the (d, p) re­

action with a closed shell target nucleus. The closed shell was treated as an 

inert core and the intrinsic spin of nucleons was neglected. K/J.; pl (R, r) was 

shown to have the following properties. 

(1) Kd_i!pl (R, r) ocRL+l for small R ( <r) and Kd_i;pl(R, r) ocrl+l for small r( <_R), 

(2) KdCJ:;pl(R, r) has cusps on the lines rn=O and rnp=O on the (R, r)-plane and 

(3) Kd_i!pl(R, r) tends exponentially to zero for R and/or r tending to infinity. 

The kernel consists of two parts: the interaction term containing llnp + upA- upB 

and the non-orthogonality term which arises from the non-orthogonality of the 

d- and p-channels. The numerical examples given in the present paper showed 

that the interaction term behaves well while the non-orthogonality term has a 

very long range and sometimes oscillates rapidly which may bring serious trouble 

in the numerical calculation. 

The discussion was extended to the case in which there are some valence 

neutrons in the orbit ln into which the neutron is captured in the (d, p) stripping 

process. The Pauli principle between the target and captured neutrons was 

taken into account by anti-symmetrizing the trial wave function with respect to 

the neutrons. The interaction kernel was then shown to consist of two parts. 

The one part is just the interaction kernel discussed previously multiplied by 

the square root of the spectroscopic factor, ·/N ClnN-l (IA) IBI} lnNIB). The other 

part of the kernel corresponds to the rearrangement process due to \lpA in which 

A is excited by p to a state A* while the transferred neutron plays the role 

of a spectator. In the actual calculation on 12C the latter part of the kernel 

was entirely neglected. 

A method of numerical solution of the basic equation was described in detail 

and some difficulties encountered in the calculations were pointed out. It was 

shown that the difficulty may be circumvented by a cutoff procedure which con­

sists in cutting off the values of the kernel for small values of the arguments. 
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The error introduced into the S-matrix by such a procedure was estimated and 

some numerical examples were given. 

Results of some actual calculations were presented, by way of examples, for 
4°Ca(d,p) 41 Ca with ln=1 and 3, 160(d,p) 170 with ln=O and for 12C(d,p) 13C 

with ln = 1. Calculations were carried out by means of (a) the finite-range cou­

pled channel method (FRCC), (b) the zero-range coupled channel method 

(ZRCC), (c) finite-range DWBA (FRDW) and (d) zero-range DWBA (ZRDW). 

It was found that the difference between DWBA and CC is larger than that 

between FRCC and ZRCC or FRDW and ZRDW. Features of the angular dis­

tributions in the forward angles in the four types of calculations were shown 

to be very close to one another. In the backward angles the values of the cross 

sections by different methods can be considerably different. 
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Appendix 

Let us put Eq. (5 ·12) in the form 

where 

(A·1) 

(A·2) 

For a sufficiently large value of r 13 , say R 13 , non-Coulomb part of U13 (R 13
) 

and K 13r(R 13 , rr) for all r are negligibly small. Let us divide the range (0, R
13

) 

of r 13 into N 13 -1 equal parts of length h 13 and denote the value of r 13 and f 13 (r13 ) 

which correspond to the i-th dividing point by r 13 (i) and f 13 (i) respectively. 

Then, we first approximate the second derivative 

by d 
2 

- ( ) ~ 1 (1 1 ~ 2) -~ 2- ( ') --
2 

Uj3a T13 --
2 

--u/3 Uf3 Uf3a l , 
dr13 h 13 12 

where o 13 is the central difference operator by which o /u 13 a (i) IS given by 

(A·3) 
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Secondly, we approximate the integral, iK,er(r,e, rr)Ura(rr)drr by a sum, 

S K,er(r,e, rr)Ura(rr)drr'"'-'~ WjhrK,er(i,y')ura(J), (A·4) 

where w 1 Is the weight coefficient depending on the numerical integration formula 

we take. In actual calculations we used Newton-Cotes' formula of the forth 

order. 

Approximating Eq. (A ·1) by the procedure described above and then oper­

ating h/ (1 + 1/12 · o /) on both sides, one gets for i = 2, 3 · · ·, N,3 -1 up to o / 

(A·5) 

where 

and 

A,e(i,J) = { -2+fh/P.e(J) 

1 + f?.h/P.e (J) 

0 

for J=i, 

for J=i+ 1, i-1, 

otherwise, 

C ,er (i, J) = - hrh/ WJ {K,er (i + 1, J) + 10K,er (i, J) + K,er (i -1, J)}" 
12a,e 

(A·6) 

Equation (A· 5) shows that U,ea for all different a is the solution of the same 

set of equations, 

(A·7) 

One can straightforwardly generalize the above derivation to allow for the 

dependence of h,e on i such as 

for 1 <i<N,e<1
) -1, 

for N/1)<i<N,e<2
) -1, 

Such modification is useful because the behaviour of the integrand is much dif­

ferent for different parts of the integration range. In actual calculations we took 

n,e=3 and made h<i+l)=2h(i). 
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