Progress of Theoretical Physics, Vol. 43, No. 2, February 1970

Study of Deuteron Stripping Reaction by
Coupled Channel Theory. II

Properties of Interaction Kernel and Method of Numerical Solution

Takashi OHMURA,? Bunryu IMANISHI, Munetake ICHIMURA*
and Mitsuji KAWAT**

Department of Physics and Atomic Energy Research Institute
Nihon University, Kanda, Tokyo
*nstitute of Physics, College of General Education
University of Tokyo, Komaba, Meguro-Ku, Tokyo
#*Department of Physics, Tokyo Institute of Technology
Meguro-ku, Tokyo

(Received August 21, 1969)

The basic equations of the coupled channel method for (d,p) reactions derived in a pre-
vious paper, I [T. Ohmura, B. Imanishi, M. Ichimura and M. Kawai, Prog. Theor. Phys. 41
(1969), 3911, are transformed into forms which are convenient for practical calculations in
which the interactoin kernels are symmetric with respect to channels. The calculated S-
matrix is then also shown to be symmetric, despite the presence of the imaginary part of
the optical potentials. An explicit form of the interaction kernel is given and some numeri-
cal examples are presented. The properties of the kernel is discussed in detail. The method
of numerical solution of the basic equations is described in detail and examples of the cal-
culated cross section are presented. In the calculations the non-orthogonality term in the in-
teraction kernel is neglected. Rather detailed discussions are given on the Pauli principle
between the participating nucleons. It is shown that the effect of the Pauli principle is ex-
pressed in a certain approximation by a multiplication of the interaction kernel by the square
root of the spectroscopic factor.

§ 1. Introduction

The purpose of the present series of papers is to study the deuteron stripping
reaction in terms of the method of coupled channels in order to investigate the
theoretical back ground of distorted wave Born approximation (DWBA) for
the nuclear rearrangement collision which has been studied only inadequately
compared with the nuclear inelastic scattering, in contrast to the great success
of DWBA in the actual analysis of the experiment.

In a previous paper” (hereafter referred to as I) we have derived a set of
close coupling equations for the deuteron stripping reaction by explicitly using
a variational principle for the rearrangement collision. The generalized Kato
identity® was also given for the error in the calculated S-matrix by applying

D deceased.
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the theory of finite variations. The coupled equations are considerably different
from those for the inelastic scattering because of the non-orthogonality of the
initial and final channels. Discussions were given there on various aspects of
the basic equations, namely, 1) the effects of non-orthogonality term in the in-
teraction kernel on the S-matrix elements, 2) relation of the present method to
DWBA and to the method of projection operators, 3) the non-uniqueness in
defining the wave functions of relative motion in the deuteron and proton chan-
nels which gives rise to an ambiguity in the optical potentials and so on.

In the present paper we transform the basic equations into a form which
is convenient for practical calculations. We discuss the nature of the equations,
especially the interaction kernels, in detail and describe the method of numerical
solution of the equations. Some examples of numerical calculations are shown.
In application to the actual (d, p) process one encounters the problem of taking
into account the Pauli principle between the captured neutron and the target
neutrons in the same orbit. We discuss this point in detail.

In §2 the basic equation is brought into a form in which the interaction
kernels are explicitly symmetric with respect to channels, which were not so in
the original form of the equations given in I. One can then show that the S-matrix
in the present approximation is also symmetric. In §3 the interaction kernels
are given by expressions which are convenient for practical calculations. Some
examples of the calculated kernels are presented and the nature of the kernels
is discussed in some detail. The kernel is decomposed into the interaction term
and the non-orthogonality term. The interaction term which is used in the cal-
culation in § 6 is illustrated separately and is shown to be well behaved compared
to the non-orthogonality term which is rapidly oscillating and has a very long
range. In §4 the Pauli principle between the captured and target mneutrons is
discussed in detail. In §5 a method of numerical solution of the basic equations
is described. A cutoff procedure is introduced to avoid the difficulty encountered
in the numerical calculations caused by the singularity of the centrifugal potential
at the origin. In §6 examples of calculated cross sections are presented and
the results are briefly discussed for (d, p) reactions on *Ca, **O and “*C in which
the non-orthogonality terms are neglected from the interaction kernel. A summary
is given in §7.

§2. Transformation of the basic equations and the
symmetry properties of the interaction kernels and the S-matrix

First, let us review the notation and the basic equations given in I.” Neg-
lecting the spin of nucleons and the D-state of the deuteron, the L-th partial
wave of the total wave funtcion, ¥, with the z-component of the angular mo-
mentum zero has the form

V0n=0 (&) ¢pa(Fup) Yo (B (R) /R
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3 1006, 7). Y Lowi® ) /e, @2-1)

=171,
where @t (&), u(rap) and @O (E, r,) are the internal wave functions of the target

nucleus A4, the deuteron and the residual nucleus B respectively. We assume

072 (&, r,) to be of the form
II;($> rn) - 610 (é) QSann (rn> .

The wave function of relative motion in the deuteron
channel is given by (ux(R)/R) Yy, (R) and that of the
proton channel by (v () /r)Y,,(#). The notation
(@72, Yils0 is defined by

Fnp

®

centre of mass of B

[0F, Y =3 (Ldmam| LM ) @, Yo - centre of mass of A

mpm
. ) . ) Fig. 1. Coordinate system for
The function ¢z, vanishes asymptotically in the deu- the reaction A(d, p)B.

teron and proton channels and has only outgoing

waves in the asymptotic region of all the other open channels. The coordinate
system used in Eq. (2-1) is shown in Fig. 1. Taking ¥z with ¢z put equal
to zero as the trial function of a variational principle, one gets, according to I,

the basic equations for the radial wave functions u; and v,

—ag | d’ . L@L+1) ur(R)
{dR?+kd R’ } un(R) + Uaa(R) =0

+ J\@(ﬁl* ¢d* Y5 (ﬁ) [ —ap (drln+ kp2) + Vo (rp/) + Vap (7‘M,> ]

X ; [@{; ¢, ra), Yi(F) o }‘}“‘l""(f’)@“‘dgdrnpdﬁ =0 (2-2)
r

and

v, 2 (r)

2
_ 5@{ d g _lﬁ_.l,iol)_} 0P () + Upn (r)
=

r drt r

+ J‘ [@;Z* <é> rn) s YL* (?) ]LO [ —dyp (A’I‘ ! n + kpz) + szi (rp/) + anp (rnp) ]
08 () ba(Fup) Yia (R) “Lg?-)—dsmdf:o, 2-3)

where a,=#4"/2lp, aa=H"/24ta and 4|, stands for the Laplacian with respect to
r with r, kept constant when r and r, are taken to be independent variables.
The potentials Uy (R) and U,z(r) are suitably chosen complex phenomenological
potentials in the d- and p-channels respectively and the potentials Vpa(ry”) and
Voup (rap) Tepresents the interaction of the outgoing proton with the core A and
the captured neutron z respectively.

In the case of a (d,p) reaction, the set of boundary condition imposed on
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u;,(R) and v, (r) is that they should vanish at the origin of the respective
arguments and have the asymptotic forms

15, (R) ~C 1 F 1 (RaR) + LT iPar H ) (RaR) (2-42)
and
o, (7‘) NC;”T,&],‘%MHL( +) (ko) (2 4b)

respectively, where F, and H, " are the regular and outgoing wave Coulomb
functions defined in Eq. (2:34) of I and &;*=1i" exp(i0,%)/ v/ va and &P =1 exp(ia,*)/
Vvp where the ¢’s are the Coulomb phase shifts and the v’s the speeds of the
particles at the infinite distances. Equations (2-4) define the reaction amplitudes
T8 and T\ the values of which are obtained by solving Eqs. (2-2) and
(2-3).

More generally the reaction amplitude 7' for the total angular momentum
L is defined by the asymptotic form of the radial wave function ug; as

U (rg) ~Cs(0gaF s+ Thd He'P), (rg—>00) (2-5)

where « and f stand for (d,L), (p,1), etc., and uf? (rg) is the radial wave
function in the B-channel of the solution with the incoming wave only in the
a-channel. The S-matrix element corresponding to 7'’ is given by

SEP = M98 (3 g + 2iTSP). 2-6)
8 B 8

Now, Egs. (2-2) and (2-3) are not explicitly symmetric with respect to
channels. Furthermore, the integration kernels contain differential operators
operating on the unknown functions #,(R) and v,'” (). These features are
very inconvenient in practical calculations. IFortunately, however, the derivatives
of unknown functions can be eliminated from the integral term by the procedure
described below.

Let us first consider the quantities I, (R) and I,;(r) defined, respectively, by

I, (R) = Jd)#ﬂ* (8) ™ () Vi, (8, 10) 2 () dEdT iy 2-7)
where

%o (1) = Yim (F) 70, (1), (2-8)
and

IP(l (?') = J\Q(I?S (S’ rn) VTL) nQ:ﬂ (S) ¢(Z (r'np) X(l (R> dgdrn » (2 * 9)
where

2a(R) =Y (R) R7'u (R). (2-10)

Let us change the integration variables into r and R using the relations
r,=sR+itr, rup=8R+t'r, (2-11)

where s, ¢, s’ and ¢’ are given by
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s= MA L= — itl / 2A t/ = — _g"(é;:t_lﬁz ’v (2 . 12)

Av2 Atvz’ T A2’ T Az

A being the mass of the target nucleus. In the following we omit the subscripts
denoting the magnetic quantum numbers to simplify notations. The integral in
Eq. (2-7) can then be transformed as

L,(R)=(—t') f@ﬁz,, (SR+tr)¢a* (R4 t'r)V . |y (r)dr
=(—¢) j¢1n¢(l* P2 e—2ts Vo - Vale + 257V &' 0) 24 () dr

= (=) j‘%p ()7 el o, SR+ 27) ga* (5" R+ 2/v) 1dr (2-13)

where in the step leading to the last line Green’s theorem is used together with

the fact ¢,,¢.* tends to zero as r goes to infinity.
A similar transformation can be carried out also for I,,. First, one writes

it in the form

Ia (r) =5 j‘@t (SR‘*‘“’) (7725R‘2‘t5—17r1R'V}3|r+ £’ R’ ) pa(s" R+ t'r)na(R)IR .
(2-14)

By means of Green’s theorem, one can rewrite Eq. (2-14) by integration by
part as follows. Using an abbreviated notation f(r, R) =¢.(s"R-+2¢r)y.s(R), one
has for the second term of the integrand in Eq. (2-14),

o5 j@* (sR+tP) Vs 5P uls f(r, R)AR
o5 [ 7 ol (sR+20) 17,15 f(r, VAR

:2j[V,|R¢;;l<sR+n-)']V;|Rf<r, RdR,  (215)

since the surface integral at infinity vanishes on account of the factor ¢,, and
the factor ¢ in f(r, R). Similarly, the third term of the integrand in Eq. (2-14)

can»be rewritten as |
o5 | JE R+ 7)), f(r, R)AR = [ R)7up, GR+ ) dR . (2:16)
Hence, from Egs. (2-14), (2-15) and (2-16) one has o
Lo(r) = (L0870 20 i Vol f 4Tt 1 4R
=5 (LR P2\ alt R+ 1) ol R 0D JAR, (2410)

since the factor g(R) in f(r, R) is independent of r,
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Now, using Egs. (2:13) and (2-17) one can rewrite Egs. (2-2) and (2-3) as
2
Wl &g LEED

} w;,(R) + Upa(R) u;,(R)

dR’ R
+2. f KD (R, 7)o, (r)dr=0 - (2-18)
and
et = KD 0 0) 4 U, (0 0
n LwK,sf;zu (r R)u,(R)dR=0, (2-19)

respectively. Here the kernels K 2, (R,») and K, (r, R) are given by

K, (R, r) = S(A—JF—DAZ(ll,,—mm[LO);RIY,Q(R)E (P

(A 2)°
XAL—ap (Pl D) + Ups] + [V + Upa — Ups]}
X [ (" R+ t'F) ¢ (SR + t1) 1d7FdR (2-20)
and
Ky (r, R) = K (R, ), (2-21)
where
Upa= [ 106V, 05 (2-22)

Equations (2-18) and (2-19) constitute the basic equations of our theory.
Equation (2-21) manifestly expresses the symmetry of the interaction kernel.
One sees from Eq. (2:20) that the kernel consists of two parts, one coming
from the usual V,,+ U,s— U,z term and the other due to the non-orthogonality
of the initial and final channel wave functions. As in I, we call these terms
the interaction term and the non-orthogonality term respectively. In the actual
calculation we make further assumption that U,, can be replaced by Upp in
Egs. (2-20) and (2-21), which corresponds to the assumption in ordinary DWBA
that (Ups— Upzr) can be neglected in the residual interaction.® The kernel is
symmetric also in this approximation. The parameters of the complex “dis-
torting” potentials Ugy and Upp should be determined so that the calculated
cross sections agree with the experiment.

Now, let us examine the symmetry property of the S-matrix calculated by
the present method. Because of the imaginary part of the distorting potentials
the flux is not conserved and the time reversal invariance does not hold. Nev-
ertheless one can show that the S'matrix is symmetric if one writes Eqs. (2-18)
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and (2-19) in an abbreviated form

(E-H)¢*"=0, (2-23)
using fXf dimensional matrices E and H and a vector ¢” whose components
are f radial wave functions ug, v, -+, where f is the number of channels

coupled in Egs. (2-18) and (2-19). The “energy matrix” FE is a diagonal
matrix of the form
E = ﬂ(lkd2 0 LA (N (2 . 24‘)
0 ayk,’

Explicit form of the “Hamiltonian matrix” H will not be given here but should
be clear from Eqgs. (2-18), (2-19) and the definitions of ¢ and E given above.
The matrix H contains a diagonal matrix of the differential operators

T= . d’ 0 e (2-25)
dR?
d?
0 a,,dr2

and a matrix of integral operators which contain the potential term and the in-
teraction kernels. The Hamiltonian matrix is not real but is symmetric in the

sense that
H"=H, : (2-26)

where H7 is the transpose of H with respect to channel indices.

According to Bilhorn et al.®® Eq. (2-26) is sufficient for the symmetry of
the calculated S-matrix. To show this, let us define two solutions of Eq. (2-23),
¢ and 0 which have the asymptotic forms of the incoming wave only in
the dL- and pl-channels, respectively, plus outgoing waves in all channels. The
asymptotic forms of the component functions of ¢ 7 and ¢’ are given by Eq.
(2-5) with a=dL and a=pl, respectively. Then, the identity

f de (BT (H— E) ¢ — &7 (H—E) 2} =0 @2.27)

holds where the ()™’s are the transpose of the ¢’s. Using Green’s theorem to
convert the volume integral containing the matrix T, which are the only remaining
integral on the left-hand side of Eq. (2-27), and using Egs. (2-4) and (2-6)
one gets, after a little manipulation,

(—D'Sum= (= 1"SPm (2-28)

which is the symmetry of the S-matrix which we set out to prove,.
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§3. The Interaction kernel

In this section we derive an expression for the interaction kernel, K (R, 7),
which is useful for practical calculations, and discuss some of the properties of
K{7?n which are revealed by the numerical calculation using that expression.

To evaluate the integral on the right-hand side of Eq. (2-20) with the ap-
proximation, Ups= U,s, we first transform the Laplacian in the integrand as

V7'2'R<¢d*¢lnm> = (Z2Vn2|np + Ztt’Vn[np * V’npln+ t,zygzp 'n) ¢d* (rnp> ¢Z,nm (rn) . (3 . 1)
We then obtain

Kipu(R,r) = 2L DES @t —mm| LO)rR (VAR Vion(®)
XAF (1, R) —2a,tt'V olup Vupla} $a* (Fap) $rom (r) dedR ,  (3-2)
where
F(r, R) =a,a,”t*(E,— Vaa) + apampt”? (Eqa— Vap) + Upp+ Vip—apky’.  (3:3)
If one puts
Gromn, () = w1, (70) 72" Y, (B) (3-4)
one can carry out the differentiation on the right-hand side of Eq. (3:2) as®
Tnpba™ @up) ) » Fabrym, (ra) ) = (Fup* Fa) da* i, 7 Yy, (72)
+ (4nly 20+ 1) /3) w04, T (1 Yo s () s 7an Yo (Pap) Jum > (3+5)
where
b =de/drnp, wi,=dwy/dr,, Fup=Tru/rwp and F,=r,/r,.

To carry out integration with respect to R and # in Eq. (3:2), let us expand
the quantity, (F(r, R) —2a,tt'Valap Vapla) da® (Fup) wi, () in spherical harmonics
of R and #. We first note that each factor of this quantity is scalar with respect
to rotation of the coordinate space so that they are functions of the scalar,
t=r-R/rR and so can be expanded in the series of the Legendre function,
P,(#). Let us therefore put

F(r, R)wy, (1) ga* (rap) —2amtt’ (FupFu) $™’ (rap) wi,, (1)

=2.LCLA+1) /2] (&, R) Pr(s) (3-6a)

and

—autt’wy, (r) Pipd® (rap) = 2L Q2LA1) /2], (r, R) Pr().  (3-6b)
P.(¢) can then be expressed by Y,(#) and Y,(R). |
The coordinates 7, and 7,, are related to » and R through Egs. (2-11) as

o= (SR*+ 'r*+ 2str Ry)'”*

and

220z 1snbny |z uo1sanb Aq 981 1.Z61/.rE/2/Sr/elonie/did/woo dnoolwepede)/:sdyy wolp papeojumoq



Study of Deuteron Stripping Reaction by Coupled Channel Theory. II 355

Fap= ("2 R+ 2%+ 25"t r Ryu)"".
One also has
(Fap Fo) = {8 RE+28'72+ (5"t + st YRty [ 7 np (3-7)
Putting (3-5) through (3:7) into (3-2) and using the formulae®

r N/ A (21+1)!
7n' Yim (Fa) = ;l N/(2;L+ DI@I-22+1)

(R [ (R), V() (3-82)
and

as Vi () = 2B (PRI PP Vi (R, V(P (3:8D)
one finally obtains the desired expression for K{fu(R,7):

- (1) _B8(A+1) o . e g
]Xu‘, »l (R, 7‘) (A n 2)3 7R»Z_n'{§ B[lnlL, l))]K[ln, Av; 7R]

p—1 1
+ 2; Z DI[LIL; X A]L[L,; X’ v; rR]}, (3-9)

2
A=0 =0

where

/ |
BLLL; W= (=) @L+1) 2v+1)y/ Gt 1)”((2?;1[)"!)('2 T

X (1, — Av00|L0) (Aw00{70) W (Lil,,— 145 L), (3-10a)
K[l,; v;7R] = (SR> (#r)y, " (r, R), (3-10b)

— !
DILIL: 0ly] = (=1 2+ 1) @y Dy Git f)(jg . >P( 2(221_)2 R

% (v00[10) v/ 2k + 1 (L, ~ 2 —1y00|k0) (k100|LO) W (kil,— A2 —12; L, —1v)
k

5 W (ki —1L1,; 11), (3-10¢)
D[LIL: 12v]

A+l / (2171 - 1) (ZZn) !
= (~ DM@t D @+ DN Gr g f)z(zx) (2L, —21—2)]

(l,— 4 —1y00|L0)

X ;J'z‘ﬁi (Av00]%0) (£100|10) W (LkL,— 4 —14; 1, —1v) W(l,—1kL,l; L1)
' (3-10d)
and
L[1; X v; 7R] = (R (er)* ("R (') g, (r, R). (3-10e)
From Egs. (3-10a), (3-10c) and (3-10d) it is seen that B and D vanish if

l,+ I+ L=odd.
Let us now discuss some properties of the kernels. Let us first investigate

the kernel for small 7 or small R, For this purpose let us consider an arbitrary,
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well behaved function of 7, f(r,). We first note that we can always write
= o T T 2,

where x=max(|sR|, |¢r]) and h=min(|sR], |zr]) /x. For a small value of % one
can expand f(r,) in powers of (R*+2hu) as

£ =50 <L) (g gy,
m=0 7!
where a,,(z) is a function of x. Now, (A*+ 2hu)™ can be written as a polynomial
of 4 of degree m in which the coefficient of 4" is 2™h™.  Since this polynomial
of # can .be written as a linear combination of Legendre polynomials, P,(x),
with y<<m, f(r,) can be rewritten in the form

£l = 2 an@ W) PuCn). (3-11)

Similarly, an arbitrary, well-behaved function 9 (rap) of 7., can be written in
the form

9 ) = 33 (53 b (217 Py, (3:12)
where x’=max(|s'R|, |¢/7|) and A’ =min(|s’R|, ft’rl)/i’.
The product of f(r,) and ¢(r.,) can then be written in the form

f(rn) 9 <7ﬁnp) :g—::) i: ; Z_] icij,k(x, .il?’) hi}l/ij (ﬂ) . (3 . 13)

oml) Dm0 Fom k-

Equation (3-13) shows that the coefficient of Py (x) in the expansion of f(7,)
9 (7ap) is 7 in the lowest order for sufficiently small 7 which satisfies |tr]|<|sR)|
and [¢/7|<|s’R| and R* in the lowest order if |sR|<|zr|, Is"R|<|¢’r|. Applying
the above considerations to Egs. (3-6a) and (3-6b) with Eq. (3:7), one sees
that 7,9 (», R) and ¢,V (r, R) are r’ and R’ in the lowest order according as
r<R or R<Lr. Equation (3-10b) then shows that K[l,; v;rR] is at least of
the order or »** for small » and R™** for small R. Because of the Clebsch-
Gordan coefficients in B[//L; Av], however, /=>4y and L=>1,—2+vy. Hence,
the contribution of the first term in the curly brackets on the right-hand side
of Eq. (3-9) gives 7**' in the lowest possible order of 7 for small » and R
for small R. Similarly, the second term on the right-hand side of Eq. (3-9)
gives the same dependence on » and R for small » and R respectively. Hence,
KiPu(R,7) is at least of the order of 7*! for small » and R*"* for small R.
In the limit 7->0c0 and/or R-»>co, the kernel is expected to decrease exXpo-
nentially since ¢y, and/or ¢, decrease in that limit. In fact, b1, (sSR+¢r) is large
only when 7,=[sR+zr| is within about the radius of the single particle orbit
while ¢¢(s’"R+¢'r) is large only for r,,=|s’R-+¢r| within about the deuteron
radius and they decay exponentially outside these ranges. Since, however,
1¢/s|=1/2 and |¢t'/s’|= (A+1)/A according to Eqs. (2-11), at least one of Ta
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and 7,, must be large in the limit of » and/or R tending to infinity.

The interaction kernel, K, (R, r), is a continuous function of R and 7 but
its first derivative is in general discontinuous along the lines in 7-R plane cor-
responding to 7,=0 and 7,,=0. This is due to the cusps which occur when
7y and 7, are expanded in P;(x#). The lines of the cusps in the »-R plane is
given by the equations ‘

R=|tsr=r/2 and R=|t'sr=(A+Dr/A.  (3-14)

However, the cusps are not prominent, in fact unrecognizable, in the cases which
we discuss in the present paper because of the following reasons. First, Ua
is presumably nearly constant at the nuclear centre, 7,=0. Then, the function
w,, (7,), when expanded in a power series of r, around the origin, has only even
powers of 7, in the lower order terms. The cusps, therefore, are not prominent.
On the other hand, Eq. (3-8) shows that /Yy, (#,) is a smooth function of »
and R. If V,, is a function of r., alone it is obviously a smooth function of
7 and R since 72, is a bilinear function of  and R. This is the case when
V,.p has a Gaussian form. Under these circumstances, therefore, KPP (R, r) has
practically no cusps and is a smooth function of r and R.

The imaginary part of K2, arises from the imaginary part of U,z Since
the latter is presumably. peaked at the nuclear surface, Im (K 7)) is appreciable
only for r=~=r,A". The absolute value of Im(KP,) is in general much smaller
than Re(KSP,) as long as one assumes the optical potential U,s to have an
imaginary part which is much smaller than the real part.

Some of the examples of KF, (R, 7) with U,s= U,s calculated by Eq. (3-9)
are shown in Figs. 2, 3 and 4. The optical potentials were assumed to be of

the form
U =~ Vo firs(rs 70 @) =4iWea' - fr_s(rir, @) £ Uss  (3:15)
where _
Fws(r;re, a) = [1 +exp L ’;’Aﬁ] ° | (3-16)

and Uy is the Coulomb potential due to a uniformly charged sphere of radius
ro AR,

As is clear from these figures, the real part of the interaction kernel has
a very long range and often changes sign as a function of » and R. The long
range of the kernel is due to the fact that the deuteron wave function ba(Fup)
spreads over a long range of 7,, because of the low binding energy of deuteron.

Figure 3 and the dotted lines in Fig. 4 show the contribution of V., alone
to KPu(R,7). DWBA is equivalent to taking this as the interaction kernel

and making a first order perturbation calculation. In zero range DWBA, the
kernel is further approximated by a delta function, D0 (rup) ¢i, (ra) where D is
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the strength of the coupling.
Vup give complicated features to the interaction kernel.
the part of K/, (R,7) which is due to these terms the non-orthogonality term,

(fm)

**C{d,p)**C(Ip)
107 L=0, £ =1
|
r(fm) 30

Fig. 2. The interaction kernel K$? ,(R,7) in fm2MeV for
5 D.

the reaction 12C(d, p) 13C with E;(a0=11.8 MeV, Q=2.722
MeV and /,=1. The distorting and the binding potentials
appearing in the kernel are as follows: V,,=-—7215
expl—7%,,/(L484)%], Vg =—33.92 fiy_g(rn; 1.32,0.57) and
the parameters used for U,p listed in Table II. Since 2C
is not a closed shell nucleus in the sense of the LS-
coupling, Kfi? oo in Eq. (3-9) is multiplied by the factor
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These figures show how the terms other than

We have called in I

=C(d, p) ¥C(1p)] _ - 1075
10 L0, 01 ——— 4/~

1073

0

r(fm)

Fig. 3. The interaction kernel
K5 (R, ), coming from
the V,, term in (2-20) only,
in fm~2MeV for the reaction
2C(d, p) BC with E ;Aab
=11.8 MeV, Q=2.722 MeV
and [,=1. V,, is the same
as given in Fig. 2.

1/v/3 coming from cf.p. (see §4).

]
4°Ca(d, p) **Ca(2p)

wijg

X

Ey 5 Q=4.19MeV
< Ay L=0,¢=1

< !
z 0 SIS

*°0(d, p)*70(2s)

s

A Q=1.046MeV
0 e 0.58).
“-‘_. :_:'\//[_:5,2=5
-5
-0
._5—.

Fig. 4. The interaction kernel K&? (R, 7) in fm™2
MeV for R=31m for the reaction (i) 4Ca(d, p)
#Ca (Q=4.19MeV and [,=1) with E (sh=1]
MeV, and V, = —58.83 fir_s(#n; 1.20,0.65) and
(i) 0(d, p)1'0 (Q=1.046 MeV and I,=0) with
E,0) =118 MeV and V,, 4= —51.25fy s(rn; 1.25,

Vaup is the same as given in Fig. 2 for

both cases and the parameters used for Ups

are listed in Table II. The real and imaginary
parts of the kernel are represented by the full
and dashed curve, respectively. The dotted lines
shows the kernels coming up from the term
Viep in (2:20) only.
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since it is given rise to by the non-orthogonality of the deuteron and proton

channels.

$4. Many valence nucleons and the Pauli principle

So far we have considered the (d, p) reaction in which the neutron is trans-
ferred into an empty orbit outside an inert even-even core of the target nucleus.
In the general (d, p) reaction, however, the capturing orbit in the target nucleus
is not necessarily empty but is already occupied by several neutrons. It then
becomes necessary to consider the effect of the Pauli principle between the captured
neutron and the target neutrons in the same orbit. In the ordinary DWBA cal-
culations this effect is taken into account by the spectroscopic factor in the cross
section formula.

In this section we investigate how the effect of the Pauli principle is taken
into account in the coupled equations. We treat only the neutrons in the outer
orbit as participating in the reaction and treat the rest of the target nucleus as
an inert even-even core. We neglect the Pauli principle between the nucleons
in the deuteron and those in the core. Hence, we still assume the stripping
process as the sole reaction mechanism. We entirely suppress the coordinates
of the nucleons in the core in the notations throughout the subsequent paragraphs
in this section. We still neglect the intrinsic spin of nucleons.

Now, let us assume that the outer orbit of the target nucleus with the or-
bital angular momentum Z, is occupied by N—1 neutrons and gives rise to the
spin I, and its z-component M, of the nucleus A. The anti-symmetrized wave

function of A is written in the form
@A = Q)A (lanlIAMA‘rn(l): Tty rn(N_l)> H (4 1)
where r, is the coordinate of the i-th neutron. The captured neutron goes

into the orbit Z, to form the residual nucleus B with spin Iz and its z-component

M, whose antisymmetrized wave function is written as
wB = mB (ZnNIBMBl rn(l), Ty r%(N_1)9 rn(N)) . (4 " 2)

The Pauli principle between the captured neutron and the target neutrons
in the [,-orbit can be taken into account by anti-symmetrizing the trial wave

function as

Vo= - A SR 0P RO} o+ 32 i o (), (43)

VN !
where
G = (04 (L Ll o e ga ) Yo (R I (4-4)
with
rg) =r, " —r,’ and R =(r,""+r,)/2 (4-5)
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and
f‘l,(yI)II: [@B (Zn(N)IBI rn(i)) s Yl (f'> ]JM s (4 ‘ 6)

and /] is the anti-symmetrization operator with respect to the N.th neutron and
other neutrons in the /,-orbit. We assume here that the mass of the inert core
is much larger than the sum of the masses of the outer neutrons so that the
centre of mass of the inert core coincides with that of the target A. We there-
fore neglect the dependence of r,” on the particle number, (N). Henceforth,
we omit the suffices J and M to simplify notations and write f5%%, f % u”
and v, simply as f,“M, £, u, and v, respectively.
One then gets

de N GN (H - EYE =0 4-7)
and
R .
detPf I H—-EYV=0, (4-8)
where
de™ = dRMdr{ dr® (4-9a)
and
de? =drdr,"dc®, (4-9b)
where
N-1
de® =TT dr,®. (4-9¢)
i=1

Let us introduce the notations A’ and B’ to indicate the outer nucleons in
A and B, so that A consits of A’ and C, the inert core, and B consists of B’
and C. Let us assume that the Hamiltonian is of the form

H=K,+ Upot+ Vs -+ Hp, (4-10a)
where
N1 .
Vo =23 Vip (ri3) + Vi (r$)?), (4-10b)
i=1
and
N iv
HB:ZEUQ‘ + Use) + 4>Zlvij+1{0, (4-10¢)
1= 1 >j=

where K, and K; are the kinetic energies of the proton and the i-th neutron
respectively, Upe and Uy are the interaction of the core with the outgoing proton
and the iZ-th neutron respectively, V,,(r) is the interaction between the proton
and the Z-th neutron and V.; is the interaction between the 7-th and J-th neutrons.
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Using Eq. (4-3) in Eqgs. (4-7) and (4-8) one gets

[~ [t he= EEEDY L 02 (R ()

435 Ve Rus R+ [Usaar (R Ry (R)AR|

= VN3 ﬁ "R (R, Yo, () dr (4-11)

and

[ e[ Lo = LD 0,060 [0u) + 3 Une (0D ()

= VN % j "RP (r, Run,(R)dR, (4-12)

where /N is written out explicitly on the right-hand side of the above equations
for the sake of later convenience. In Eq. (4-11) U, °(R) represents the inter-
action between d and C and is given by

U’ (RY) = j¢d* ) [Upo ") + Uno (™) 160 (i D driy). (4-13)

In the same equation Uy (R) represents the direct part of the interaction
between d and A’ and is given by

N1
Us g (R = ja’f(d’mfz“’”’* (VD 37 Vi) S50, (4-14)
i=1
where Vi =3 177'V,, (»®). The non-local operator Ug,zz- (R, R’), which appears

in the same equation is the exchange part of the same interaction as Ug,zz (R)

and is given by
L U (R, R a1 (R dR!
= RW) j Je G F, Ok (I EY (A—1) (DR 0y (R™)).  (4-15)
In Eq. (4-12), U, () is the interaction between p and B’ and is given by
Upiw ) = [deL Vo 7. (4-16)
One sees from Eq. (4-14) through Eq. (4-16) that the interaction between

two complex particles or between a complex particle and a nucleon is spherically

non-symmetrical and non-local. The interaction kernels KfP and K’ are given

by

[Rip R®, oi@rdr=R® [dee @™ (H=E) o) (41D
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an

j R (r, R, (R™) AR = 7 f P FP% (H - ) £, RO 1 (R,

(4-18)

where use has been made of [ A, H]=0 and A@®=N@®. Explicit form of the
interaction kernels can be obtained by the procedure described in §2 and can
be shown to be symmetric,

K (R, r) = K% (r, R).

Next, let us investigate the kernels in Eqs. (4-17) and (4-18) further. If
one expands @ using c.f.p., one has for £;® the expression

FO= 5 T L IR (4-19)

where

f‘z(p’N)_ [[QA (Z?LN_IIA’ r," "rﬂ,(N—l)), gbln (r‘iI,(N))]IB: YL <?> :IJM, (420)
where I, stands not only for the angular momentum but also for the quantum
numbers necessary for specifying the state of the N—1 particle system. Using
Eq. (4-19) in Eq. (4-17) one obtains

Kl(ff)(R 7”) <ZnN I(IA) an}ZnNIB>I I(:'l])’fo: 7") + Z <ZN#1(IA’>ZM}ZHNIB>KI(:{Z{)}§<R> r)a
ey
(4-21)

where

f R (R, 2 o, () dr

= RO e D f % (Kt U4 VED — Byt Vi R0 A7 0,()
(4-22)

and

[ Bspe, R, Doy ar

—.R(N) J\df(d N>f (@ Nk V(N)f (p'N)f‘ 17}1, (7’) for IAI#IA . (4 '23)

Comparing Eq. (4-22) with Eq. (2-20) one sees that K ;! t, 1s just a generali-
zation of K, to the case where the target nucleus has a finite spin.

The kernel K;f‘{l)lj, on the other hand, corresponds to the rearrangement
process due to V,, in which the target nucleus is brought into an excited state
with the spin I, while the transferred neutron plays a role of a spectator.

If the terms with K(d)" can be neglected in K the latter becomes just
the kernel obtained in the previous sections, provided U,°+ V& is approximated
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by the optical potential U,z. Then the Pauli principle is expressed by the factor,
VN (LY (L) |} V1), (4-24)

multiplying the interaction kernels. Such is the case, for instance, when
G (I |} 1L, L) =1, If Kéﬁ)}z, cannot be neglected, the interaction kernels
take on complicated expressions containing terms with (2," (L) In|} 0, I5).

§ 5. Method of numerical calculations

In this section we describe the method of numerical calculation of the scat-
tering amplitude. We describe in § 5.1 the principle of the method and in §5.2
the numerical method of solution. In § 5.3 the effect of the singularity of Green’s
function at the origin is discussed and a cutoff procedure to avoid the difficulty
due to such a singularity is described.

5.1 The principle of the method

Let us use the notations @, 8 --- introduced in §2 for the channel suffices.
The basic equations (2:18) and (2-19) then read

(Eg—Hpg(rg) ) ttga(rs) = >; JKBT (g, 1) Ura (rr)dry, (5-1)

where #g, is the radial wave function in the channel 8 when the incident wave
is in the channel a and

d’ ls(lg+1)
H‘g(r/g):—‘dlgdrﬁg +a',gﬁ fﬂz ‘i‘Uﬁ(?‘ﬁ)- (5'2)

The asymptotic form of u#,5(rs) for large 75 which we denote by Rpg, is given
by Eq. (2-5) as

Uga (Rg) =8 (Fg(Rp) 0pat+ TpaHp " (Rg)), (5-3)

which defines the scattering amplitude 7g,.

Now the form of Eq. (5-1) is independent of «. Therefore, the wave
functions corresponding to the different a’s are actually the linearly independent
solutions of the same set of equations satisfying different sets of boundary con-
dition, Eq. (5-3). If f is the number of coupled channels there are f such
linearly independent sets of solutions.

The principle of the present method is to solve Eq. (5-1) first under f
appropriately chosen sets of boundary condition to get f linearly independent solu-
tions Zg;(i=1~f). The choice of boundary condition is made so as to facilitate
the subsequent numerical works. The wave functions # are then obtained from
the #’s by a linear transformation

Upa= ; UgiYia : (5-4)

where the transformation matrix y=[y;.] is determined by the condition that
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the #«’s satisfy boundary condition (5-3) which leads to

ko 25 %51 (Rp) yia= 05 Fe (Re) Opat Toud 5™ (Rp) ] (5-5)
and
kg ; @4 (Rp) yia=0s[Fs" (Rp) 0pat Tpadds ™ (Rp) 1, (5-6)
where
0= (Ughksh™)V**8c 8 (5-7)

and fy'=dfs/dre. Using the Wronskian relation
W[Fg, He | =FoHy ™" — HOF =k,
one obtains from Egs. (5:5) and (5-6)
05T ga= Z; W Eg, %gilyia | (5-8)
and
Opabp =23 WIH,, ] yia (5-9)

for B running over all the coupled channels.

Equation (5-9) is a linear simultaneous equation for y;, for a given «, from
which y=[v;,] is determined. The scattering amplitude 7', is then determined
from Eq. (5-8) using the y;.’s and the S-matrix element, S;,, is obtained from
Ty, using Eq. (2-6).

5.2 - Numerical solution

In the actual calculation we choose the following boundary condition for
the #’s:

Z5a(0) =0 (5-10)

—Zzﬁa (Arﬁ) :Cﬂé\lga (5‘11)

for all & and 8 where cg is a constant. The values of 474 and ¢z are determined
according to computational convenience.
For the numerical solution of the equation

Ea=Hy )T r) = 2 (Ko @)y, (512)

the (», R) space is divided into mesh. The differential operator contained in
Hpg is approximated by an appropriate difference operator and the integral is
approximated by a weighted sum using appropriate formulae of numerical dif-
ferentiation and integration respectively. Equation (5-12) is then approximated
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by a set of linear simultaneous equations
Ng w,
;Aﬂ(i,j)izﬁ(j) 4—;;(7,97(1',]')7;,(]')_—_0’ (5-13)

where 7gz(j) is the value of #gz(7p) at the jth mesh point, with j=1 corre-
sponding to the origin, and N, is the number of mesh points on the rg-axis.
Since the form of Eq. (5-12) is independent of «, the subscript « is dropped
in Eq. (56-13). The coefficients A4z(7,j) and Cg(4,7) correspond to (Eg— Hpg)
and K, in Eq. (5-12) respectively and their explicit forms depend on the
choice of the difference operator and the integration formula which one adopts
in the approximation as are shown in the Appendix.

Now, let us take 474 as the first mesh point from the origin and ¢g=j,,(kgdrp),
where j, is the spherical Bessel function. Equations (5-10) and (5-11) then

become

W (1) =0 (5-14)
and

Uga(2) =0paCp» (5-15)

respectively, and Eq. (5:13) can be written as

34,6, () + 2 3 Cor 6 )T () = Uai), (=2~ (Np=1)) (5:16)

where

Us(2) = _j:ZI’:?{AB (4,507 (J) +; Cor (0,7 (J)}- (5-17)

Equation (5-16) with Eq. (5-17), which gives Ug(i) because of Egs. (5-14)
and (5-15), is a set of linear inhomogeneous simultaneous equations for #s (/)
(3<< j<N,) which may be rewritten in a matrix form as

Agtig+ 2] Cortty = Uy, (5-18)
T

where (Ap)y=As(G+1,j+2), (Con)iy=Cp(@+1,j+2), (@);=%(+2) and (Up)
=Uzs(GE+1). :

Now we notice that Kg, is zero if f=7 and if both 8 and y refer to the
proton channel. Also, for a given total angular momentum J there is only one
deuteron channel present. Hence, if one uses d, p, p’, etc., in place of a, B, 7,
etc., Eq. (5-18) can be written in the form

Aaﬁd + Z Cdpﬁp = Ud (5 . 19)
p

and
Ay, + Cpaig=U, . (5-20)
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The equation for ii; is therefore

(Aa—2] CdpAp—Ide) ig=U;~ 3 CdpAp_ll_‘p . (5-21)
» »

Carrying out a matrix inversion (4y—> ,Copd, 'Cpa)™", one can get the required
solution itg. Equation (5-20) then gives ii,.

Now, there is a difficulty in carrying out the procedure described above in
the actual numerical calculation because of the singularity of I, at the origin
due to the centrifugal potential Z,(/,+1)/r,". This singularity makes (Ap)i;
extremely large near the origin, i.e. for small 7, especially for large /,. This
gives rise to a difficulty in evaluating (A;—> CipA,Cpa)™ because of the
presence of A,7*. The situation is analogous to the difficulty encountered in
numerically evaluating the Green function (E,+ie— FH,)™! near the origin because
of the singularity of the irregular solution for H, at the origin.

The difficulty described above can be avoided by cutting off the region of
small 7, from the domain of integration of K,, which corresponds to cutting off
small 7 and j from the summation containing C,;(7,7) and Cg,(7,7) in the nu-
merical calculation. We shall describe such a cutoff procedure in more detail
in the next subsection.

5.3 The cutoff procedure
Let us consider the right-hand side of the basic equation (5-1).

Foa(rg) = ; ﬁ driKgr (ra, r) uld (ry) . (5-22)

The radial wave function %57 (r;) is zero at the origin. The value of u'H (ry)
for small values of 7, depends presumably on the angular momentum /, of the
channel such that the larger [, is, the smaller is the value of ur(;) (ry) for r,~0
because of the higher centrifugal barrier present in the channel. Further,
K (rg, rr) is zero if 75 and/or 7,=0 because of the factor rgr, as is seen in
Eq. (3-9). One expects, therefore, that one can safely cut off from the region
of integration in Eq. (5-22) the region near the origin, say (0, 7).

Now, K, (74, ;) is appreciable only within the region in which |7 —r| <0
where ¢ is a constant. If the non-orthogonality term is neglected ¢ is essentially
the range of V,,. The smallness of ¢ enables one to neglect Ky (rg, ;) for
small values of 74, say rg<{#4, since for such values 7, the values 7, in the
region |rg—7,|<(0 nearly always fall into the region »,<<#,. If one denotes the
smallest of all #g’s by #g, Fga(r) is then negligible for 7,<7,.

The above considerations show that one can cut off small values of 7 and
r’s in Eq. (5-22). For practical calculation it is convenient to take a symmetric
cutoff in the sense that the cutoff radius for a channel is the same whether the
coordinate corresponding to that channel appears as the first or the second ar-
gument of the kernel. Let us denote the cutoff radius by attaching a bar, Then,

220z 1snbny |z uo1sanb Aq 981 1.Z61/.rE/2/Sr/enie/did/woo dnoolwepede)/:sdyy woly papeojumoq



Study of Deuteron Stripping Reaction by Coupled Channel Theory. II 367

our approximation consists in using for Fg. the approximate one, Fpgg, defined

by
Foulrs) = 3 j driRogr (rey 172) 2 (), (5-23)

where

Ry (rp,m) =0(rg—7p) Kor (r, ) 0 v = 71), (5-24)
with '
0 if =<0,

5.25
1 if x=0. ( )

()=
The actual values of the cutoff radii are empirically determined in the course of
calculation. The ensuing error in the calculated S-matrix can be estimated by
the method described later. For practical purpose it is convenient to take the

cutoff radius as large as possible under the condition that the error in the .S-
matrix be smaller than certain limit.

That the kernel has a finite, small range is important for the validity of
the assumption that z’s are small in the neighbourhood of the origin. In fact,
if the kernel had an infinite range, Fe.(rs) could be large even for small values
of 7, since the integration extends over whole space of 7. Equation (5-1) then
shows that #,, operated on by the operator (Ez— FH,) could be large. This may
invalidate the assumption that #g, be small for small 74, except for very special

cases. .
Let us now estimate the error introduced by the cutoff procedure. The

cutoff is equivalent to approximating the integration kernel Kgr by Km which
is equal to the right-hand side of Eq. (5-24). Let us denote the approximate
wave function corresponding to this approximation by #, and the S-matrix element
by Sge. Then the error is given by

4Sga=Sga—Sga - ~ (5-26)

From Eq. (5-1) one has the expression for the form of the S-matrix elements,
Sﬁa:S£(0)6ﬁa_%<’_>Lﬁ+l< o120 Kerttia?> (5-27)
7

where f7 is the regular solution of homogeneous equation corresponding to
Eq. (5-1) with the asymptotic form of the incident plus incoming scattering

wave. Hence, 4Sg, is written as
13 = B O (D K - R Rty (529
s ¥

Approximating 5 in the above equation by #4”, one obtains
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Table I. The relative error of S(l ar due to the cutoff procedure for Ca(d, p)4Ca(1f).

L R;1.(fm) l 7oy (fm) !S(z azl |4S oL, dL/ dLl
1.4 1 0.6 0.120 9.1 X1073
3 1.2 0.107 6.0 X107
5 1.8 0.0738 1.10x 1074
7 2.4 ) 0.0286 3.3 X107
6 2.0 3 1.2 0.0838 4.0 x1073
5 1.8 0.0662 3.6 X107%
7 2.4 0.0297 6.9 X10°6
9 3.0 0.00920 2.3 X107¢
8 3.8 5 2.6 0.0281 7.5 %1078
7 34 0.0156 2.01 X104
9 4.4 0.00611 4.0 X107
11 5.2 0.00208 2.7 X107
10 5.8 7 4.2 0.00652 1.93%x1073
9 54 0.00308 2.02x1074
11 6.4 0.00118 7.8 X1078
13 7.6 0.000403 2.4 X104
4 B .
ASﬁa—’g<_)Lﬁ+1<f/8( )l Z(K/sr Kﬁr) u(+> . (5-29)
T

Another estimate of 4Sg, is obtained by using
fB(—) Z Gﬁ*Kﬂrurw s

on the right-hand side of Eq. (5-28) where G, is the outgoing Green function
for channel 8. Then Eq. (5-28) becomes

4z

o () AR | (K — Rot2) >

“‘<GB*KM17 )I(Z Korupd — ZKﬂr'uﬁaU»- (5-30)
The second term in the curly bracket of Eq. (5:30) can be written as
CRERD |usP — 28>
because of the symmetry of Green’s function G, Hence,
4Sga= ( )t Z{@fm’l (K i) — Rt ) > — R0 |l — a5>) .

(5-31)

If one approximates in this expression as uS =" and uiD=a one obtaing
PP Te Upq

220z 1snbny |z uo1sanb Aq 981 1.Z61/.rE/2/Sr/elonie/did/woo dnoolwepede)/:sdyy wolp papeojumoq



Study of Deuteron Stripping Reaction by Coupled Channel Theory. II 369

485 =L (VR | T (K= Ro) B2 (5-32)

In Table I examples of cutoff and the estimate of the ensuing error using
Eq. (5-32) are shown for the case of “Ca(d, p)*Ca transition to the 1f state of
“Ca with the Q-value 6.14 MeV at the incident energy 11.0 MeV (1lab.). The
values of parameters used in the calculation are listed in Table II. The cal-
culated |Sz] and the estimated relative error |4S5%./S% kx| are shown in Table 1
for the deuteron angular momentum L =4, 6, 8 and 10 and the corresponding
proton angular momentum /. It is seen that the relative error is the largest
for the smallest / for each L and is of the order of 107* or less. For the other
combinations of L and ! the error is of the order of 107* or less. These results
are sufficient to justify the cutoff procedure employed here. " In actual calculations
the cutoff radii are determined by the condition that the calculated S-matrix
element is insensitive to the small variation of the radii in the neighbourhood of
the chosen values and the estimated error is small.

§ 6. Numerical examples

In this section, we give some examples of the numerical results obtained
for “Ca(d, p)*Ca(1f), “Ca(d, p)“Ca(2p), *O(d, p)"O(2s) and *C(d, p)*C(1p).
For simplicity, we neglected the non-orthogonality term and U,s— U,s and kept
only V,, in the interaction kernel. The kernel used is, therefore, that which is

Table II. Parameters for potential used in the calculations (Energy is in MeV; length in fm).

nucleus  E(c.m.) Vo 7o a Wo 7o’ a’ ro¢

Sfor deuteron

12Ca) 10.11 118.0 0.886 0.907 5.80 1.57 0.777 1.30
160Qb) 10.49 118.0 0.934 0.792 5.95 1.58 0.777 1.30
40Cad) 10.48 120.7 0.966 0.846 16.4 1.48 0.492 1.30
Sfor proton
13Ca) 12.83 45.0 1.32 0.57 11.0 1.32 0.345 1.30
1709 11.54 49.3 1.25 0.58 11.1 1.25 0.143 1.25
41Ca® 14.67 51.7 1.20 0.65 11.0 1.25 0.470 1.25
41Ca® 16.62 52.7 1.20 0.65 11.0 1.25 0.470 1.25
Sfor neutron
12Ca) —-4.95 33.93 1.32 0.57
180 —3.27 51.25 1.25 0.58
40Cad —6.42 58.83 1.20 0.65
40Cad —8.37 60.29 1.20 0.65

a) Reference 8).

b) Type I in reference 9).

c¢) Based on Table III of reference 10).
d) Reference 11).
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J’dp(”) mb/str.,

FRCC
- -~ FRDW
— — —ZRCC

HC(d,p) 1:xC(1p)
Q=2.722MeV

e

*o(d,p)*"0(2s)
Q=1.046MeV

*°Cald,p) *Ca(lf)—
Q=6.14MeV

1 1 1 1 1 1 I 1 1

0 30 60 90 120

used in the ordinary DWBA calcu-
lation. The difference between the
coupled channel (CC) calculation and
the corresponding DWBA calcula-
tion is due entirely to the higher
order terms in V,, in the CC calcu-
lation.

For V., a potential of a Gaus-
sian form with a range of 1.484 fm
and the depth of 72.15 MeV was
used. Zero-range approximation with
the strength D=124.7 MeV fm** was
also used for comparison in both
DWBA and CC calculations.

The results of the calculation
are shown in Fig. 5. The values
of the parameters used in the calcu-
lation are listed in Table II. It is
apparent from these figures that
the difference between the results
of the CC and DWBA calculations
is much larger than that between
the finite-range and zero-range
DWBA calculations. In other words
the zero-range approximation in the
frame work of DWBA gives rise to
an error which is less than the error
inherent in DWBA itself caused by
neglect of higher order terms in
Voo

The deviation of DWBA cross
section from CC cross section is
large in backward angles. This in-
dicates that the effect of the strong

Fig. 5. Angular distributions of (d, p) reac-
tions 12C(d, p)BC(1p), 1%0(d, p)1"O(2s),
#0Ca(d, p)*1Ca(2p) and ©Ca(d, p)*'Ca(1f)
calculated by the method of FRCC,
FRDW, ZRCC and ZRDW. Theincident
energies in laboratory frame are 11.8
MeV for 12C and %0 and 11.0 MeV for
40Ca. The parameters of the distorting
potentials are listed in Table II,
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coupling of channels is large for low angular momentum states of L affecting
the lower partial waves of the outgoing particle p. These as well as other
features of the CC calculations will be discussed in detail in a future publication.

§7. Summary and conclusion

The set of close coupling equations for the (d, p) reaction derived in I by
the variational method is inconvenient for numerical calculations since the in-
teraction kernel includes a differential operator acting on the unknown function.
In the present paper the equations were rewritten in the forms in which the
differential operator in the kernels is eliminated and the kernels are explicitly
symmetric with respect to channels. The S-matrix was then shown to be sym-
metric despite the fact that the effective Hamiltonian is not hermitian because
of the imaginary part in the optical potentials.

The explicit form of the kernel, K{n(R,7), was given for the (d,p) re-

action with a closed shell target nucleus. The closed shell was treated as an
inert core and the intrinsic spin of nucleons was neglected. KPu(R,7) was
shown to have the following properties.
(1) KPu(R,r)ccR™! for small R(<Lr) and KD, (R, r)ocr' for small »(KR),
(2) KPu(R,7) has cusps on the lines 7,=0 and 7,,=0 on the (R, r)-plane and
(3) K. (R,7) tends exponentially to zero for R and/or r tending to infinity.
The kernel consists of two parts: the interaction term containing Vip-+ Ups— Ups
and the non-orthogonality term which arises from the non-orthogonality of the
d- and p-channels. The numerical examples given in the present paper showed
that the interaction term behaves well while the non-orthogonality term has a
very long range and sometimes oscillates rapidly which may bring serious trouble
in the numerical calculation. ,

The discussion was extended to the case in which there are some valence
neutrons in the orbit 7, into which the neutron is captured in the (d, p) stripping
process. The Pauli principle between the target and captured neutrons was
taken into account by anti-symmetrizing the trial wave function with respect to
the neutrons. The interaction kernel was then shown to consist of two parts.
The one part is just the interaction kernel discussed previously multiplied by
the square root of the spectroscopic factor, N (0" (L) Is|} l,"Iz). The other
part of the kernel corresponds to the rearrangement process due to V,, in which
A is excited by p to a state A*¥ while the transferred neutron plays the role
of a spectator. In the actual calculation on “C the latter part of the kernel
was entirely neglected.

A method of numerical solution of the basic equation was described in detail
and some difficulties encountered in the calculations were pointed out. It was
shown that the difficulty may be circumvented by a cutoff procedure which con-
sists in cutting off the values of the kernel for small values of the arguments.
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The error introduced into the S-matrix by such a procedure was estimated and
some numerical examples were given.

Results of some actual calculations were presented, by way of examples, for
“Ca(d, p)*¥Ca with [,=1 and 3, *O(d, p)"O with [,=0 and for “C(d, p)®C
with Z,=1. Calculations were carried out by means of (a) the finite-range cou-
pled channel method (FRCC), (b) the zero-range coupled channel method
(ZRCC), (c) finite-range DWBA (FRDW) and (d) zero-range DWBA (ZRDW).
It was found that the difference between DWBA and CC is larger than that
between FRCC and ZRCC or FRDW and ZRDW. Features of the angular dis-
tributions in the forward angles in the four types of calculations were shown
to be very close to one another. In the backward angles the values of the cross
sections by different methods can be considerably different.
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Appendix

Let us put Eq. (5-12) in the form

2 <)
{ 4 . p, (m)}—aﬂa (re) —L 3 j Ko (o 7) e ) dre=0, (A1)

d?"ﬁ Cl/g 7 0

where
Po(rp) =kt~ alet D) Us(ra) | (A-2)
g ag

For a sufficiently large value of 74, say Ry, non-Coulomb part of Upg(Rg)
and Kz (Rg, ry) for all y are negligibly small. Let us divide the range (0, Rg)
of 75 into Ngz—1 equal parts of length %, and denote the value of 75 and f5(7)
which correspond to the i-th dividing point by 75(Z) and f;(Z7) respectively.

Then, we first approximate the second derivative

2 _ 1 1 oo\n o -
j—‘—ﬂ,@a (rg) by Apa(7p) = <1 ‘Eaﬁ >5ﬁ ZZMOR

dr/g2 d?"lg? h,g2

where 0, is the central difference operator by which 05’4, (7) is given by

0p"%pa (D) =Upa (i +1) —2%pa () + 5. (1 —1). (A-3)
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Secondly, we approximate the integral, {Kg; (74, 77) %o (77) dry by a sum,

Ny
JK;QT (7”3, 7”7) 222" (7'7) drrNjZ__]l 'wjhrKﬁr (i, .7) Ura ( ]) > (A : 4)

where w; is the weight coefficient depending on the numerical integration formula
we take. In actual calculations we used Newton-Cotes’ formula of the forth
order.

Approximating Eq. (A-1) by the procedure described above and then oper-
ating hg'(1+1/12-0,") on both sides, one gets for =2, 3:-, Ny—1 up to 04’

i Ny
;Aﬂ(iyj)ﬁlga(j)+2;§1CBT(Z.,_]')_ZZ7“<J'):O, (A'5>
where
Ap(G,j)=( —2+%hg'Ps(J) for j=1,
1+ 555" Ps () for j=i+1, i—1,
0 otherwise ,
and
CoN hrhﬂ" . . o ) .
C/ST(Z:J)'“——1—2‘;‘103'{]{/37'(2*#1,,])+10Km(z,])—{—KBT@_LJ)}“ (A-6)
8

Equation (A-5) shows that 7g, for all different « is the solution of the same
set of equations,

;:Aﬁ(i,f>_ﬂ,e<j)+;J§1Cm(i,j)ﬁ,(j):0, (A-7)

One can straightforwardly generalize the above derivation to allow for the
dependence of Az on 7 such as
hﬁi: }L/g(l) for 1SZ.§_NK;(1)—‘1 5
jkﬁ‘” for Ne®<;<N,®-1,

( Ry for NymeD<;<N,—1.

Such modification is useful because the behaviour of the integrand is much dif-
ferent for different parts of the integration range. In actual calculations we took
ng=3 and made A¥*=2A9.
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