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Close coupling equations for the rearrangement reaction A+d—>B+p are derived from

a variational principle for reaction amplitude assuming the usual stripping mechanism. The
sum of the wave functions of the deuteron and proton channels is used as a trial function.
An exact and simple expression for the error introduced into the reaction amplitude is also
“derived by applying the theory of finite variations. Our variational principle is not affected
by the existence of ambiguity in defining the proton and deuteron wave functions of relative
motion, which should be carefully considered for rearrangement reaction because of the “non-
orthogonality” or channels. . The origin of this non-uniqueness and the induced ambiguity in
“the optical potentials are discussed in connection with the relation between the present method
and the method of the projection operators. The interaction kernel consists of two parts,
one coming from the usual V,,,+V,,—U,z term and the other due to the non-orthogonality
of the initial and final channel wave functions. It is shown that DWBA is obtained only if
U 5 alone) is considered as perturbation. The

the whole interaction kernel (not V,,,+V,,—U,
relation between the present method and the methods of projection operators is discussed.

§1. Introduction

The theory of direct reaction by means of distorted wave Born approxima-
tion (DWBA)" has become a powerful tool for analyzing the experimental data
-and extracting useful information concerning the nuclear structure through rather
precise fitting of the theoretical predictions to the experimental observations.

In contrast to the success in the practical applications, it shvéuld be recognized
that the theoretical basis of DWBA has not yet been fully established in general
and the-applicability of DWBA is judged still to a large extent by the fit of
the theoretical predictions to the experimental data in each particular case. For
inelastic scattering leading to collective excited states, however, a rather far
reaching studies have been made by the method -of coupled channels.?”®  Since
‘this method takes account of the transition matrix elements between the strongly
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coupled channels up to infinite order, DWBA may be regarded as an approxima-

" tion corresponding' to the weak coupling limit of this method. Thus, one can
discuss the accuracy of DWBA by comparing the calculated results of DWBA
with the “exact” calculation obtained by the coupled channels method.

For ‘the (p, p’) reaction leading to the first 2+ vibrational states of medium
weight nuclei it was found® that with the same distorting potential and coupling
constant the cross section calculated by DWBA overestimates the cross section,
for large values of the deformation parameter 8 being proportional to (3 while
the “exact” cross section is linear in 8 for §>>0.2. It was found, however, for
. some cases that if the distorting potential in DWBA is readjusted so that it gives
the same elastic cross section as the “exact” calculation, the cross section for
inelastic scattering also agrees with the *exact” one. :

The study of the‘thedretical basis of DWBA for rearrangemen't reactions is
far less adequate. There are several factors peculiar to the réarrangement re-

actions which have to be born in mind. First, there are arguments® that the -

Born series for rearrangement collision diverges. Divergence of the Born series
does not necessarily mean that the first order Born approximation, including
DWBA, is inaccurate. None the less, it would be an unfavorable factor to be
reckoned with in establishing the validity of DWBA. At least there would be
no inherent error criterion in DWBA. The divergence stems from the presence
v ~of bound states both in the initial and in the final state such as deuteron and
the bound neutron in the (d, p) reaction. For the inelastic scattering, therefore,
Born series converges at least at high energies. Sécondly, in the rearrangement
reaction the wave functions in the initial and final channels are not orthogonal
to each other. The non-orthogonality gives rise to a coupling term of the two chan-
“nels whose nature has not yet been clarified. The third factor which is peculiar

to the rearrangement reaction has been revealed in the calculation of electron’

pick-up from an atom by an incident proton. In the first order Born approxi-
mation the cross section of this process was shown to be proportional to E~°
high energies. It was found, however, that if one goes one step further one

U2 in the second Born approximation.” . This

finds a term proportional to £~
implies that the first order term is surpassed by the second order term at high
'energles Whlch is quite contrary to usual expectation.”

Several attempts have been made to construct a fonnallsm of direct reaction
theory which includes DWBA as a special case. The mathematically most rig-

orous one is probably the exact three-body problem approach® to the rearrange-

ment process. In the (d, p) reaction, fot instance, the process is regarded as -

a rearrangement of three particles, proton, neutron and the target nucleus which
is assumed to be a structureless massive particle providing neutron with a binding
potential. . It has been shown that this problem is reduced to the solution of an
equation with one independent variable and is practically soluble if one assumes

a special, somewhat unreahstlc form of the interaction, such as a zero range '
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potential, separable potentnl ete.

Another method is to apply the method of coupled channels to Iearrangement
reactions. This method will simplify the comparison with Born approximation
and will enable one to use realistic nucleon-nucleon, nucle’on-nucleus and deuteron-

nucleus interactions.
' In atemic physics a calculation has been carried out for the elastic scattermg
of positron from hydrogen atom® by this method in which the closed channel
of positronium formation is coupled to the elastic channel. A calculation is also
being plaﬁned for the same process when the positronium channel is open.'”

In nuclear physics, a method of coupled channels for rearrangement process
has been formulated by Wheeler™ in his resonating group theory® which has
been used for the analysis of few nucleon problems."”

The coupled-channel method has been applied to rearrangement reactions
with heavier nuclei for the (7, p), (d, d) and (¢, p) reactions in which the p-
and 7 channels,”® d- and p channels’™ and z and p channels'™ are coupled, re-
spectively. In particular, Rawitscher® has carried out such a calculation for
deuteron induced reaction on Ca¥, and found that the (d, d) cross section can
be reproduced by a deuteron optical potential with a large imaginary part since
the reduction of the deuteron wave function in the nuclear interior is recovered

by the coupling with the stripping channel at the nuclear surface. “This reduc-

tion, however, affects the (d, p) cross section in a way similar to a cutoff in
DWBA, as Stamp suggested in (¢, p) reactions.”® In those applications to heavier

nuclei the interaction which causes the transition is assumed to have zero range

and the non-orthogonality terms are neglected.

Questions now arise as to what the main effects of the coupling of channels
will be and under what condition the effect will be large. In conmsidering these
questions there are several factors which one immediately notices. In the (d, p)

reaction, for instance, the size of the matrix element of the transition will depend

on the neutron separation energy: if it is large the matrix element will be small,
which might make one expect that DWBA is valid. Polological argument'®

suggests, however, that the opposite might be true since the smaller the neutron |

separation energy, the nearer the pole corresponding to DWBA approachs the
- physical region. Therefore, there is no off-hand criterion related to the neutron

separation energy. The effect of channel coupling is expected to be larger for.

lower partial waves since the amplitudes of the lower partial waves are large
in the neighbourhood of the nucleus. For the similar reason the giant resonance
in the distorted wave may enhance the coupling and affect the reliability of DWBA.
DWBA reproduces in general the angular distribution of stripping reactions well
but there are many examples in which cutoff in the radial integral is needed
to r'eproduce the observed maxima and minima.””  Should this feature be really

*) The Rayleigh Ritz method used by Wheeler is, in principle, applicable to.only bound state
problems, ‘ ' o
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attributed to the channel coupling as asserted by Stamp® and Rawitscher?™
In this series of papers we investigate the method of coupled chaﬁnels for
nuclear rearrangement collisions, especially the (d, p) reaction, in which the in-
itial and final channels are coupled together. From the observed fact that the
. stripping process has a large cross section one sees that these two channels are

strongly coupled to each other. There may, however, be other channels which .

are also strongly coupled directly or indirectly to these channels.””*® In' that
case the coupling of all these channels should in principle be treated on equal
footing. However, we shall content ourselves here by assuming that the effects
of the channels other than the initial and final channels are somehow approxi-
niatély taken into account by assuming a suitable phenomenological effective
Hamiltonian with adjustable parameters. A criterion for the validity of such an
assumption has been given by Buck and Rook' using the unitarity of S-matrix.
We may use this criterion as one of the measures of reliability of our calcula-
tions. We should emphasize, however, that the truncation of other channels by
the procedure described above is primarily for the sake of computational con-
venience. Even in such a restricted model, however, we hope to obtain some
information about the effects of the coupling between the channels. -

The method of coupled channels for inelastic scattering has been developed
by expanding the total wave function in the complete set of intrinsic wave func-

tions of the target nucleus and those of the projectile. In the case of rearrange-

ment collision, however, this procedure is difficult to follow since the residual
nucleus is different from the target nucleus, so that one has to deal with the
wave functions of the initial and final channels which are not “orthogonal” to
_each other. ‘

Under these circumstances, one of the best ways to derive the basic equa-
tions of the coupled-channel method for rearrangement collisions is probably to
use a variational method, because the “best” wave functions of relative motion
is obtained: within the assumed form of the trial functions: the sum of the wave
functions in the strongly coupled channels. ' ’

~ We derive in § 2 the basic equations of the pre}sen‘t formalism for the (d, p)
reaction from a \Variational principle by using the method of finite variation.
Assuming that the target nucleus has no. spin and neglecting the intrinsic spin
of nucleons for simplicity, the basic equations are derived in the three-dimentional

form in §2.1 and in the form analyzed in partial waves in §2.2. An expression

for the error in the calculated S-matrix is also. derived. In §2.3 the formulae
for the cross sections are given. 1In §3 ambiguities in the wave functions and
‘the effective Hamiltonian are discussed together with the relation between the
present method and the method of projection operators.*~* In §4 the reaction

amplitudes which arise from the non-orthogonality of channels and the relation -

of DWBA to the present method in the limit of weak Couplling are discussed

)

in detail, In'§5 a summary is given,
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§2. Derivation of the basic coupled equations
by the theory of finite Variation

In this section, we first treat a simplified -problem. by the method of in--

finitesimal variation of Kohn’s type.” Then, we derive the basic coupled equa-
tion by means of the method of finite variation. By the latter procedure one

can obtain a simple and exact expression for the error in the calculated scattering

matrix elements. The theory of finite variation has been developed by Kato™

for scattering by a central potential. The theory in the subsequent subsectlonsk

is a direct extension of that theory to rearrangement collisions. In order to
avoid unnecessary complexities we neglect intrinsic spin of nucleons. We also
assume that the target nucleus has no spln and that the D-state of deutelon can
be neglected. .

Let us denote the wave functions of the target nucleus, A, and the incident
deuteron, d, by 05(£) and qﬁd(rnp)Arespectlvely and also denote the wave func-
tion of the residual nucleus, B, by (l')flmn(f,' r,) where [, and. m, are the orbital
angular momentum and its z-component of the captured neutron relative to the
centre of mass of A. As shown in Fig. 1, Fnp and

r, represent the relative coordinates between the proton /@\

rnp\

and the neutron. and between the neutron and A re-
spectively. & 'stands for the aggregate of the intrinsic

: . , . . . a

coordinates of A. The relative coordinates of the ini- | /@
tial and final channels are denoted by R and r re- -~ | o
spectively. ‘ W centre of mass of B

“centre of m of A
The total Hamlltonlan of the system H, can be e

written in two alternative forms corresponding to the  Fig. 1. Coordinate - system

initial and final channels, respectively, as for the reaction A(d, ) B.

H=Hy— aupds) 1t Vis () = @adtlun+ Vs ) + Voa ) (@-1)
=Hp—apydeln+ Voa (') + Vip (run) , - (2-2)

where r,” is the proton cOordihate relative to the centre of mass of A and
Hy=H,~ ool o Vaa (), (2-3)

where the a’s are given in terms of the reduced mass, #, of the corresponding
relative motion by a=#’/(2¢). In terms of the nucleon mass m, and the mass
number A of the target nucleus, they are given by

O _A+2 _A+2 # A+1 #
App=——, Ag= ——— — ap=-—"-ee 2 and a,= o

) » = : (2-4)
My 44 m, ‘ 2(A+1) Mo 2A Mo

in the approximation that the binding energies of d, A and B are neglected.
In (2-1) through (2-3) 4,,|r represents the Laplacian with respect to the variable

220z 1snbny |z uo1sanb Aq 8/19161/16€/2/1 p/elonie/did/woo dnoolwspese)/:sdyy woly papeojumoq



396 o T. Ohmura, B. Imanishi, M. _ch/zz'mw"a and M. Kawai

rnp, when R is kept constant, when these two variables are taken as independent
variables of the system. Similarly, 4z|up, 4|, and 4,|, stand for the Laplacian
with respect to R, r and r, respectively when r,,, r, and r are respectively kept
constant. It is assumed that the interaction between the proton (neutron) and
the target nucleus can be represented by a spherically symmetric potential V4
(Vai). I these potentials depend on & reaction can proceed to a final state
which is forbidden in the ordinary stripping and pick-up reaction mechanisms'.
We assume that this possibility can be neglected. '
Now, the total wave fullcti011.satisﬁes the Schrédinger equation

(H-E)T=0, . (2-5)
‘ aﬁd the normalized wave functions @Oﬁ, 07, and ¢, satisfy the. equa‘tions
H04=Es0,  HpO,=EaOfn,, @26
{ = @updap+ Van (ap) } e (ran) =atpa(7nn) 5 - 27

respectively. We assume that

o= B, , e
where ¢;,m, is defined by |
R N B PO e @Y
and satisfies the equation,
(=t Vis 0D} b ) = By ). (2:10)

The wave numbers %, and %, in the & and the p channel, respectively, are de-

termined by - _
E=Eaiteit Ea=Ea+E,,  Ee=aks,  E,=aky, @
and the Q-value of the reaction is determined by
Q=FE+ 20— En=au’— ami’, (2-12)

where ir and 77 are the imaginary wave numbers of the captured neutron and
that of the internal motion of the deuteron, respectively. The-functions g, 02,
$a and ¢y,m, are all assumed to be known and are not subject to variations in
the following discussions. '

2.1 Derivation of the basic- equations for the special case with 1,=0

In this subsection we illustrate the general spirit of the present formalism
by considering a simple special case in which the Coulomb potentials are absent
and /, is equal to zero. ' ‘ o '
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Let us consider two special solutions of Eq. (2-5),. #® and ¥®, which

satisfy, respectively, the following sets of boundary condition: .
VO =0"para® (R) + 072, (r) + 90, @B

~where 7a® and 2,® have the asymptotic forms
@ (g ®, :
1 (R) ~exp ik R) + 7 (’zle n) exp (ikaR) O (@13)

and

7™ (1) AN 9] exp (ka,) (2-13b)
” ,

respectively and ¢® vanishes asymptotically in the d- and p-channels and has

~only outgoing waves in the asymptotic region of all the other open channels, -

and ‘
TO = 0ig® (R) + 07,2 () +9, (2-14)

~where the asymptotic forms of %;® and %,® are given by

W@~ (O ) e
and
2P (1) ~ (exp (Glyn®@r) +7 SO, n ) exp (kaﬂ) *’ (2- 14b)'
r

respectively and ¢ satisfies the same boundary condition as ¢, except that
the former has only incoming waves in the asymptotic region. In the above equations
the subscripts for @* and @F representing the angular momenta are dropped, and
unit vectors n=R/R, n’=r/r and n® (=1 and 2) are used. ¥ represents
an ordinary scattering state in which the deuteron is incident on the target
nucleus A in the direction n®. Z®, on the other hand, represents the time re-
versed wave function of the state in which the proton is incident on the residual
nucléeus B in the direction of n® followed by the outgoing waves in all the
channels. The functions ¢®, %,® and %,” (=1 and 2) are not well defined
by Egs. (2:13) through (2-14b). Only the asymptotic forms have been specified
precisély because the variational expression will be obtained only through the
asymptotic properties of these functions. A detailed discussion will be given in
§ 3 on some related ambiguities in defining the wave functions of relative motion.
As will be shown there, the ambiguity can be avoided if we impose further ap-
propriate conditions on theése functions.
Let us now consider the following expression;:
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w
L]
o]

Lo (s, —n~2):gw<2>*<H~E)yf<l>dc. o (2-15)

It should be remarked that ¥®* is the time reversed wave function of ¥F®. -

"~ This point is important when the spins are considered in the variational formu-
lation, If one gives infinitesimal variations to the wave functions Z® and ¥®
through variations in %,®, 2, and ¢® (=1, 2), the variation of I,

o= { wor - By orods + { oror ar-myrodr,
can be written as®

0T (nyy —m) = g YOx (H— E)oTOdr — S ST (H— YU g
— — aa| PO Loy 0901 (R e+ aa | 040,02, (R) ], PO
=0y | 7O 4,1,0%00,0 () der-t a, | 0%02,0 () 7O e,

+ g TO* (H— E)op®Ode ~S 8y (H — E)TO*de (2-164)

where dr,=dédr.,dR and dv,=dédr,dr, and the equations (H—E)¥®=0 and
(H—E)¥P®*=0 are used. The terms containing 4.,|z and 4,|, have been drop-
ped because the bound state functions ¢;(ru) and ¢,(r,), re%pectlvely, ensure
the he1m1t101tv of these operators. :

Let us consider the first two terms on the right-hand side of (2 16a). Using
Green’s theorem one can transform these two terms into a difference of two
surface integrals at infinity. However, Eq. (2-14a) shows that the complex
conjugate of the first term of ® in (2-14) has an asymptotic form proportional
to e“LR/R as R goes to infinity which, according to (2-13a), is the same as the
asymptotic form of 07,%. Hence, the difference of the surface integrals vanishes
and we get no contribution from this term of ¥®. Furthermore, the second
term of #® on the right-hand side of (2-14) does not contribute to the surface
integral, either, since the product 0%*¢, vanishes at infinity. Similarly, one can
readily see that ¢® does not contribute to the surface integral.

For the third and fourth terms on the right-hand side of (2-16a), one can
again transform them into a difference of two surface integrals at infinity. Of
the three terms in the expression (2-14) for ¥® the first term does not contri-
bute to the integral since the product ¢,*@” vanishes when » goes to infinity.

Similarly, the third term ¢® of F® gives no .contribution. = The second term of’

- ¥®, however, does give finite contribution to the integral. Similarly the last
two terms on the right-hand side of (2- 16a) can be shown to contubute ‘nothing.
One gets altogethel :

) We assume that the potentials are static and non-exchange type with finite range,
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8[;2 (ny, —ny) = —a, S [.@BIZdernS {exp (ikpnPr) '0@ exp (ikz’d

ne T

_ exp(ik,r) @
0

exp (on®r) |09 (0, m)dS, = 4,39 (0, —n®),
7” nr ° B N

(2-16b)

where S, is a surface at 1nﬁnlty in the r-space and 2, stands for the outwald
normal to Sy. : .
From (2-16b) one immediately sees that if one defines a quantity gP by

9P (O, —n®) =g (0, —n®) = Ura,) | YO H-EYIOE,  (217)

its variation vanishes: ; .
89P0, —n)=0. e

Hence, 9’ is a stationary expression for 9'(1)

Conversely, the condition that g{’ is stationary at ¥® and 7 leads to the -
y

Schrédinger equations for ¥ and ¥®. In fact, if one gives arbitrary infinitesi-
mal variations to these functions one gets ‘

0=09% = 09® — (47a,)"" { [oror - pywoge s (wor - Mf(”df}

= — (dray)™ {g SUO* (H— E) PO + S 0T (H— E) W*df} O @19)
by the same procedure as in the derivation of (2-16b). ‘Hence, '
(H-E)¥®=0 and (H~E)W(2)*:O

since 0¥ and 0¥® are independent variations. Hence, we have obtained a
variational principle which is equivalent to the Schrédinger equation. The sta-

tionary value of the expressmn 9%, is just the requlred scattering amplitude of

(d, p) reaction.®

*) The corresponding variation principles for g<2> F® and f@ can be constructed similarly.
The stationary expression for ¢g® is given by

9P (®, —nW)=g® (n®, —n®)— (dray) g,w (H-E)¥®%dc .

The stationary expression for f® is obtained if one consideres the wave functions of the form,

L O =04¢,%,® + 05%,® +¢®, with the asymptotic form, %z® (R)~ {exp (tksn® -R) + f® (n®, n) R™1+

exp(tkgR)}* and 2,® (r)~{g® (n®, n’)r texp(ik,)}*. The function ¢® vanishes asymptotically in
the d- and p- channels and has only incoming waves in the asymptotic region of all the other open
channels. The expression is '

FP @O, —n®)=FO(nW, —n®)— (dray) -lg TO*(H—E) ¥Vdr .

" Conversely, the variational principle for these expressions leads to the Schrédinger equation for arbi-
trary variations, and leads to the same equatlons as (2-21) if we assume the truncated wave func-
tions as defined in (2:20).
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The variational principle obtained above can now be applied to determine
the best set of wave functions of relative motion, %, and %,®. If one, namely,
takes as the trial functions the wave functions of the form '

VO =0 Sy + 0715 « (2-20a)
~ and . _
VO =0+ 0Py, (2-20b)

' one gets from the condition that g.? be stationary against ¥,® and ¥,® induced
by the variations in %x&} and %5} (=1, 2) the following set of equations:

S DA p * (Hﬁ EYV,Odedr,,=0, o (2-21a)

g, 0%* (H - E)V,Odidr,=0, (2.21b)

S 0% po (H— E) W, D% d2dr, =0 | (2-210)
and , _ .

g O°(H—E) V% g dy, =0 - (2-21d)

which determine the unknown functions %) and %$} (i=1 and 2). That is, if
one inserts (2-20a) into (2-21a) and (2-21b) and uses (2-1), (2-2) and (2-6)
through (2-11) one has a set of coupled integro-differential equations for ¥’s,

(—aadzlnp+ Usa— Ea)¥a
= "'g ¢d*[<_ap4rl7z“_ UpB—Ep) %‘ (Vnp "l‘ VpA; UpB)]¢7LXpdr,lp (2'22) '

~and | |
(—apdr|nt Ups—Ep) %»
‘» B "S bt [ (= apdelut Upn—Ep) + (Vap+ Vipa = Uys) I fattacira (2-23)
respéctively, where . o
. Uaa = S O $0* (Vpat Viua) 0 padidrn, : - (2-24a)
and v ‘ | |
Uy 07 (Vout V) 0*dsdr,, | O (224p)
and the supefscript (1) and the subécript% are now dropped. It is easy to‘ see

‘that exactly the same set of equations as (2-22) and (2-23) can be derived for
ve® and 1,® from (2-21c) and (2-21d), which shows that the form of the equa-
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tions for %’s is independent of the boundary condition imposed on them.

The integral terms of Eqgs. (2-22) and (2-23) represent the coupling of the
initial and final channels and give rise to the (d, 2)- and (p, d)-reaction ampli-
tudes. In the post form of Born approximation, including DWBA, the in-
teraction responsible for the reaction is V,,+ Vya— U,z This corresponds to

discarding all but V,,+ V,ys— U,p from the square brackets -of the coupling in-

tegrals. The DWBA amplitude is obtained if one solves such a truncated equa-
tions by perturbation theory in the first order. :

In the present treatment, however, this is no longer the case since we do
not assume the validity of the first order perturbation calculation. We must also
consider the other terms —a,(d,|,+%,") + Ups(ry), in the coupling integrals.
This complication arises from the fact that the internal wave functions of the
initial and final channels are not orthogonal to each other. Discussion of the
effect of this non-orthogonality will be given in more detail in §4..

Now, let us estimate the error in the 'séattering" amplitude obtained from

(2-21). For this purpose it is convenient to use the method of finite var-

iation. Let us designate in general the apprommatlon for ¥® by ¥, and its
error by 4¥®:

VVCE JORN | (2:25)

Correspbnding to (2-15), let us consider the quantity, L= {¥,P*(H—E)¥,“dr.

A little calculation similar to that which was used to derive Eq. (2-16a) shows

that

Lot =g Yox (H—E)¥,Odc+ g AT (H~E) AV dr

— 474, {9," (n®, —»n(”)——g“)(n(”,~iz(é))}+gAW”*(H——E)AW“)dZ', (2-26)

where ¢,% is the reaction amplitude corresponding to the wave function %,®.
~This is an exact expression. It is clear from (2-26) that ¢, — (drwa,)™ L is
‘a stationary expression for ¢® as defined in Eq. (2-17).¢ Since Ly=0 for ¥,®
satisfying Eqgs. (2-21), the calculated ¢, is given by

9.2 (n®, —n®) =g® (", —n®) - (47rap)‘1g AVO* (H—-E)4¥%de (2-27)

which shows that the error in the calculated amplitude ¢, is of the second -
order in A¥®., Expressions similar to (2-27) can be easily obtained for the

other reaction- and elastic scattering amplitudes.

2.2 Partial wave expansion

Let us now consider general cases with 7,740 in terms of the partial wave
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expansion. - We neglect the intrinsic spins of nucleons so that the total orbital
angular momentum, which we designate by L, is a good quantum number. The
total wave function ¥, with the total orbital angular momentum L and its 2
component M can be written as

V=0 (&) o () Y o (R) @;{m
41, o (Z(, .
= 2—-' [@gb (S; rn> > YL (?) :l LM :Ul'"r(’r)’ + gl.)Lﬂ[ > : (2 : 28)
where
| (G0, Y] ow— S (Ul | LM U (2-29)

and ¢y vanishes asymptotically in the d- and p-channels and has only outgoing
waves in the asymptotic region of all the other open channels.™ It is- clear from
the rotational invariance of the Hamiltonian that #; and v,'” are independent of

M.

amplitude, T}z, corresponding to the incident wave in the deuteron channel
with the angular momentum L and the outgoing wave in the proton channel with
the angular momentum [. For this purpose, let us consider a wave function

#ir, which has the asymptotic form of an incident wave in the deuteron channel
L plus outgoing - waves in all the channels. We also consider a wave function
7% which has the asymptotic form of an incident wave in the proton channel
[ plus incoming waves in all the channels. The corresponding radial wave func-

tions, then, have the asymptotic forms,
wr® (R) ~C5 Fy (ks R) + Ca* TR ar HL Y sy R)

(2-30)
e (7‘) ~ LTS o HEY (R, 7)

and
P (R) AL AT P H L (kgy R)}H,

oD . . (2-31)

1A (7") i {C{'FZ.” (/zp> 7°> 6”," L” l” lel (kgu 7’)}( >
,respectively, the superscrlpt (L) on v,? is dropped. Here Fy, and H;® are the
regular and outgoing (incoming) wave Coulomb functions®™ whose asymptotic

forms are given by

Fy(k, 7) ~sin[kr—y In(2kr) —Lr/2+0.]
and ' (2-32)
HL(i>(k, r)'rvexp\{jv:i[/ermnln@kr) —Lr/240.]y, v

*) The comment on the ambiguity in deﬁmng ¢, 4 and %, in (2-13) and (2:14) is applicable

here. See also §3.

Let us first seek for a variational expression which will give the reaction
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respectively, where )
(f=i"exp(i02f)/Vva  and  {P=iexp(i0?)/Vuv,,  (2:33)

with va=#ke/tte and v,=Hhky/llp, and 0;*=arg '(1+L+iy,) and ¢ =arg I'(1+
I+iy,) are Coulomb phase shifts where 7,=Ze¢'tta/h’ka and 7,=Ze ,ap/hz/ep, Ze
being the charge of the target nucleus. ‘

- Let us designate approximate wave functions correspondmg to Y59 by ¥,®
and the corresponding error by

AVO=TO V5. ' (2-34)

In order to derive a stationary expression for the scattering amplitude, let us
now calculate the integral (¥, ®*(H—E)¥,“dr. By a procedure similar to that
used in deriving Eq. (2-26), one gets (see the Appendix)

g ¥,0% (H—E)¥ Odr = g UHO (H—E)¥,Ode + S ATO* (H— E) ATV dr

= kpay GV T fiun,e— kaaa (G TéEim+ SA?F(”*(H ENYA¥®dr . (2-35)

If one substitutes ¥® for ¥,® in (2-35) one gets, with the aid of (2-33)
(—17 exp @i02) Tu= (~ VP exp Qi) T (2-36)

Since the S-matrix elements for (d, p) and (p, d) reactions are given by
SP= 21 exp (2i6,2) TP and Sd,;,p;— 21 exp (ZZO‘Ld) (jr),,; , (2:37)
respectively, one has , A
| (1S (— 1S, | (239

which shows the symmetry of the S-matrix. ‘
' In terms of Egs. (2-36) and (2-37), Eq. (235) can be_ rewritten as

S8u= S+ (— 1din~ {{ 7.0% (H-E)¥.de

. S JTO* (F[— E) Awwczf} . (2-39)
Equation (2-39) shows that if one defines a quantity S%%.,« by
S S s~ (— Vi | TO* (H-EYPOar, (2-40)

‘the difference between this quantity and the correct S$%z is equal to — (—1)
4t (AP O* (H—~ E) 4¥dr and, therefore, is of the second order in 4%’s. Hence,
S, « is stationary against variations in #’s around the correct solutions of the
Schrodinger equation. Converse of this statement is also true since if one gives
infinitesimal variations to ¥,® and ¥,® the variation in Sz . is given by
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68&?21:,.5&: ‘

0SB, i — (— )it {g OV, (H— EY ¥, O + S p,o% (H—E)W,<l>dr}

= (1) {S 0U % (H— E) W9 + S 0T, (H—E) zﬁ,w*dr}, (2-41)
and so the cond1t1on that 0SS uL, 5 = 0 leads to the Schrodinger equations,
(H——E)T,,(”:O, (H-E)¥,®*=0, (2-42)

In order to derive approximate equations for #;® and v,® from the varia-
tional principle, let us now take as the trial wave function the sum of the wave
functions in the deuteron and proton channels,

V0 =08 ) palr) Yo (R) 42

N Lily [@ (&, r), Y, (r>JLOEE(.i_(7) : '(2'43)
r

1= Ity

The condition that 0SS ar, s given by (2-41) is zero for arbitrary variations in’

P and v,? is equivalent to- the equations
S O 42 Y 5 (R) (H— YU Odedrn,dR 0, (2-44)
and | | | ‘ | N ‘
S [O8 2, 1), Yo% (7) Lo (H— B WOl i — 0 (2-45)

It can immediately be seen that these equations are independent of (2) which
specifies the boundary condition of the solution.
The solutions of Eqs. (2-44) and (2-45) satisfy

g V0% (H— EYW,Odc =0 . C (2-46)
Hence, Eq. (2-39) gives
Sifun, =St (= 1)"”4ih“‘g AV (H— E) JTOde (2-47)

which shows that the error contamed in the calculated S-matrix elements is of
the order of the product of A¥® and 4¥®.
Using Egs. (2+1) and (2-2) one can rewrite hq (2-44) as

aq | d* s L(L+1) ur(R)
el Ltk *R‘} 41 (R) + Uaa (R) &

+§ B8V [{=ap (4t ) + Upah + {Va ()
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+ Vi () — pB}JZ[mzn@, r), Yo@ 10020 gz dr,,dR =0, 2.48)
' ~ r , '

and Eq. (2-45) as

‘-_Igp{ A’ e 1U+1) } () + Uyp () 22T
r’ r

dr’ ?

{108 6, Y @ Tl (= 0 Urla ) + Uik + Vo)

+ Vo) = U 10561072 (R 42 dedrdP=0,  (2:49)
where the superscript (Z) is dropped and

Uan(R) = 08 ()% o) YAR) (V) |

| +Vur) 08 () dalray) Yo R) didiropdR  (2-50)

and | |
Uss ()= (05 &, ), Y7 D))oV (')

Vi Gran)} [OE, 6, 1), Yi(®) | modrd?dé, (251)

" which are distorting potentials in the deuteron and proton channels respectively.
Equations (2-48) through (2-51) constitute the basic equations of the. present

method. These equations contain the derivatives of the unkown functions #z(R) and

2,(r) in the interaction kernel, which is very inconvenient for the practical calcula-
tion. Fortunately, however, as will be shown in a subsequent paper, these de-
rivatives can be eliminated from the integral kernels, putting at the same time
the two kernels in exactly the same form.  The S-matrix elements are then also
shown to be symmetrical with respect to the initial and final channels. .

Strictly speaking, Egs. (2-49) and (2-51) are correct only when the captured
neutron goes into an s-orbit. In fact, from (2-2) and (2-28) one immediately
sees that the part of the integral in (2-45) which is relevant to Uz is

Dl )]

rp—T
PN UACENI <f>1mdsczrnd? el | (2-52)

oz e v, vir 1] Vau (|2 A_

A+1

If the 1ntegrals over ¢ and r, result in an integrand which is a function only
of 7, the mtegral over  vanishes unless /=17' and the above integral reduces to

S [0ZF, Yi* 1o (Vpat Vnp) (0%, Y] rdé drnd?zéfl
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from which (2-49) and (2-51) follow. If /, is different from zero, however,
the above argument no longer holds and one may have to deal with much more
complicated equations than (2:49) and (2-51). None the less, these are pre-
sumably good approximétions if the target nucleus A is sufficiently large, and
we shall henceforth assume that (2-49) and (2:51) are valid.

So far, we have entirely neglected the effect of the channels other than the
strongly coupled initial and final channels. One could take this effect into ac-

count by adding to the trial wave functions the sum of wave functions in those

channels. Equations (2-48) and (2-49) would then get extra terms corresponding
to the additional terms in the trial wave function, but we content ourselves here
with the assumption that the effect of the additional terms may be taken into
account at least partly by replacing U,z and Uus by some phenomenological
complex potentials which we again denote by U,z and U fespectivély. The
coupling kernels also will then be modified and have the imaginary part (see
§3). The best choice of the potentials, U,z and Ugs, will be determined by
‘adjusting the parameters to cope with experiment.

We have, up to now, considered the variational method for calculating the -

special S-matrix element, S$%z. In the same way, one can set up a variational
p ? pi, Y:

principle for a general S-matrix element, Sg2°, if one takes for ¥® in the above
discussions the total wave function whose asymptotic form is an incident wave
in the channel « plus outgoing waves in all the channels and for Z® the wave
function which has the asymptotic form of an incident wave in the channel
plus incoming waves in all the channels. One then gets the basic equations
which are exactly the same as (2-48) and (2-49). For the S-matrix element
Sgz, which is obtained from the solutions of these equations, one gets an equa-
tion of the same form as (2-47), ‘

=S+ (=D il S AV (H—E) A7V . (2-53)

Thus, we see that the solutions to Eqgs. (2-48) and (2-49) give rise to a
stationary value of the S'matrix element. :
2.3 Cross section

Solving the coupled equations (2-48) and (2-49), one gets the wave func-
tion of the form (2-28) and the reaction amplitude, 7'4’, defined by (2-30) and
(2-31) from which the S-matrix element is given by

S =exp(2i05) (0pa+2iT§2) . (2-54)

The pfac’tical method of computing the S-matrix elements will be described in
the subsequent paper. \ '
The differential cross sections are given for the (d, p) reaction by

Tap= 7}22 | 2V2LA 1 (b —m|L0) S Y s (0, 6) |  (@255)
a m L
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and for the (p, d) reaction by

2 | ZJ ST (LdmO) Lon) S0 Y 1 (0, ¢) |2 (2-56)

0pa=

(2L, —l—l)k x
The condition of detailed balance is
(20 + 1) b0 o= ki 0ap -

The elastic scattering cross sections are given for the (d, d) process by

Udd— | fa(0) +—— \/47r Z \/2L+ 1 exp (215Ld) tl%)dLYLO 0, ¢) I* (2- 87)

and for (p, p) by ,
Vin e . | ‘

1
Oon= (00,4 1) 2 | 2O Fmot =~ 31 241 exp (2i0F)
X (Ll'm—m’ m’le) (Z ImO| L) T2 5 Y 1w (0, ¢) |2, (2-58)

where f;(0) and f, (0) are the Rutherford scattering amplitude in the deuteron

and proton channels, respectively.

§3. Ambiguities in the wave functions and effective Hamiltonian,
' and the relation to projection operator methods

We have pointed out in §2.1 that Egs. (2-13) and the’ bdundary conditions

are not enough to define %4 X, and ¢. Let the wave function ¥ be written. in
the form '
N

:Z@a?(a‘f“ﬁ, ‘ (31)

where @, is the internal wave function of the channel « which consists of a
pair of particles and %, is the corresponding wave function of relative motion.
Then, the boundary condition in the asymptotic region is not enough to determine
‘the %’s and ¢ uniquely. For, any simultaneous replacement of %, by %e-+ 4%e
and ¢ by ¢ —0,4y, with arbitrary function 4y, which vanishes in the asymptotic
region would give a different but equally valid expression for ¥ of the form of
(3-1). The ambiguity may be eliminated only when further suitable conditions
are imposed on the y¥’s and ¢. ,

For inelastic scattering, the “most natural” condition is that ¢ be orthogonal
to each term in the sum on the right-hand side of (3-1). In fact, if one sup-
poses that ¥ is expanded in the complete set of internal wayve functions of the

colliding pair, Eq. (3-1) would be obtained by picking out the terms correspond-.

ing to some closely coupled channels in the form of a sum and putting the rest
equal to ¢. Since the internal wave function contained in ¢ are orthogonal to

those in the sum, the above condition is fulfilled. Conversely, this condition
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* determines the ¥’s and ¢ uniquely.

For a rearrangement reaction, however, there is no such unique “natural”

condition. There is even no unique expansion of ¥ in a complete set such as
considered above for inelastic scattering. In fact, for the (d, p) reaction, for
instance, there are two complete sets of internal states corresponding respectively
to the initial d+ A and final p+ B systems. The total wave function ¥ could
 be expanded in either of the two sets or any linear combination thereof. Expan-
sion of ¥ in both of these sets, which might be suggested by the form of (2-13),
would not be unique since the basis is overcomplete. 4 )
Thus, for the case in § 2 one could still assume as a ‘“natural” condition

that ¢ be orthogonal to the first two terms on the right-hand side of Eq. (2-13)

or (2-14) for arbitrary y; and %,,
(ogrpasarn=0,  (07pazar,=0. 3-2)

This condition is consistent with the required asymptotic form of ¢ and defines

Xa %» and ¢ uniquely, as will be seen in the following. Alternatively, one could

impose another, equally “natural” condition that the %’s and ¢ be defined by the
projection operators, ' : ‘

| Py=|0%¢s){0%4  and - P,=|0")X0"|, (3-3)
through ; / :
O*pipa=PF, 0%, =P,¥ 5 (3-4)
and - | ,
W=(1—P—P)T. . (3-5)

We can readily observe that the latter definition is different from the former
one, (3-2): Pyp=0 and P, =0, since we have '

Pdgb:—Pde?p. and Pz,g[):*PdeW, ‘ (3'6)

which are in general different from zero because of the “non- orthogonality” of
p and d channels. We also see that 7, %, and ¢ deﬁned by (3- 3) through (3- 5)
have correct asymptotic behav1our since

R—00 R-w

lim Pyp= —lim @AQSd S AEAT 1, 0% (&) g™ (rnp) OP (&, rn) g de’dr,’ O°* (5‘,‘ r,Y¥=0

and

hm P,p= —1im 0% S dfdrn@B* (&, ) 0 (&) o (rnp) S A&’ dri 0% (&) ¢a* (rap) T =0..

r—>0 r—00

There may be still other natural” condmons to deﬁne %a Y%p and ¢ depending .

‘on the aim of the formulation.
It is clear that Eq. (3-4) uniquely defines y, and %, but is not so clear
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with the orthogonahty conditions (3-2). Let us, therefore, examine if these are
sufficient to eliminate the amblgmty If there are still ambiguities 4yqs, 4%, and
4 in %q, %p and ¢ respectively, they must satisfy .

O\fadtat O dp+ 49 =0 . ' (3-7)

Using the cond1t1on that 4¢ be orthogonal to the  first two terms on the left-
hand side of (3 7) one gets

t15(r) +{ Katr, R) d1a(R)AR=0 (3:8)
Axd(Rj + g K;(R, r) 4y, (r)dr :‘O . 3-9)
where | |
K (r, R) =K*(R, r) =8¢,* 2R — ‘r)’ s (2R —2r)
and | | : | O (310)

b= 007z,

for infinitely heavy target nucleus. Equations (3-8) through (3:10) are a special
case of Mittleman’s eigenvalue equation with the eigenvalue i=1 (see (3:17)).
Conversely, if these equations have non-trivial solutions, there. exist non-zero Aya
and 4y, such that 0“@qdys+ @°4x, =0 so that the conditions (3-2) are not adequate
to remove the ambiguity.?? Whether or not this actually happens depends on

‘the structure of 04 and @3, but as Coz’ has shown,”™ it happens in such a very

special case®™ that one could safely ignore the possibility in most practical cases.

The ambiguity which has been discussed so far does not necessarily give
“rise to the ambiguity in %4 ,(%:®) and 7, t(m‘ ’) in the trial function in Eq (2-20)
(Eq. (2-43)) adopted in the present paper. As long as the solution for ¥; of
the variational procedure is unique, the ambiguity in %4, and X,. will remain

only in the very special case when exactly the same equations as Eqs (3-8)
through (8-10) are satisfied.

The same thing will be true more generally if the trial wave function is a

sum of wave functions of any finite number of strongly coupled channels.

Let us now turn to the discussion of the effective Hamiltonian introduced
in §2.2. We have assumed there that the effect of the eliminated channels are
taken into account by making the potentials Uz and U,z complex and adjustable

so that the experiments are best reproduced by the theory. This point can be -

further elucidated with the aid of the projection operator techniques”)_wm’%) de-

*) All the p0551b1e forms of Eqgs: (3-8) through (3:10) with non-trivial solutlons have been ex-
plicitly given in the Appendlx of reference 21).
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veloped in recent years. Therefore, let us first discuss the relation between the

present method and the method of projection operators.
Let us first consider the formalism given by Mlttleman % A projection
operator II is defined by

{ asar,020 - azar.0>mmo, (3-11)
and |
| S 2 i 04 0 — g dedrn, 04110 , (3-12)
for any @. Tf 74 and 7, are defined by | |
TV = 0440+ 0%,

the conditions (3-2) immediately follow. With the use of the projection operator
Q=1—1I the Schrédinger equation :

[E—-H]7=0 ‘ : (3-13)
;:an be put in a form | '
[E—H,]II?7=0, H,=I1IHIT, (3-14)
where _ ,
H =H+ HQ(E—QHQ)'QH. (3-15)

The explicit form of the projection operator II is given by

H(T r” r rn/) — ¢n(rn>|:6 (r_r/) + Z—_,; Ua (7;1>2'Ux (T )]¢ﬂ* (rn/)

P[0 R-B) + g BB B ey (3-16)

1‘ P (rn) K, (ra R/) ¢d* (r;lp) —da (rnp> K, (Ra 1‘/) ¢n* (rn/)

+ ;]1 7@ =17 [ga ra) va (M) n™ (R) 0™ (1) + ba(rp) tr (RYDF ()ga* ()],

where v, and u, are the solutions of the following eigenvalue equations,

o () HS K.(r, R)u, (R)YAR=0,
’ (3-17)
u,(R) + 1 g K, (R,‘ r)v,(r)dr=0

The effective Hamiltonian F,, is a complicated, non-local operator as Eqgs. (3-14),
(3-15) and (3-16) show. This is so even if Q is put equal to zero as is done
in a truncated theory, and at first sight Eq. (3-14) looks hardly related to our
basic equations, (2:22) and (2-23). However, the non-locality in the truncated
theory is only apparent as we shall show. One gets from Eq. (3-14)
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S d2dr 0PI E—E | IT% =0, (3-18)

~ where II’=1II was used. If one takes @=FH'IT¥ in Eq. (3-11) of the definition
of II, one has

S dedr P [TH' TTT = S dedr 0P H'TTY .
Thus, Eq. (3:-18) can be rewritten as ‘ ‘
S dedr 07 [E— H' ¥ =0 . O (3419)
Similarly, one can derive the equation | |
gdédrnp(bA*qsd* [E—EIP=0. (3-20)

If one truncates other channels by putting Q=0 one eventually obtains (2:22)
and (2-23). We assume in the actual calculation that the term in H’ depend-
ing on Q can approximately be taken into account by a complex effective Hamil-
tonian with adjustable parameters as mentioned in §2.2.

Next, let us consider the equation for y and 7, defined by Eq. (3-4). The pro-
jection operators P, and P, do not commute with each other so that (1—P,—P,)

is not a projection operator. It is therefore, difficult to derive equations satisfied -

by P and P,7, i.e. 3; and %,, by a stralghtforward application of Feshbach’s
technique.”

- Let us introduce the projection operators Qg and Q, by

Qs=1-P,, Q,=1-P,, - (3-21)

and write the Schrédinger equation in the form
(H—E) (Po+ Qo) ¥+ (H~E) (P, +Q,)¥=0. (3-22)

Eliminating Qg% and Q,¥ from the equations obtained by multiplying Ps, Qu
P, and Q,, respectively, from the left of Eq. (3-22), one formally gets

[H-—E+ VQ—a(—A{—I—ITQ—QV]P? 0, (3-23)
where |
p(% ) ee(% ) w=(T)
'fl—fzz(HaE)< i 1) - (3-24)
and

= (H-E)-PH-E)P,
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Equation (3-23) has exactly fhe same form as the equation derived by Hahn®

by the projection operator method. The‘deﬁnition'of ¥ in Hahn’s theory is,

however, different from the present one in that the sum of the components, but -

not the components themselves is the total wave function. Each component
corresponds to a definite collldmg pair and has a finite amplitude in the asymptotic
region of only elastic and inelastic channels of that pair.

If Q is put equal to zero Eq. (3-23) is reduced to our coupled channel
equations (2-22) and (2-23), but to put Q equal to zero does not correspond
to any simple type of truncation in Mittleman’s formalism.

From the above discussions we see that the effective Hamlltoman is closely
‘related to the definition of the projection operators which define % and %,. In
other words, there is an inherent ambiguity in the definition of the effective
~ Hamiltonian associated with the ambiguity in the definition of the wave function.

'In actual calculations, however, a phenomenological Hamiltonian such as the
one discussed in §2.2 is used. It is, therefore, impossible to know exactly to
which definition of %z and %, such Hamiltonian and the calculated wave functions
correspond. Since the behaviour of ¥; and ¥, in the internal region depends on
the definition as we have seen, it is in general dangerous to draw a definite
physical picture for the internal region from the analysis of such phenomenological
wave functions. o

§4. Effect of non-orthogonality and relation to DWBA

Let us investigate the effect of the non-orthogonality term on the S-matrix
elements. In particular, let us pay attention to the limit of weak coupling in
which the interaction term in the coupling integral, V,,+ Vys— Ups, becomes
very small. <At first sight this assumption might appear to be equivalent to the
assumption of DWBA. Actually, however, the two assumptions would be equiva-
lent if the ndn-orthog'onality term tended to zero faster than the interaction term,
as will be seen below.. This question, therefore, is closely related to.the ques-
tion of whether or not the present method is equlvalent to DWBA in the weak
coupling limit.

In order to avoid unnecessary complications due to angular momenta, let us
again take up the simple example considered in §2.1 in which /, is zero. We
also ‘assume that the target nucleus is sufficiently heavy so that we can neglect
the recoil of the residual nucleus and put

_ It ~and rm,:r,;—-r . " (4- 1)
2 | |
The basic equations (2-22) and (2-23) are of the form

(Kt Uss— B 1a(R) = - 3 drapha* (vu) [N+ V16, R+ _2) x; (R-To2),
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&yt Upn= B, = = [ drabs? ) IN+ VIl —ryzal 257). - 4-3)

where
K= —a'dARl'nma Kp: '“apdr{m » ,
N=K,+Ump—E, and V=Vt Vyu—Usps. 4.4

The terms in the coupling integrals containing N are the non-orthogonality terms.
Since N does not depend on r,, the integral on the right-hand side of (4-3)
containing N is essentially the overlap integral of wave functions in d and p
channels which does not vanish. Unfortunately, such an interpretation is not

‘applicable to (4-2) and we shall discuss about it later in this section. The terms -

with V are the interaction terms which alone remain in DWBA.

~ Now, let us turn Egs. (4-2) and (4-3) into a set of coupled mtegral equa-
tions by means of Green’s functions (E;— Kg— Ugs+i6)™" and (Ep— K, — Upp+ie -1
under the boundary condition that the asymptotic form of the wave function is
an incident wave in the deuteron channel plus outgoing scattered waves. The
resulting integral equations are, then, ' '

1a(R) =1 (R)

7 Ed,—Kdi Ua + ¢ ) drasi? () [N+ vl g R+ r?)"” (R-7)
(4-5)
and
1o (1) = — S draga® (ra) da(ra—7) e (Iﬂgi) |

where %@ is the solution of the homogeneous equatlon associated with Eq. (4-2)

 representing the incident plane wave plus an outgoing scattered wave ,due to

" Uya alone in the deuteron  channel. :
Now, the reaction amplitude of the (d, p) pxocess is obtained by considering

the asymptotic form of %,(r) in the region of r—oco. In this region of r the

first term on-the right-hand side of Eq. (4-6) is zero since either ¢q(r,—71) or,
if otherwise, ¢n(rs) vanishes. The second term, on the other hand, is finite and
gives the matrix element for the (d, p) reaction, k

Suace ([ 1% (V8% 00 Viatram a7 ")drndr,‘ e

where 1, is the solution of the homogeneous equation associated with Eq. (4-3)

representing a plane wave plus an incoming scattered wave due to Upp in the
proton channel. ' :
From Eq. (4-7) it'is clear that Spq becomes zero if V is put equal to zero,
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which shows that the non-orthogonality term alone cannot give a finite S-matrix
element for the (d, p) reaction. The same thing is true also for the (d, p) re-
action amplitude because of the symmetry of the S-matrix. | ‘

‘Similarly, it is easy to show that in the weak coupling 11m1t the (p, p)
scattering amplitude reduces to the optical model value.

At first sight, the above arguments might seem to show that the non-
orthogonality term has no effect at all on (d, p), (p, d) or (p, p) scattering
amplitudes in the weak coupling limit. The latter statement is obviously correct

for the (p, p) amplitude. For (d, p) and (p, d) amplitudes, however, one must

be more careful since these amplitudes depend on %, as Eq. (4-7) shows.
In fact, Eqs. (4-5) and (4~6) reduce to

1 S r
—y O _ dr., )N n( v,,,zwz_>
Xe=Xa By Kye Uy + PR FupPa™ (r ») NG 2
>< d n/ n* 7"/ < n/—‘R”I‘ rnp> (rn,+Rk_’_‘l7L73,>, 4'8
g ) Gn (1) da (7 | D) La 5 4 (4-8)

in the limit V—0, of which the second term on the right-hand side gives a finite
contribution in the asymptotic region. IHence, the non-orthogonality term gives
a non-vanishing contribution to the (d, d) scattering amplitude even in the limit
V—0. TIt, then, follows from (4-8) that S,; is also affected by the non-orthogo-

nality term through x, Hence, we see that the (d, d), (p, d) and (d, p) re- _

action amplitudes calculated by the present method do not agree with those of
DWBA even in the weak coupling limit.

The reason for this discrepancy stems from the fact that the division of
the interaction kernel into the non-orthogonality term and the interaction term
is actually not unique. In fact, in the prior form of the Hamiltonian the non-
orthogonality term and the interaction term would be, respectively,

N/:Kd—*" Ud/l.—"Ed andv V,:VnA‘{‘ VpA_UdA. (49)

It is easy to show that the scattering amplitude of (d, d) reduces to the optical
model value as V’ tends to zero. However, V’ does not vanish in the limit
V—0, and so % does not tend to the optical model wave function in this limit.
Similarly, if one defines the weak coupling limit by V’—0 one would get the
optical model wave function in this limit for x, but not for yx,.

Thus, we conclude that the present method is not equivalent to DWBA
“because of the non-orthogonality term even in the weak coupling limit in the sense
that either V or V’ is very weak. In the solution of the coupled equations by
means of iteration procedure, V and N and V’ and N’ are unseparated in each
order of iteration. The power series expansion in termsof V or V' alone, therefore,
does not correspond to an iterative solution of the basic coupled equation even
in its first order expansion.

It should be born in mind, however, that in the above discussions the
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strengths of the interactions were assumed to be variable independently of the

wave functions. In particular, V,, was treated as if the deuteron could exist’

in the bound state ¢, even in the limit of V,,—0. Actually, however, the wave
functions and the interaction potentials are related to cach other through Egs.
(2-7) and (2-10). Hence, the discussions given above apply only to the mathe-
matical structure of Egs. (4-2) and (4-3). In the discussion of the real physical
problem interaction potentials should, of course, be kept fixed at the physical
values.

§5. Summary

A variational principle which makes the S-matrix element stationary was set
up and used to derive a set of coupled integro-differential equations for the wave
functions describing the (d, d), (d, p), (p,d) and (p, p) reactions in which
the d- and p-channels are coupled. The equations are different from those of
the coupled channels method for the inelastic scattering because of the non-
orthogonality of the d- and p-channels. The coupled terms contain derivatives
of the unknown functions. This feature will be avoided in the subsequent paper

and the equations will be put in the forms which are symmetrical with respect to

channels. An exact and simple expression has also been obtained for the error in
the calculated S-matrix elements by means of the theory of finite variation. The
effect of the eliminated channels were assumed to be partially taken into account
by making the potentials appearing in the equations complex and adjustable so
that the experiment can be best reproduced by the theory.

It was shown that there are inherent and legitimate ambiguities in defining
the channel wave functions, which necessarily induce the ambiguity. in the effective
Hamiltonian. This was elucidated with the aid of the projection operator method.
This non-uniqueness of the wave functions of relative motion is not trivial for
rearrangement reaction because of the non-orthogonality of channels. Our var-
iational principle is not.affected by the existence of such ambiguities because
only the asymptotic conditions are required.. The relation between the method
of projection operator and the present one was also discussed.

The relation between DWBA and the present method in weak coupling
limit may be summarized as follows. DWBA is equivalent to the first-order
solution in iteration in which the interaction kernel as a whole is taken as per-

turbation. This is different from taking the interaction potential alone as per-

turbation because of the non-orthogonality terms. Even in the first order in
the interaction potential, the solution of the present method does not agree
© with DWBA as long as the non-orthogonality terms are retained.
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Appendix
Proof of Eq. (2-35)

We prove for M=0, but the arguments that follow are independent of M.

Using (H—E)¥2*=0 and assuming H to be real, one has
| vir B V0= [0t garvisR w0+ 05, Yir w0 * 4+ 027
ll/

X (H— E) {0paY 1R "8 + IZ [0F, Y, ] ror 0+ ¢} dr — (1>2)

= i‘: Jij - : . (A-1)

In Eq. (A-1), (1<>2) signifies the term which is obtained by exchanging the
functions before and after the operator (H—E) in the preceding terms. Ji;
stands for the integral containing the radial wave function of the i-th channel
to the left and that of the jth channel to the right of H—E minus the same

integral with (1<>2) where 7 or j=1, 2 and 3 stands, respectively, for the deu-

teron channel, the proton channel and all the other channels which are not
explicitly taken into account in the present discussion.
Now, let us evaluate J;;. We first calculate Jy which can be rewritten as

Ju= —ay S (08 G * Y ER 1 ®* A )o@ spaY sott D AE A1y R}ARAR + ag(16>2)

—-_ e d 0w db (kz)* :
aa\ L IR Uid — Uz R wur % dR

Carrying out the integration and using (2-30) and (2-31), one gets
Tu= = aa (€T B {H? Ghay B2 [y B) + TR, 1 (ki R) ]

— [FsChe, R+ TiBun Hi (hay R)]-0HL Gl R

Roco |
= — ks (CTsEm - . ~ (A-2)

Next, let us calculate Jus,
Ju= —ay | 08502 (ra) YERO R s (R 411

EINAG ), Yo () lor o (D de+a,(152). - (A-3)
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Using '(mn,deﬁned by (2:9), one can ‘fewrite the right-hand side of (A-3) as\

Ta==a f {4 <'”il:1"""—’>YLO(R)R @ (R) 43 [ () Yz,<r>1mr'-*vffz<r>'.

- >_4 [¢L7L<r1b> YI’(r>]L0r 17}5}20’)"7‘ n¢d ( ‘/-ll-l ry— ) YI?B (I/E)R—ILLL@)*(_R)} drybrzdrd?: ,

(A-4)

which can be transformed into a surface integral by Green’s theorem. Since,
however, the product ¢;*¢;, vanishes for very large values of 7, the surface in-
tegral at infinity vanishes. Hence Jy3=0. Similarly, J;; can be shown to be
zero. One can also show by a similar argument that Jy;=J;=0 for all values
of 7 and j. Only remaining integral is, therefore, Jy which can be calculated as

= g (.07, Y] s o (H - L) 2 [(Dzn, Yy ] o Ttofl} dir'drdr,dé — (12)

=—ay S CIL08F, Y] oi@* 4l 20107, Yoluwr™'vil) AP drdr.dé + a,(1<>2)
Z”

_ i * d? ) ) d’ @\ 1
= —day >_| 'C'i'"";?/m — U ZZ‘—Z* (44 7

r r

= —ay 20 T5lar, A [y (kpy 7)0ur + 1152'732‘?: (ks r)] H(”(km r)
— H (ky, 7) g; [Fy (ky, 7) 0w+ Tgi? 5t (ks 7) 1} oo

= kp‘lp &1 zgir")(zL, o \ ‘ : . (A-5)

Inserting (A-2) and (A-5) into (A-1), one gets
S Vi* (H—E)¥Ode =kyay (G Tpilar, = kata GV Tar)m - (A-6)
since all J;; are zero except Jy and Jy.
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