
Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 13, No. 1, June 2014 16 

Brazilian Microwave and Optoelectronics Society-SBMO received 11 Nov 2013; for review 11 Nov 2013; accepted 26 Feb 2014 

Brazilian Society of Electromagnetism-SBMag © 2014 SBMO/SBMag ISSN 2179-1074 
 

Study of Different Shape Electromagnetic 

Band Gap (EBG) Structures for Single and 

Dual band Applications 
Nagendra kushwaha

1
 and Raj Kumar

2
 

1
 Research scholar DIAT (DU) Pune-25, India, Email: nagendra.gcet@gmail.com 

2
 ARDE, Pashan, Pune-21, India 

 

 

Abstract  - In this paper, single and dual band EBG structures for 

wider bandwidth are proposed. In each of the discussed EBGs, a 

metallic patch of regular geometry is chosen for the unit element. 

The patch is further modified by cutting slots to get extra 

inductance and capacitance which results into lower cut-off 

frequency and larger bandwidth. The proposed EBG structures are 

compared with the standard mushroom type EBG with respect to 

surface wave attenuation. The -20 dB cut-off frequencies and 

bandwidths of the various EBGs are compared. The effect of unit 

element size, gap between unit elements and via diameter on the 

transmission response is presented. Among the discussed EBGs, the 

swastika type structure is compact, single band and has wider 

bandwidth. The square patch with a single disconnected loop type 

slot EBG and the Fractal EBG are dual band. While square patch 

is more compact, the fractal EBG has wider bandwidth. All the 

EBGs can be useful in the design of antenna and other microwave 

circuits. 

 

 Index Terms – Microstrip line, Electromagnetic band gap, fractal 

structure, surface wave and dual band. 

 
I. INTRODUCTION 

 

Surface waves are unwanted in any antenna design. They propagate along the ground plane instead 

of radiating in the free space, and hence the efficiency and gain of the antenna is reduced. Surface 

waves also result in the degradation of antenna radiation patterns. The diffraction of surface waves 

increases the back lobe radiation which deteriorates the signal to noise ratio in wireless 

communication systems such as GPS receivers. Surface waves also give rise to mutual coupling in 

antenna array design resulting in blind scanning angles in phased array systems. As the dielectric 

constant increases, the surface waves become more dominant like in case of MMIC RF circuits which 

use high dielectric constant materials [1-6]. Due to the demand of high speed data transmission, UWB 

band pass filters are very popular nowadays. Surface waves degrade the performance of UWB filters 

by causing spurious stop bands to appear [7]. Another problem in multilayer printed circuit boards is 

the excitation of resonance modes by simultaneous switching noise (SSN) leading to signal integrity 

problems and electromagnetic interference (EMI) [8-10]. 
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The above discussed problems in microwave circuits can be minimized or overcome by the 

application of Electromagnetic Band Gap (EBG) structures. Electromagnetic band gap structures 

consist of periodic metal patches on a dielectric substrate. EBG structures can also be made by 

combination of dielectric only.  EBG structures have properties such that, in a particular frequency 

band they stop the propagation of surface waves and also reflect back any incoming wave with no 

phase change. The above properties of EBG structures can be used to get improved characteristics of 

an antenna [1-3]. The gain of an antenna can be improved by using EBG structure in two different 

ways; EBG structure as a superstrate [3-4] and EBG structure as a ground plane [5-6]. EBG is also use 

to improve the isolation and diversity gain in MIMO systems [8-10]. EBG is also used to get notched 

characteristic in ultra wideband antenna [11]. EBGs are also used to suppress the noise and reduction 

of EMI in high speed circuits [12-15]. Some of the theoretical analyses and models for the EBG 

structures are available in references [16-18]. Many techniques are presented for design of dual band 

and multiband EBG structures in the open literature but most of them are having narrow or small 

bandwidth [19-22]. In [19], double U type slot is made in the patch to generate multiple band, [20] 

uses a fractal structure to generate the dual band characteristic, while [21] uses a spiral type structure 

to generate multiband characteristic. 

 

In this paper, single band and dual band EBG structures having wide bandwidth have been 

proposed. The periodic nature of microstrip circuits is used to get dual band EBGs. The transmission 

responses of the proposed EBGs are compared with conventional mushroom type EBG. Equivalent 

circuits of proposed EBGs are also presented. The orientation of paper is such that, in the second 

section, single band EBGs are proposed and discussed while in the third section dual band EBGs are 

proposed and discussed. The material used is FR-4 substrate having dielectric constant 4.4. These 

types of EBGs can have many applications in UWB systems such as gain and bandwidth enhancement 

of antenna and reduction of EMI and noise for high speed circuits. The EBGs are simulated using 

CST Microwave studio and Ansoft  HFSS. To validate the simulation results, the EBGs are fabricated 

and tested. 

II. SINGLE BAND EBG 

 

In this section, three different types of single band EBGs are proposed.The new EBGs are cross hair 

type, Swastika type and hexagonal patch type. Finally, the resonance frequencies and bandwidths of 

the three new EBGs are compared with standard mushroom type EBG. The analyses of all the EBGs 

have been done by using microstrip line method. First, the ground plane is printed on one side of the 

substrate and the EBG array (with via) on the other side. Next, on another substrate, a 50 ohms line is 

printed without ground and the two structures are stacked as shown in Figure 1. Then the two ends of 

the 50 ohms line are connected to two ports and the S21 is measured using proper excitation. 
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Fig. 1 Schematic for analysis of EBG 

  A. Mushroom Type EBG 

Mushroom type EBG is a conventional three dimensional EBG consisting of a solid patch with a 

cylindrical via. The transmission response of mushroom type EBG depends upon the size of the patch, 

diameter of via and the gap between the unit elements. The transmission characteristic also depends 

upon the thickness of the substrate and the substrate material used. Fig. 1 shows a mushroom type 

EBG and its equivalent circuit model. Fig. 2 shows the variation of the transmission response of the 

mushroom type EBG with different unit element (patch) sizes. The gap between the unit elements is 

taken as 1 mm, the via diameter 0.6 mm and the substrate thickness is 0.8 mm. It can be seen from 

figure that as the patch size increases, the stop band shifts towards the lower frequency side and this is 

due to an increase in the capacitance value. For a mushroom type EBG, the value of capacitance ‘C’, 

inductance ‘L’ and resonance frequency    are given by (1), (2) and (3) respectively [2]. 

      (    )       (    )                                                   ( ) 
         [  (   )     (   )      ]                                    ( ) 
      √                                                                                                 ( ) 

Here ‘W’ is the side length of the patch, ‘g’ is the gap between the unit elements, ‘h’ is the thickness 

of the substrate, ‘r’ is the radius of the via,    is the permittivity of free space and    is the relative 

permittivity. 

 

(a)                                                                      (b) 

Fig. 1 (a) Mushroom type EBG (b) Equivalent circuit of Mushroom type EBG 
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Fig. 2, Simulated transmission response of  Mushroom type EBG for different element size (Substrate thickness=0.8 mm, via 

diameter =0.6 mm, Gap between unit elements=1 mm) 

 

B. Cross Hair Type EBG 

 

Fig. (3a) shows a cross hair type EBG. It is made by modification of the mushroom type EBG. It 

consists of a patch and a number of microstrip lines. The microstrip lines provide extra inductance as 

compared to the mushroom type EBG. The diameter of the via is 0.6 mm.The transmission response 

of this EBG depends upon the width of the microstrip lines and gap between the unit elements. Fig. 

(3b) shows the variation of the transmission response of a cross hair type EBG for different widths of 

the microstrip lines used. As the width increases, the resonance frequency shifts towards the higher 

frequency side due to a decrease in the inductance value. Fig. 4 shows the effect of the variation of the 

gap ‘g’ between the unit elements on the transmission response of the cross hair EBG.  As the gap 

decreases the stop band shifts towards the lower end due to an increase in the capacitance value.  For 

the maximum bandwidth, the gap is optimized and found to be 0.8 mm.  

 

 
                                    (a)                                                                                               (b) 

 

Fig. 3, Cross hair type EBG (a) Unit element (b) Effect of variation of  the  width ‘W’ of the microstrip line on the 

transmission  response of  the  EBG (g=1 mm, unit element size =3 mm x 3 mm) 
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Fig. 4, Effect of variation of gap between the unit elements ‘g’ on the transmission response (w=0.2 mm, Unit element 

size=3 mm x 3 mm) 

 

 

Fig. 5 shows the effect of the unit element size on the transmission characteristics. It can be seen 

from the figure that as the unit element size increases, the stop band shifts towards the lower 

frequency side due to an increase in the capacitance. 

 

Fig.  5, Effect of unit element size on the transmission response (W=0.2 mm, g=0.8 mm) 

 
C.  Swastika type EBG 

 

The swastika type EBG is made by introducing a discontinuity in the cross hair type EBG. The 

discontinuity in the cross hair type introduces capacitance; hence better resonance is obtained than 

cross hair. Fig. (6a) shows a unit element of the swastika type EBG along with the fabricated 

prototype while Fig. (6b) shows the equivalent circuit. The inductor L is due to the via and capacitor 

C is due to the dielectric between the centre patch and the ground. The inductor L2 is due to microstrip 

lines connected with the centre patch and the capacitance C2 is due to the dielectric between the 

microstrip line and ground. The capacitor C1 is due to the gap between the two outer microstrip lines. 

The swastika type EBG is made on the same substrate (FR-4) as used for the standard mushroom type 

EBG. The diameter of via is again taken as 0.6 mm. Fig. 7 shows the measured and simulated 

transmission response of the swastika type EBG. The measured band of the swastika type EBG is seen 



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 13, No. 1, June 2014 21 

Brazilian Microwave and Optoelectronics Society-SBMO received 11 Nov 2013; for review 11 Nov 2013; accepted 26 Feb 2014 

Brazilian Society of Electromagnetism-SBMag © 2014 SBMO/SBMag ISSN 2179-1074 
 

shifted towards the higher frequency side; it is due to the fabrication constraint which keeps a little air 

gap between the EBG and the 50 ohm line and this air gap shifts the band towards the higher side.The 

swastika type EBG has better transmission response and larger bandwidth than the above two EBGs 

(Mushroom and Cross hair).  

 

   (a)                                                                                                                          (b) 
Fig.  6, Swastika type EBG (a) Unit element and fabricated prototype (b) Equivalent circuit  

 

 

Fig.  7, Measured and simulated transmission response of the Swastika type EBG 

 

 

Fig. 8 shows the effect of variation of the strip width g1 on the transmission response. It can be seen 

from the figure that as g1 increases, the resonance frequency shifts towards the higher frequency side 

due to decrease in the capacitance value. It is also observed that as gap g1 increases, the bandwidth 

increases (if -15dB bandwidth is considered). Fig. 9 shows the effect of via diameter variation on the 

transmission response of swastika type EBG. It can seen from the figure that as the via diameter 

increases, the stop band shifts towards the higher frequency side this is due to a decrease in the via 

inductance. 
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Fig.  8, Effect of variation of gap between the strips ‘g1’ on transmission response of Swastika type EBG   (with w = 0.2 mm 

and s= 1 mm). 

 

Fig.  9,  Effect of via diameter variation on transmission response of Swastika type EBG 

 

Fig. 11 shows a comparison of the simulated transmission responses of the above discussed three 

EBGs. It can be seen from the figure that the swastika type EBG has the lowest frequency of 

operation and highest bandwidth. The Cross Hair type EBG has advantage of lower frequency of 

operation when compared to the mushroom type EBG. 

 

 
Fig. 11, Comparison of transmission responses of mushroom type, Cross Hair type and Swastika type EBG 
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D.  Hexagonal patch type EBG 

 

A hexagonal patch has been selected instead of the rectangular patch used in case of mushroom type 

EBG. The hexagonal patch has a side length of 4 mm and the diameter of via used is 1.0 mm. FR-4 is 

used for the substrate having thickness of 1.53 mm.  Fig. 10 (a) shows the fabricated prototype of the 

hexagonal patch EBG. Figure. 10(b) shows the measured and simulated transmission response of the 

hexagonal patch EBG. The measured bandwidth obtained is 1 GHz (3.65 GHz to 4.65 GHz).  

 

(a)                 (b) 

 

Fig. 10, Hexagonal patch type EBG (a) fabricated prototype and (b) Measured and Simulated transmission response. 

 

 

Table 1 shows the comparison of the -20 dB cut-off frequencies and bandwidths of single band 

EBGs. The variation with unit element size for mushroom type EBG and cross hair EBG is also given. 

From the comparison, it can be concluded that the Swastika type EBG has better performance in terms 

of bandwidth and compactness. 

 

Table – 1, Comparison of simulated cut-off frequencies and bandwidths of different EBGs for single band 

 

S. No. Type of EBG Lower cut-off 

frequency (GHz) 

Higher cut-off 

frequency (GHz) 

Bandwidth 

(GHz) 

1 Mushroom  3 mm x 3 mm 8.50 10.50 2.00 

4 mm x 4 mm 6.64 7.96 1.32 

5 mm x 5 mm 5.44 6.56 1.12 

2 Cross Hair 3 mm x 3 mm 9.10 11.38 2.28 

4 mm x 4 mm 6.18 7.36 1.18 

5 mm x 5 mm 5.00 6.00 1.00 

3 Swastika (3 mm x 3 mm) 7.50 11.10 3.60 

4 Hexagonal patch 

(8 mm x 8 mm) 

3.26 4.93 1.67 

 

 

III. DUAL BAND EBG 

 
The microstrip circuit is periodic in nature, so the response of the circuit repeats after a certain 

frequency. This property can be utilized to develop a dual band EBG. Although all the EBG structures 

are capable of giving dual band nature, the size and shape of EBGs are crucial to get dual band in the 
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desired frequency range. In this section, three different types of EBGs are designed for dual band. The 

three different types of EBGs are Hexagonal patch with Double C Type Slot, Square patch with a 

single disconnected loop type slot and fractal EBG. Finally, the cut-off frequencies and bandwidths of 

these EBGs are compared with a mushroom type EBG having same dimensions. In the beginning, a 

comparison of the transmission characteristic of a mushroom type EBG designed for dual band with 

the transmission characteristic of solid ground is shown in Fig. 11. Two different sizes for the 

mushroom type EBG (8 mm x 8mm and 6 mm x 6mm) are taken for the purpose. The substrate has 

thickness 1.53 mm, via diameter is 1 mm and the gap between the unit elements is 1 mm. It can be 

seen from the figure that there is very less attenuation of surface waves in case of solid ground in 

comparison to the EBGs. It can also be seen from the figure that as the size of the EBG increases, the 

bands shift towards the lower frequency side due to increase in the capacitance. 

 

 

Fig. 11, Comparison of Simulated transmission response of solid ground and mushroom type EBGs of different 

size (Substrate thickness=1.53 mm, via diameter=1 mm, Gap between unit elements=1 mm) 

 

 
A.  Hexagonal patch with Double C Type Slot EBG 

 

Fig. 12 (a) shows the ‘C’ type slot EBG and Fig. 12(b) shows the transmission responses for 

different slot widths. It can be seen by comparing Fig. 10(b) and Fig. 12 (b) that by cutting ‘C’ type 

slot in the hexagonal patch, the stop band shifts towards the lower frequency side. Also, an additional 

stop band appears below 10 GHz. This is due to introduction of extra inductance caused by cutting the 

slot. It can be seen from Fig. 12(b) that as the slot width increases the band shifts towards the lower 

frequency side due to further increase in inductance. 
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(a)                                                          (b)               

 

 

Fig. 12, Hexagonal patch with C type slot EBG (a) Unit element (b) Transmission response for different slot width. 

 

 

B.  Square patch with a single disconnected loop type slot EBG 

 

Fig. 13(a) shows the unit element of a square patch with a single disconnected loop type slot EBG. 

Cutting a slot in the patch introduces extra inductance and hence it shifts the bands towards the lower 

frequency side. Fig. 13(b) shows the measured and simulated transmission response of the EBG. Fig. 

14 shows the effect of slot width on the transmission response of the EBG.  It can be seen from Fig. 

14 that as the slot width increases, the lower band shifts towards the lower frequency side. 

 

 

(a)                                                                        (b) 

Fig. 13, Square patch with single disconnected loop type slot type EBG (a) Unit element (b) Measured and simulated 

transmission response  
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Fig. 14, Effect of slot width on transmission response of Square patch with single disconnected loop type slot EBG 

 

 

Fig. 15 shows the current distribution of the disconnected loop type slot EBG. The red colour 

shows the maximum current density while the blue colour shows the minimum current density. From 

the figure, it can be seen that at 3.6 GHz and 8.0 GHz (stop band frequencies of EBG), the signal is 

attenuated as it travels from one port to the other. At 6.0 GHz, the signal is not attenuated. It is also 

noticed that the attenuation at 8.0 GHz is greater than the attenuation at 3.6 GHz. The higher 

attenuation in the upper band is also indicated by a smaller value of  S21 in the transmission response 

(Fig 14). 

 

 

Fig. 15, Current distribution of square patch with single disconnected loop type slot EBG at different frequencies. 

 

C. Fractal type EBG 
 

A fractal type EBG having unit element dimensions 6 mm x 6 mm is designed. Fig. 16 shows the 

unit element of the fractal type EBG and the comparison of the transmission response of fractal type 

EBG with conventional mushroom type EBG having equal unit element size. It can be seen from the 

figure that the fractal type EBG has better stop band characteristic than conventional EBG. The 

optimized dimensions for the fractal EBG are x = 2 mm, y = 1.4 mm, a = b = 0.6 mm, g = 0.8 mm. 

The via diameter is 1.2 mm.  Fig. 17 shows the effect of variation of slot width ‘y’ on the transmission 
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response of the EBG.  It can be seen from Fig. 17 that as the patch width decreases, the higher 

frequency band shifts towards the higher side and after a particular value of slot width the band splits. 

The optimum value of slot width is found to be 1.4 mm. There is no effect of slot width variation on 

the lower frequency band.  Fig. 18 shows the effect of gap between unit elements. It can be seen from 

Fig. 18 that as the gap increases, the band shifts towards the higher frequency side due to decrease in 

the capacitance.  It is noticed that the bandwidth of the higher band depends also on ‘g’. The optimum 

value of ‘g’ is found to be 0.8 mm. 

 

 

(a)                                                                                   (b) 

Fig. 16, Fractal type EBG (a) Unit element (b) Transmission response comparison of fractal and conventional mushroom 

type element having equal unit element size 

 

 

Fig. 17, Effect of slot width ‘y’ variation on transmission response of the fractal EBG (x = 2 mm, a = b = 0.6 mm, g = 0.5 

mm)  
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Fig.  18,  Effect of gap ‘g’ variation between unit elements on transmission response of the fractal EBG (x = 2 mm, y = 1.4 

mm, a = b = 0.6 mm) 

 

 

Table 2 shows the comparison of the -20 dB cut-off frequencies and bandwidths of the different 

dual band EBGs. From the comparison, it can be concluded that cutting a slot shifts the band towards 

the lower frequency side hence compactness can be achieved. Fractal type EBG offers nearly the 

same cut-off frequency and bandwidth for the lower band as the mushroom type EBG of same size. 

However, it offers a large bandwidth for the upper band in comparison to mushroom type EBG. From 

the table, it can be concluded that rectangular patch with a single disconnected loop type slot EBG is 

more compact while fractal type EBG has larger bandwidth. 

 

Table – 2, Comparison of simulated cut-off frequencies and bandwidths of different EBGs for dual band 

 

S. 

No. 

Type of EBG Lower Band Higher Band 

  Lower 

cut-off 

Freq. 

(GHz) 

Higher 

cut-off 

Freq. 

(GHz) 

Bandwidth 

(GHz) 

Lower 

cut-off 

Freq. 

(GHz) 

Higher 

 cut-off  

Freq. 

(GHz) 

Bandwidth 

(GHz) 

1 Mush- 

room 

6 mm x 6 

mm 

4.22 4.95 0.73 9.92 12.60 2.68 

8 mm x 8 

mm 

3.23 3.87 0.65 7.74 9.95 2.21 

2 Hexagonal patch with 

Double C Type 

Slot(8 mm x 8 mm) 

2.74 3.75 1.01 6.60 8.63 2.03 

3 Square  patch with a 

single disconnected 

loop type slot 

(6  mm x 6 mm) 

3.11 3.77 0.66 7.28 9.25 1.97 

4 Fractal EBG 

(6 mm x 6mm) 

4.22 4.92 0.70 6.66 10.35 3.69 
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IV. CONCLUSIONS 

 

Different types of Electromagnetic Band Gap Structures for single and dual band operation in the 

FCC UWB region are investigated. The effects of the unit element size, gap between the unit elements 

and via diameter on the transmission response of the EBGs are studied. As the unit size increases, the 

stop bands shift towards the lower frequency side due to an increase in the capacitance. Increase in the 

gap between the unit elements shifts the stop bands towards higher frequency side due to decrease in 

the capacitance. Increase in the via diameter shifts the stop bands towards higher frequency side due 

to decrease in inductance. Among the single band EBGs, the swastika type EBG is seen to offer better 

performance in terms of both compactness (lower resonance frequency) and bandwidth. Among the 

dual band EBGs, the square patch with a single disconnected loop type slot EBG offers better 

performance in terms of compactness while the fractal type EBG offers better performance in terms of 

bandwidth. The proposed EBGs will have applications such as enhancement of antenna gain and 

bandwidth, signal integrity enhancement and noise reduction for filters, reduction of mutual coupling 

for antenna arrays and suppression of noise in high speed switching circuits.  
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