
NASA Contractor Report 1.72385

!

Study of Fault- Tolerant

Software Technology

(N&SA-CR-1723_5) STUDY OF FADI_-TOLER_NT

5CF_WARE TECH_C.ICG¥ _inal 5eport _Mandex,

inc.) 155 p CSCL 09B

G3/61

N87-I 1507

Unclas

43830

T. Siivinski, C. Broglio, C.

Mandex, Inc.

"Wild

J. Goldberg, K. Levitt

SRI, International

E. Hitt, J. Webb

Battelle Memorial Institute

Contract NAS1-17412

SEPTEMBER 1984

NASA
National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23665

NASA Contractor Report 172385

Study of Fault- Tolerant

Software Technology

T. Slivinski, C. Broglio, C. Wild

Mandex, inc.

J. Goldberg, K. Levitt

SRi, International

E. Hitt, J. W ebb

Battelle Memorial Institute

Contract

SEPTEMBER

NAS1-17412

1984

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23665

TABLE OF CONTENTS

1.0 INTRODUCTION

i.I General

i_2 Background
1.3 Objectives
1.4 Summary of Results

PAGE

i-i

I-I

1-2
1-2
1-3

2.0 FAULT-TOLERANT SOFTWARE OVERVIEW

2.1
2.2
2.3

Introduction
Software Faults

The Fault-TolerantSoftware Process

2-1

2-1
2-1
2-1

3.0 MODERN SOFTWARE FAULT-TOLERANT METHODS

3.1
3.2
3.3
3.4

3.5

Multi-Version Software

Recovery Blocks
Exception Handlers
Hybrid N-Version and Recovery Block
Methods

Summary of Techniques

3-1

3-1
3-8
3-12

4.0 CURRENT EXPERIENCE WITH FAULT-TOLERANT SOFTWARE

4.1
4.2
4.3
4.4

Experience with Multi-Version Programming
Experience with Recovery Blocks
Experience with Exception Handlers
Summary of Experience with Fault-Tolerant
Software

4-1

4-1
4-7

4-9

4-10

5.0 BASIC PRINCIPLES AND DESIGN APPROACHES
FOR ARCHITECTURE

5.1
5.2
5.3
5.4

Introduction

Objectives
Architectural Criteria and Scope
Basic Principles and Design Approaches

5"1

5-1
5-1
5-2
5-6

PRECEDING PAGE BLANK NOT FILMED

iii '

s"

6.0 FAULT-TOLERANCE TECHNIQUES AND HARDWARE
IMPLICATIONS

6.1

6.2
6.3
6.4

6.5
6.6
6.7
6.8

Introduction

Data and Program Encapsulation

Processor Redundancy Assignment
Fault Detection and Correction Logic

State Recovery
Assertion Checking
Robust Data Structures

Summary of Hardware Implications

6-1

6-1

6-2
6-4
6-7
6-10
6-13
6-17
6-17

7.0 SOFTWARE FAULT-TOLERANT OPERATING SYSTEMS

7.1
7.2
7.3

7.4

7.5

Introduction
SIFT-Based Software Fault-Tolerance

Toward a General Framework for
Reliable System Software

Hardware Support for Fault-Tolerant
Operating Systems
A Strawman Concept for a Distributed
Computer Supporting Software and
Hardware Fault-Tolerance

7--1

7-1
7-2

7-6

7-9

7-11

8.0 HIGHER LEVEL LANGUAGES AND FAULT-TOLERANT
SOFTWARE

8.1

8.2
8.3

8.4

8.5
8.6

8.7

Software Design Principles and their
Relationships to Fault-Tolerant Software

Idealized Fault-Tolerant Components (IFTC)
Idealized Fault-Tolerant Components (IFTC)
and the Major Fault-Tolerant Software
Techniques
Software Fault-Tolerance and Communicating
Processes
Fault-Tolerant Software Primitives

Supporting Idealized Fault-Tolerant
Components (IFTC) in Ada and C
Unresolved Issues and Conclusions

8-1

8-9

8-15

8-20

8-23
8-26

9.0 EFFECTIVENESS ASSESSMENT METHODS

9.1 Synopsis of Models for Fault-Tolerant

Software Reliability
9.2 Summary

9-1

"4

iv

i0.0

i0.i
10.2

CONCLUSIONSAND RECOMMENDATIONS

Conclusions
Recommendations

BIBLIOGRAPHY

ABSTRACT

i0-i

i0-i
10-4

v

1.0 Introduction

i.i General

This report presents the results of a concerted study

into the current state of the art of fault-tolerant soft-

ware, and the implications of fault-tolerant software on

future computer architectures, operating systems, and lang-

uages.

The study was conducted under the aegis of the National

Aeronautic and Space Administration (NASA) Langley Research

Center at Hampton, Virginia and included representatives
from Mandex, Inc., SRI International, and Battelle Memorial

Laboratories, (Columbus) as well as internationally known

consultants. Research was performed under NASA Contract

NASI-17412 during the period 1 October 1983 through 30 April
1984.

Work

Mandex,

Director.

on the study was under the overall direction of

Inc. with Dr. Thomas Slivinski serving as Project

Responsibilities were as follows:

Battelle (Jeffrey Webb and Ellis Hitt) - responsible
for assessment of the current state of the art of

fault-tolerant software and quantitative evaluation

techniques;

SRI International (Jack Goldberg and Karl Levitt) -

responsible for assessing the impacts of fault-toler-

ant software on computer architectures and

operating systems;

o Mandex, Inc. (Christian Wild) - responsible for as-

sessing the impacts of fault-tolerant software on

higher level languages;

Consultants (Thomas Anderson, University

castle-upon-Tyne, and John Kelly, UCLA)

sible for technical review and continuity;

of New-

- respon-

Mandex, Inc. (Thomas Slivinski and Carlo Broglio) -

responsible for integrating and correlating the indi-

vidual results and developing overall study conclu-
sions and recommendations.

1 - 1

1.2 Background

The requirements for fault-tolerant software have been

advanced since the early 1970's when such pioneers as Aviz-

ienis [AVIZ77] and Randall [RAND75] developed systematic

techniques for applying redundancy to software. This

interest arose (and continues today) from a variety of

factors which make techniques for improving the reliability

of software extremely important.

First and foremost, software costs and reliability are a

major concern in the life cycle of systems. As hardware

reliability has been improved and as the costs for hardware

have been reduced, software faults have emerged as the most

significant problem in new critical systems. Furthermore,

as new applications become more complex, the reliability of

the software increases in significance.

Second, over the years programmers had developed a

collection of defensive programming techniques to assist in
debugging the software and to deal with certain classes of

software faults. What had not been accomplished is a system-

atization of these techniques into an orderly structure

which could predict which techniques to apply, when to apply

them, and to aid in the recovery of a consistent state. The

concept of fault-tolerant software is to apply a systematic

structure and to extend what has been largely an "ad hoc"

approach.

Traditional software development techniques, employing

extensive testing and debugging, had been shown to be very

expensive and of diminishing value. The effectiveness of

testing and debugging is limited by the Law of Diminishing

Return and may even be bounded in the reliability that

can be achieved. Methods which can improve the reliability

of software beyond traditional testing are needed now more
than ever.

1.3 Objectives

The objectives of this fault-tolerant

were in two broad areas of interest.
software study

The first was to determine the current state-of_the-art

of fault-tolerant software. The study was specifically

oriented toward answering such questions as: What tech-

niques have been developed? What has been the experience

with the techniques? Is one technique better than the

others for various classes of problems or applications?

Where is research work currently underway or planned? What

results have been found? Most important, the study sought

to answer the question: Can it be demonstrated that fault-

tolerant software will improve the reliability of computer

1 - 2

systems? (i.e. is faul£-tolerant software better than soft-
ware which has been developed using traditional techniques?)

The second objective was to determine the implications
of fault-tolerant software on comp'uter.hardware and software
support systems. Specifically,the stQdy sought to answer
the following type of questions: What hardware features or
support tools are needed for fault-tolerant software to
operate efficiently and effectively? What facilities in the
hardware, operating system and higher "level application
languages are needed to support each of the major tech-
niques? What capabilities are desirable but not essential?
Are the features, tools and environmen_ consistent with the
known future of computer architectures, or are substantial
changes needed in these architectures to accommodate fault-
tolerant software?

This second area led the study to look briefly at the
Draper design architecture for the Advanced Information
Processing Systems (AIPS). [CSDL83]

1.4 Summary of Results

This study concludes that fault-t01erant software tech-

nology is ready for application to new systems. While there

is a great deal of development to be done and empirical data

to be collected, all evidence indicates that this technology

has progressed sufficiently that it is ready to move out of

the laboratory into practical systems.

The major findings of this study are:

• Fault-tolerant software has been shown in limited

experience to improve the reliability of systems;

Fault-tolerant software has matured into a

technology which is ready to be included

systems;

viable

in new

New hardware, operating systems and language develop-

ments are favorable to the incorporation of fault-

tolerant software into new systems.

1.4.1 Fault-Tolerant Software and Reliability

Fault-tolerant software ean improve the reliability of

systems. This study found no evidence that, properly

applied, fault-tOlerant software willdegrade the relia-

bility of the resulting system and some evidence that its

use will increase system reliability. In practical implemen-

tations, fault-tolerant software has been shown to detect

errors in requirements, design and coding. Examples both in

laboratory test beds and in operational systems have shown

1 - 3

reliability improvements. The modeling efforts that
been done all predict added systems rel_aSility if
fault-tolerant software is properly implemented.

have
the

1.4.2 Fault-Tolerant Software Technology _

Fault-tolerant software has matured into a viable tech-

nology. During the past ten years there has been an

increasing use of fault-tolerant software innew systems and

applications ranging from aerospace and'military £o nuclear

power plant control and transportation. Regulatory agen-

cies, such as the FAA and Atomic Energy of Canada, Limited,

who are primarily concerned with public safety, have begun

to require the use of dissimilar software and Other fault-

tolerant software techniques in certifying systems.

The concepts of fault-tolerant software have also under-

gone significant growth and refinement; techniques have been

refined and analytical models developed. A second genera-

tion of research is underway at such institutions as UCLA,

UVA, Newcastle-upon-Tyne, and governmentMl agencies such as

the Army and Air Force.

What is currently lacking is the base of empirical data

needed to verify and validate the results of the models and

to transfer the technology from pure research into a devel-

opment mode.

1.4.3. Implications on Future Technology

New systems architectures, operating systems, and lang-

uages are favorable to support fault-tolerant software. New

systems support many of the notations and. mechanisms needed

to efficiently implement fault-tolerant software. These

include encapsulation (concepts for constraining the effects

of computations so that problems can be identified and

corrected), hierarchy (the layering of hardware, operating

systems and application functions into a well defined struc-

ture), and concurrency (federated and distributed processing

and parallel actions).

In addition, lower hardware costs have increased the

opportunities for building the mechanisms needed for effi-

ciently achieving the redundancy needed to implement various

fault-tolerant software techniques. Special purpose devices

such as special memories, monitors, and even the use of

additional general purpose processing" units are now
feasible.

In relation to languages, Ada and other newer languages,

although not perfect, support many of the notations and

constructs needed to write fault-tolerant functions in£o

software.

1 - 4

i
°.

The finding is that the efficient implementation of

fault-tolerant software in newer sYstems has been greatly

facilitated by the newer hardware, operating systems and

languages.

1 - 5

2.0 Fault-Tolerant Software Overview

2.1 Introduction

This chapter presents an overview of the fault-tolerant

software process. The model of this process provides the

basic common steps that must be considered in any truly

fault-tolerant software technique. This model is also the

basis for descriptions and analyses used throughout this

paper.

2.2 Software Faults

A software fault is any defect within a software compon-

ent (e.g., a module, a procedure, a process, a collection of

processes etc.). Software faults may be due to mistakes in

specification, in translating specifications into a design,

or in implementing the software design. A faultmanifests

itself as an erroneous system state or error. If an error

cannot be tolerated, the system may fail. A failure occurs

whenever the external behavior of the system does not con-

............f_rmto _hat prescribed hy _h_ system _f_i_n_= _ nr__

more broadly perceived specifications. [ANDE81] Figure 2-1

represents the relationship between these terms.

Software faults are thus caused by human mistakes. This

is in contrast with hardware faults which are caused by

physical wear out as well as design mistakes. [Note: Some

hardware faults'will cause a change in the software code or

sequencing; such faults are not defined as software faults

in this study although other researchers include these as

software faults (e.g., [S0NE81]). The case where software

accepts external-to-the-system faulted input as good input

is a software fault. Although all software faults are due

to human mistakes and, as such, might seem to cause only

unanticipated faults, there can be anticipated software

faults as well. Examples of this type of fault are divide-

by-zero and overflow faults.

2.3 The Fault-Tolerant Software Model

A description of the general prodess of tolerating soft-

ware faults has been developed to provide a unified inter-

pretation of what fault-tolerant software does, as well as a

set of common terminology. Fault-tolerant principles can be

discussed as four phases: error detection, damage assess-

ment, error recovery and fault treatment. [ANDE81]

• 2 - 1

FIGURE 2-1 FAULT-TOLERANT SOFTWARE EVENT RELATIONSHIPS

[,FAU'LTTRIGGER]
|

I

DESIGN/IMPLEMENTATIONINADEQUACY(MISTAKE)"I

1
[...... ISOFTWARE FAULT

l I I

ERROR

(ERRONEOUS STATE)

N Y

I FAILURE i

OF POOR QUALIy_V,

N Y

2 - 2

2.3.1 Error Detection

The identification that a fault exists can 0nly be

accomplished by detecting the effect of the fault, i.e.,

that an erroneous state exists. Detection of an erroneous

state requires first, some form of redundant information

and second, a means of analyzing this information. Because

software faults are caused by mistakes in specifications,

translation, design, or implementation, simply replicating

programs and comparing results will not identify software

faults because the same results will beproduced in each

duplicate. In order to detect software faults, it is neces-

sary that the redundant versions be independent of each

other, that is, of diverse design [AVIZ82] (see multi-

version software and recovery blocks). Structural informa-

tion about the internal design and construction of software

can also be used to identify errors. Examples are, execu-

tion path monitoring and timing checks. Structural informa-

tion can also be used to monitor the reasonableness of the

intermediate and final results. Examples include inverse

algorithm checks, range checks and rate-of-change checks.

Redundancy is necessary but notsufficient in itself for

error detection and recovery. Analysis of the redundant

information is also required.

2.3.2 Damaqe Assessment

When an error has been discovered, it is necessary to

determine the extent of the damage done by the fault before

error recovery can be accomplished. Assessing the extent of

damage is usually related to the structure of the System.

Assuming timely detection of errors, the assessment of dam-

age is usually determined to be limited to the current

computation or process. The state is assumed consistent on

entry. An error detection test is performed before exiting

the current computation. Any errors detected are assumed to

be caused by faults in the current computation.

One conceptual technique to isolate the effects of

errors is the encapsulation of processes. Encapsulation is

the concept of containing the effects of an action to only

the objects to which that action has legal access. Through

the proper enforcement of encapsulation the designer can

assess the extent of the damage to a logical structure due
to a fault.

All systems provide • encapsulation to some degree.

However, there is usually a significant difference between

the structure intended by the source Code of a software sys-

tem (with its implied encapsulations) and its implementa-

tion. For example, most systems provide encapsulation for

the abstraction of a process but not down to the individual

procedures or subprograms which make up that process.

Encapsulation is necessary to prevent one program from

2 - 3

destroying the address space of another program. However,
little support is usually provided by the underlying machine
architecture for the encapsulation implied _ by procedures.
This lack of support can greatly complicate the assessment
of damage caused by a fault. For example, assume a pro-
cedure contained a fault which occasionally generated
arbitrary pointer values (addresses). The damage done by
arbitrarily changing values anywhere in a program's memory
space would be very difficult to assess. In this case the
detection of the error may not occur until very much later
during the processing. Even if an error was detected during
that running of the faulty procedure, the extent of the
damage would be difficult to determine.

2.3.3 Error Recovery

After the extent of damage has been determined, it is

important to restore the system to a consistent state. (The

term "state" refers to the state of the current computation.

The current computation relates to the processing being

performed at the intended encapsulation. This could be a

procedure, a process or a collection of processes (domain)

engaged in a conversation [RAND75]). This is the purpose of

the error recovery phase. There are two approaches, back-

ward and forward error recovery. In backward error recov-

ery, the system is returned to a previous (presumably)

consistent state. The current computation can then be

retried with existing components (retry) (i) with alternate

components (reconfigure), or it can be ignored (skip frame)

(2). The use of backward recovery implies the ability to

save and restore the state. This can exact great perfor-

mance penalties if not carefully controlled.

Forward error recovery attempts to continue the current

computation by restoring the system to a consistent state,

compensating for the inconsistencies found in the current

state. Forward error recovery impliesdetailed knowledge of

the extent of the damage done, and a strategy for repairing

the inconsistencies. While this may be possible in certain

cases of anticipated faults, it is difficult to conceive of

appropriate strategies in the case of unanticipated faults.

Where feasible, forward error recovery is usually more

efficient and less demanding on system resources than back-

ward error recovery.

(i) This is only useful for transient timing on hardware

faults.

(2) For example, in a real-time system, no processing for

the current computation is accomplished in the current

frame, sometimes called "skip frame".

2 -- _4

2.3.4 Fault Treatment

Once the system has recovered from an error, it may be

desirable to isolate and/or correct the component which

caused the error condition. Fault treatment is not always

necessary because of the transient nature of some faults or

because the detection and recovery procedures are sufficient

to cope with other recurring errors. For permanent faults,

fault treatment becomes important because the masking of

permanent faults reduces the ability of the system to deal

with subsequent faults. As stated earlier, some fault-

tolerant software attempt to isolate faults to the current

computation by timely error detection. Having isolated the

fault, fault treatment can be done by reconfiguring the

computation to use alternate forms of the computation to

allow for continued service. (This can be done serially, as

in recovery blocks, or in parallel, as in N-Version program-

ming.) Of course, the assumption is that the damage due to

faults is properly encapsulated to the current computation

and that error detection itself is faultless (i.e., detects

all errors and causes none of its own).

2 - 5

3.0 Modern Software Fault-Tolerant Methods

The purpose of this chapter is to identify and catego-

rize fault-tolerant software techniques. The next chapter,

Chapter 4, will document the research and experiences with

these techniques. Table 3.1 lists the major fault-tolerant

software techniques in use today. In the discussion that

follows, each fault-tolerant software technique is described

with references to how it fits the general process as

defined in Chapter 2.

3.1 Multi-Version Software

Multi-version software is any fault-tolerant software

technique in which two or more alternate versions are imple-

mented, executed and the results compared using some form of

a decision algorithm. The goal is to develop these alter-

nate versions such that software faults that may exist in

one version are not contained in the other version(s) and

the decision algorithm determines the correct value from

among the alternate versions in the use of faults.

Methods to produce these alternate versions have been

referred to as independent, diverse, dissimilar, or distinct

design. These terms are used collectively to refer to the

prominently supported method of producing alternate versions

by using separate programming teams. Another suggested

method is to explicitly make the versions different by

examining them and forcing differences into the versions.

Whatever means are used to produce the alternate versions,

the common goal is to have distinct versions of software

such that the probability of faults occurring simultaneously

is small and that faults are distinguishable when the

results of executing the multi-versions are compared against
each other.

The comparison function executes as decision algorithm

once it has received results from each version. The

decision algorithm selects an answer or signals that it

cannot determine an answer. This decision algorithm and the

development of the alternate versions constitutes the

primary error detection method. Damage assessment assumes

the damage is limited to the encapsulation of the individual

software versions. Faulted software components are masked

SO that faults are confined within the module in which they

Qccur. This way the occurrence of a fault(s) is transparent

to the outside environment. Fault recovery on the faulted
component may or may not be attempted. Figure 3-1 depicts
the above definition of multi-version software.

3 - 1

TABLE 3.1 CATEGORIZATION OF
TECHNIQUES

Multi-Version Software

N-Version Program

FAULT-TOLERANT

Cranfield Algorithm for Fault-Tolerance (CRAFT)
taster

Distinct and Dissimilar Software

Recovery Blocks _ "

Deadline Mechanism

Dissimilar Backup Software

Exception Handlers

Hardened Kernel

Robust Data Structures and Audit Routines

Run-Time Assertions*

Hybrid Multi-Version Software& Recovery Block Techniques

Tandem

Consensus Recovery Blocks _

SOFTWARE

Food-

* Not a complete fault-tolerant software technique as
only detects errors.

it

3 -- 2

FIGURE 3-1 MULTI-VERSION SOFTWARE

INPUT VERSION 1

SION RESULT

VERSION 2 ALGORITHM OR FAULT

3.1.1 N-Version Programming

N-Version programming is one of the earliest organized

methods to introduce redundancy into software and is today

one of the more developed techniques. Conceptually

N-V_n programming is _-_v_v__1_ _v s _ redundancy _

hardware fault-tolerance. N>2 functionally equivalent,

independently generated versions are provided input from a

system supervisory program called a driver. The driver

executes a comparison algorithm on the versions' results.

[CHEN78a] A majority vote for N_3 is a typical example of

a comparison algorithm.

N-Version programming is supposed to reduce the proba-

bility of a common fault among the versions and thereby

increase the overall software reliability. This improved

reliability is accomplished by having the versions indepen-

dently generated by N separate individuals or teams. It is
preferable that these individuals or teams have diverse

training and experience. To help increase the independence,

it is recommended that different programming languages,

algorithms, data structures, and implementation techniques
be used in each version. [AVIZ82]

Usually, independent programming teams are given a com-

mon specification. Use of a single common specification

implies that truly independent versions are not produced

because that errors in the specification will occur in _ all

versions. Errors which are common to all N versions will

not be detected in N-Version programming or in any fault-
tolerant software technique. This is true in all fault u
tolerant software and non fault-tolerant software techni-

ques. However, Kelly has researched and experimented with N

specifications written in different specification lang-

uages to attempt to overcome or at least reduce problems

with a single specification. [KELL82] The specification

3 - 3

should be as complete and as unambiguous as possible (of
course) and impose as few restrictions on the variety of
implementations as possible. Additional information that
must appear in the specification necessary for implementa-
tion of N-Version software includes: definition of cross-
check points (cc-points), comparison vector (c-vectors) data
structure, comparison status indicators (CS-indicators),
synchronization mechanism, the comparison algorithm and the
response to the possible outcomes.

The cross-check points define when the versions will
compare results and status. The most common cross-check
points are common-input points, output-use points, and
transaction-commit points. [MAKA82] This synchronization
of the versions is a restriction on the implementation and
may be another mitigating factor in the independence of
versions. The comparison vector includes fields for the
result data to be compared and comparison status indicators
that are results of any additional assertions used within an
individual version.

The driver controls synchronization activities of the
versions. [CHEN78a] Initially, a version is in an inactive
state. When invoked by the driver, it enters into a waiting
state where it waits for a synchronization signal, repre-
senting a request for service from the driver. When this
signal is received, it transfers into a running state. If
any terminating condition is signaled by the status in the
c-vectors, then the execution of this version is terminated
and it returns to the inactive state. Otherwise, it gener-
ates a c-vector when a cc-point is satisfied, It then uses
a synchronization signal to notify the driver that a c-
vector is ready, and finally returns to the wait state. The
state transitions for a version are illustrated in Figure
3-2.

The driver also handles the decision algorithm. The
decision algorithm may be a majority vote for N>2, or some
other strategy. For a voting scheme involving multiple
correct values, the allowable range of discrepancy from each
version, the data sensitivity of the algorithm, and the
limitations of the hardware representations must be taken
into account in order to develop a system discrepancy range
for comparison of numerical results.

N-Version programming systems may execu£e, the ver-
sions serially in a single processor (N-Version serial), or
eXecute each version in parallel on N loosely-coupled
processors (N-Version parallel). Pratt, Knight, and Geor-
gory [PRAT83] make the observation that "damage assess-
ment is handled by the assumption that damage will be
limited to the versions in the minority when the vote is
taken [then] to ensure this is true, the versions
must be physically separated. Clearly, _ this is not
easily achieved for parts of programs such as subroutines.

3 - 4

FIGURE 3-2

ORIG_'AL PAGH _

OF POOR QUALITY,

STATE TRANSITIONS OF A VERSION

INVOKED _

CROSS-CHECKPOINT ISERVICE

_OND ITION _EQUIRED

TERMINATING CONDITION/'_

SATISFIED i_

In practice, this limits the application of N-Version

programming to the system level and precludes its inclusion

in technologies like software components."

For N-Version para!!e!t additional hardware communica-

tion channels must exist point-to-point with each processor

each driver is to handle the decision algorithm. The com-

munications channels must be able to rapidly transmit c-

vectors for decision making by using a developed protocol.

3.1.2 CRAFTS (Foodtaster)

The Cranfield Algorithm for Fault-Tolerant Software

(CRAFTS), or Foodtaster, as it is sometimes referred to, was

originated by Morris and Shephard of the Cranfield Institute

of Technology in England. It was proposed as an integrated

hardware and software fault-tolerant scheme applicable only

to real time systems that perform process control of a

continuous output function. [MORRSI] The following descrip-

tion of CRAFTS will concentrate on the fault-tolerant soft-

ware aspects.

CRAFTS requires two versions of the software and

multiple processors (for the purpose of discussion, three is

assumed). There is one version of the software referred to

as the basic program, which attempts to totally fulfill the

functional specification, and an alternate of the basic

program. (How this alternate is derived is discussed

later.) Both software versions execute serially in each of

the three processors, thus requiring double the processing

throughout. The software operates on time-skewed data,

executed by each of the two software versions in different

processors. For example, in Figure 3-3, data sampled at N-I

is executed upon in processor 2 by the alternate and in

3 - 5

processor 3 by the basic program.
cal and temporal redundancy.

This provides both physi-

Error detection is performed by comparing the basic

program's and alternate's results calculated from the most
recently sampled data shown as N in Figure 3-3. If the
results agree within some tolerance, then CRAFTS assumes
there is no software error and operation continues. If the
results disagree, estimates of the basic program and

alternate outputs (shown as B_(EST), A_(EST) in Figure 3-3)
are made by extrapolating th_ past three results. It is
the use of extrapolation that restricts the use of CRAFTS to
continuous output functions.

Damage assessment, error recovery and fault treatment
are performed the same as in multi-version software. The

comparison of the calculated results (BN, AN) . with the
estimated results (B.(EST) A_(EST)) determlnes which
software program's result will b_ used. If the difference

is too large a fault is signalled. It is unclear from
[MOOR81] whether the decision tO use a particular pro-

gram's results is temporary or permanent.

Alternate program versions are generated utilizing the

iterative nature of realtime systems. Morris shows how the
output of the n+l iteration can be given in terms of the n
iteration output and n+l and n inputs. This is referred to
as "difference equations." Logic equations and conditional
branches can be made different by applying DeMorgan's

Theorem and complementary logic respectively. These methods
are offered as a means of producing independent software
versions, although they only operate at the expression or
program statement level. It is doubtful if algorithm diff-
erences will occur. It is suggested_ that the generation of
the alternates could be automated ih order to avoid the

costs of n developments. While difference equations for
arithmetic and trigonometric expressions (the latter suffer-
ing from accuracy problems) were produced, "it became appar-
ent that the difference equation method produced unaccept-
ably complex programs when applied in situations more com-
plex than arithmetic and trigonometric expressions."
[MORR81]

Recently, Milco International extended and refined the

original CRAFT Foodtaster Method. At this time, this work

is proprietary and no results have been published. Milco's
approach does not appear to necessarily require interpro-
cessor communications for fault detection, isolation and
recovery. The method "seems only suitable for control
applications as in the original Foodtaster". [SMYT84] The
software versions are arithmetically derived to be different
so that no correlated faults exist.- The goal is to automate
the dual software derivation process, which has been gen-

eralized beyond the original Foodtaster concept of differ-
ence equations. Fault detection and fault recovery are

3 - 6

performed by an "estimator. " The estimator

which values to accept upon detection of a fault.

determines

FIGURE 3-3 CRAFTS FAULT-TOLERANT SOFTWARE OPERATION AT
SAMPLE N

I i

3 - 7

3.1.3 Distinct and Dissimilar Software

The third variant of multi-version programming is the
use of distinct and dissimilar software. Dissimilar

software has been used on an ad hoc basis for a number of

years and has proven itself quite successful in shortening

the testing and debugging stage of software development.

Dissimilar software and distinct software are terms widely

used in industry to refer to multi-version software systems
which, to date, have utilized two alternate versions. The

second version is used to detect errors through a comparison

of results from the two versions.

3.2 Recovery Blocks

The second major technique shown in Table 3.1 is recov-

ery blocks and its subcategories - deadline mechanism and

dissimilar backup software. For convenience, we categorize

any fault-tolerant software technique, which has the

general form asserted by Randell, as recovery block method.

[RAND75] This scheme for software fault-tolerance can be

regarded as analogous to hardware fault-tolerant "stand-by

sparing." As the system operates, checks are made on the

acceptability of the results generated by each software

component. Should one of these checks fail, a spare

component is switched on to take the place of the faulty

component. The spare component is, of course, not merely

a copy of the main component. Rather it is of independent

design, so that there can be the possibility that it can

cope with the circumstances that caused the main compo-

nent to fail. Of course, recovery blocks satisfy this

general description. The deadline mechanism [CAMP79] and

dissimilar backup software are also included here because

of their similarity with recovery blocks. Each of

these is described later in this chapter.

"A recovery block consists of a conventional block

(i.e., software component) which is provided with a means of

fault detection (an acceptance test) and zero or more

stand-by spares (the additional alternates). A possible

syntax for recovery blocks is as follows:

3 - 8

"<recovery block> ::= ensure <acceptance test> by

<primary alternate>

<othe_ alternates> else error

<primary alternate> ::= <alternate>

<other alternates> ::= <empty> I <other alternates>

else by<alternate>

_alternate> ::= <statement list>

<acceptance test> ::= <logical expression> "[RAND75]

The following is based on [RAND75]. To perfor m a recov-

ery block operation, the primary alternate (which corre-

sponds to the block of the equivalent conventional program)

is performed. An acceptance test is run to determine

whether the alternate has performed acceptably. If the pri-

mary version fails to complete or fails the acceptance test,

the system state is restored to that current just before

entry into the primary version and an alternate version is

performed. If the primary version passes the acceptance

test, all alternates are ignored and the statement following

not pass the acceptance test, the entire recovery block is

considered to have failed, so the block in which it is

embedded fails to complete. Recovery is then attempted at
that level.

All fault recovery is accomplished by automatic reversal

to a previously established recovery point. When a process

has accepted the results of a recovery block, recovery can

only take the form of a more global process reversal to the

beginning of a recovery block which has not gone through the

acceptance test.

The valve of the recovery block scheme depends on the

practicality of producing useful acceptance tests and alter-

nates and on the cost of providing means for resetting the

system state.

The acceptance test ensures that the operation performed

by the recovery block satisfies the program which invoked

the block. Therefore, the test must be performed by refer-

ences to the variables accessible to that program rather

than variables local to the recovery block. The

surrounding program can continue with any of the possible

results of the operation. The acceptance test confirms that

the results are within the range of acceptability, disre-

garding which alternate can generate them.

3 - 9

The test does not have to be a formal check on the

"correctness" of the operation performed by the recovery
block. Instead, the designer decides upon the stringency of
the test. Ideally, the test should ensure that the recovery
block meets all specifications depended upon by the program
test that calls it.

Some acceptance test failures may not be legitimate
because of design inadequacies within the test itself; in
effect, false alarms. The acceptance test may even suffer
an error during execution and fail to complete. Such errors
are treated as failures in the enclosing block. (These
failures should be rare, since acceptance tests are intended
to be simpler that the alternates they check.)

In evaluating an acceptance test, any modified non-local
variables must also be available in their original form
because of the possible need to reset the system state. To
give the acceptance test more strength and efficiency, the
test should be able to access these non-local variables in
either their original or modified value. An additional
facility available in an acceptance test should be a means
to determine whether any of the modified variables have not
been accessed within the test.

"The primary alternate is the one which is intended to
be used normally to perform the desired operation." [RAND75]
Other alternates will perform the operation in some other
manner. Although they may perform less economically they
should be simpler. So as long as one of the alternates
succeeds, the operation will have been completed.

Since maintenance actions to enhance a software system
will always be required, a method of overcoming any unrelia-
bility of the new version has been proposed [MELL83]:
retain older versions of the software component as secondary
alternates and make the new version a primary alternate.
This way, the enhancements of the new version will be per -_
formed, but if a fault is encountered, availability is
maintained by use of the older versions,

By making system state resetting fully automatic, pro-
grammers are shielded from the problems of resetting the
system in fault recovery. No special restrictions exist and
no special programming conventions must be followed. To be
specific, the task of explicit preservation of restart
information can be avoided. In this way, the recovery block
structure provides a framework enabling extra program text
for error detection and recovery action to be added to a
conventional program. Even though the program will increase
in size, its reliability will increase also.

Since a process is always backed up to the state it had
reached just before entry to the primary alternate, only
modified, non-local variables have to be reset. "This

3 - l0

mechanism detects, at run-time, assignments to non-local
variables, recognizing when an assignment to a non-local
variable is the first to have been made to that variable
within the current alternate. Thus, precisely sufficient
information can be preserved." [RAND75]

Melliar-Smith [MELL83] lists the assumptions upon which
recovery blocks are based. If these assumptions were com-

pletely justified, then recovery blocks would be able to

produce any desired level of reliability. However, these

assumptions are rarely unflawed leaving opportunities for

software unreliability. For recovery blocks, the assump-

tions are: a correct specification, recognition of faults,

faults manifest themselves within a recovery region, the

independence between alternate blocks, and the independence

of N alternate blocks from the acceptance tests.

3.2.1 Deadline Mechanisms

The deadline mechanism [CAMP79] adopts the same struc-

ture as the recovery block but it performs a specific type
of fault detection assertion. The deadline mechanism has

scheduling mechanisms that include hardware timers to ensure

timely responses of the software component.

The deadline mechanism associates two algorithms (i.e.,

alternates) with each software component. The primary alt-

ernate produces a better quality service than the other

alternate. "Better quality service" means it fully imple-

ments the software component's specification. The alternate

is a simpler, more deterministic algorithm which will pro-

duce a result in a known amount of time. This "simpler"

alternate will generally only provide partial functionality

of the software component, thereby reducing it to a degraded

mode, at least for the current computational iteration.

The deadline mechanism itself is a centralized scheduler

and supervisor which replaces the acceptance test of the

recovery block technique. It ensures that either the pri-

mary or alternate completes before a time deadline.

The deadline mechanism was proposed to tolerate faults

that manifested themselves as timing faults. The mechanism

can be used to complement the fault-tolerant capabilities of

recovery blocks. This aspect has been suggested by Hecht

[HECH76] as necessary for real-time applications.

3.2.2 Dissimilar Backup Software

In its complete form, dissimilar software has three main

components: a fully functional primary software system, run-

time assertions embedded within the primary software system,

and a dissimilar, secondary software system that performs

3 - ii

only the essential subset of the requirements. The primary
software system executes the system function during fault-
free operation. Run-time assertions are used to detect
faults in the operation of the primary software system.
Upon detection of a software fault, the primary is aborted
and the secondary software system begins operation.

3.3 Exception Handlers

Traditionally, exception handling involved a combination

of a hardware exception (fault) monitor and a software

routine in which the function was to compensate for the

fault. Examples of these exceptions are divide-by-zero and

arithmetic overflow. The fault detection was application

independent while the software hanaler was application

dependent. (One typical form of fault recovery was to

restart the system with the only fault treatment being that
the function was no longer scheduled for future execution).

Exception handling today encompasses a variety Of tech-

niques and methods to detect conditions in which the compu-

ter has reached an improper state, and to correct this

state. These include use of hardened kernels to protect or

encapsulate errors, robust data structures which protect the
data integrity and run-time assertions.

Cristian [CRIS82a and CRIS82b] has developed a model of

exception handlers in a hierarchy of modules using the

concept of data abstraction. For each data abstraction,

exceptions have to be specified as a response to run-time

attempts to violate its inherent invariant properties.

These anticipated faults can be handled by forward fault

recovery techniques. No specified fault treatment is of,

fered. Unanticipated faults, i.e.,, design faults, can be

handled by a default exception handler using automatic back-

ward recovery. Cristian shows how recovery blocks can be

modeled by his default exception handler. [CRIS82a]

3.3.1 Hardened Kernel

Hardened kernel is a term used_£o describe a software

organization aimed at minimizing the complexity of the sys _

tem software by limiting its operational requirements to

essential functions. [RANE83] E_sential functions are

encapsulated as the kernel of the software system. All

additional software that completes the system specification
interface to this kernel. Run-time assertions monitor the

performance of the entire software _system. If a software
fault is detected in the addition_l software, the function

is aborted and not used again. The assumption is that the

kernel is the minimum software required, simple, and there-

fore more reliable, than the entiresoftware system. Also,

3 - 12

it is executed constantly and therefore very few
faults should remain.

software

3.3.2 Robust Data Structures and Audit Routines

Robust data structures are techniques for providing a

self-identifying structure to the necessary information so

that if an error occurs, the information structure can be

constructed. A robust data structure is a data structure

which contains redundant structural information. If erron-

eous changes occur, then errors may be detected and possibly

corrected. Error detection may be accomplished concurrently

by the software component accessing the data structure or by

periodically executed audit routines (which checks the con-

sistency among the redundant information). If an error is

detected, it may be repaired using forward recovery. The

redundant information is used to reconstruct consistent

structure. Fault treatment is not directly addressed by the
robust data structure method of software fault-tolerance.

3.3.3 Run-Time Assertions

Run-time assertions ar_ _ ,In_, A__ive__ way _

viewing all software fault detection mechanisms. Table 3.2

provides a list of run-time assertions.

The acceptance test in recovery blocks is an assertion

about the results of a software component. It is assumed

that the acceptance test is more reliable than the software

component it is monitoring. The voter of a multi-version

software asserts that the majority will be correct. Reason-

ableness checks use specification knowledge to find para-

meters out of range, faulty rate of change or invariant

unique mathematical relationships that are not maintained.

A watchdog timer asserts that if a software component does

not complete within a fixed time then a software fault has

occurred. Capability architectures and tagged memory assert

that a component should not reference beyond its initially

set memory region or interact with parameters of unlike

type, respectively. Control flow checks assert that program

sequencing should not go through any previously undefined

paths. [YAU80]

3.4 Hybrid N-Version and Recovery Block Methods

None of the current fault-tolerant software completely

solves the software reliability problem. Multi-version and

recovery blocks have received most attention because of

generality. A common problem is producing independent

alternate versions of software components such that corre-

lated faults are either eliminated or reduced to an accept-

3 - 13

TABLE 3.2 RUN-TIME ASSERTIONS

Acceptance Test

Voter

Exception Monitor

Reasonableness Checks (range, rate of change, unique
mathematical relationships)

Watchdog Timer

Access Control

Capability Architecture

Tagged Memory

Sequence Monitoring (Path Checking)

Analytical Redundancy

Observers

ably low level. Multi-version software and recovery blocks
also have their own individual problems due to their struc-
tural implementations. Hybrid techniques are proposed to
exploit those advantages and avoid those disadvantages that
are inherent in multi-version software and recovery blocks.

3.4.1 Tandem

Tandem [SONE81] is a method suggested by Soneriu. It

has a fault detection conceptually similar to N-Version

programming, and the facilities for backward recovery like

the recovery block. Figure 3-4 shows the functional flow of

the tandem technique.

Tandem requires two separate processors. Initially, a

common recovery point is set on only one processor or dif-

ferent recovery points can be set if a recursive cache is

available. Two alternate versions of the software component

are executed on the different processors. A validation test

compares the results. If the results are the same, then the

recovery point is purged and the output becomes available

for the next operation. If the results differ, however,

recovery is accomplished by rolling back to the system state

saved before execution of the current operation. Fault

treatment is handled by selecting another set of alternate

3 - 14

versions. This election is repeated until all combinations
of two alternates fail to give an acceptable result. If
this occurs, the Tandem operation indicates a failure of
that software component. The advantages of_this technique
over multi-version programming is that less resources are
required to have a fail-operational system. Tandem requires
only two processes while a multi-version software unit would
require at least three processors. The adv@ntage this
technique has over recovery blocks is that the fault
detection mechanism is performed by comparison which is
simpler, executes in less time and is Considered a more

general error detection mechanism as compared to the accep-

tance test. Tandem does have some disadvantage s when com-

pared with recovery blocks. The rel_abili_y of a simple

comparison, in the face of the potential for correlated

errors, has not been shown to be higher thanMan acceptanCe

test criteria.

3.4.2 Consensus Recovery Block

The consensus recovery block method [SCOT83b] attempts

to lessen the importance of the acceptance tests in recovery

blocks. The acceptance tests have been identified as the

most crucial component in recovery blocks, yet there is no

general methodology to design and analyzethe effectiveness

of acceptance tests. ' [MELL83 and HECH79] Also, the consen-

sus recovery block method addresses the problem of the dis-

crepancy range for an exact comparison of alternate ver-

sions, as well as multiple correct answers (e.g., best vs.

first fit memory allocation), as in multi-version software.

As shown in Figure 3-5, the consensus recovery block

method requires the development of n independent versions of

a program, an acceptance test and a voting procedure.

Initially, all versions execute and submit their outputs to

a voting procedure. Since it is assumed that there are no

common faults, if to more versions agree on one output, that

output is designated as correct. If there is no agreement,

that is, the versions supply incorrect outputs or multiple

correct outputs, then a modified recovery block is entered.

Each version is examined sequentially in a predetermined

order. The output of the "bestS' version is subjected to the

acceptance test. If that output is judged acceptable, it is

treated as a correct output, and system execution continues.

If, on the other hand, the output is not accepted, the next

best version's output is subjected to the acceptance test.

This process continues until an acceptable output is found,

or the n outputs are exhausted. Notice that there is no

requirement for input state recovery since all versions

execute in a parallel fashion.as in an N-Version programming

system. This technique might be more aptly termed consensus

multi-version software.

3 - 15

FIGURE 3-4

E_

E_

©

L9

cj

8

TANDEM - A HYBRID TECHNIQUE

OF POOR QuAJi_

8

_ O,

_.

"- _

//_: --
000/

\///
I

m _

m

Q) _-4 ,
E_ r,,q 0 ,"

i

3 - 16

3.5 Summary of Techniques

In summary, it was found that the techniques of fault-

tolerant software have been developed conceptually from the

earlier disciplines of hardware fault-tolerance and common

programming techniques that had been used for a number of

years in reliable systems on an unstructured or ad hoc

basis. The categorization of the techniques into the four

broad areas shown in Table 3.1 is not a final division of

this technology; all techniques appear to be part of the

more generalized model that is presented in Chapter 2. The

divisions presented are for convenience only. Conceptually,

it was found that the technology is continuing to evolve

with newer techniques or methods being developed as combina-

tions or refinements of older methods. However, the basic

four steps outlined in the generalized model appear as the
fundamental framework for all work.

,4
i

3 - 17 °

FIGURE 3-5 CONSENSUS RECOVERY BLOCKS - A HYBRID TECHNIQUE

Z

• •

3 - 18

4.0 Current Experience with Fault-Tolerant Software

In this chapter the experience that has been gained

using fault-tolerant software techniques and current

research efforts that are underway or planned is reviewed.

This information was accumulated through a review of pub-

lished results and, since published results tend to be a

year or so old, with telephone and personal interviews of

key researchers. The thrust of this effort was to cover all

the fault-tolerant software techniques that have been pro-

posed and obtain several pertinent examples of the experi-

ences with each technique.

4.1 Experience with Multi-Version Proqramminq

It was found that there is an extensive amount of prac-

tical and research experience in multi-version programming,

although only one implementation of a complete N-Version

programming system could be found in operation. Several

industries including commercial aircraft, transit systems

and nuclear power plants have utilized dissimilar software

in fail-safe applications.

4.1.i Space Shuttle Experience

The NASA Space Transportation System, better known as

the space shuttle, uses multi-version software to tolerate

software faults in mission-critical functions. Computing

resources are provided by four primary computers which are

composed of identical hardware and software, A single back-

up computer, which has an alternate version of the mission

critical functions (i.e. flight control, guidance and navi-

gation), operates in parallel with the primary computers.

The primary computer software was developed at IBM. The

backup computer software was developed by Rockwell, Draper

Laboratory, and Intermetrics. The software is being inde-

pendently maintained by Rockwell. Error detection is

accomplished primarily by the crew, but also by the backup

computer and the primary computers themselves. Damage

assessment and error recovery are ignored. Fault treatment

is performed by the crew when they initiate a switchover

from the primary computer control to the backup computer
control. [TROY84]

During software development, numerous software faults

and requirement faults were uncovered because of the exist-

ence of the alternate (backup) version. No faults have been

detected during the operation of the shuttle. However, prior

to launch of the first flight, a fault in the synchroniza-

tion between the primary and backup existed. If the backup'

computer had not been in the system, this fault would not

have occurred. In this example, fault-tolerant software

4 - 1

reduced availability because of the added complexity, but
reliability was not decreased. The system performed
according to specifications when the computers disagreed.
On the other hand without the backup computer, there might
not have been sufficient confidence in the primary compu-
ter's ability to fly the shuttle.

4.1.2 Airbus Industries Experience

The Airbus Industries A310, a production commercial

aircraft put into service in April 1983, has a slat and flap

control system developed by Marconi Avionics that uses a

dissimilar architecture [MART82]. The slat and flap control

system is totally fly-by-wire and executes a fail-passive

function. Fail-passive is a type of fail-safe operation

where the safe state for the system is to remain "frozen" in

the previous state.

The use of dissimilar software was driven by four major

factors (not necessarily in the presented order):

Certification authorities in England, France, and

Germany recommended consideration of "dissimilar

monitoring", which is a historic precedent in

developing safe systems. This was suggested because

of uncertainty as to how to analyze the safety of a

digital system;

Marconi desired to propose to the customer a program

that was financially and technically advantageous

compared to the opposition;

• Marconi itself desired a method to reduce the exces-

sive cost of producing flight-crucial software;

The unique requirements of the system, i.e., fail-

passive, lent itself to a dual-dissimilar architec-

ture.

Marconi's experience was that it was able to reduce the

costs of software testing by testing the versions against

each other. There was no significant cost improvement,

however, because Marconi did more extensive testing than

might have been necessary, since dual-dissimilar software

was new to Marconi and the certification authorities. Over-

all, the certification process, a very costly process, was

easier to conduct than if a single version of software had

been produced.

David Martin, a Marconi engineer involved in the

development of the slat and flap control system, believes

that the use of dissimilar software will continue "but it's

not the answer to everything. You are not going to use it

for every system It's another weapon in the armory

4 -- 2

[against software unreliability]". Healso doubted the use

of fail-operational dissimilar software if three versions

are required. He felt that would probably be more costly

than if a single version we.re extensively tested to achieve

same level of confidence in the software system.
[MART84a]

4.1.3 Boeing 737-300 Experience

The flight-control system for the Boeing 737-300 air-

craft is a dual-dissimilar system developed by the Sperry

Corporation [WILL83]. One version performs all functions,

while the second version performs only critical functions.

The reliability of the non-critical software is accepted
with a single version of software. The certification auth-

orities' view is that if it is not evident that the redun-

dant channels are independent, then exhaustive (more exten-

sive) testing would have to be performed. The two versions

were programmed by independent programming teams using a

common specification. The probability Qf similar software

faults was considered essentially eliminated. Error dis-

crepancies in the algorithms is well understood so ' that

comparison tolerances can be accurately set. During soft-

ware testing, the versions were compared at limited but

specific points (e.g., module integration _ tests, hardware

and software integration tests) because of the concern that

testing against each other reduces the independence of the

two versions. The dissimilar architecture resulted in a
cost savings during the verification phases because of the

certification authorities' viewpoint.

John Williams, a Sperry engineer involved in the

development of this system, believes that fault-tolerant

software can be used in fail-operational systems and will

appear in future systems. One big reason for its incorpora-

tion is because of the cost savings in reliabilit_ and
safety analyses. [WILL84]

. v

4.1.4 Boeing 757 Experience

Digital control systems in the Boeing 757/767 aircraft

have examples of both similar and dissimilar architectures.

Two systems, the yaw damper and the stabilizer trim systems,
were implemented using dual-dissimilar architectures.

[MCWH84] Both are fail-passive systems.

The reason dual-dissimilar was chosen was because of a

distrust of digital systems by the certification authori-

ties who viewed the use of dissimilar architectures favor-

ably. Boeing had hoped to reduce some of the' verification

and validation effort by using dissimilar architectures.

However, in this case the certification authorities required

extensive validation of each channel. This doubied Boei_g's

4 - 3

t

analysis efforts and made the system more costly than the

estimated cost of a single version software system. Another

reason for the selection of a dual-dissimilar architecture

was the requirement for high integrity (reliability) and

fail-passive operation.

The two development teams were separated but the soft-

ware versions were "made" to be more distinct. This was

accomplished, for example, by having one version use a table

look-up while the other used polynomials or, using DeMor-

gan's Theorem, to change logical expressions.

The service records of both systems are extremely good.

To date, there have been no system faults and only a few

nuisance disconnects. [MCWH84]

4.1.5 AECL of Canada Experience

Atomic Energy of Canada, Limited (AECL) has designed two

dissimlar shutdown systems and placed one of the system

types into service for nuclear power plants. [GILB84] The

system implements two dissimilar channels each of which is

triplex. Dissimilarity is the "cornerstone" of the regula-

tory requirements. Independent programmers developed the

programs. The service experience of the one system type has

been that two software bugs were found during final system

validation and one bug was detected in actual operation.

This bug was a round-off error in one version that was

detected by the faulted version itself before it was detect-

ed by the other version.

Ray Gilbert at AECL stated that he believes that dis-

similar software would not be used if it were not required

by the regulatory agencies. He believes that as the com-

plexity increases, the development cycle to produce separate

versions becomes counter-productive to software reliability.

Gilbert believes "It is better to produce one version and

make it as simple as possible and thoroughly test it than to

count on different people to program differently". [GILB84]

4.1.6 Other Multi-Version Software Experiences

Dual dissimilar software was used to implement a reactor

shutdown system at the Halden nuclear reactor. Done in

conjunction with the Finnish Technical Research Centre,, two

different designs were written in two different software

languages. They experienced specification ambiguities and

one software error common to both designs. [TAYLSI]

The LM Ericsson Company in Sweden has developed several

fail-safe systems using dissimilar software for the railroad

industry. These systems include an interlocking system in

Gotegorg, train warning and train stopping system in Taiwan_

4 - 4

°.

and automatic train control and speed supervision systems

for Scandinavian and Norwegian state railways. Other means

of insuring reliability of software, e.g., manual verifica-

tion, testing, and simulation, were felt to be inadequate

for a safety-related function. Therefore, dual dissimilar

software was produced by two independent programming teams.

Specification faults were detected, especially where the

specification did not allow for unexpected situations.
[VONL79]

Westilnghouse Transportation Division has developed two

generations of automatic train protection systems for the

Metro in Sao Paulo, Brazil. These systems utilized similar

dual hardware, with dissimilar software written in assembly

language. During the software development, software faults

were discovered by comparing the results of the two differ-

ent versions. Pierre Zuber, a Westinghouse software engi-

neer involved in these projects, believes there are two main

obstacles in the way of using fault-tolerant software:

First, it is difficult to produce independent software ver-

sions because of the limited way to produce a result, espe-

cially for real-time systems. Second, there is addeddiffi-

culty in maintaining more than one software version.
[ZUBE84]

Using its variant of the CRAFT Foodtaster, Milco Inter-

national has implemented a simulation of the B-I bomber's

flight control terrain-following system using dual hardware

and dual software versions, i.e., both versions in both

processors has purportedly been implemented. [SMYT84] Cur-

rent results obtained from the simulation of the B-l's

terrain-following system had "100 percent fault detection,

and recovery for injected software faults". These results
were obtained for both-time skewed and non-skewed data.

Therefore, the usefulness of time-skewing to detect software

faults requires further investigation. [SMYT84]

4.1.7 Current Research in Multi-Version Programming

Most current research in multi-version software is being

conducted at universities. The University of California,

Los Angeles (UCLA) has been a leading promoter and research

bed in multi-version software. UCLA is currently developing

an experimental laboratory using twenty VAX-II/750's which

will operate on a local area network. A special operating

system has been developed, called LOCUS, to support

N-Version software experiments. Currently, efforts have

been focused on getting the laboratory operational. Another

research topic being pursued is the classification of soft-
ware faults. [AVIZ83]

Several experiments have been conducted at UCLA to

investigate the feasibility and utility of N-Version soft-

ware. Experiments conducted in 1976 and 1977 were designed

4 - 5

to study the applicability to problems and ease of imple-
menting N-Version programs and collect qualitative and
quantitative data on effectiveness of 3-version software.

MESS (Mini Text Editing System) was a program assignment
for the graduate seminar course E226Z, offered at UCLA in
the spring quarter of 1976. A total of 27 programs were
available for the study. All but two were found to contain
design faults. From the experience and the results of the
MESS experiment, the following conclusions were reached:
the methodology used to implement N-Version programming is
relatively simple and can be generalized to other similar
applications; the results attained from executing 3-version
programs are encouraging. The effectiveness of 3-version
programming seems to warrant further investigation. The
3-version redundancy was successfully applied at subroutine
(module) level, rather than at complete program level. This

result shows that selective application of N-Version redun-

dancy to certain critical parts of longer programs can be a

practical alternative. [AVIZ77 and CHEN78b]

RATE (Region Approximation and Temperature Estimation)

was a program for computing dynamic changes of temperatures

at discrete points in a particular region of a plain. The

RATE problem was given as a programming assignment for the

graduate seminar course, E226Z, offered at UCLA in the

spring quarter of 1977. Three different algorithms were

specifiedto accomplish the function. One algorithm was

given to each programming team. Out of a pool of 16

programs, the four best plus three written by /Chen and

Avizienis, formed the seven programs for,the experiment. The

seven programs were instrumented, grouped into 12 combi-

nations, and tested with 32 test cases each. Of the total

384 cases tested:

• 290 cases contained no bad versions,

• 71 cases contained one bad version,

• 18 cases contained two bad versions and,

• 5 cases contained three bad versions:
/

Naturally, the 290 cases of three good versions gen-

erated acceptable results, and the 23 cases containing two

or three bad versions generated unacceptable re'sults.

The results obtained from the MESS and the RATE experi-
ments are of mixed nature. There are several encouraging

points: the methodology "for implementing N-Version program-

ming was relatively simple and can be generalized to other

similar applications; in some cases, 3-version programming

has been effective in preventing failure due to defects

localized in one version of code; and N-Versionprogramming

can be a practical approach if it is selectively applied.

4-6

On the other hand, there are some negative points: in the

environment of some operating systems, certain implementa-

tion defects of a version may cause its associated 3-version

program to be aborted by the operating system; and if mis-

sing program functions are the predominant software defects,

then N-Version programming may not be an effective approach.

[CHEN78a]

The primary aim of later experiments by Kelly [KELL82]

and Avizienis [AVIZ82] was to investigate software specifi-

cation techniques and how this affected N'Version programs.

An airport scheduler specification was writteh in PDL, OBJ,

and English. The 18 individual versions' Stand-alone tests

of i00 test cases resulted in a range from 35.percent to 95

percent yielding good results. All triad combinations of

the 18 versions were executed in an N-Version organization.

Cases of all three versions producing an incorrect result

occurred .i percent of the time, while two bad versions out-

voting the good versions occurred 2.4 percent of the time.

These cases would result in total failure of the system.

Two good versions correctly out-voting one bad version

occurred in 27.1 percent of N cases. This would result in

the function to be available when a single v@rsion may have

given a faulty result. The conclusion was that N-Version

software had an increase in reliability over individual

version software and the increase was substantial. [KELL82]

John Knight at the University of Virginia is currently

starting an experiment to validate the fundamental principle

of multi-version software, that is, that the programs Be

independent of each other. He will be starting with ver-

sions of a program which must pass 200 randomly generated

tests to be used in the experiment. Previous similar

experiments (Kelly [KELL82] and McAllister [MCAL83]) did not

require that the individual version's reliability be that

good. Knight expects results to be available in the summer

of 1984. [KNIG84]

David McAllister at North Carolina State University has

been conducting experiments in correlated faults in multiple

versions of a program. He found that their initial attempt

to predict the reliability of N number of versions was too

optimistic. He wishes to repeat the experiment using pro-

grams with individually higher reliability. Nelson's relia-

bility model was used to obtain the reliability of each

version by executing 100 test cases. The" reliability of the

individual programs was as low as 17 percent. [MCAL83]

4.2 Experience with Recovery Blocks

As with multi-version programming, no practical example

of a complete system built using recovery block method was

found. The nearest to a realistic implementation is the

work currently being performed by the Computing Laboratory

at the University of Newcastle-upon-Tyne in Great Britain

4 - 7

for the British Navy. The work is very recent and has not

yet been published. This information was supplied by Dr.

Thomas Anderson who acted as a consultant to this study. The

application is a naval command and control system that was

constructed to commercial standards. The application in-

volves both concurrent processing as well as real-time pro-

cessing constraints. The system is a fairly large appli-

cation - approximately 8000 lines of code (50K bytes of

machine code). Although the experiment is not complete,

some of the results include a significant increase in relia-

bility (approximately 2.5 times increase) and a 10% perfor-

mance degradation due to overhead needed for recoverability.

[ANDE84]

The Computing Laboratory at the University of Newcastle

upon-Tyne has also conducted numerous other research pro-

jects in recovery blocks. Randell [RAND75, 78A, 78B, 78C,

79] proposed the formal structure of recovery blocks and has

researched recovery in distributed systems. Anderson

[ANDE76a, 81a, 78] is also extensively involved in computing

system reliability research. Cristian [LEE78, 79] and Wood

[WOOD80], are also all involved in research in recovery

blocks.

In work for the Army, System Development Corporation

experimented with distributed recovery blocks in a shared

memory multi-processor used in a real-time closed loop con-

trol system. The system is designed to look at fault-

tolerant software in missile tracking applications that are

highly time and reliability critical. Results showed that

recovery blocks provided fault-tolerance for selected real-

time processes with low impact on CPU utilization and criti-

cal response times. [WELC83]

There has also been experience with deadline mechanisms.

Campbell, et. al., [CAMP79] report the results of a simula-

tion of the deadline mechanism. Wei [WEI81] discusses the

application of deadline mechanism to two real-time systems,

the Annular Suspension Pointing System (ASPS), which is a

compu£er system controlling a platform on the Space Shuttle,

and on the widely used satellite based on Multimission

Modular Spacecraft. Both systems' software was reimple-

mented using Path Pascal and deadline mechanisms. Simula-

tions of the Path Pascal version verified the applicability

of the deadline mechanism in real-time applications.

The REBUS (Resident Backup Software) is anexample of

dissimilar backup software. It is being implemented in the

F-8 digital fly-by-wire program being conducted by Draper

Laboratory for NASA/Dryden.

4 - 8

4.3 Experience with Exception Handle@s

Boi, et. al., [BOI81] discuss the exception handling in

the ISAURE system, a small business application oriented

system. The system was modular and hierarchically orga-

nized. Exception handling attempted to mask the faults at

the level of occurrence. If masking could not be accomp-

lished, the exception was propagated upward in the hierarchy

to be handled at that level. Willett, et al, [WILL82] focus

on the design of recovery strategies, forward and backward,

that have been adopted in the Bell Telephone No. 4 _Elec-

tronic Simulating System (ESS). These recovery strategies
dealt with program anomalies and bad data. A total of 38

different recovery strategies have been developed, 15 of

which serve the common need of several units, while 23 serve

particular units or unique fault situations. It was unclear

how many of these recovery strategies were necessary to

handle hardware faults. The recovery of data is performed

by audit programs which reconstruct (forward recovery) the

data from associated information or by various levels of

reinitialization (backward recovery). Reinitialization is

faster but has a larger negative system impact, i.e., more

calls may be disrupted. Software fault detection (exception

monitor) checks job scheduling and sequencing for frequency

and execution time, and watchdog timers perform sanity
checks.

The RockwelI/WESCOM 580 is a family of multiprocessor

controlled telephone switching system. The expected cost

associated with multi-version software or recovery blocks is

not justified for a telephone switching system. [DES1]

However, the high reliability requirement of these systems

resulted in the need for extensive error detection and

recovery. Error detection mechanisms include a watchdog

timer, memory access monitoring, software range and index

checks, and periodically executed audit routines. When an

error is detected, forward error recovery is attempted first

in all cases except watchdog timer detected errors, which

involves backward recovery. Fault treatment is performed
off-line.

With regard to the hardened kernels, Boeing has

developed the MOSS (Minimum Operational Software Set)

concept and has used it in a C-135 flight control system

simulation and Compass Cope remotely piloted vehicle

project. They plan to continue research on this concept

use in flight-critical applications. [MART84b]

The classic example of the use of robust data structures

and audit routines is their application by Bell Laboratories

in the data structures of their electronic switching system

[BEUS69 and WILL82]. More recently, Black, Taylor, and

Morgan [BLAC80 and 81] looked into the theoretical and

practical use of robust data structures. They describe the

ad4ition of redundancy to data structures as a way to

4 - 9

improve a software system's ability to detect and correct
faults in the control information. The approach is
applicable to both forward and backward recovery techniques.

The Bell System's TSPS is a telephone line switching
system. It implements redundant information in the data
structures. A software audit program periodically checks •
the data structures. Upon detection of an error, forward

recovery techniques correct the damage. While correcting

damage losing some data is acceptable as long as the system

can be kept operational. TSPS installations averaged

between 10 and i00 actual corrections per day even after

several years of operation. An automatic restart, i.e.,

backward recovery, occurred about once every two months.

[CONN72]

4.4 Summary of Experience with Fault-Tolerant Software

As with any technology which is in the early stages of

its evolution, examples of complete implementations fault-

tolerant systems in the real world are limited. In fact, no

true industrial instance was found where a complete fault-

tolerant system was implemented (including the automatic

correction). Many instances, were found where the tech-

niques of fault-tolerant software have been used success-

fully in partial solutions. It was _ found that the devel-

opers who use fault-tolerant software techniques in their

systems continue to thoroughly-test their software so that

the detection of additional errors has not necessarily

occurred. No examples were found in which the last stage of

the generalized model, fault treatment, was an integral

portion of an operating system. However, it was found, that

portions of the techniques have been fairly widely used in

error detection, and that the only examples of complete

systems are in the laboratory or are too new to provide

complete analysis.

There were, however, severalsignificant results from

the experience gained to date:

First, there is no evidence that fault-tolerant

software will degrade the reliability of the resul-

ting system, and many of the projects lsurveyed

reported that improved reliabilit_ (although not

quantified) was achieved;

Second, a trend was observed in which regulatory

agencies are requiring software deyelopers to use

redundant software to improve the reliability in

safety critical functions, and in which developers of

systems using the dissimilar redundant software are

being allowed to implement only critical subsets in

the alternative, thus taking advantage of the inher-

ent benefits of fault detection;

4 - i0

c

I

Third, it was found that found that the empirical"

data needed to quantitatively evaluate the perfor-

mance of the fault-tolerant software implementations

has, with the exception of the research world, not

been kept, and that, therefore, statements on

improved reliability, cost benefit of fault-tolerance

versus traditional software development, e_b., could

not be made beyond the personal observations of the

individuals involved in the project. _ _

J

\

4 - ll

5.0 Basic Principles and Design Approaches for Architecture

5_i Introduction
I

This chapter addresses the impact of faultrtolerant

software on the architecture and hardware design of future

real time space computers. Its discussions are intended to

complement those in the chapter on fault-tolerant software

primitives, which emphasize the language support aspects of

a fault-tolerant software architecture. In successive top-

ics, we will discuss:

• Objectives,

• Architectural scope,

• Basic principles and design approaches.

These discussions are followed by Chapters on _fault-

tolerance techniques and hardware implications, software

fault-tolerant operating systems, and, a-summary of hardware

mechanisms.

5.2 Objectives !

System and application programmers currently use a wide

variety of ad hoc techniques to protect systems from the

harmful effects of software errors. In various forms, these

techniques employ special types of redundancy, fault detec-

tion, damage assessment, fault treatment, and state recov-

ery. Fault-tolerant software is an attempt to organize

these techniques into a systematic design methodology.

[ANDES1]. Several particular techniques have been described

and several general purpose schemes, combining sets of more

basic techniques, have been proposed. The most well-known

ale recovery blocks [RAND75 and HECH76] and N-Version Pro-

gramming. [CHEN78a and KELL83] These techniques and schemes

are evolving (in fact, those two schemes should be Viewed as

instances of a more general scheme), but the use of substan-

tial and systematic redundancy in run-time software remains

controversial, due to:

• The lack of field experience,

• The weakness of current cost-effectiveness models,

Uncertainty about whether the kinds of

addressed by present techniques have major
cance.

faults

signifi-

Nevertheless, interest in systematic methods for fault-

tolerance in software is increasing, a_d 'it is hoped that

information on architectural organization and hardware costs

_ i .,

provided in this report will contribute to the development

of fault-tolerant software as a general methodology that can

be practiced as part of normal system development.

Since computer programming and architecture are evolving

and interconnected arts, the discussion of computer hardware

is presented in the framework of new concepts of computation

that have been developed in recent years. This discussion

will make continual reference to specific principles, mainly

Encapsulation and Hierarchy. These principles are only par-

tially reflected in current programming practice and archi-

tecture (e.g., the Ada and SmallTalk languages, the Intel

iAPX 432 microprocessor and the Unix operating system), but

it its expected that they will be increasingly adopted over

the next five years.
I

In the same time period, it may be expected that next

generation software concepts, which are presently being

vigorously pursued in numerous research programs, will start

to emerge rapidly, in order to support higher level program-

ming and to exploit VLSI technology. These concepts, vari-

ously known as Applicative Programming [BACK78], Equational

Programming, etc., are associated with new architectures

that feature very high orders of parallel computation and a

high degree of asynchrony [TREL82].

This discussion, therefore, attempts to distinguish

hardware techniques that are applicable to current new arch-

itectures, within a methodological framework that reflects

new and evolving trends in software and computer architec-

ture. One of the findings is that the design approaches

needed to support fault-tolerant software are compatible

with modern trends in computer architecture. This encour-

ages the view that support of software fault-tolerance need

not add an undue amount of logical complexity in new compu-

ter system designs.

Quantitative evaluation of the proposed techniques was

not attempted. The benefits are functions not only of the

performance improvement provided by particular mechanisms,

but also of their frequency of use. The costs are functions

of how well a particular technique fits into a given archi-

tecture and logical realization, which is difficult to esti-

mate outside the context of a particular machine. Also, the

mechanisms suggested in many cases are only meant to suggest

feasible approaches and not optimality. Many questions

therefore remain open for further research.

5.3 Architectural Criteria and Scope

This section discusses criteria for choosing and eval-

uating architectural features, and scope of architectural

types and levels. Recommendations include programmer flexi-

bility, low performance burden, and close integration of

5 - 2

fault-tolerance and computational support functions. A wide
scope of relevantarchitectural types is recognized, and the
issue of applying fault-tolerance to the operating system
itself is examined.

5.3.1 Criteria

We assume that the primary goal for the techniques to be

considered isto improve software reliability in high-per-

formance computers used in diverse, multifaceted, and mis-

sion-critical applications in aircraft and space vehicles.

Such applications will include a full range of problem types

and algorithms. Applications will cover a wide range of

response times, sizes of data sets, and data volatility,

i.e., expected lifetime of internal state information (quite

different for control and data processing applications).

The need for hardware fault-tolerance is assumed. We also

assume that software fault-tolerance techniques will be used

on an experimental basis to some extent, at least during the

first few years of system life.

These environmental features imply the following

e_ria for the support of fault-tolerance in software:

cri -

Programmers should be allowed flexible

software fault-tolerance techniques for

to particular program functions.

choice of

application

Features added to support software fault-tolerance

should have low impact on performance and low visi-

bility to the programmer;

Techniques employed for software fault-tolerance

should be compatible with those employed for hardware

fault-tolerance. To the greatest extent possible,

they should not weaken the protection against

hardware faults, they should enhance hardware fault

diagnosis and recovery, and they should be jointly

coordinated for optimum use of system resources to

meet the reliability requirements of various mission

functions.

These criteria have guided our selection of

and their evaluation in the study. They are,

ideals, and inevitably subject to compromise.

techniques

of course,

5.3.2 Architectural Scope

This section discusses the architectural issues covered

in this chapter in three regards: architectural type, archi-

tectural level, and architectural scope of software fault-

tolerance techniques.

5 - 3

The range of possible architectures for future aircraft
and space applications is very large. Generic architectural
types of this range include:

Dedicated-Function Uniprocessing: A single computer,
standing alone or slaved to another computer;

Multi-task Uniprocessing: A single computer with

full memory and I/O capabilities, serving multiple

mission functions;

Applicative Multiprocessing: A large set of simple

processors sharing a multiported memory; distributed

task control;

Shared-Memory Multiprocessing: A set of processors,

possibly with local memory, each with local program

control; both physical and logical memory space are
shared;

Federated Multicomputing: A set of computers, pos-

sibly heterogeneous, each with its own memory and

program control, possibly sharing a common file

space; central system control is either fixed or

movable among computers;

Distributed Multicomputing: A set of computers,

possibly heterogeneous; distributed system control.

The results of the study are relevant to all of these

types. Lesser emphasis is given to uniprocessing, because

of its limited significance in systems and also to applica-

tive multiprocessing (i.e., it is not immediately relevant

to the coming generation of air/space systems). It is

assumed that some level of hardware fault-tolerance will be

needed in all applications of interest, and we discuss the

interaction of hardware and software fault-tolerance design
issues.

In this wide range of system types there will be a great

variety in detailed hardware characteristics, reflecting

different design decisions about the extent of distribution

of control, and the mechanisms for inter-module and inter-

computer communication, the memory addressing concept, etc.

This has limited the degree of detail available for

describing the hardware implications of the support schemes
considered. _

Different definitions exist for the level of the term

"architecture". One common definition narrows it to the set

of machine functions seen by the system programmer. Broader

definitions recognize it as a hierarchy of machine functions

of different levels of responsibility or abstraction, and as

a particular physical and logical organization of functional

elements. These definitions allow more meaningful descrip-

5 - 4

tions of the functionality that links the hardware to the
application programs and of the software and hardware design
options that are available to the system designer.

We shall use the broader definitions of architectural
level. We assume a hierarchical struc£uring of machine
functions in which the top level is the functionality pre-
sented to application programs, and the bottom level is the
functionality provided by "machine" language. We also
recognize various possible functionalities and configura-
tions of hardware, although we do not go very deeply into
issues such as bus structure and protocol, and the physical
partitioning of machine functions. We believe that this
emphasis is appropriate for this study, _iven the wide range
of possibilities for these design features in the set of
architectures of concern. We definitely consider" the
internal and external functionality of the operating system.

Most discussions of software fault-tolerance have
focused on its use in improving the [eliability of applica-
tion programs. It has been argued that such techniques are
of less interest than system software, because the latter is
stable and is subject to greater scrutiny, hence it may be
expected to exhibit greater intrinsic reliability.

Two other considerations may have obscured the relevance
of the architectural scope of software fault-tolerance to
operating system software. First, most discussions of soft-
ware fault-tolerance have assumed that approximate solutions
are acceptable, which, with few exceptions, cannot be the
case for system software (one cannot, for example, allocate
one resource simultaneously to two consumers). Second,
system software is typically very poorly structured, so it
is difficult to apply any systematic design method to the
operating system as a whole, as distinguished from particu-
lar functions.

Neither consideration is fundamental. In regard to
approximate solutions: if needed, multiple versions or
alternates of system software could be designed within the
constraint of producing exactly the same results, so that
the occurrence of any discrepancy implies a software error.
Alternatively, one might design a hierarchy of system ver-
sions such that lower level versions would correctly apply
system resources, but with less efficiency and hopefully
with greater reliability (error detection could be provided
by an acceptance test, as in [HECH82]). Many of the
resources typically managed by an operatingsystem may be
replicated, with each replica managed by a separate software
version of the operating system. With regard tO system
complexity: recent advances in operating Systems (notably
kernel-based designs) have introduced a high degree of
design structure, so that upper levels of the system have
the same relation to lower levels as application programs
have to the operating system. This formal structure tends to

5 - 5

facilitate application of general software
techniques to operating system programs.

fault-tolerance

Special problems do pertain, (as will be discussed in
the section on software fault-tolerant operating systems)
but it appears that there are significant opportunities for
beneficial application of fault-tolerant software to oper-
ating systems, given an appropriate system structure.

5.4 Basic Principles and Design Approaches

In applying fault-tolerance to a complex system, there

is a danger that the new mechanisms may introduce additional

sources of failure due to design and implementation errors.

It is important, therefore that the new mechanisms be intro-

duced in a way that preserves the integrity of a design,

with minimum added complexity. It is very important that

some unified principles of system organization be applied in

the architectural design.

The concepts of encapsulation and hierarchy have evolved

in recent years as extremely powerful and widely applicable

principles of computer system design and programming.

Briefly, encapsulation is an approach to organizing computa-

tional objects and activities in clusters with well-defined

boundaries, and with central management of external inter-

actions. Hierarchy is an approach to organizing computations

into simple dependency relationships (specifically, a linear

and _ unidirectional order of dependency, as in tree-type

graphs).

The initial motivation for these principles was to sim-

plify the process of making design decisions during system

development. Subsequently, many other benefits have been

derived, such as convenience of error containment and

correction, secure data access and portability. Encapsula-

tion and hierarchy are attractive for fault-tolerance

because they offer ways to achieve simplicity and generality

in the realization of particular fault-tolerance functions.

They also offer powerful organizing approaches for inte-

grating fault-tolerance into overall system design.

Examples of use of the encapsulation principle to

enhance intrinsic reliability and fault-tolerance include:

Organization of data and programs as uniform objects,

with rigorous control of object interaction;

• Organization of sets of alternate program

into fault-tolerant program modules (e.g.,

Blocks and N-Version program sets);

versions

Recovery

5 - 6

Q Organization of consistent sets of
for multiple processes (e.g.,
[NEUM80]);

recovery points
Conversations

Organization of communications among distributed

processes as atomic (indivisible) actions (e.g.,

methods for avoiding fragmentation of distributed

processes using Remote Procedure Calls, as in

[RUSH83]).;

• Organization of operating
recoverable modules.

system functions into

The hierarchy principle is coming into widespread use in

system design. Notable examples are layered protocols for

communications systems (e.g., the OSI module), structured

operating systems (e.g., Multics and Unix), and structured

software methodologies (e.g., HDM, Constantine, HOS,

Jackson). Examples of use of the hierarchy principle to

enhance reliability and fault-tolerance include:

Organization of all software, both application and

system type, into layers, with unidirectional depen-

dencies among layers;

Integration of service functions and

functions at each level;

fault-tolerance

• Use of nested _uuvery blocks to provide hierarchical

recovery capability;

Organization of operating system functions so that

only a minimal set at the lowest level (a "kernel")

need be exempted from fault-tolerance;

• Integration of global and local data and control

distributed processors.

in

Randell, Anderson, and Lee [RAND75, RAND75, and LEE83]

have proposed the concept of recursive structure for fault-

tolerant systems, based on a principle of recursive con-

struction ("Fault-tolerant systems should be constructed out

of generalized fault-tolerant component system" [RAND75]).

They suggest a generalized component consisting of a package
of functions for normal and abnormal activity, in which the

latter functions are responsible for exception handling both

within the component and at lower levels, and the former are

able to signal need for exception handling to the abnormal

functions at the same or next higher level of the hierarchy.

Continuing reference will be made to these principles

in the detailed discussion of fault-tolerance techniques.

5- 7

Use of kernel-based structure for operating systems

offers a good method for applying software fault-tolerance

techniques to the operating system, because most operating

system functions are encapsulated into service moduleS. The

main difference between application modules and operating

system modules is that the domain and range of system module

functions are the state of the computer, rather than the

state of the system inwhich the computer is embedded, and

the values of system module functions tend to be primarily

logical rather than numerical (but that is not an exclusive

property of the system modules).

In practice, the kernel itself is logical rather than

simple (it must decide what process the hardware sSould pay

attention to, provide communication between processes,

etc.), and it must be very fast. It is natural, therefore,

to avoid redundancy in the implementation of the kernel,

i.e., to make it a trusted process, because it may be pos-

sible to verify its design and because redundancy would tend

to reduce its speed. In principle, however, redundancy may

be applied to the kernel and to all levels below it. Some

protection might be obtained by periodic testing. These

issues are discussed in greater detail in the chapter on

Software Fault-Tolerant Operating System.

5 - 8

6.0 Fault-Tolerance Techniques and Hardware Implications

6.1 Introduction

Although the recovery blocks and N-Version sche_es_ are

the most well known proposals for software fault-tolerance,

they should be seen as particular combinations of the more

general software fault-tolerant schemes of error" detection,

damage assessment, error recovery, and fault treatment.

The schemes are themselves in the process of evolution,

and with experience, it is likely that new combinations will

evolve, and that future application and system programmers

will choose their own combination s_of basic functions. The

discussion of hardware implication_in this section, there-

fore, is aimed at the various individual techniques._on which "

a general methodology of fault-tolerant design m_y be based.

This chapter describes a.se£ of specific fault-tolerance

techniques and their individual implica£idns for hardware

design. A summary of the hardware impl4cations is given in

in Section 6.8. Some of the techniques are intended for

both application and operating system fault tolerance, while

others are more well suited to one class or the other, as

noted. The discussion of par£icular fault-tolerance techni-

ques is preceded by a discussion of hard_are implications of

the encapsulation principle, which, while not a fault-toler-

ance technique in itself, is a funda_entai technique for

fault isolation and reconfiguration.

The techniques described are:

• Encapsulation,

• Processor redundancy assignment,

• Fault detection and correction logic,

• State recovery,

• Run-time assertion checking,

• Watchdog timing,

• Watchdog processing,

• Robust data structures.

6.2 Data and Program Encapsulation

6.2.1 Fault-Tolerance Function

Data encapsulation is an application of the general

principle of encapsulation to data. Data are organized in

sets, each with its own mechanism for controlling access to

individual data items. The set may be given a name, repre-

senting a type of data, so that individual elements repre-

sent instances of the type, e.g., month (January,

February,...). In some designs, strong rules are enforced

as to what types of data may be combined in an operation.

The access mechanism may have some associated rules under

which access for reading or writing are allowed, and may

have other associated information that may be useful in

relating the set to other data sets, e.g., data types,

ownership, and times of creation or modification. Use of an

access mechanism helps to increase reliability by:

Eliminating the kind of incorrect data accesses that

can result when data is accessed directly on the

basis of a computed address;

Allowing detection of certain software errors, in

which data of different kinds, e.g., alphanumerics

and floating point numbers, might inadvertently be

combined;

Facilitating relocation of data, by centralizing the

mapping of data names to physical locations;

• Limiting the effects of erroneous data modification.

Program encapsulation applies the encapsulation prin-

ciple to the structuring of programs and interprogram commu-

nication. Program variables are divided into two groups,

only one of which is accessible to other programs. Exter-

nally, the behavior of the program is defined only in terms

of the externally accessible variable; the internal vari-

ables are effectively invisible, or "hidden". This is an

example of the general principle known as Information Hiding

[PARN72], which has many benefits in software practice, such

as support of hierarchical structure and portability. As an

example, Ada packages are encapsulated programs [TAYL80].

As in the case of data encapsulation, program encapsulation

limits certain kinds of software errors, such as inadvertent

flow of control and data reference. The encapsulation mech-

anism also permits association of information that defines

relationships among encapsulations, such as access rights,

alternate program versions, times of creation and use, and
the like.

Object encapsulation is a unified encapsulation tech-

nique under which all the various computational entities

6 -- 2

such as data, programs, processors, channels, etc., are

treated uniformly, i.e., as so-called objects (which may be

thought of as abstract machines). Each object has a data

set and a set of functions through which data are accessed

and modified. Several architectures have been developed

around this principle, extended by such features as capabi-

lities, which are tokens of access rights that support

secure information sharing [GILO83].

6.2.2 Hardware Implications

Data encapsulation implies use of some data structures,

such as tables, for mapping names of data sets into physical

addresses, and for accessing individual members of data

sets. Use of associated information to explicitly define

the type of the data tags in association with the names for

checking correctness of the access request. Since such

requests occur at almost every instruction, special hardware
is needed for both address translation and access valida-

tion.

Mechanisms to support program and object encapsulation

can be rather elaborate, involving manipulation of data

structures such as stacks and heaps (collection of possible

multiple instances of data types) [GILO83 AND SMIT81]. Dis-

cussion of these mechanisms is beyond the scope of this

" it is worth notlng that one __=__ __report, _ • ____ i ^_^_

(RISCI) is motivated by the observation that "The procedure

call/return is the most time-consuming operation in typical

high-level programs" [PARN72]. We note further that Ada

provides most of the good qualities of encapsulation and

hierarchy discussed, with the notable exception of robust-

ness with respect to failed processors in multiprocessor (or

distributed processor) systems [KNIG83].

A technique for detecting memory management errors that

is particularly useful for Ada packages is the use of "sig-

natures" (a kind of checksum) for checking that dynamic

structures such as stacks and heaps are consistently modi-

fied. The elements of a data structure (either the data

elements themselves or tags associated with blocks of ele-

ments) are treated as symbols in a code space. The signa-

ture is a single symbol that is a function of a set of all

symbols in a set. The signature is updated upon the addi-

tional or removal of symbols, and following a change, the

set function may be compared with the signature for consis-

tency. Appropriate hardware consists of a signature "adder"

and a small processor that acts as an observer of memory I/O

data. Another use_of signatures and monitors is discussed

in the sections on watchdog processors. Other techniques

for memory protection are discussed in the section on robust

data structures.

6 - 3

6.3 Processor Redundancy Assignment

6.3.1 Fault-Tolerance Functions

This section discusses the configuration of multiple

processors to support various combinations of hardware and

software fault-tolerance. These configurations may be con-

sidered fixed for a given machine or virtual within a pro-

cessor set. Techniques for fault detection, masking and

recovery are also discussed. Implementation of those func-

tions may justify use of yet additional processors.

Single and multiple processors can support several modes

of redundant computing, such as:

• Dual processor redundancy for hardware fault

tion;

detec-

• Triple processor redundancy for hardware fault

masking;

• N-fold processor redundancy (N greater than one) for

software fault masking, as in N-Version programming;

Single processor, serially employed for alternate

program versions, for acceptance-based software fault

masking, as in recovery blocks;

N-fold processor redundancy, employed in parallel for

alternate programming versions, for acceptance-based

software fault masking (a parallel version of

recovery blocks).

In practical systems,

tolerance may be required.

ible, for example:

both hardware and software fault-

Various combinations are feas-

Combined hardware and software fault-tolerance: Sets

of dual or triple processors execute multiple soft-

ware versions concurrently. Hardware and software

fault detection also proceed concurrently. The num-

ber of processors is the product of the hardware and

software redundancy factors;

Hardware fault-tolerance plus serial acceptance test:

Dual or triple processors are configured for hardware

fault-tolerance. They execute identical replicas of

a selected version, and switch between versions based

on acceptance tests applied to version outputs;

Software fault-tolerance plus periodic hardware test:

Dual or triple processors execute different program

versions concurrently to provide software fault

masking. The processors are subject to periodic

testing for hardware fault detection, by self-test or
comparisons between processors. (Note: this use of

concurrently executed redundant software periodic

hardware fault checking is directly symmetric to the

use of concurrent hardware-fault-tolerance and

periodic software testing in the preceding scheme).

Several mixtures of roles are advantageous in the use of

available processor resources, for example:

Dual hardware and dual software fault-tolerance: In

a four-processor set with two program versions, the

versions are executed on separate processor pairs.

Members of each pair are compared to detect

hardware errors and members of different pairs are

compared to detect software errors. (Note: addi-

tional processor resources can be used to upgrade

fault-tolerance from detection to masking in hardware

or software, as needed);

Shared processor-dual hardware and dual software

fault-tolerance: In a three-processor set with two

program versions, one version is executed on one pro-

cessor, and identical replicas of the other version

are executed on a pair of processors; outputs of the

pair are compared to detect hardware faults. If

those outputs are identical, any unacceptable devia-

tion between the outputs of the two versions implies
the existence of software fault in one of the ver-

sions or a hardware fault in the solo processor.

Separation of these causes would be done by recon-

figuring the processors and applying further tests.

This scheme involves an exchange of information be-
tween hardware fault and software-fault detection

processes. The complexity of this exchange might be
considered to be a source of error. The benefit

obtained is a saving of processors, or, in the case

of a degraded set of processors, an opportunity to
use available resources to maximize fault detection

or masking. For dual-version software, three pro-

cessors are used instead of four. For triple-version

software, four processors are used instead of six.

6.3..2 Hardware Implications

There is a major architectural choice between fixing the

assignment of processors to specific redundancy roles and

making the assignment dynamic. Fixed assignment offers

simplicity in data communication and in task scheduling and

dispatching. Dynamic assignment offers several attractive

benefits, including:

• Economy in the number of processors required for a

given order of hardware and software fault-tolerance.

6 - 5

This is beneficial both in the initial sizing of
machine resources and in making the best use of
processor resources in the event of processor loss;.

Flexibility in the use of the level of hardware and
software redundancy according to reliability needs
and experience. For example, certain critical func-
tions may require high orders of redundancy. If
these occur infrequently, fixed assignment of pro-
cessor resources would be very wasteful. Also, if a
particular processor has an unusual history of
reporting discrepancies between software versions,
implying possible internal faults, it might be
advantageous to assign it to a hardware fault-toler-
ant pair, in order to clarify its hardware "creden-
tials".

Changes in assignment of roles to processors will occur
infrequently, and should require no special hardware facili-
ties. Decisions about the dispatching of data to processors
according to their assigned roles may, however, occur fre-
quently, e.g., for each quantum of data transferred (file,
message or work), depending on how the architecture provides
for communication among processors, memories, channels and
error detection and correction modules. Clearly, informa-

tion as to redundancy configuration, assigned roles, and '

perhaps data paths, must be used to control data flow. This

information may be distributed and applied in several ways,

as in the following schemes:

Shared memory/distributed dispatching: Processors

with local data stores and autonomous dispatching

capabilities make independent calls for data from a

central store. Each processor's operating system

contains all information about configuration and role

assignment. The rate of change of context informa-

tion is low, so no special hardware appears to be

necessary;

Shared memory/centralized dispatching [MATS83] A set

of processors, with relatively little local data

store and no dispatching capability, processes data

that is dispatched from a shared memory by a central
controller. Communication between the controller and

the processors will require appropriate hardware

support. The controller itself constitutes a special

hardware facility. This scheme is appropriate to a

situation where a large number of processors is

needed for concurrent processing. Centralizing the

configuration and assignment logic helps to simplify

the processors. This concept is carried out strongly

in Dataflow computing systems, where sequencing of

parallel and sequential operations is supported by

both the programming language and by the machine

hardware. Flexible application of machine resources

6 - 6

to multiple replications or multiple versions may be
organized at the language level;

Distributed processing: Configuration control,
scheduling, dispatching and processing are controlled
and conducted at each node of a distributed proces-
sing network. Information needed for redundant task
dispatching and intercommunication may be communi-
cated through normal mechanisms. Synchronization of
distributed results presents a special problem, as
discussed in the following section.

6.4 Fault Detection and Correction Logic

6.4.1 Fault-Tolerance Functions

The following functions are widely applicable in hard-

ware or software fault-tolerance, and are candidates for

special hardware implementation because of their frequency

of application: [SHRI82]

o Consistent data replication and distribution:

Standard fault-tolerance schemes such as dual and

triple redundancy for hardware faults and the two
multi-version schemes for software fault-tolerance

base their fault detection logic on the assumption

that output data of corresponding replicas of

versions are derived from identical input data. This

assumption is invalidated by several kinds of faults.

The following problems may occur in practice;

Inconsistent replication in tightly coupled systems:

In distributing copies of a unique datum to several

processors, there are several kinds of faults in

practical distribution systems (e.g., different
threshold levels in receivers on a common bus) that

may induce differences in the received data. This

problem is solvable by the use of one of the inter-

active consistency algorithms [MAKA82], which

requires several time-consuming exchanges of input

data among the receiving processors, with voting;

Excessive data dispersion in distributed systems: An

attractive strategy in distributed process-control

systems in which input data vary slowly is to allow

redundant programs, either identical or multi-ver-

sioned, to accept input data that are approximately

the same but not necessarily identical; for example,

samples of a single source at slightly different

times or samples at the same moment of time from

different sensors that read the same physical

variable.

6 - 7

In comparing the outputs of processes that use

different inputs, care must be taken to distinguish

those differences in output due to input differences

from those due to to processing faults. Making this

distinction might be enhanced by careful control or

reduction of the amount of dispersion in the values

of the several input samples. Recent investigations

[PATT82] suggest that'the logic of" such processing

must be application dependent.

A technique of possible importance in distributed

systems is to attach time inlormation ("time stamps")

to data samples, in order to avoid time confusion due

to internal and possibly unpredictable time delays;

Hardware fault detection and error masking: Exper-

ience has shown that the time required for error

detection and voting in three-fold and five-fold

redundant systems can be very significant in high-

performance process-control applications. Feasible

hardware implementations for these functions have

been described; [SHIR82]

Adjudication: In both the recovery blocks and N-

Version programming scher_es, outputs are used by the

system only if they pass a test of "acceptability"

using user-defined test _nctions. In the standard

N-Version scheme, acceptable outputs are combined

according to some appropriate rule and forwarded to

the system. In the standard recovery blocks scheme,

control is passed to aiternative programs. The

former is a form of forward error recovery, and the

latter is a form of backward error recovery.

The functions of acceptability testing, output

combination and transfer of control have together

been called the "Adjudication" function. This

represents a unificatiQn of the recovery blocks and

the N-Version scheme_'. The complexity of the

adjudication function can vary considerably,

depending on the complexity of the _ primary program

and upon the degree of software fault coverage

desired. For example, an acceptance test for a

program may constitute a single line of code or it

may require execution of a program of the same size

or even larger (written appropriately, an acceptance

test might be usable as another version). The time

allowed for adjudication also may justify use of

separate processors. For lengthy acceptance tests,

pipelining of version execution and acceptance-test

execution may be advantageous:

The outputs of concurrently executed N-Version pro-

grams require logical synchronization due to inevi-

table differences in the execution time of different

6 - 8

implementations. [MAKA82]. In tightly-coupled sys-

tems, this is no different from other process synch-

ronization problems. In distributedsystems, where

node or link failure is a significant possibility,

the synchronization process for combining results

derived from different nodes must consider the pos-

sibility that some input may never appear. Special

hardware other than timers does not seem necessary;

Numerical error control: Significant errors in num-

erical computation can result due to the charac-

teristics of the algorithm used and,of the particular

form of finite arithmetic employed in a given compu-

ter. Such errors may result in large deviations

between the outputs of program versions that may use

different numerical methods for the same function.

Improved rules for floating_point arithmetic that

reduce this effect for important computations have

been proposed; [CART83]

Context management: In some cases, most notably in

operating systems, the amount of information that is

potentially changed by an operation is very large,

and may be generated by many different subprocesses.

Examples are processor-to-resource mapping data and

status bits. Version comparison or acceptance tes-
ting may require considerable effort in the collec-

tion of information from the various subprograms

that develop or 11_ it. For high speed systems

such as the resource managers of operating systems,

it would be very advantageous to be able to call up

all state variables for a version very quickly for

comparison with the proposed values from other pro-

gram versions. It would be further advantageous to

be able to distinguish only those state variables

that have changed since last inspection. [ANDE81]

6.4.2 Hardware Implications

The special functions described were selected because in

the cases where they are applicable, they occur very

frequently, and therefore could have harmful impact on per-

formance. Their implications for special hardware design

are exemplified in the following:

Requirements for consistent replication of input data

and output data comparison and voting imply a need

for direct logic for three-way voting and comparison

rapid data exchange between processors;

Requirements for time coordination of data samples in

distributed processing systems imply a need for time

stamping of data samples;

6 - 9

Requirements for adjudication of multiversion soft-

ware results imply a need for general-purpose pro-

cessors for computing acoeptance tests and output

combining rules; downloading of microprograms spe-

cialized to specific applications, and pipelining of

primary computations and adjudications may be _alu-

able;

Requirements for very rapid comparisons of large

number of data elements such as the various control

signals found in operating systems imply a need for:

Rapid context retrieval.

Rapid extraction and comparison of most-recently

changed variables;

Requirements for controlling errors in numerical

computation imply a need for improved rounding algo-

rithms for floating-point arithmetic units.

6.5 State Recovery

6.5.1 General Issues

State recovery is a fundamental function in fault-toler-

ant computing. Faults usually cause state variables of an

application program, or of the machine itself to beset to

some improper values that not only may give incorrect out-

puts, but may also prevent correct future computation. If

fault tolerance involves machine reconfiguration, it will

have to be initialized to the Correct state. The goal of

state recovery in fault-tolerant computing is thus to assure

that, following faults and possible fault correction

actions, all application and machine state variables have

values of state thatenable correct computation to proceed.

If input data and initial state information for a compu-

tation are retained throughout a fault event, it is

possible, in principle, to repeat the computation to obtain

the the correct results. Such recovery is called backward

error recovery. In a real-time system, the time and resour-

ces required for this repetitionmay prevent the servicing

of new input data. If that service is more important than

correcting past results, it may be preferred to act as

quickly as possible to set system state variables to values

that will allow computation to proceed. Such recovery is

called forward error recovery. Some combination of forward

and backward error recovery maybe advantageous, in which

past-future comput@d results may be sacrificed in some pro-

portion.

6 - I0

Backward recovery is necessary in applications where
some state values have long-term importance. Forward recov-
ery, in which accuracy in some values may be sacrificed, may
be acceptable in systems (e.g., sensor-driven systems) in
which state values are quickly derived from, and strongly
determined by the most recent data. Practical real-time
systems will require both forms of recovery.

It is perhaps unfortunate that the recovery blocks
approach has been associated exclusively with backward
recovery and that N-Version programming exclusively with
forward recovery. In some applications where it is
essential that state variables be preserved, one may need
the output-combining aspect of the N-Version scheme together
with some recovery capability. A particular problem that
occurs in the N-Version scheme is that if each version
maintains such state variables internally, it may be a non-
trivial matter for one version (or a cooperating set of
versions) to correct a damaged state variable in another
version, because the data representations used by the
versions may be different (and deliberately so!); for
example, data might be organized in various equivalent
structures, such as lists, trees and hash arrays. The
reliability advantage of using different representations
must be balanced with the performance cost of transforming
representations in order to enable interprocessor
cooperation in fault detection and data restoration.

6.5.2 Fault-Tolerance Functions for Backward Error Recovery

The key issue in implementing backward error recovery is

efficiency in time and computing effort. For example, in

selecting a previous system state (i.e., the values of the

set of all system state variables) for return, the one

nearest in time that allows full regeneration of lost

results is clearly desired. In order to minimize redundant

computing resources and restoration time, it would also be

desirable to distinguish only those state variables that

need to be modified from among the large number of state

variables that may be involved in the particular computa-
tion.

The first goal, finding the nearest valid recovery

state, has been subject to considerable investigation

[NEUM80 and ANDE81] For single processes, useful recovery.

states are known as recovery points, the value of which are

determinable to a recovery routine with little difficulty.

For sets of alternative programs employing the same input

data, as in the recovery blocks scheme, the proper recovery

point is also clearly defined.

Complications arise in dealing with sets of communica-

ting processes, since all processes that may have contri-

buted to an unacceptable computation may be suspect. Two

6 - ii

approaches have been considered. In the first, a set of
processes are encapsulated in a compile-time entity known as
a conversation [NEUM80], which is treated as an atomic
recovery module; that is, when any recovery is needed, all
processes return to the points at the entry of the module.
In the second approach, records are kept of all actual
interprocess communications, and the records are traced
backwards until a consistent set of recovery points is
found. This approach requires imposition of a discipline of
interprocess communications in order to avoid pathological
conditions that could result in a massive unraveling of
computations. [RAND83a]

The goal of economical state recovery itself requires
setting correct values to only those variables that have
changed between the recovery point and the point of error.
In the technique known as the "recovery cache" [MELL83 and
LEE80] the names and initial values of state variables that
change following a recovery point are recorded in a special
memory (a cache). In order that this action does not slow
normal computation, the cache performs an associative search
on the names of the state variables it contains, so that for
each state variable accessed in the computation, it is

immediately determined whether or not that variable has

previously been modified.

A possible alternative to the use of this special

mechanism is to use serial-access data structures, such as

hash tables or balanced trees, to record initial values for

the actual state variables visited in the program. Despite

the efficiency of such structures, the computational load

may be significant and may justify special hardware.

6.5.3 Forward Error Recovery Functions

Less attention has been given to forward than to back-

ward error correction. The most well-known form of forward

correction is fault masking, such as voting, in triple

modular redundancy, or version-output combination, as in

N-Version programming. This technique cannot in itself

assure that all state variables that may be needed in future

computations have been correctly established following an

error. Correctness in this case does not necessarily mean

state values that correctly represent past history, but

rather values that are consistent with the application

(e.g., values of altitude, velocity and acceleration that

are feasible combinations for a given aircraft). An

additional objective might be that the new states should be

reasonable approximations to what they would be if the error

had not occurred. _

The problems of determining consistent points in the

program from which future computations may proceed, and of

determining the subset of all state variables that need

6 - 12

restoration, are essentially the same as in backward
recovery. It is much more difficult, of course, to deter-
mine what the new values should be. Many heuristics can be
imagined, but it would seem that the rules for determining
new values must depend on the application. In practice, it
may be important to compute the new values very quickly, in
which case special processor support may be justified.

6.5.4 Hardware Implications

Requirements for management of compile-time-encapsulated

sets of recovery processes imply the need for special opera-

ting system service, but do not require special hardware.

Requirements for dynamic reconstruction of consistent

recovery points in sets of processes imply the need for

maintenance of records of interprocess communication events.

In some applications, this service may be a significant

performance load on the operating system, and may justify

the use of a separate processor.

Requirements for forward error correction in real-time

systems imply a _Lo_,g poss_u_ need for _p_u_ hardware t_A

combine the outputs of multi-version programs. The combina-

tions will be application dependent, so in a multiple appli-

cation environment, the hardware should be programmable, and

programs that specialize its function for particular appli-

cations should be changeable during operation.

In real-time, high performance systems, requirements for

restoration of changed state variables in backward recovery

or for estimation of lost state variables in forward

recovery imply the need for a Recovery Cache (a name-asso-

ciative store), or a special processor to maintain associa,

tive-like data structures.

6.6 Assertion Checking

6.6.1 Fault-Tolerance Functions

Assertion checking is a kind of acceptance testing,

applied to interior points of a program. [ANDE79 and

LEVE83] A logical expression is associated with selected

program points that asserts some relationship among program

variables that should be true whenever program control

resides at that point. It has been shown that such

assertions can be written for all programs with a single

thread of control. Such assertions can be used to verify

analytically the correctness of program code. During

program execution, evaluation of an assertion expression to

a value TRUE implies correctness in the program and in the

hardware used up to that point. The assertion checking

6 - 13

technique addresses only the error detection function of
fault-tolerance, and does not prescribe a specific recovery
technique. Results of assertion checks must, of course, be
reported to an error-handling process.

In practice, it is difficult and time consuming to write
assertions that completely define the applicable relation-
ships. Some experiments [ANDE79] have indicated that useful
error detection may be obtained using incomplete specifica-
tions of the kind that a reasonably skilled programmer could
declare intuitively. The expressions are typically simple
computationally, but it is conceivable that they may become
more powerful (and complex) as experience is gained with
this technique.

A possibly significant burden on performing might be
experienced in retrieving all the system state variables
that might be relevant to an assertion. Research is needed
to determine the significance of this effect.

6.4.2 Hardware Implications

Use of the current style of assertion checking does not

impose a significant burden on performance. However, the

scheme has potential for considerable elaboration, with

consequent performance implications. Special hardware could

be justified for:

• Tagging assertion statements as special data types,

• Employing extra processors for parallel evaluation of

assertion functions,

Buffering global state variables (e.g., in a conven-

tional cache) to reduce the performance burden of

data access.

6.6.3 Watchdog Timing

6.6.3.1 Fault-Tolerance Functions

Watchdog timing is a form of assertion checking in which
the semantics of the check on software correctness are

reduced to the dimension of time [ORNS75]. This kind of

check is useful because many software and hardware errors

are manifested in an excessive time taken for some opera-

tion. Examples include loss or improper flow of control and

incorrect synchronization of multiple processes. The tech-

nique is also attractive because programmers usually are

able to declare reasonable bounds for program steps without

much difficulty.

6 - 14

In typical practice, timing is applied to only one
process at a time. For high-performance systems with appre-
ciable process concurrency and substantial nesting of pro-
cess calls, the use of multiple time-checking intervals is
attractive. Such intervals might be nested or overlapped,
in'the general case.

Several levels of testing complexity may be employed.
Perhaps the simplest cases are the measuring of the time
required to execute a program loop or to accomplish a call-
return exchange between a pair of processes (procedures,
subprograms, etc.). In this case, control remains at or
returns to the point in the program at which the time mea-
surement is initiated. The time limit for such measurement
would be declared in the program body.

A more complex case is that in which the program is
required to move from one control point to another within a
given period of time. The complexity arises when there are
several possible destinations and several possible paths to
a given destination. Consider source point A, destination
points B, and C, and intermediate points D and E, with paths
ABC, ABD, and AED. The three paths may have significantly
different ___ time bounds To __n_ _ _,
three time measurements may be initiated, corresponding to
the three possible paths; then as the program selects a
particular path, measurements for logically excluded paths
would be terminated. This approach requires that informa-
tion concerning selection of a particular path should be
located so that it appear prior to the timing out of alter-
nate paths.

The foregoing discussion is not intended to offer a
definitive solution, but merely to indicate the possible
complexities of implementing a powerful watchdog timing
facility.

Some enrichment may also be profitable in the handling
of error reports. For example, if transient, low-importance
errors are frequent events, some time-out reports might be
accumulated, and even dismissed before notifying the main
error handler.

6.6.3.2 Hardware Implications

The watchdog timing facility should be as independent as

possible of the software and hardware it protects. For the

simplest case of only one measurement at a time, the

initiating program (application or operating system utility)
must communicate to the operating system a time period and a

reset command, and the operating system must provide a time

measurement and alarm service.

6 - 15

For multiple concurrent time measurements,
cessor may be justified, including:

a separate pro-

A time clock, perhaps with several output frequencies
in order to minimize measurement activity for widely
varying time intervals;

A set of time registers with associated information,
such as program source and distribution points, logi-
cal reset conditions and counting rate;

• Programs for processing error reports.

6.6.4 Watchdog Processing

6.6.4.1 Fault-Tolerance Functions

Watchdog processing is yet another form of simplified

assertion checking, in which the semantics of the check are

reduced to program path traversal. The technique as

described in the literature [NAMJ83] does not cover the

dimension of time, but it could be employed in conjunction

with watchdog timing. The basic idea of watchdog processing

is to check that the control path followed in a program

execution is legal, i.e., logically consistent with the

program text.

Several strategies are conceivable, but all involve use

of one processor that observes instruction flow in another

processor. One technique employs the concept of a "signa-

ture", which is a symbol whose value is a function of a

string of symbols, usually of the same size. Examples from

current practice are sum-checks and cyclic redundancy checks

(CRC), used to check the integrity of data storage and

retrieval. In the proposed scheme [NANJ83], a check symbol
is associated with each program node at complication, and a

deterministic signature is computed for each path. During

execution, check symbols are accumulated into a running

signature, and information is derived that recognizes the

path that is actually traversed (there are several alterna-

tives for dealing with loops). The final signature is com-

pared with the precomputed path signature. In one implemen-

tation, check data are embedded in the program. In another,

a graph scheme for the program is stored separately,

together with node check symbols, and a path is followed

according to branch information derived from observing pro-

gram-counter behavior in the primary processor. The use of

signatures for checking for correct updating of special data

structures (e.g., stacks and heaps) is discussed in the

section on data encapsulation above.

6 - 16

6.6.4.2 Hardware Implications

Some form of separate processor is required with access

to instruction and operand data of the primary processor.

For the scheme in which check symbols are embedded in the

program, only a logic unit for signature accumulation,

together with a simple programmable controller are needed.

For the scheme in which a separate program schema graph and

associated check symbols are maintained, a substantial

amount of additional memory may be needed, depending on the

complexity of the program graph.

6.7 Robust Data Structures

6.7.1 Fault-Tolerance Functions

Data bases containing complex data structures such as

trees and multiply-linked lists are vulnerable to damage

from errors in the programs that update them. Various

schemes have been proposed for employing redundancy to pro-

tect data bases from errors of various kinds. The notion of

R_hu_ Data Structures [RAND83a and SHIR82] has good theo-

retical foundations, and seems to be of practical value in

some commercial products. In that scheme, redundant links

between data elements are employed in a way that allow error

detection and correction for some kinds of error. In prac-

tice, a separate inspection is conducted of the data base,

at a frequency that fits the experienced error rate.

This scheme is considerably more economical than one in

which several program versions maintain independent data

bases, but it assumes that errors will not occur that pre-

serve consistency. As with many other assumptions about

software errors, more experimental results and practical

experience are needed.

Another approach to memory error detection is the use of

signatures, which is described in the section on encapsu-

lation above.

6.7.2 Hardware Implications

Checking and correcting of data structures can be done

independently by a dedicated processor. This technique is

in current use [MELL83].

6.8 Summary of Hardware Implications

This section summarizes the findings on hardware impli-

cations of the fault-tolerance techniques. The findings are

organized here according to architectural feature, including

6 - 17

basic system functions and special logic units, memories,
and monitor units. Motivations and explanations of the use
of these functions are given in the discussions of the
preceding section.

6.8.1 Basic System Features

The following features are not specific to or essential

for fault-tolerance, but they are strongly supportive of

reliable programming and they tend to simplify the design of
fault-tolerant mechanisms:

Mechanisms to support program encapsulation (e.g.,

Strong Data Typing and Program Domains) for the pur-

poses of intrinsic reliability and limitation of

error propagation, including:

Name-based memory management,

Capability labels and machine support of label

inspection, such as hashing and table management;

Stack management to support rapid context change and

interprocess parameter passing;

Mechanisms to support hierarchical design in oper-

ating systems, (e.g., kernel and ring'based design),
including:

Multiple register sets and high speed access

memory to support rapid context change;

to

Special logic (e.g., microprograms) to support rapid

control of basic operating system functions, e.g.,

interrupt processing, memory management, process

scheduling, interprocess communication and type
checking;

Mechanisms to support time and data synchronization

in distributed and federated systems, including:

Time and source-identification labels

inter-node data (Time Stamping),

attached to

Special processors for time-keeping
Clock Synchronization).

(Fault-Tolerant

6.8.2 Other System Features

Support for flexible processor

replicas, versions and tests:
allocation among

6 - 18

For architectures employing a pool of simple

processors, special controllers for dispatching tasks

to processors and directing processor outputs to

hardware fault detection units; modes may include

parallelismand pipelining;

For distributed processors, special modes for inter-

node communication to accelerate collection of

multiple versions and replicas;

Special logic units for rapid execution

tolerance functions, including:

of fault-

Identity comparators and voters for hardware

detection and masking;

fault

Programmable logic for version-output combination,

e.g., inexact voting;

Voters and rapid data transfer facilities to support

consistent input data replication (Interactive Con-

sistency) for software and hardware redundancy;

Devices to compute signature check symbols and to

check the integrity of dynamic memory structures and

flow of program control (as in the watchdog processor

technique);

For process-control applications with requirements

for minimal transport delay (sensor-to-actuator delay

time), special microprogrammed processors for rapid

combination of multiple-version computed outputs,

using application-dependent combining functions;

• Special memories for state recovery, including:

Name-associative caohe memories for backward and

forward error correction in programs with large

state'variable sets.

Special processors for on-line monitoring

puting activity with access to data busses,

counters and memory units and special logic

including:

of com-

program

support,

Access

units;

to data busses, program counters and memory

Fast recognition of special symbols

monitorable data;

that denote

Multiple time-out serrvice (Watchdog Timers)_ special

timers to support time measurement;

6 - 19

Program-control path checking (Watchdog Processors);

special logic units to support signature accumula-
tion;

Memory error detection and correction (Robust Data
Structures);

Memory error detection (Signature Checking).

6 - 20

7.0 Software Fault-Tolerant Operating Systems

7.1 Introduction

This section discusses techniques for achieving system

software (i.e., operating systems) that is tolerant to

design flaws. The major themes addressed are:

A framework that is suitable for both system software

and the applications software that it supports.

Moreover, the framework supports the different

approaches to software fault-tolerance: Recovery

blocks, N-Version programming, and combinations of

these two approaches;

The identification of the reliability kernel, i.e.,

that portion of the system that provides the basic

mechanisms that the rest of the system will use to

achieve software fault-tolerance. The reliability

kernel will not be fault-tolerant and, consequently,

should be correct, or "trusted", in order for the

redundancy in the rest of the system to be managed so

as to achieve fault-tolerance. The reliability

kernel is hardware fault-tolerant to the system and

to the security kernel of a system intended to

provide data security;

Hardware features that support the objective of mini-

mizing the performance penalty associated with

providing software fault-tolerance. Such hardware

support is essential for system software which even

in the absence of fault-tolerance can exact a heavy
overhead burden.

One straight-forward approach to using different ver-

sions of operating system software for fault-tolerance is to

encapsulate separate versions of the operating system,

together with the set of application programs it serves in a

separate computer. The resulting architecture would be

similar to the SIFT mutlicomputer concept [GOLD80 and

GOLD84]. This approach masks faults occuring anywhere and

permits recovery for all programs that do not have an inter-

nal state or have only a few state variables. The approach

is quite suitable for achieving full software fault-toler-

ance (masking and recovery) for all application programs

suitable for execution on SIFT, but only masking for the

operating system of SIFT. Of particular interest about this

approach is that it does not require any trusted system

software. Embellishments to the basic concept to support

recovery for the operating system entail a nontrivial albeit

modest size reliability kernel. However, even with these

improvements the SIFT-based approach is limited; for exam-

ple, it requires a multicomputer organization and it also

7 - 1

places demands on the organization of_application programs

that might be unacceptable.

Towards a more flexible framework for fault-tolerant

system programs, a hierarchical operating system is pre-

sented. The lower levels of the system (which can be viewed

as the reliability kernel) provide the mechanisms needed by

the higher levels. The mechanisms of the kernel support the

fault-tolerant needs of the higher levels and provide the

basic building blocks the higher levels require to achieve

their functionality. It is convenient to view the kernel as

all levels below some distinguished level, the distinguished

level being decided on the basis of the tradeoffs between

cost and reliability benefits attendant to applying fault-
tolerance to levels below it. The kernel complexity is

dependent on such properties of the overall system architec-

ture as the degree of distribution of computation, what ar@

the key properties of system programs relative to fault-

tolerance and what hardware support is vital to performance.

Key hardware features are those in support of:

• Multiprocessing hidden from most of the system soft-

ware and all of the application programs;

Encapsulation (providing error confinement) through

the use of tagging, capabilities, or descriptors, as

in some designs for secure systems;

Context, switching (i.e., the establishment of

domains that define the objects accessible to a pro-

cess); the establishment of conversations;

• Acceptance test computation;

• Identification of recoverable data sets;

• Level registers that assist :in the processing of

hierarchically structured systems;

• Exception handling.

7.2 SIFT-Based Software Fault-Tolerance

Briefly, the application of the SIFT concept to software

fault-tolerance is as follows. The underlying machine organ-

ization is a multi-computer, where the individual computers

are interconnected by a network that allows direct communi-

cation between each pair of computers. The basic computa-

tional unit in SIFT is a task, i.e., a unit that computes

outputs that are each a function of the task inputs; a task

may or may not retain state information between invocations.

Fault-tolerance is achieved by replication and voting at

the level of tasks. Each task is assigned to 3 or more

computers. If the outputs of an instance of a Task A are

7 - 2

required as inputs to an instance of a Task B, the following
steps occur: The (3 or more) task A outputs are broadcast
to all computers (although only those running task B act-
ually require them). The broadcast values are voted by all
computers. The majority-voted value computed in each compu-
ter is used as the input for the execution of task B in that
processor, the collection of disagreeing inputs to the voter
are further processed in an attempt to identify computers
that might have failed, and a computer judged to have failed

is logically removed from the configuration (by being

essentially ignored by all good computers).

The physical separation of the computers in SIFT

achieves confinement of a fault to single computer. This

confinement coupled with the replication and voting assures

the masking of any single fault; a higher degree of fault-

tolerance is obtained when the task replication is five or

greater. Transient faults are distinguished from permanent

faults by determining the persistence of errors caused by
faults.

Let us now consider how the SIFT architecture can be

used to achieve software fault-tolerance, primarily through

the use of N-Version programming. In the current use of

SIFT all of the programs implementing a task are identical

and can be assumed, in the absence of hardware failure, to

yield _ identical results for each invocation. For the

assumption of identical programs, exact-match voting is

used. To achieve software fault tolerance, nonidentical

programs will be associated with each task. It cannot be

assumed that each of these programs will yield exactly the

same output -- even when presented with identical inputs.

Hence it will be necessary to use approximate voting. It

has been previously noted that voting in SIFT is time-

consuming, especially if the replication is greater than

three. Since approximate voting will be more expensive than

exact-match voting, a hardware or microprogram implementa-

tion of the voting function would be very desirable. Thus,

it is clear that errors in the application programs are

masked.

What about achieving fault-tolerance for the SIFT

operating system? The key is for the specifications of each

of the operating systems run by the computers of SIFT to be

identical, but for £he implementations to be different.

What does it mean for the specifications to be identical?

Our design verification of SIFT [MELL83] is with respect to

a collection of design specifications that are input/output

specifications for the SIFT operating system. These speci-

fications provide constraints on the task schedules, assure

synchronization of the computers, identify key tables (e.g.,

noting working and nonworking computers, prevote and post-

vote buffers, and task dependencies), among other proper-

ties. It is not difficult to suggest different implementa-

tions. For example, one instance of the scheduler could use

7 - 3

a table with a linear search, another with a logarithmic

search, yet another with a hash representation. (Of course,
the execution times for these instances will not be identi-
cal. The slowest instance will, then, pace the other
instances.)

Under the assumption of implementation independence, any
single software error is masked or has no impact on the
system's behavior. If there is an impact, the output of one
or more) application tasks on a single computer will be in
error, and voting of the application outputs will mask this
error. Note that the error could be manifested as a task
failing to compute any output. Furthermore, there is no
trusted component concept for the interconnection network
itself: the physical isolation and the absence of any
significant sharing of data among computers means all soft-
ware is redundant and checkable. However there is one major
deficiency of the approach: The computer suffering a fault
in its operating system might not recover from the error
following the fault. For example, if the error results in
the damaging of a schedule table, the table is doomed to
remain in error.

An embellishment to SIFT can be used to permit recovery

of the operating systems but at the expense of requiring

some trusted software. Recovery can be effected by each

computer checkpointing its key tables for restoration

following an error. Checkpointing can be achieved by each

computer broadcasting the table values to other processors;

actually, only changes incurred since previous checkpoints

need be of concern. Since the internal representation of

the table may be unique to each processor (to obtain protec-

tion from software faults), it will be necessary to trans-

late the representation to a form that is consistent with

that of the other processors. (i)

When a computer is thought to have suffered an operating

system error (by, say, a majority of the other computers

determining that the computer is behaving erratically),

the process of recovery is as follows:

Q The other computers, acting in concert, restart the

clock of the failed computer. Hardware is clearly

required here, in particular, a hardware voter the

inputs of which direct lines from each of the other

computers and the output of which is a reset line to

the computer's clock;

(I) The SIFT-based approach to fault-tolerance is similar

to the distributed approach to security suggested by Rushby

[RUSH83] where the physical separation of processors assures

the data in a processor is easily protected from abuse by

other processors.

7 - 4

• The other computers broadcast the key tables to
failed computer;

the

Once restarted, a computer runs a bootstrap program
that reads (and votes) the table values. Now the
failed computer is ready to be accepted back in
service.

The reliability kernel consists primarily of the clock,
the clock restart mechanism, and the bootstrap program. The
voter is not necessarily in the kernel since it can suffer
occasional faults without disabling its computer.

Additional embellishments are possible. For example, it
might not be necessary to completely restore a computer's
state upon noting an error. The origin of the error (i.e.,
the identity of a corrupted table) might be determinable by
detailed analysis of the behavior of the failed processor.
The failure to produce an output for just one or a few tasks
would seem to indicate an error in the schedule table. The
recovery,then, would involve restoration of only this table.

Even with the extension to allow recovery for operating
system software, the SIFT-based approach is still not deal.
In particular:

In order to be compatible with SIFT, the application
programs must require no internal state (or have a
sufficiently small number of state variables such
that they can be passed as inputs) and must run
completion each invocation; in SIFT an invocation
corresponds to a subframe interval of a few milli-
seconds;

• The scheduling discipline of SIFT requires the
dule tables to be preplanned;

sche-

A multicomputer organization is required to obtain
the benefits of fault-tolerance with minimal trusted
software. As we discuss below, the SIFT concept can
be realized on a single computer by appropriate
multiplexing of resources, although the software
to effect the multiplexing must be trusted; (2)

Although all errors associated with a single computer
are maskable, recovery from certain single faults
might not be possible. Errant behavior is noted only
when the results of an application task execution

(2_ Again, the security kernel analogy is relevant. When
resources are not physically separated, the security kernel
becomes larger since the separation must be effected by
software.

7 - 5

differ. It is certainly possible for a fault to
impact an internal table, that would result in some
future task suffering an error, but not impact the
immediate task. The key issue here is that the
application tasks being in agreement is not a strong
enough test to guarantee all subordinate programs are
free of errors. A finer granularity of checking is
likely to be required.

7.3 Toward a General Framework for Reliable System
Software

In this section we describe preliminary work toward a

general framework in support of fault-tolerant system soft-

ware. The major themes addressed are:

• The particular properties of operating system

ware that pose problems for fault-tolerance;

soft-

A hierarchical structure in which each level provides

the mechanisms that the next level requires to

achieve fault-tolerance and its general functional

requirements;

Support for the different techniques at each

N-Version programming, recovery blocks, and

controlled recovery (as described by

[PARN72]);

level:

user-

Parnas

The portion of the system that is to be trusted

(i.e., the reliability kernel) in the sense that it
is not fault-tolerant. Relative to the hierarchical

structure, it is convenient to view a particular

level as the boundary between kernel and nonkernel

software: All levels below this distinguished level

constitute the kernel. It appears that certain func-

tions cannot be protected by redundancy; others,

particularly if simple, might also be trusted since

the cost of the redundancy might outweigh the bene-

fits;

How to embed distribution of computation into the

design in a manner that is transparent to the user.

Distribution in a hierarchical system can occur at

any level -- or, in general, at a number of levels.

7.3.1 Problems Associated with Operating Systems

Perhaps the most distinguishing features of operating

system software, different from the conventional application

programs associated with aircraft or spacecraft, are a large

internal state, extensive concurrency (real or virtual), and

the need for high performance. Each of these features poses

7 - 6

problems with respect to the current approaches to fault-
tolerant software.

The large internal state poses particular problems for
the N-Version programming method. There is no assurance
that the vote (approximate or identical) on output values is
sufficient to detect error in the internal state; it is not
practical to vote over the internal states of the replicas
since having independent realizations, the state spaces will
likely be quite different. It might be possible to define
an abstraction function that will unify the state spaces of
the different versions, thus enabling the vote to detect
certain errors in the internal state. For example, differ-
ent representations of a table (corresponding to different
versions) might all have the same number of entries; a vote
on the number of entries would be helpful in detecting many
errors.

It is clear that the extra steps associated with soft-
ware fault-tolerance, not required for conventional pro-
grams, exact a performance penalty. Parallel processing can
help to reduce the performance drain. For example, each of
the replicas in N-Version programming could be assigned to
separate processors. Also, pipelining and lookahead could
be used where tasks are not necessarily independent. For
example, the computation of acceptance tests could proceed
in parallel with conventional task processing, provided the
system is prepared to backup if the acceptance test fails.
A mere subtle performance drain, however, seems more diffi-
cult to eliminate. An optimized program, particularly part
of an operating system, interweaves the functions of what we
call decision and commitment. A typical computation relates
to deciding on the availability of a resource. A typical
commitment would assign this resource to some process.
Since commitments might be difficult to undo, the require-
ment of fault-tolerance dictates that the decision be check-
ed prior to any commitment, although in an optimized program
the two phases overlap.

7.3.2 Hierarchical Approach to Operatinq System
Fault-Tolerance

Anderson and Lee [ANDES1] describe a general approach to
hierarchical fault-tolerance that embodies all of the

schemes that have been studied. The following are the

possible approaches:

A level, suffering a fault, is able to use its inter-

nal mechanisms to effect recovery. The mechanisms

could be an alternate program, masking through

N-Version program, or even hardware masking tech-

niques. In either case, the next level is unaware of

the fault;

7 - 7

A level is unable to effect recovery, the general
consequence being loss of computation or data. In
this case, the level suffering the fault is required
to recover to a consistent state and to notify the
next higher level that an error has occured; the
notification can often be through the mechanisms of
an exceptional return, particularly if a programming
language (e.g., Ada) supporting exceptions is used.
The higher level will then use the facilities of the
lower level to recover itself as best it can. As a
simple example, consider the lower level to be a
scheduler that has as its internal state a
table of current schedules. If this table is in
error, the next level (say the file system) could
retrieve a previous version of the schedule table
stored as a backup file.

Numerous efforts have shown that an operating system can
be conveniently structured as a hierarchy of abstract
machines, e.g., SRI's PSOS (Probably Secure Operating Sys-
tem). [PS0S] Typically, each of the levels in the
hierarchy is viewed as a manager of some particular
resource. For example, PSOS contains managers of such
resources as: pages, segments, directories files, processes,
I/O devices, procedures, etc. They key problem of concern
to us is how to embed fault-tolerance into such a collection
of resources. It is our view that the lower levels of the
system should be trusted, primarily to avoid the performance
penalty associated with making them fault-tolerant. Thus, we
envision an operating system consisting of a kernel managing
primitive resources: memory (primary and secondary), dis-

patching of processes, I/O devices, low-level communication
protocols, and a recovery cache. The more complex (or vir-
tual) resources of the operating system would then be
built out of these resources and would be fault-tolerant.

The notion of generalized, hierarchically-structured
resource managers should encourage a general style of design
of acceptance tests. A resource manager is responsible for
planning the allocation of resources to consumers (i.e., the
next higher level) using some objective functions, such as
priority, request order, urgency, and economic use of
resources. Such planning may require complex computations,
but the results should be checkable against the objective
functions in a straight-forward way; for example, if the
assignment of a set of resources to consumers must satisfy a
priority criterion on the consumers' requests, a simple
check can be made that the priorities of the requests corre-
sponding to the assigned resources are in monotonic order.
Similarly, although arriving at an efficient assignment of
memory space may be very complex, given a wide range in
sizes of requests and a very fragmented memory space, a
check on the total size of allocations relative to requests
would be simple to apply. It should be noted that the
acceptance tests at level L(i) applied to the procedures of

7 - 8

L(i-l) that it calls can be derived from the specifications

associated with L(i).

The notion of system functions as resource managers may

seem, at first, not to address the important function of

error handling. The following interpretation may provide a

basis for considering that function as a resource management

function. Consider a multilevel system wherein each level

has a complement of exception returns, one of which is

returned when the level cannot complete an operation. In

other words, by returning an exception condition a level

indicates to its caller that its proposed solution to the

allocation problem at hand did not satisfy the criteria of

acceptability. That may be because the problem was too

difficult, or because the program that implemented the solu-

tion was faulty. The task of the upper level program that

receives this exception call is to find some new way of

solving the resource allocation problem, e.g., by reducing

the complexity of the problem itself or by assigning it to a

different lower level manager. This response is thus a kind

of resource allocation function, and can itself be subjected

to a test of acceptability. This approach can be extended

to form a hierarchy of exception handling procedures.

7.4 Hardware Support for Fault-Tolerant Operating Systems

The hardware features that can mitigate the performance

penalty associated with fault-tolerance are described below:

Capability-based addressing. Each object in the

system is associated with a unique capability. A

resource manager can access only those objects for

which it has a capability. Thus capabilities

provide a form of redundancy on access, the benefit

of which is to confine errors to just those objects a

resource manager requires. The hardware implications

of capability-based addressing are minimal, particu-

larly if modern architectures such as the Intel 286

or 386 are used. The capability must be mapped into

a real address if the object in question is a section

of memory (e.g., a page or segment), into an I/O

device, or into a procedure call (if the object is

virtual) and has a realization only in terms of a

program that manipulates it. There are several ways

to implement the mapping in an efficient manner;

A hashing function, implemented in hardware, that

maps capabilities to integers. The algorithm of the

hash function must be carefully chosen to permit
efficient implementation and to minimize conflicts in

the hash table. The hash function would be part of

the kernel;

7 - 9

• A global object table that maps capabilities into

addresses. At any instant, a portion of the table is

in fast access memory, (e.g., an associative memory)

the remainder in slower memory. That portion in fast

access memory would contain the working set capabili-

ties of the currently executing process. Some hard-

ware support for the rapid loading of the associative

memory would be desirable;

• The assignment of permanent capabilities to the I/O

devices, registers, and certain protected regions of

memory;

Fast domain switching. A domain of a process is the

collection of capabilities currently available to the

process. Domain switching occurs when a call

(usually a procedure call) involves a change in the

domain of the process. For example, when a call is

made to the segment manager, the domain would become

the segment passed with the call and the table con-

taining the mapping of segment capabilities to real

addresses. When the segment manager returns, the new

domain will not contain the capability to the mapping

table. The hardware needed here is for a single

instruction that establishes domains from the capa-

bilities passed and capabilities internal to the

called procedure;

Hierarchy management. The propagation of calls and

the return of exceptions is inimical to a

hierarchically constructed operating system. Often a

level will be bypassed, to avoid multilevel inter-

pretation. For example, a call to the segment man-

ager to write and read segments must be fast. The way

to achieve efficiency is to have a partition of

the segment manager as a primitive resource manager

implemented in hardware. If this low level returns

an exception (e.g., because the segment referenced is
not present in hardware), then control is returned to

the segment manager for handling. The key, then,

is for the hardware to keep track of the calling and

called levels, and also the identity of exception

returns;

Signature computation. We have previously noted that

much of what a resource manager in an operating

system does is in terms of tables. Since these

tables are likely to be large, some economy is needed

on computing acceptance tests involving these tables.

For example, it will not be possible to compare the
contents of two tables. The solution is to use

digital signatures. The signature for a hash table

could be some function of all locations that are

occupied. Of course, careful selection of a function

is required in order to minimize the probability of a

7 - i0

valid and invalid state having the same signature.
Hardware support would be helpful here to permit the
updating of signature in parallel with the updating
of the table.

7.5 A Strawman Concept for a Distributed Computer

Supporting Software and Hardware Fault-Tolerance

The following is one of several possible architectural

concepts that might be used to examine the feasibility of

techniques for efficient support of software fault-toler-

ance. It represents an amalgam of current advanced archi-

tectures rather than a radical departure. For convenience,
we employ the acronym SFTA (Strawman Fault-tolerant Archi-
tecture).

SFTA is a distributed multicomputer employing a common

file system, in the style of UNIX United. Programs in any

computer may call for access to any file element without

knowledge of its physical location. A global operating

system (with copies in each computer) is responsible for

reconfiguration and initialization of computers; its actions

require a consensus among participating computers.

Addressing in SFTA is based on capabilities, which

define access rights to addressable objects and domains of

computational activity. The conventional notion of capabi-

lities may be extended to include other information of a

protective nature appropriate to fault-tolerance and distri-

buted processing, such as time stamps, version set and

object size.

The local operating systems are recursively structured

as a layered hierarchy of virtual machines, each of which

has a full set of error handling facilities. Errors are

thus reported and handled hierarchically. The hierarchy is

implemented as a set of utility modules, most of which take

the form of resource managers. The modules are served by a

kernel machine (probably implemented in microcode) which

provides basic services of machine attention and communica-

tion. The utility modules may be subject to software fault-

tolerance. The kernel may or may not, depending on its

complexity. Use of fault-tolerance in operating system

utilities requires clear separation of the decision and

commitment phases of computer resource management.

Software errors are detected at two levels, on the basis

of external consistency, i.e., by comparing results of sev-

eral versions or by acceptance testing, and internal consis-

tency, (by checking process, through assertion checking,

path checking and data structure consistency and excess-time

checking). We note that the two levels of checking are

mutually supportive, both in error detection and in valida-

tion of acceptability. External consistency checking

7 - ii

requires programmed use of general purpose processors,
either the ones used for regular computation, or additional
ones, if high speed is required. Internal consistency
checking is done by special purpose processors acting as
monitors of internal computer activity, with access to data,
memory address signals, and time sources. Various tags may
be carried in the data stream of normal processing in order
to identify appropriate data for the monitors.

Forward recovery and backward recovery are facilitated
by special hardware. For high-speed control computations,
the error masking function of forward recovery is provided
by special processors, probably microprogrammed, that imple-
ment application-dependent functions for error detection and
output generation. Both backward and forward recovery make
use of special hardware that speeds up the restoration of
improperly modified program variables to their initial
state. This may employ a cache memory (for highest speed)
or special logic to implement associative retrieval in con-
ventional memories.

Hardware faults are detected using duplicated processing
and detected and masked using triplicated processing. Con-
tinuing reduction in the cost of microprocessors may make it
preferable to use directly-connected, hardware fault detec-
ting processor pairs rather than to configure pairs out of
individual processors. Special logic is provided for these
hardware fault-tolerance functions that require high speed,
such as voting, clock synchronization and interactive
consistency/source congruence.

The proposed concept leads to configurations
relatively large number of processors for:

with a

• Concurrent processing of software versions,

• Recovery control,

• Acceptance testing,

• Forward error masking,
• Monitoring of internal consistency,

• Input-output.

Assuming the use of low-cost processors, the processors
would consist of directly-connected hardware fault detecting
pairs. The number of processors could be in the range of
eight to twelve pairs. An appropriate internal architecture
for a computer With such a large number of processors would
be a pool of processor pairs, communicating through a high-
speed redundant network, e.g., a multiple ring. Information
of interest to the monitor processors would be distributed
in the network. Spare processor pairs would be provided for
each type of processor.

7 - 12

SFTA is only one of many possible architectural con-
cepts. It is presented as an example of a coherent frame -'
work for studying design tradeoffs and possible unifications
among the various hardware techniques discussed in this
chapter.

7- 13

8.0 Higher Level Languages and Fault-Tolerant Software

In this chapter the ability of higher level languages to

support fault-tolerant software is investigated. Design
principles are discussed in the context of fault-tolerant

software. The level of application of fault-tolerant soft-

ware involves an engineering tradeoff which is a function of

the cost and coverage of the fault-tolerant techniques. The

integration of accepted design principles for software engi-

neering with the goals of fault-tolerant software is the

development of a unified approach to fault-tolerant software

known as Idealized Fault Tolerant Components (IFTCs) '. The

relationship between IFTC and the major fault-tolerant

software techniques is discussed, as are extensions of IFTC

to handle watchdog processes. A set of fault-tolerant

primitives which need to be supported by any given system
for fault-tolerant software are derived. The use of the

programming languages such as Ada and C to support fault-

tolerant software is also investigated.

8.1 Software Design Principles and their Relationship
to Fault-Tolerant Software

The principles of fault-tolerant software should be

integrated into the software design process in a manner

which minimizes the increased complexity of the design. In

this regard, it is believed that the incorporation of the

strong design principles of hierarchical decomposition and

encapsulation, which are already accepted within the soft-
ware engineering community, is required for the successful

utilization of fault-tolerant software. Since the goal of

these design principles is to aid in the production of

reliable software by controlling the growth in complexity

for large systems, their integration with fault-tolerant

software design principles is highly desirable.

Hierarchical decomposition (also known as stepwise

refinement or layers of abstract machines) attempts to con-

trol complexity by confining communications between func-

tions in a well-defined manner. Encapsulation (related to

the concepts of information hiding, modularity and abstract

data types) attempts to limit the visibility of information

between the implementation of a function and its environ-

ment. A particularly strong form of encapsulation is known

as an atomic action. In an atomic action there is a clear

distinction between what is known inside and what is known

outside the atomic action. Thus, the atomic action cannot

influence or be influenced by its environment until comple-

tion. In other words, an atomic action appears indivisible

to its environment. For purposes of fault-tolerant soft-

ware, the semantics of an atomic action are "all or noth-

ing". That is, an atomic action will run to completion with

success or it will have no effect on the state of the compu-

8 - 1

tation (i). These semantics are adopted because it may be
better to discard the current computation than to try and
patch up the state after an error is detected. One of the
major goals of fault-tolerant software is to maintain a
consistent state even in the presence of faults.

The encapsulation of a computation provides a convenient
unit of reconfigurability for fault-tolerant software. In
general, this unit can be any of the following:

• Primitive language function (e.g. division opera-

tion);

• Procedure;

• Process;

• Conversation between_processes or a transaction;

• Domain of functionality comprising a set of processes

and data objects with their supporting resources

(could be used to implement a hardened kernel or a

minimal set critical functions for a dissimilar

backup);

• Entire computer complex (this is the last resort, the

entire computing system is expendable).

The unit of reconfigurability relates to the resources which

one is willing to discard if a fault occurs. Timely error

detection intends to isolate faults to the current computa-

tion within the encapsulation unit. If this is accomplish-

ed, then the damage is limited to the resources encapsulated

within the current computation. If the current computation

is a well-defined function, then it may be reasonable to

make a priority judgement about the extent of the damage

done by the fault. When a judgement is possible, error

recovery is facilitated.

In general, the decision about the granularity of recon-

figuration is an engineering one based on costs and require-

ments. If the unit of encapsulation is large, then there is

the potential to discard a large amount of resources (in the

form of time, code, processing) when an error is detected.

Also, it may be difficult to pinpoint the damage done and,

indeed, error detection itself may be difficult and/or time

consuming. The principle of atomic action will force cer-
tain levels of reconfigurability when dealing with resources

(i) The term state refers to the state of the current

computation. The current computation relates to the proces-

sing being performed at the intended encapsulation. This

could be a procedure, a process, or a collection of proces-

ses (domain) engaged in a conversation. [RAND78d]

8 - 2

which are difficult or impossible to recover. An obvious

example is the decision to launch the space shuttle.

As the unit of reconfigurability is reduced, there is an
implied need for increased error detection and support for
encapsulation at these finer levels of granularity. This
support implies a penalty in performance or increased sup-
port from the underlying architecture. Thus, we envision a
tradeoff between the granularity of reconfigurability and
the cost of encapsulation. The engineering of this tradeoff
is application dependent.

8.2 Idealized Fault-Tolerant Components (IFTC)

Although many of the software fault-tolerant techniques

were developed independently, they share many similar fea-
tures. We can consider each technique as a particular

packaging of the required ingredients of error detection and

recovery. The suitability of the particular packaging

depends on the requirements of the application. No single

technique seems to be dominant in all cases. Idealized

Fault-Tolerant Components (IFTC) are an attempt to incor-

porate fault-tolerant software principles into the accepted

practices of hierarchical design and encapsulation, with

minimum impact on the normal software development process.

IFTC provide unified frame-work for many of he proposed
fault-tolerant software techniques. [RAND83] and [LEE83]

IFTC are a combination of modular hierarchical structuring

techniques, atomic actions, and exception handling. IFTC

give the designer control over the amount of error detection

and the kind of error recovery techniques most appropriate

for the application. Investigations of the formal seman-

tics of IFTC is also underway. [CRIS82] and [CRIS84] Use

of Ada to implement these ideas has also been reported.

[SANT83] Figure 8-1 illustrates the concept of IFTC.

An IFTC is a well-encapsulated structuring unit for the

organization of fault-tolerant software systems. Service

requests are made to IFTC in the normal way (i.e., by

procedure call or message, etc.). If the requested service

can be provided without faults, the IFTC gives a normal

response. During the servicing of the request the IFTC may

itself make requests of subcomponents. These subcomponents

may also be IFTC. Thus, IFTC provide a recursive structur-

ing principle.

If a fault occurs during the processing of a request and

the error caused by that fault is detected, an exception is

raised within the IFTC. An exception handler is called when

an exception is raised. If the IFTC can handle the error

internally, then the fault is masked and activity returns to

normal servicing. Error recovery can be forward or back-

ward. Figure 8-2 shows how forward error recovery can be
handled with an IFTC.

8 - 3

FIGURE 8-1 IDEALIZED FAULT-TOLERANT COMPONENTS(IFTC)

Service Normal Interface Fai lure

request response exceptions exceptions
A A

---return to <....
normal service

V V

normal
activity

exception
handlers

V

Service
request

Normal
response

internal I

exceptions --

Interface
exceptions

Failure
exceptions

8 - 4

FIGURE 8-2 FORWARDERRORRECOVERY

[inconsistent assertion -> forward correctl];

or

F[x ->forward correct2];

For example

[b = 0 -> b = very_small];
x := a/b;

or

x := a/b [zero divide -> x :=MAX];

The statements between the brackets define the exception
handler. The section before the "->" is either an assertion
handler or a propagated exception. The statements after the
"->" are the action portion of the exception handler.
Internal checks for consistency or interface preconditions
are made by assertions ("inconsistent assertion" and _'b=0"
in Figure 8-2). Subcomponents can also return exceptions
(subfunction "F" returns exception "X" and function "/"
returns "ZERO DIVIDE"). In the case shown in Figure 8-2,
forward error recovery masks the fault and the computation
continues normally. In some cases, as shown in Figure 8-3
the fault can be ignored.

FIGURE 8-3 IGNORING AN EXCEPTION

log_next_value(x) [couldn't_log ->];

In this case, no action is taken in the exception handler,

so the exception is ignored (in the example in Figure 8-3 it

doesn't matter if some of the entries are not logged).

The interface specification for IFTC lists all the

exception conditions which are propagated by the IFTC.

Exception handlers must be provided for exceptions listed,

or a default exception handler is invoked. This default
handler implements an atomic action rollback. The default

8 - 5

exception "failure" can be invoked to respond to unantici-
pated exceptions. The exception handler can propagate the
exception up the hierarchy using the "signal" command. Also
available is the "reset" command which restores the internal
state of the computation to that upon entry to the IFTC.
Implicitly attached to every IFTC is the default exception
handler shown in Figure 8-4.

FIGURE 8-4 DEFAULT EXCEPTION HANDLER

[-> reset; signal(failure)]

!

8.2.1 Watchdog Processing and Idealized Fault-Tolerant

Components (IFTC)

One aspect of fault-tolerant software in which treatment

is not apparent in the above description of IFTC is the

handling of time-outs. Actually, time-outs can be consid-

ered a special case of the class of watchdog processes. The

problem in handling watchdog processes is providing the

appropriate mechanisms for interaction within the hierarchy

of IFTC. Let us concentrate the discussion on the problem

of time-outs. The time-out activity is a concurrent pro-

cess which can control the execution of the process being

timed. In the case of a time-out, the timing process must

be able to abort the execution of the timed process, restore

the run-time environment to a consistent state, and return

control to the exception handler. Semantically, a time-out

should be treated like an assertion or acceptance test which

failed. The implementation is quite different because of

the nature of the concurrent monitoring by the timing pro-

cess. In the case that the calling and called IFTC are

on different processors or computers, extensive housekeeping

operations must be performed to restore the system to a

consistent run time state. Buffer queues may have to be

flushed, late messages will have to be discarded, and the

serving IFTC will have to be resynchronized. This house-

keeping will be done by either the underlying support system

and architecture, or by the appropriate mechanisms provided

to the application layer.

The intended semantics of the aborted computation affect

the nature of the restoration activity. If the computation

was a procedure call, then the restoration might be to

execute the "reset" command and signal the exception "time-

out". If the computation was a remote procedure call, then

the restoration would be to notify the executing processor

of the requested abort operation and have the remote machine

8 - 6

abort the remote procedure, execute a "reset" command and
signal the exception "time-out". However, because of the
delays in communications, it may be necessary to simulate
the propagation of the exception "time-out" from the remote
procedure call in order to attempt appropriate action on the
requesting processor in a timely fashion. However, this
simulation can lead to the following situations:

The remote procedure is aborted, state is reset, and
time-out is propagated. The supporting system on the
requesting processor will need to ignore the propa-
gated "timevout" since it has already been simulated.
It is required that the supporting systems be aware
of at least some of the semantics of IFTC;

The processor on which the remote procedure call is
being executed fails, and the underlying system
attempts to restart the computation on another pro-
cessor. The request to abort the remote procedure
will have to be redirected to the new processor.
Redirection will require that the underlying system
have the mechanism for resolving names in the pre-
sence of a changing hardware environment;

An abort for time-out is requested but the remote
procedure has already finished. The underlying sys-
tem should recognize that this has occurred and
ignore the effect of the remote computation. This
may involve the use of time-stamps or other mechan-
isms to uniquely identify each request for service;

• Several processes are involved in the computation.
This will be discussed in Section 8-4.

Under certain circumstances, resetting the state may be

quite involved. If the aborted process is changing shared

data structures, then is important to put these shared
variables in a consistent state before tasking alternate

action. The easiest way to insure the integrity of the

shared data structures is to treat changes to them to be

atomic actions. [CRIS82] The "reset" command of an IFTC

will accomplish this. However, when aborting remote compu-

tations with a simulated "time-out" exception, it may be

difficult to reset the shared data structure. If the

requesting process tries an alternate computation, then the

shared data structure must be reset and the "aborted" compu-

tation must not be able to access the Shared data structure

any more. Because of communications delays, assuring that

the proper actions take place under the constraints of real-

time deadlines can be very difficult.

One case in which access to shared data structures is

desired is a critical section. The semantics of a critical

section consist of mutually exclusive access to the shared

data structure. A critical section should be considered an

8 - 7

atomic action on the shared data structure. Aborting a
critical section requires that the shared data structure be
reset to its initial state. The underlying •system must
support these semantics for aborting remote computations.
If this cannot be guaranteed in the general case, then
appropriate restrictions must be placed on the nature of
remote computation to guarantee consistency.

Another concern with proper timing is whether the call-
ing or called IFTC should specify the timing limit. In
the case of a timed Recovery Block [K1978a], we would like
to allow enough time to execute the alternate (or in some
cases the primary). This statement implies we know how
much time the alternate might use. If the programmer can
place some limit on the number of loop executions (as could
be done using Dijkstra's variant function for proving loop
termination [DIJK76], then the compiler run-time support
system should be able to estimate the time for execution.
[WEISI] Thus, it may be possible to place loose but useful
limits on the execution time of components. This timing
would be a function of the called routine. However, in
real-time systems, the reasonableness of the execution time
may not be as important as the meeting of a deadline. The
calling routine is usually in a better position to specify
the deadline. Another argument for including the timing
function with the calling routine is in the case of hard-
ware failures where the calling and called routines are on
different machines. Timing on the machine of the calling
routine would allow for continued timely operation when the
computer supporting the called routine failed.

In Figure 8-5 two possible methods of specifying
constraints are given.

timing

FIGURE 8-5 SPECIFYING TIMING CONSTRAINTS

Using Wei's syntax:

within one second do

service next position.compute
else next position.approximate

Integrating with previously defined syntax for
exception handling:

next position.compute [not within (one second) ->
reset; next position.approximate];

The first syntax was given by Wei
[WEI81]

in his dissertation.

8 - 8

Extending this mechanism to the general case of watch-

dog processes (such as control flow monitoring) seems

straight forward but needs more investigation. While the

semantics for watchdog processes is consistent with an

assertion test (although done concurrently) and the syntax

for handling exceptions from watchdog processes can be inte-

grated into IFTC as shown above. The operational aspects

of watchdog process are quite different. To execute a compu-

tation, the exception handler must be examined for those

exceptions propagated by watchdog processes and those watch-

dog processes must be started concurrently with the execu-

tion of the monitored computation.

8.2.2 Communicating Processes and Idealized Fault-Tolerant

Components (IFTC)

The difficulty of providing error recovery in the case

of communicating processes is well known. [RAND75] However,

several researchers have indicated that the rather simple

and repetitive nature of real time control software may

allow for simplifying restrictions to be placed on the

nature of the communications. [ANDE83] The implicit recov-

ery points provided on entry to an IFTC do provide a basis

for defining conversations. When an error is detected,

an exception can be propagated to all processes with which

the current computation has had an exchange of information.

These exceptions can be further propagated. Either some

mechanism must exist for the computations themselves to pass

on the exceptions, or the support system must keep track of

the history of communications and automatically propagate

these exceptions. If the underlying system keeps a history
of communications it can also determine a consistent set of

recovery points (a recovery line) dynamically.

8.3 Idealized Fault-Tolerant Components (IFTC) and the

Major Fault-Tolerant Software Techniques

In this section we will try to indicate in what sense

IFTC are a unifying mechanism for fault-tolerant software.

In the last section, the use of IFTC for forward error

recovery, atomic actions, ignoring faults, and time outs

were discussed. In this section, the relationship between

IFTC and the major proposed fault-tolerant software techni-

ques identified earlier will be discussed.

8.3.1 Multi-Version and Idealized Fault-Tolerant

Components (IFTC)

One of the advantages of multi-version fault-tolerant

software is the possibility of using the technique trans-

parent to the application programmer. Thus, each program-

ming team is given the same specification;to produce its

8 - 9

C,_<,'_!_ ;_!_ :, .

OF POOR QUALITY

version, The .specification accepts input from some driver

and returns the output'to,the driver. The synchronization

of:_the various ve_sions_and_the consensus functlon Is h_dden ,i_

in the dr_ver itself. In the_simplest case, except for:the '

added_requlrement _ for the cross checkpoints :_(cc-polnts)_,_

the programming of the versions itself requires no additlon_;_
al mechanism to,handle the fault-tolerant aspects. However,

in general, itlwill be necessary to restore the state of ..

versions deemed:_in error. So th_ question of state recovery:! _

must be addressed. Also, _i!iT_the individual version itself _ ,

discovers an error, it should notifY the driver so that

account of this exception can be used in'_ the consensus

function. In addition, if the consensus function itself

fails, it would be nice to handle this occurrence in a

unified manner. _ Figure 8-6 shows how the driver for multi-

version might be written using IFTC. i

FIGURE 8-6 MULTI-VERSION AND IDEALIZED FAULT-

TOLERANT COMPONENTS (IFTC)

PROCEDURE three_version (input: _ input_t;

_.' output: OUT output,t IS

outputl, o_tput2, output3 : output_t;
BEGIN

END

outputl := versionl (input); _ _.

output2 := version2 (input);

output3 := version3 (input);

output := consensus (outputl, output2, output3

PROCEDURE three version (input:

BEGIN

IN input_t;

output: OUT output_t) [no_consensus] IS ,

outputl, output2, output3 : output_t;

END

outputl := versionl (input) [->outputl := ignore];

output2 := version2 (input) [->output2 := ignore];

output3 := version3 (input) [->output3 := ignore];

output := consensus (outputl, output2, output3,)

[no_consensus -> output = ignore;

SIGNAL (no consensus)];

The first example shows a multi-version driver without

exceptions while the second integrates exception handling.

8.3.2 Recovery Blocks

Upon entry to an IFTC a recovery point is automatically

established. This recovery point provides the basis for_

st_t_ _ restoration, (as was previousl_y demonstrated _ _in

8 - i0 _

the case of atomic actions). Upon normal termination of
an IFTC the recovery point is discarded (commit point).
The "reset" command causes the recovery point to be
restored. This state recovery mechanism plus the use of
assertions and exceptions allows an easy implementation of
recovery blocks on the IFTC model. Figure 8-6 shows how this
can be done.

Although only two versions are shown (the primary and
one alternate), this could clearly be extended to an arbi-
trary number of versions. One unsatisfactory aspect of this
particular syntax for IFTC is that the acceptance test is
repeated in each version. This is poor and unsafe program-
ming practice. Either the syntax could be changed or a
preprocessor could be added to translate from recovery
block syntax into the syntax shown (see also [SANT83]).

FIGURE 8-7 RECOVERYBLOCKS IN IDEALIZED FAULT-TOLERANT
COMPONENTS(IFTC)

PO [-> RESET; PI[-> RESET; SIGNAL failure]]

where

Pi is BEGIN Pi [NOT post -> SIGNAL failure] END

for example

compute_accurate_position [-> RESET;
compute_approx_position[-> RESET; SIGNAL failure]]

where

PROCEDUREcompute_accurate_position ;
BEGIN

bodyl [absolute (old_pos- new_pos) > threshold
-> SIGNAL failure]

END

PROCEDUREcompute_approximate_position ;
BEGIN

body2 [absolute (old_pos - new_pos) > threshold
-> SIGNAL failure

END

8 - ii

8.3.3 Exception Handlers

IFTC use a single level terminating model for exception

handling as advocated in [LISK79] and [CHRIS82]. Single

level means that exceptions are propagated on only one level

in the recursive hierarchy of procedures. In a terminating

model for exceptions, the raising of an exception causes the

current computation to be terminated. The exception handler

cannot resume execution of the computation which caused the

exception. This simplifies the semantics of exception hand-

ling. The use of exception handling separates normal flow

of control of the base algorithm from the abnormal flow of

control. It is felt that this separation is necessary to

control the complexity of introducing fault-tolerant techni-

ques into the software development process. While it may be

possible in some cases to use the normal linguistic con-

structs of the language to deal with exceptional cases, it

would be both inefficient and unasethetic (2). Linguistic-

ally, separate exception handling allows the normal algor-

ithm to be specified in a straightforward fashion without

cluttering it with the details of abnormal behavior.

Exceptions, properly implemented, allow for the handling

of both anticipated and unanticipated faults. Implemented

within the framework of a hierarchy of abstractions, excep-

tions allow faults to be made at the level where the error

was detected, or propagated to the next higher level where

the fault can be masked or propagated further up the

hierarchy recursively. The exception handling provided in

IFTC satisfies these objectives.

8.3.3.1 Robust Data Structures

Most modern languages provide the necessary mechanism

for implementing the structural redundancy used in robust

data structures. [TAYL80] However, it is useful to run

audit programs outside the mainstream of the normal computa-

tions to periodically check the data structure for consis-

tency. These audit programs can be run on special proces-

sors or they can be run in the slack time of a processor.

Of course, they can be run as a diagnostic aid for damage

assessment when the normal processing itself discovers an

inconsistency in the data structure.

The audit programs for robust data structures can be run

using a watchdog process employing the mechanism suggested

earlier. An alternative is to separately schedule the audit

programs and let them operate more or less independently.

(2) For example,

division.

testing for 0 values before performing

However, there would probably not be much point in auditing
a data structure during a critical section. Also, when an
audit program has discovered an inconsistency and has
invoked error recovery procedures, normal processing must be
denied access to the data structures under repair. The use
of critical sections (with priority given to error recovery
procedures) would handle this case.

8.3.3.2 Watchdog Processes

The general problem of implementing watchdog processes

was discussed earlier. Watchdog processes represent a class

of fault-tolerant software in which some abstract aspect of

the computation is monitored for consistency by an external,

possibly concurrent, process (observer). The audit programs

for robust data structures, as well as time-out mechanisms,

are special cases of watchdog processes. Another class of

watchdog process which has received attention in literature

is control flow monitoring. [YAULS0] and [AYAC79]

8.3.3.3 Run-Time Assertions

Run-time assertions represent a class of techniques in

which various assertions are made regarding the validity of

the computation. The use of types in programming languages

is an example of one important subclass. Range checking for

arrays is another example. Yet another is the specification

of abstract data types [SHAWS0]. Run time assertions can be

used to check the input data validity (PRECONDITIONS), the

consistency of certain international state variables, or

the output validity (POSTCONDITIONS). The latter is used

in recovery blocks to decide if an alternate procedure

should be executed because of the supposed failure of the

current computation. Validity checks for timing can also

be made. As discussed, these validity checks are useful

only for error detection; however, they can be coupled

with the exception handling mechanism in IFTC to provide

error recovery as well. Examples of their use has already

been given above,

8.3.4 Hybrid Multi-Version and Recovery Blocks

8.3.4.1 Tandem

This hybrid technique is shown in Figure 8-8.

8 - 13

FIGURE 8-8 TANDEMTECHNIQUE AND IDEALIZED FAULT-
TOLERANTCOMPONENTS(IFTC)

PROCEDUREtandem (input:

BEGIN

END

IN input_t;
output: OUT output_t) [no_match] IS

outputl, output2: output_t;

outputl: = versionl (input);
output2: = version2 (input);
output := match (outputl, output2)

[no match -> RESET
outputl:= version3 (input);
output2: = version4 (input);
output:= match (outputl, output2)

[no match -> RESET;
SIGNAL (no match)]];

In this case only one pair of alternates can be attempted.
Assuming the language has a mechanism to specify a function
name as a variable, the example could be more compact and
easier to generalize.

8.3.4.2 Consensus Recovery Blocks

This technique is shown in Figure 8-9.

FIGURE 8-9: CONSENSUS RECOVERY BLOCKS

PROCEDURE Consensus RB (input:

BEGIN

END

IN input_t;

output: OUT output_t) [no_consensus] IS

outputl,output2, output3 : output_t;

outputl := versionl (input) [->outputl := ignore];

output2 := version2 (input) [->output2 := ignore];

output3 := version3 (input) [->output3 := ignore];

output := consensus (outputl, output2, output3)

[no_consensus -> output := outputl;

[NOT post (output) -> output := output2;

[NOT post (output) -> output := output3

[NOT post (output) -> SIGNAL (no_consensus]

Here there is no use of state restoration.

8 - 14

8.4 Software Fault-Tolerance and Communicatinq Processes

The concept of IFTC works well if the program can be

organized as a collection of hierarchically structured

modules of the "right" size. The "right" size is a tradeoff

between the cost of encapsulation and responsiveness to

detected errors. Not all systems can be organized to use

IFTC effectively. For example, a system with very little

modular structure and/or large modules would have insuf-

ficient recovery points for timely error recovery. In this

case, it may be necessary to insert recovery points man-

ually. Also systems built from a collection of communi-

cating processes may find it difficult or impossible to

achieve fault-tolerance using IFTC. This is not unusual

since processes provide a level of abstraction for building

modular systems which is quite different from that provided

by procedures. In this section, the problems of achieving

fault-tolerance in a system of communicating processes will
be discussed.

Most discussions of software fault-tolerance ignore the

interaction of communicating processes. This is partly due

to the limited use of communicating processes for most

application software and partly due to the complications

which are introduced when considering communicating proces-

ses in error recovery. Before discussing the effects which

communicating processes have on error recovery, it is

instructive to examine the typical uses to which communica-

ting processes are put.

8.4.1 Communicatinq Processes

Although communicating processes have been the subject

of much study within the computer science community for the

past 20 years, their use in most application systems has

been limited. In fact the programming languages in common

use do not support the concept of communicating processes.

The use of communicating processes introduces a number of

complexities including proper synchronization, mutually

exclusive access to shared resources, freedom from deadlock

and liveness. However, the (perceived) need for communi-

cating processes is increasing as is evidenced by their sup-

port in many of the more recent programming languages (Ada

in particular). However, the nature of processes and the

interprocess communica£ions is still the subject of debate.

k

Several typical patterns

processes can be identified:

of usage for communicating

Processes can provide for a modular structure very

similar to that provided by subroutines. Thus, in-

stead of making a subroutine call to provide some

function, one process will communicate the request to

the serving process. When the function has been com-

8- 15

pleted the serving process communicates the results

back to the requesting process. If the serving pro-

cess retains no history of requests (between

requests), then the usage is very much like a proce-

dure process remains suspended while the server is

active. In order to point out these similarities,

several implementations of interprocess communica-

tions appear syntactically like procedure calls (for

example, the rendezvous of Ad_ or Hoare's monitor

calls). There are several reasons for choosing a

process implementation over a procedure call even

though the usage is quite similar. The first might

be to provide a level of encapsulation around the

server. This might be desirable since most systems

do provide protection for processes but not for pro-

cedures. Another reason might be to provide a common

service to several different processes;

Competition for shared resources proVide a second use

for communication processes. Thus, one process could

serve as the resource manager and all other processes

which require use of that resource communicate their

needs to the resource manager. (3) The requesting

processes usually have no direct relationship to each

other. This pattern of usage is common in operating

system and data base system;

The most general use of communicating processes is

that in which several processes are cooperating on a

more or less equal basis in the solution of some

problem. The impetus for multiple processes here is

to achieve better performance through the use of

parallelism. The semantics of interprocess communi-

cations in this case is very much application depen-

dent and can, in general, be very complicated. Some

applications have a producer/consumer relationship

between processes. Such processes can be chained

together to form pipelines as in the case of UNIX'S

pipes. In some applications all processes run the

same code but on different portions of the data space

(these applications lend themselves to simd architec-

tures). Here communications are usually regular

between "neighboring" processes. However, the

results of one process can eventually propagate to

all others. Still other applications require pro-

cesses with different functionality to cooperate on

the solution) these processes lend themselves to

mimd architectures). The organization of these pro-

cesses can be centralized around a master process or

distributed.

(3) The resource manager need not be a separate process.

Instead it could be a shared data structure accessed in a

disciplined manner by the requesting processes.

8 - 16

8.4.2 Fault-Tolerance Applied to Communicatinq Processes

The difficulties of providing error recovery for commun-

icating processes are well known. [RAND75] and [RUSS80]

These difficulties occur because recovery may involve seve-

ral processes. If an error is detected within one process,

then all processes which have had (recent) communications

with the faulty process are also suspect. Determining what

constitutes recent communications is equivalent to establis-

hing an encapsulation around a set of communicating proces-

ses for the purposes of fault-tolerance. While encapsulation

for a single process is greatly facilitated by the use of

procedures to define the modular structure of a program,

similar linguistic mechanisms for inter-process encapsula-

tion do not exist. Defining the boundaries of encapsulation

for communicating processes must either be done explicitly

in the program text of processes involved or must be derived

from the history of communications which have occurred bet-

ween processes.

The pattern of usage of communicating processes will

effect the manner in which error recovery can be carried

out. In the first usage pattern, error recovery is similar

to that for procedure calls and can be implemented using

IFTC. Thus, each return communication from a serving pro-
cess can indicate normal termination or one of several

exception returns. Although the implementation would be

different, the semantics would be identical to that for

procedure calls.

The second usage pattern in which a resource manager

allocates a shared resource among several processes has been

investigated in light of fault-tolerance. [SHIR78] Because

of the independent nature of the requesting processes, fail-

ure in one process should not effect the activity of other

processes. In this case recovery would take the form of

compensatory calls to the resource manager to release those

resources allocated by the failing process for the computa-

tion being abandoned. In this case it becomes necessary to

keep track of what resources need to be released.

The third usage pattern, that of cooperating processes,

is the most difficult for which to provide error recovery.

One strategy is perform recovery on all processes which had

communications with the faulty process since the last recov-

ery point of the faulty process. This in turn may cause

further propagation of error recovery. In the worst case all

processes may have to be backed-up to their starting points.

(These discussions are oriented towards backward recovery

because of the generality and difficulty involved. However,

forward error recovery also involves propagation of error

recovery requests. In other words the only proper encapsu-

lation involves all work done by all the processes. This

uncontrolled propagation of error recovery has been termed

8 - 17

the domino effect. Clearly, such an effect could be dis-
asterous, so several suggestions have been made which define
more appropriate levels of encapsulation. One proposal is
to encapsulate a group of processes and their communications
into a "conversation". (4) This conversation becomes the
basis for error recovery if an error is detected. One of the
problems with this approach is that it requires the prior
identification of conversations. Processes involved in a
conversation must all pass their acceptance test and exit
the conversation together. This can significantly reduce
the amount of parallelism available in a system. This has
the undesirable property of penalizing the non-faulty per-
formance of the system. Also reasonable implementations of
the conversation construct seem difficult.

Other researchers have suggested restrictions on the
nature of inter-process communications in order to facili-
tate the definition of a suitable encapsulation for error
recovery. One possibility is to limit communications to a
producer/consumer relationship. [RUSS80] Another possibi-
lity is to define a recovery point every time inter-proces-
ses communications [HOSS 1983] However, more global levels
of encapsulation still would need to be defined in order to
deal with a transaction which spans several interprocess
communications. Other researchers have noted that the rela-
tively simple and repetitive nature of real-time tasks
allows encapsulation to be defined around the processing
which occurs within a frame, or time-slot. [ANDE83] The
most appropriate determination of an encapsulation for
cooperating processes is a matter for further investigation.

8.4.3 Multi-Processors

The issues of multi-processing and multi-computing are

largely implementation issues and, as such, are orthogonal

to the issues of multi-processing discussed above. However,

care must be taken in implementing fault-tolerance in a

multi-processor environment in order to avoid the effects

of partial results possible when failures in processors and

communications can occur. Some of these effects are dis-

cussed earlier. Inter-process communications in a multi-

processor environment should use a protocol engineered for

fault-tolerant applications. Work in this area is currently

underway at UCLA. One of the requirements of a fault-

tolerant protocol is to reject spurious communications and

communications which arrive too early (due to a fault) or

too late. Some sort of timing mechanism will be necessary.

This timing mechanism will be necessary. This timing mecha-

nism will be easier to provide if control is centralized.

(4) The concept of conversation is similar to the idea of a

transaction.

8 - 18

In a transaction oriented system it may be necessary to tag
each communication with a unique transaction number so that
the boundaries of encapsulation can be more easily deter-
mined. This is an area which will need further investiga-
tion.

8.4.4 ConciuSions on Communicating Processes

The general problems of providing fault-tolerance for

communicating processes is very difficult and requires fur-

ther investigation. However, it may be possible to restrict

the usage of communicating processes to simplify error

recovery. Whether or not these restrictions prove practical

will depend on experience building systems under such

restrictions. As of yet it is too early to decide which

patterns of usage will provide appropriate mechanisms for

implementing fault-tolerant systems using communicating

processes. However, several scenarios can be suggested for

incorporating fault-tolerance into communicating processes:

Don't use communicating processes. This (trivial)

solution may be suitable in many problems;

Check all results before communications takes place.

This checking can be performed by an acceptance test

or a vote to insure correctness. The purpose of this

test is to prevent the propagation of errors across

process boundaries. This usage could utilize IFTC to

provide fault-tolerance if communications only took

place at the highest level of nesting in the hier-

archy. Basically, this scheme assumes that each

process appears fault freeto its environment;

Restrict process communications so that serving

processes act like procedure calls. With the addi-

tion of exception returns from these process "calls",

IFTC could be utilized for fault-tolerance;

For processes which are in competition for resources,

IFTC can be used with the following additions. All

requests to acquire resources are noted. If back-up

is necessary, the appropriate inverse requests are

made to release these resources are available. For

resources which are being released, defer the actual

release until after commitment (unless the resource

was acquired in the current computation). Keeping

track of resource requests should be the responsi-

bility of the underlying system in order to assure

its correct implementations;

Encapsulate a set of real-time processes to the com-

munications which occurs during a frame. [ANDES3]

If necessary discard all processing done during the

current frame (skip frame);

8- 19

Restrict communications to producer/consumer rela-
tionships. Allow process to define appropriate recov-
ery points for the purposes of encapsulation. Under

appropriate conditions discussed in [RUSSS0] proper

encapsulation can be determined dynamically from the

history of communications;

Use a master coordinator for each conversation. The

master receives the initial request, assigns a unique

request ID, and dispatches the request (with its ID)

to the appropriate processes. The results from each

proces s are sent back to the coordinator. If any
process or the coordinator detects an error, the

coordinator transmits a failure message for that

request ID to all associated process. It can then

retry the request with different processes or take

other appropriate action. If the request was satis-

fied correctly, then all associated processes are

notified so that appropriate clean-up actions can

take place. Because of the unique labeling of each

request, a process could be working on several

requests simultaneously. This scenario is specula-

tive and would need further investigation.

The integration of fault-tolerance software into a set

of communicating processes is a challenging task. Because

of its complexity, this integration will most likely entail

restrictions on the nature of interprocess communications.

In order for this area to mature, further practical exper-

ience and research investigation is required.

8.5 Fault-Tolerant Software Primitives

From the above discussion several primitives required

for the support fault-tolerant software can be identified.

The support of these primitives have certain implications on

the language and its supporting run-time environment.

8.5.1 Encapsulation

The importance of encapsulation was discussed earlier.

It should be pointed out that the mat£er of encapsulation is

one of degree and not of kind. All systems support some

form of encapsulation and probably no method of encapsula-

tion is fault-proof. Some forms of encapsulation can be

supported by the compiler and therefore do not involve the

systems architecture. However, the architecture should sup-

port computational abstraction at the level of reconfigura-

bility. This means the encapsulation method used by the

system should be appropriate for the component chosen for

atomic actions. If procedures are chosen as the unit of

software redundancy then the architecture should strongly

support, the abstraction of a procedure. In particular, this

8 - 20

means that the procedure must be encapsulated. If the unit

of reconfiguration is a process, then this must be supported

(encapsulated). For backup software, it may be necessary to

support domains within the architecture. For instance the

underlying system should make sure there is enough resources

to support the critical domains, in the event of loss of
hardware resources.

L

It is critical that the architecture support a strong

encapsulation at the level of recon_fgurable redundancy. Not

to do so will make it very difficult to use fault-tolerant

software techniques effectively. Without proper encapsula-

tion, certain classes of faults will propagate outside the

established boundaries of reconfigurability. These errors

will then have to be handled'at the outer levels and proba-

bly at greater cost. If the levels of reconfigurability are

not properly nested, or if errors are not properly handled

in the outer levels, then system failure will occur.

The other important aspect of encapsulation is the abi-

lity to detect violations of the intended design structure.

For instance if a computation tries to access objects out-

side its defined domain, the architecture should detect this

error and allow error recovery to proceed. Tagged memory,

small protection domains and object oriented architectures

are all ways to achieve increased encapsulation. The lin-

guistic primitives used to achieve encapsulation are strong

typing, support for abstract data types (private data

types), well-defined visibility rules, process synchroniza-

tion, monitors, etc.

8.5.2 Error Detection

Languages which require that redundant information be

specified assist in the detection of errors. Many of primi-

tives for encapsulation include redundant information which

can be used in the detection of errors. Examples include

strong typing and abstract data types. Subrange checks and

array bound check also allow certain classes of errors to be

detected. In addition, the run-time environment should

check for the use of uninitialized variables and prevent the

use of dangling reference (i.e. pointers to deallocated.data

ob jects) .

8.5.3 Timing Primitives

The system should provide access to a high resolution

clock for time-out purposes. It may be necessary to provide

for several of these for different levels in the hierarchy.

Also, for the specification of timing for scheduling alter-

nate computations, it would be valuable for the language

support system to assist in bounding the time for execution

of a computation. [WEISI]

8 - 21

8.5.4 Recovery Point Primitives

Restoring a consistent state after the detection of an

error can be very difficult. Many times the only sensible

strategy is to roll the computation back to a previous

(hopefully consistent) state and start from there. In the

extreme, a cold start can be performed. However, less dras-

tic rollbacks are desirable. The following primitives are

needed.

8.5.4.1 State-Save Primitive

In order to establish a recovery point, the current

state must be saved occasionally. Saving can be accomplish-

ed transparently to the application software by periodic

checkpointing of the current state. One way to accomplish

this checkpointing is to snapshot the entire state of the

system; however, this is undesirable for two reasons. First,

it would take considerable time to checkpoint the entire

system. Second, and more importantly, there is no guarantee

that the system state saved in the randomly determined

manner will be consistent (i.e., is error-free). Snapshot

checkpointing is good for detectable hardware failures. Even

then it may be necessary to keep a record of the input

values received since the last checkpoint to recovery the

current state.

A more sensible state-saving scheme is to consider the

semantics of the program when performing the checkpointing.

The state will be saved only when the semantics dictate the

system is in a consistent state. The application system can

establish these recovery points through the use of explicit

calls to the state-save primitive. Alternatively, the modu-

lar structure of the system can be used to implicitly deter-

mine the recovery points. Thus, the entrance to an IFTC

establishes a recovery point. The assumption is that an

IFTC is entered in a consistent state. This concept can be

applied recursively throughout the hierarchy of a modular

system.

8.5.4.2 Restore state

When an error is discovered it is necessary to restore

the computation to a previous state using a "restore state"

primitive. The "reset" command for IFTC accomplishes this

function.

8.5.4.3 Commit state

At some point it becomes necessary to commit to the

current state and discard the old saved state information.

Commitment is necessary not only to keep the saved state

8 - 22

information from growing indefinitely, but also to reflect a
commitment point in the computation that is dictated by the
semantics of the program. Commitment can be accomplished
either explicitly or implicitly. In IFTC in which implicit
recovery points are made at the entrance to each module,
implicit commit points are made on the (normal) exit of each
module.

8.5.5 Exceptions

The architecture should use the same exception propaga-

tion technique as the application system. At least the

architecture should propagate its unmaskable errors to the

application in a manner consistent with the exception hand-

ling mechanism used in the application program and the

architecture should allow the application to handle excep-

tions which might otherwise be handled by the system itself.

Examples include memory faults, illegal instructions, etc.

(exceptions which in most time-sharing systems would cause

an abort of the offending program). Unless the underlying

system is itself in an inconsistent state, the currently

executing application should be allowed to attempt its own

recovery.

8.5.6 Computation Control

For watchdog processes, fault-tolerant software will

require the ability to abort a computation. In such cases

it will be necessary to restore the system to a consistent

state. Some of the implications of this were discussed
above.

8.6 Supporting Idealized Fault-Tolerant Components (IFTC)
in Ada and C

None of the existing popular programming languages were

designed to support software fault-tolerant technology.

However, with proper support from the underlying architec-

ture, most languages can be used in implementing IFTC. In

some cases it will be necessary to restrict the use of the

languages where some of the languages features might compro-

mise the reliability of the system. The amount of support

required from the underlying architecture and the number of

restrictions is a measure of the suitability of the language

for implementing IFTC. This discussion concentrates on the

programming languages Ada and C. Ada is a modern programming

language oriented towards real-time embedded systems and, as

such, would seem ideally suited for the environment under

study. However, there has been little experience with the

language and several noted computer scientists have ques-

tioned the reliability of the language. [HOARSI] and

8- 23

[DIJK78] Thus, the •study also investigates the suitability
of a more mature systems implementation language - C.

8.6.1 Ada

The Ada programming language project has undergone an

interesting development history, and is just becoming avail-

able for use in realistic software projects. As might be

expected with any language of this size, it has been criti-

cized. [HOAR81], [DIJK78], [MAHJ81], [SILB81], [LIND82],

[JESS82], [BOUT80], [JONES0], [CLAR80], [SANT83], and

[KNIG83] However, we will only concentrate on those fea-

tures which effect the software fault-tolerance capabilities

of Ada in a distributed real time environment. The major

problems in the Ada language definition which complicate its

use for implementing IFTC are in the areas of exception

handling, specification and verifica£ion of timing con-

straints, and the rendezvous. In the following sections, we

will examine the ability of Ada to support the fault-toler-

ant software primitives defined previously.

8.6.1.1 Encapsulation

Of the available programming languages for use in real-

time distributed systems, Ada probably has the most compre-

hensive set of encapsulation mechanisms. Ada is a strongly

typed language and allows for user-defined data types. It

has the usual control encapsulations (procedures, functions,

and tasks) as well as abstract data type encapsulations

(packages). Ada's visibility rules are enforced across

separate compilations.

Ada does allow some relaxing of its encapsulation rules.

The ability to turn off some of Ada's strong typing must be

carefully controlled if reliability is to be maintained.

[Note that the relaxation of strong typing is usually done

in the name of efficiency as, for example, when array bound

checks are turned off. Using these run-time checks only for

testing and turning them off during production is like

wearing a life vest during training runs, but abandoning
them for the actual mission. Errors in the real mission are•

much more critical. If efficiency is a concern, then

provide hardware support for these run-time checks.]

In addition, the visibility rules will allow several

tasks to access shared variables simultaneously. If access

to these shared variables must be mutually exclusive, then

the access procedures must be properly encoded. While such

procedures can be written in Ada, they are not required. In

both of these cases, a properly disciplined programmer can

make use of Ada's encapsulation facilities in order to limit

the possibility for system failures. However, since it is

8 - 24

possible to violate these encapsulation facilities, it would
be advisable to use a preprocessor to enforce their use.

8.6.1.2 Error detection

Because of Ada's strong typing, the language

offers many opportunities for error detection.

itself

8.6.1.3. Timing Primitives

The semantics of Ada prevent two processes engaged in a

rendezvous from executing simultaneously. Because of this

the language provides no way for the calling process to

terminate a rendezvous once it has begun (5). If a rendez-

vous has started and the machine which holds the serving

process fails, then the calling process will wait in the

rendezvous forever. Several researchers have recognized

this problem and proposed a solution [KNIG83]. However, the

problems of software failures have not been addressed. Some

of the considerations concerning critical sections which

must be taken into account were discussed earlier in section

8.2.1.

While Ada does allow some specification of timing con-

straints to be made, they are not generalized. For example,

there is no way to time-out an on-going rendezvous. Also,

it is not possible to time out an intra-process procedure

a. Thus, timing violations within a process could not be

detected. What is needed is a mechanism which is more

general than is provided by the Ada standard.

8.6.1.4 Recovery Point Primitives

Ada contains no recovery point primitives.

8.6.1.5 Exception Handlinq

Many langUage researchers have argued for a single level

terminating model for exception handling [LISK79] and

[CRIS82a]. Ada does not support a single level exception

discipline. Also, the.state of the machine after an excep-

tion is undefined with regard to the values of the para-

meters (implementation dependent). Thus, in the case of

IN/OUT parameters, the Ada run time support system can

choose either call by reference or call by value with copy

out of the updated value. Thus, the state of an IN/OUT

(5) There is a time out associated with a rendezvous, but

it only checks that the rendezvous, starts within the

specified time. Nothing is implied about finishing.

8- 25

variable in the calling procedure when an exception occurs
depends on the implementation chosen. In addition, Ada does
not provide for atomic actions needed for IFTC. To overcome
these problems, several researchers have proposed a
restricted version of Ada that is capable of implementing
IFTC. [SANT83] Called R Ada, this version is implemented
as a preprocessor to standard Ada along with the help of
architecture a dependent Ada package providing for recovery
points. The efficiency of implementing this package depends
on the support of the underlying systems architecture.

8.6.2 The C Proqramming Lanquage

The C programming language is tiny in comparison to

standard Ada and will therefore require much more support

from the underlying architecture. For example, C does not

provide support for concurrent processing or exception hand-

ling. In a way this lack of support is beneficial, since we

are at liberty to provide these features to closely support

IFTC. Lee has implemented an exception handling package for

the C language [LEE83]. Concurrency can be provided in any
of a number of methods (such as Unix's fork and exec).

Randell has used a network of UNIX system to explore issues

in distributed fault-tolerant systems based on the UNIX

operating system and the C language. [RAND83] This work has

provided for IFTC within the UNIX UNITED project at

Newcastle-upon-Tyne by providing support for atomic actions
within each machine.

Another distributed UNIX/C project, the LOCUS project at

UCLA, is focusing on the problems of multi-version con-

sensus. The issue of late and early results from versions

is being addressed. [MAKA83] Current work in fault-toler-

ant communications protocols is also underway. In terms of

support for fault-tolerant software primitives, the C pro-

gramming language provides weak support for encapsulation

and error detection and no support for the other required

primitives. However, this weakness does provide an oppor-

tunity to extend the language in a way to incorporate fault-

tolerant software principles. While this work is still

experimental, it does indicate the potential suitability for

using mature systems (UNIX) and languages (C) to implement

IFTC.

8.7 Unresolved Issues and Conclus{ons

Although the benefit of fault-tolerant software techno-

logy is not yet quantified, it is believed that these tech-

niques can provide useful increases in reliability. Most of

the major software fault-tolerant techniques can be inte-

grated into a structuring concept called the (Idealized

Fault-Tolerant Components) (IFTC). The major exotic hard-

ware support for IFTC appears to be in the form of efficient

8 - 26

state-saving in the case of rollback to a previous
point.

recovery

The conceptualization of an IFTC has been shown to apply
to the fullspectrum of software fault-tolerant techniques
and methods. In particular, it seems to provide a unifying
framework •from which the study and development of fault-
tolerant methods can be accomplished. Utilizing this frame-

work to examine the primitives required higher order lang-

uages in general we have exposed and discussed several

common primit&ves and several key recovery primitives.

Extending this work to a specific examination of the Ada and

C languages reveals that Ada supports many of these princi-

ples, although some only partially. Full support of these

fault-tolerant principles will require the abandonment of

certain Ada features (a restricted use of Ada), as well as

the development of additional system provided primitives

(such as state recovery and generalized timing). The impact

of these changes on the extensive run-time support provided

by the Ada language is unclear. C, on the other hand,

provides little, if any, support for these primitives.

Additional system provided primitives will be required.

However, the incorporation of these primitives into the run-

time environment provided by the C language may be easier

than for the incorporation into the Ada run-time environ-

ment. The feasibility and practicality of modifying the Ada
environment is unknown.

The major unresolved issue is the methodology to be used

_ m_nage p__es in the case of reconfiguration. In some

instances it may be appropriate for the underlying architec-

ture to restart processes which were on a failed processor.

However, in the case of a major software failure (i.e., the

system enters a region of the input space which consistently

causes a Version to fail), reconfiguration will have to take

place under the guidance of the application program itself.

Also, in the case where a significant portion of the compu-

tation resources are lost, it may be necessary to recon-
figure the system to a minimal essential set of functions

(related to the concepts of hardened kernel or back-up

software). How such a set is specified and guaranteed to be

operational is unresolved. It is imagined that this last

problem can be solved by defining several domains and using

a domain manager to control the execution of domains depend-

ing on resources. In order to be able to perform its task,

this domain manager will require information concerning the

availability of the hardware resources and some history of

the failures of the software. It will also require the

ability to abort processes and restart them (this implies

some rebinding of the names of these processes will be

necessary). It is recommended that further work be done in
this area.

8 - 27

9.0 Effectiveness Assessment Methods

Methods for evaluating the effectiveness of software in

highly reliable systems primarily consider reliability of

the software [RAMA82, GEPH78, GOEL82] and in some cases

performance (execution time). [GRNA81, SONE81]

Many models have been proposed for software reliability.

The majority of these models were developed for existing

fault-intolerant software. (Fault-intolerant software

requires that software contain no faults of any type and

perform precisely as specified. In other words, software

faults are not tolerated and can cause system failure due to

loss of a software implemented function.)

Seven studies [SUKE76, RAMA82, GEPH78, GOEL82, DALE82,

JAME82, and SCHI78] have reviewed the many software relia-

bility models developed for existing fault-intolerant soft-

ware. The results of these studies and the specifics of

each of those models will not be repeated in this report.

These reliability models of fault-intolerant software are

limited to attempting to estimate the reliability of single

modules. Howevert most reliability models of fault-tolerant

software assume the reliability of a single module as a

given parameter and instead concentrate on developing the

reliability of the fault-tolerant structure itself.

9.1 Synopsis of Models for Fault-Tolerant

Software Reliability

This report presents information on seven identified

models specifically developed for fault-tolerant software

reliability estimation. The description includes assumptions

inherent in the model and an analysis and evaluation on its

applicability.

Table 9.1 identifies the fault-tolerant software models

that were uncovered in this study. It identifies the last

name of the developer and the fault-tolerant software

methods to which the model(s) are applicable.

9.1.1 Granrov r Arlat t and Avizienis Models

A set of models for evaluation of the two primary soft-

ware fault-tolerance strategies, recovery blocks and N-Ver-

sion programming, was developed by Grnarov, Arlat, and Aviz-

ienis. [GRNA80, GRNASI] The set consists of a general model

and specific models for the two strategies. The models

generate estimates for processingtimes and reliability.

9 -- 1

TABLE 9.1 COMPARISON OF FAULT-TOLERANT SOFTWARE RELIABIL-
ITY MODELS

U

4-

=
O_ x3

o
L_
n

X

i

u

_:: £I) _o X

0

n

e_ x x x

L m

13_

-- 0
L. a

_ X X X

0 E

0 X X

13_--
i

°--

4- 4-

_ ._ x

_ o
L-

U

>_ --
O=

_ "_ x x x
L-- 0

X
:,- :

I _0 Q, _ _ _ m

-4-_ _ _ o_

X

X

E

"0

X

X

In

u_

9 - 2

The general approach is based on queueing theory and

examines the processing of a single "segment". In the

recovery block scheme, a segment consists of a primary

alternate of the function to be performed, a set of supple-

mentary alternates and an acceptance test. In the N-

Version programming technique, a segment is a set of N>2

independently designed programs (versions) that perform the
same function.

9.1.1.1 Assumptions

Assumption i. The execution time of the

exponentially distributed.

segments is

Assumption

updating them

versions and

continued.

2. The "bad" versions are recovered by

with data provided by identified "good"

normal processing of all N versions can be

Assumption 3. A recovery block configuration using N-I

alternates and the acceptance test can be compared with an
N-Version scheme using N-Versions.

Assumption 4. The failure rate of a software module is

assumed to be proportional to its execution time.

Assumption 5. The

down and repair" state.

recovery block scheme has a "safe

Assumption 6. In the recovery block scheme, the cover-

age provided by the acceptance test is a function of the

ratio of the acceptance test execution time and the segment
executiontime.

Assumption
of faults in

alternates.

7_ In the recovery block scheme the density

the acceptance test is the same as in the

ASsumption 8. The recovery block scheme will fail only

if the acceptance test fails.

Assumption 9. In the model for sequential N-Version

scheme, agreement of two versions out of N is sufficient to
determine a cDrrect result.

9.1.1.2 Analysis/Evaluation

The Grnarov models exhibit some innovative thinking in

terms of approaches to modeling software fault-tolerance

strategies. For example, the models include factors to

account for correlated faults. However, the models have two

major problem areas, assumptions and data.

9-3

The exponential distribution assumption (assumption i)
implies that a segment will have many execution times that
are relatively short and a few execution times that are
relatively long. This assumption may be reasonable for the
recovery block scheme since the alternates are processed
sequentially and the number of alternates processed depends
on the comparison of their results with the acceptance test.
While the exponential distribution would allow a processing
time to be arbitrarily small, the smallest actual processing
time would be the sum of processing times for the primary
alternate and the acceptance test with a correct result. If
this sum is small relative to the largest possible proces-
sing time (such as, if only one or two alternates exist),
thenthe exponential distribution may be appropriate; other-
wise, a different assumption may be required.

The processing time for one segment implemented with the
N-Version scheme, however, should be fairly constant since
all versions will be executed. It is doubtful that the
exponential distribution is a realistic assumption for pro-
cessing times in the general N-Version programming concept.
The assumption may not be unreasonable for the sequential
N-Version scheme described in [GRNA80]. In this scheme, as
each successive version is executed, its results are com-
pared with the results of the preceding versions and a 2-
out-of-N decision is used (i.e., as soon as two results
agree, that answer is assumed to be correct). Hence, the
number of versions executed will be a random variable depen-
ding on the faults in the versions and the input data.

Regarding the second assumption, it certainly may be

possible to recover those failed versions in which the

failure was caused by inappropriate processing of a particu-

lar, limited class of input data. However, if the funda-

mental algorithm or logic in a version is flawed, correcting

the da_ for the next iteration of the segment will not

correct the fault in the flawed version. Furthermore, if

one of the versions maintains unique local state informa-

tion, then it may not be correctable on the basis of data

from the other versions.

Implicit in the third assumption is the idea that having

N software modules in each scheme somehow makes them "com-

parable". The authors may have assumed that this same

number Of modules implied equivalent costs or performance.

However, the complexity of the modules may be different.

Some of the recogery block supplementary alternates may

implement simpler, less accurate, and faster versions of the

algorithm used in the primary alternate. In the N-Version

scheme, each ve_slon is independently designed. The ver-

sions may exhibit a range of complexity and costs. Also,

the overhead required to perform comparison among the

N-Versions is not addressed. The idea that having N modules

in each scheme makes the schemes comparable is not justi-
fied.

9 - 4

Assumption 4 in general probably is not true since it
does not take into account the complexity of the module, the
ability of the personnel who designed and ' programmed the
module, or the testing process used in development of the
module. Since the Grnarov Model is concerned with specific
schemes oriented towards achieving high reliability, it is
reasonable to consider modules that implement algorithms of
similar complexity, and which are developed in a similar,
high-quality environment. In this case, the assumption may
be valid for population of modules but invalid for comparing
two particular modules. Therefore, this assumption does not
provide a basis for comparing recovery block modules with
N-Version modules.

The validity of assumption 5 could depend on the partic-
ular implementation of the recovery block scheme. Removing
this state would decrease the reliability results in the
referenced papers.

Assumption 6 asserts that a longer acceptance
provide higher coverage. While there is some
appeal to this notion, no supporting rationale is
in the references.

test will
intuitive

provided

The definition of minimal coverage is vague. The
numerical examples in [GRNA80] and [GRNA81] use 0.90 as the
smallest value of coverage, but no reason for selecting this
value is provided. Perhaps it could be argued that the
acceptance test should be at least this good to make the
recovery block scheme feasible.

Regarding assumption 7, if the acceptance test is con-
structed as an abstract implementation of the function per-
formed by the alternates, then this assumption may be true.
However, a different approach could cause the assumption to
be invalid.

Assumption 8 will be true if there is some global re-
covery method to handle the event that the acceptance test
does not fail, but all alternates fail, or an alternate has
an infinite loop. If no such method is used, then the model
would need to be modified.

The last assumption represents only one of several
possible ways to compare the results of the multiple ver-
sions. For example, another approach would be to discard
any results that are highly different from the others and
then average the remaining results.

The choice of the comparison method may affect the
reality of the N-Version approach. Grnarov's Model for the
sequential N-Version scheme is limited to the 2-out-of-N
comparison method.

9 - 5

There are enough difficulties with the assumptions in
the models to seriously question the value of using the
models to compare the recovery block and N-Version
programming schemes. The model for each scheme may be
useful for investigating the effects of different values for
the various input parameters, but justification for com-
paring schemes is not present in the references.

Two aspects of the input data are of concern. From a
global perspective, no approach for estimating some of the
data items exists. Examples include average repair rate,
probabilities of correlated faults, and success probabili-
ties of individual modules. The second concern relates to
the numerical results presented in [GRNA80] and [GRNA81].
Many of the inputs required to perform the computations are
not given in the references. In addition, the realism of
some of the numbers (such as minimal factor for the recovery
block acceptance test) is questionable. Accordingly, the
results in the references should be considered preliminary
and interpreted with caution.

In general, two additional factors should be added to
the Grnarov Model, a factor for the probability of a failure
in the recovery block model and a factor for the the proba-
bility that the "bad" versions are correctly updated in the
N-Version parallel case.

The Grnarov
empirical data.

Models have not been validated with

9.1.2 Migneault Cost Model

The cost model presented by Migneault in [MIGN82] uses

computations of system unreliability caused by software

faults to compare the cost of different levels of software

fault-tolerance. Migneault points out that the equations

given in [MIGN82] represent a "first attempt" at developing

a system level of view of the relationships among cost,

redundancy, and reliability. This review discusses the key

assumptions in the model that must be considered to inter-

pret the equations and results.

9 - 6

9.1.2.1 Assumptions

Assumption i. Given that k

from a properly developed module,
rate of a module is:

faults have been

the subsequent

removed

failure

l = 3600me
k

where

- (a+bk)

m = number of module executions per second

a,b = model parameters.

Assumption 2. The cost to develop a module to the

point of acceptance is constant regardless of whether the

module is developed for a single-string logic application or

for a fault-tolerant (e.g., N-Version) application.

Assumption 3. For an N-Version programming scheme,

errors in one program module-voter module (PV) pair are

independent of errors in another PV pair.

9.1.2.2 Analysis/Evaluation

The model and results in [MIGN82] are useful from the

perspective of prompting thoughtful consideration of the

relationships among software costs, reliability, and

redundancy. However, sufficient questions about assumptions

used in the model exist to indicate that the results should

be considered preliminary and approximate. Variations in

the assumptions and parameter values could change the
results.

Several concerns exist about the validity of assumption

i. The idea that removing more faults (i.e., a higher value

of k) results in a lower failure rate is intuitively

appealing. The observed failure rate of the module depends

on the existing faults in the code and the input data. If

the input data do not exercise any faulty portions of the

module, then no error will be observed. The sets of input
data exercised in the identification of k faults will

encounter the module faults at some frequency. Those k

faults are then removed. However, there may exist n addi-

tional faults that were not identified. If subsequent input

data are similar to the data used to identify the k faults,

then the observed failure rate probably will be lower.

However, if the subsequent input data are substantially

dissimilar to the original data, then the subsequent input

data may encounter the remaining n faults with a high fre-

quency and the observed failure rate could be higher.

9 - 7

The equation for kw assumes a fixed level of quality in
the development of a n_n-debugged module. In reality, a
better (and possibly more costly) development process would
result in a lower failure rate.

Regarding the second assumption, the effort devoted to
development of a module may be a function of the intended
application of the module (single string versus redundant
logic). It may be more m_ahingful to compare costs and
reliability in which the initial development effort reflects
the nature of the intended application.

The third assumption also presents some problems. All
PV pairs are developed from the same specification. There-
fore, they could contain common logic problems associated
with errors or uncertainty in the specification. Migneault
recognizes the correlated faults among redundant modules may
be a problem, and that the assumption of independence of
errors is made to develop a comparison.

The model should be refined and extended to include
recovery blocks. This model has not been validated.

9.1.3 Scott Reliability Models for N-Version Proqramming,

Recovery Block F and Consensus Recovery Block

These data domain models in which the reliability

estimate is time independent were developed by R. Keith

Scott while at North Carolina State University [SCOT83a and

83b] in his PhD dissertation [under the direction of Drs.

James W. Gault and David F. McAllister].

"These models will give a user the ability to estimate

reliability improvements provided by each method as a

function of the reliability of the software components that

comprise the system." [SCOT83a]

Scott developed separate models for the different fault-

tolerant techniques. Three of these are discussed in this

report: the N-Version programming, recovery block and con-

sensus recovery block model. Furthermore, Scott's models

are the only models found which have been at least partially

validated through experimentation.

These models are based on computation of probabilities
related to various error types. Table 9.2 shows the four

recovery block error Zypes, Table 9.3 shows the three

N-Version programming error types. Figure 3-5 in Chapter 3
depicts the consensus recovery block model. Table 9.4

defines the event outcomes and their associated probabili-

ties for the recovery block.

9 - 8

TABLE 9.2 SCOTT'S RECOVERYBLOCK MODELERRORTYPES

Definition

1-Incorrect but

accepted

2-Correct but

not accepted

3-Unsuccessful

State Recovery

4-Incorrect and

not accepted

Program version produces an incorrect

result and the acceptance test accepts

incorrect result as being correct.

Final version produces correct result

and the acceptance test rejects the

correct results.

Recovery program cannot successfully

recover the input state of the pre-

vious alternate in preparation for

executing another version or cannot

successfully invoke the next version.

Final version produces incorrect

results and the acceptance test judges

that the results are incorrect. (There

are no more alternate versions to

execute and the fault-tolerant

recovery block has failed).

TABLE 9.3 SCOTT'S N-VERSION PROGRAMMING MODEL ERROR TYPES

Type Definition

1 A Type 1 error occurs when all outputs, comparisons

disagree.

2

3

A Type 2 error occurs when an incorrect output
occurs more than once. (i)

A Type 3 error occurs when there is an error in the

voting procedure.

The probability of a system software error is then a sum of

the three probabilities of the Type I, 2, and 3 errors.

(I) Correct outputs can still be generated if a Type 2

error occurs (e.g., in a majority vote Of 5 inputs, if 2 of

the inputs agree and are incorrect and if the other 3 agree

and are correct, then resulting output will be correct).

However, Scott's Type 2 errors generally refer to output

errors caused by conditions where a majority of inputs are

incorrect, causing an incorrect output value to be computed.

9 - 9

TABLE 9.4 SCOTT'S RECOVERYBLOCK MODELPROBABILITIES

P(C i) = Probability of version i producing a

correct output for a correct input

P(I i)= I-P(C i) = Probability of version i producing an

incorrect output (for a correct input)

P(C R) = Probability of the recovery program

executing correctly (input state of the

previous recovered and the next version

invoked).

P(I R) = I-P(C R) = Probability of the recovery

executing incorrectly

program

P(A I) = Probability of accepting an incorrect
result

P(R I) = 1 - P(A I) = Probability of rejecting an incorrect
result

P(R C) = ProbabilitY of rejecting a correct
result

P(A C) = 1 - P(R C)

PRB (Ek,n)

= Probability of accepting a correct
result

= Probability of type k error given n
alternate versions

9.1.3.1 Scott's Recovery Block Model

9.1.3.1.1 Assumptions

Scott initially presented his model for the

block method under the general assumption that the

are statistically independent. [SCOT83a]

recovery
versions

Assumption i. The versions are developed independently

by different designers and programmers,

Assumption 2. The probability of a correlated

among the versions is negligible.

error

9 - i0

Scott follows this initial model with a dependent form
of the model in which the previous assumption of statistical
independence is relaxed.

Assumption 3. The alternate program versions are de-
pendent, but no dependence exists between the versions and
acceptance test. [SCOT83a]

9.1.3.1.2 Analysis/Evaluation

The independent version model, before any simplifying

assumptions are made, appears relatively simple and easy to

use. The difficulty, as with all models, lies in deter-

mining accurate values of the inputs. Scott attempted to

estimate the reliability of the individual versions of six-

teen acceptable programs, written by sixty-five students,

using Bernoulli trials [SCOT83a and 84] on fifty input test

cases drawn from a set of 100 test cases. A number of

problems were encountered in selecting the fifty reliability

estimation test cases and the 50 model verification test

cases due to biased estimation. The problem was solved by

assigning difficulty factors to each input test case and

then putting equally difficult test cases in each of the two

pools. This approach resulted in an estimate of the relia-

bility and variance for each of the sixteen programs.
[SCOT83a and 84]

Validation of _h_ _tware reliability m_a_ls for the

recovery block method was based on the initial assumption

that the acceptance test program contained no errors and

therefore, P(A C) and P(R T) equal 1.0. In all cases Scott

assumed perfect-recovery _ould be achieved between detection

of the fault and execution of the next version, i.e., P(C R)
= 1.0.

(There is a statement in Scott's dissertation

recent study reports about one half of software

discovered in supposedly independent versions were

errors in all versions.)

that a

errors

common

Scott relaxed the assumption of perfect acceptance tests

and computed the predicted reliability for a 3-version

recovery block using various values (0.99, 0.95, 0.90, and

0.75) of acceptance test reliability. The results of this

test force the rejection of the null hypothesis in favor of

the alternate hypothesis - "the model could not predict

system reliability". [SCOT83a]

The null hypothesis that "the dependent model can

dict reliability" of the recovery block was accepted

the assumption of perfect recovery. [SCOT83a]

pre -

using

Finally, Scott demonstrated that there is a reliability

improvement of a recovery block system over single version

9 - ii

software even with acceptance test reliability as low as

0.75 at a 95 percent confidence level as shown in Table 9.5.

TABLE 9.5 SUMMARY OF THE RELIABILITY IMPROVEMENT

OF A RECOVERY BLOCK SYSTEM OVER A SINGLE VERSION

NULL HYPOTHESIS

NO RELIABILITY

IMPROVEMENT OVER

A SINGLE VERSION

ACCEPTANCE TEST = 1.00

!ACCEPTANCE TEST = 0.99

ACCEPTANCE TEST = 0.95

ACCEPTANCE TEST = 0.90

ACCEPTANCE TEST = 0.75

REJECTION
i!]

.95 .99

YES YES

YES YES

YES YES

YES YES

YES NO

9.1.3.2 SCOTT'S N-Version Programming Method

9.1.3.2.1 Assumptions

Assumption i. The probability of a Type 2 error is 0.

Assumption 2. The probabil%ty of a Type 3 error is 0.

Assumption 3. There exists one and only one solution

for a given set of inputs.

9.1.3.2.2 Analysis/Evaluation

Regarding Scott's assumptions, assumption 1 is a reason-

able assumption if the versions have independent errors.

However, the assumption that there are no common faults

among the N-Versions is theoretically correct but, in fact,

is a bad assumption, as previously demonstrated by Scott in

his software model and tests for the recovery block.

Scott's assumption that there exists one and only one

solution for a given set of inputs is based upon the com-

parison of outputs from each version being exact. This is a

very bad assumption, since in the real world the comparison

model does not normally require an exact vote. Instead, the

outputs of each version are often checked against boundary

variables and all version inputs which fall within the legal

9 - 12

range can then be mathematically manipulated to arrive at
the voted or correct output. For example, in the case of
three outputs, the algorithm could average the three inputs
or could take the middle value as the correct output. In
the case of two versions in which the inputs fall in the
legal limits, the comparison algorithm often takes an arith-
metic average to compute the output.

Based upon the assumptions made by Scott, the system
reliability model is the probability of two versions
reaching similar, correct conclusions upon execution. This
results in his reliability model for N-Version programming
being the same model as that for two-of-n redundant hardware
system.

Scott repeated the experiments in another attempt to
validate the models with the Type 2 errors no longer assumed
to be 0. Table 9.6 summarizes the results of his experi-
ments.

TABLE 9.6 SUMMARYOF N-VERSION PROGRAMMINGFINDINGS

NULL HYPOTHESIS

NO RELIABILITY IMPROVEMENTOVER SINGLE VERSION

CAN PREDICT TYPE 2 ERRORS

INDEPENDENT NO TYPE 2"ERRORSMODELCAN

PREDICT

RELIABILITY DEPENDENT

TYPE"_2ERRORS "_"

NO TYPE 2 ERRORS

TYPE 2 ERRORS

TYPE 2 ERRORSHAVE NO EFFECT ON RELIABILITY PREDICTION

REJECTION

.95 .99

NO NO

NO NO

YES YES

YES YES

YES YES

YES YES

YES YES

"A number of observations can be .made. First, the

occurrence of Type 2 errors could be predicted accurately,
but their occurrence did not affect the success of relia-

bility prediction. The reason for this is that each test

case had the possibility of multiple correct answers. The

definition of "success" in an N-Version programming system

is the agreement on a (presumably) correct output. The

programs could provide a number of different correct

solutions to each input test case, but an N-Version program-

9 - 13

ming system would not recognize an output as correct unless
it occurred more than once. Therefore, the predicted relia-
bility, which assumes unique correct outputs, was con-
sistently greater than the estimated' reliability. This
leads to the final observation: an N-Version programming
system is useless in situations where multiple correct
outputs can occur. In fact, as in the case of our experi-
ment, the reliability of an N-Version programming system may
be less than any of the component programs." [SCOT83a]

9.1.3.3 Scott's Consensus Recovery Block Method

9.1.3.3.1 Assumptions

Scott developed two models, the first based upon the

assumption of version independence, and the second model

based upon the assumption that there was dependence among

the versions.

Assumption i. The N-versions of a program task can be

developed such that no common software faults exist among

the versions. (Independent Model). In the case of the

dependent model, Scott relaxes this assumption.

Assumption 2. The probability of a Type 5 error is 0.

9.1.3.3.2 Analysis/Evaluation i

These models are based upon computation of probabilities

related to the four error types previously depicted in Table

9.2 for recovery blocks plus a Type 5 error. The N program

versions were executed and their outputs submitted to a

voting procedure. If two or more of the versions agree on

one output, that output is designated as correct. The Type 5

error occurs if the consensus output is incorrect.

Scott conducted an experimental verification

consensus recovery block models.

of the

In his experimental test of both the independent and

dependent models for the consensus recovery blocks, Scott

tested the second assumption. Scott found:

"For a consensus recovery block composed of dependent

components, it is not possible " to assume that the

probability of Type 5 error, agreement on an incorrect

output, is zero. This positive parameter must be

estimated...complexity of the model and the difficulties in

estimating the dependent, conditional probabilities may

render the dependent model useless in practical situations."
[SCOT83a]

9 -- 14

From his tests, Scott also concluded that the indepen-

dent models cannot accurately predict a consensus recovery

block reliability, whereas the dependent model can predict

the consensus recovery block reliability.

Scott also conducted an experiment to determine if the

consensus recovery block gave a reliability improvement over

a single version. This experiment was conducted based upon

probability of a successful acceptance test ranging from

0.75 to 0.99. Table 9.7 contains results of this experi"

ment. Note that for an acceptance test probability equal to

0.9, the null hypothesis can be rejected at the 95 percent

confidence level but cannot be rejected at the 99 percent

confidence level. At an acceptance test probability equal

to 0.75 the null hypothesis cannot be rejected at either the

95 or the 99 percent confidence level. This indicates that

the reliability of the consensus recovery block system may,

in fact, be less than that of the single version in systems

with a poor acceptance test.

TABLE 9.7 SUMMARY OF THE RELIABILITY IMPROVEMENT OF A

CONSENSUS RECOVERY BLOCK SYSTEM OVER A SINGLE VERSION

NO RELIABILITY

IMPROVEMENT OVER

A SINGLE VERSION

NULL HYPOTHESIS REJECTION

.95 .99

ACCEPTANCE TEST = 1.00 YES YES

ACCEPTANCE TEST = 0.99 YES YES

ACCEPTANCE TEST = 0.95 YES YES

ACCEPTANCE TEST = 0.90 YES NO

ACCEPTANCE TEST = 0.75 NO NO

9 - 15

9.1.4 Soneriu Discrete State Continuous Time Markov Model

Soneriu's model is a discrete state continuous time

Markov model. The model considers N-Version programming and

recovery blocks. In addition, Soneriu introduces a hybrid

method, the Tandem Method. The Tandem Method is shown in

Figure 3-4 in Chapter 3. _The model has been developed for a

fault-tolerant machine consisting of a set of M subsystems

with each subsystem made up of N modules. A subsystem

provides one or more fault-tolerant operations. In order

for a fault-tolerant machine to survive in the presence of

faults, subsystems must remain operational.

"A completely fault-tolerant machine must maintain all

its subsystems operational at the specified rate for any

faults. In a partially fault-tolerant machine with non-

degrading services, all subsystems must remain operational

at the specified rate for certain faults, while in a par-

tially fault-tolerant machine with degrading services, some

subsystems may decrease their rate of execution or even

become unoperational in the presence of faults." [SONESI]

The goal of the Soneriu method is to estimaZe the relia-

bility of a partially fault-tolerant machine as compared to

that of a completely (ideal) fault-tolerant machine.

9. i. 4.1 Assumptions

Assumption i. The

is that the software

independent modules.

first assumption that Soneriu makes

modules are a collection of the

Assumption 2. Each Module is either in an "up"

or a "down" state. The system reliability is then

upon the number of members in the up state.

state

based

Assumption

uted failures.
3. The modules have exponentially distrib-

Assumption 4. The module recovery and repair times are
exponentially distributed.

9.1.4.2 Analysis/Evaluation

Soneriu's Model, in its present state, cannot be

directly applied unless one can provide realistic estimates

based upon another model or historical data for the input
parameters.

These constraints would specifically require that the

user be able to estimate the coverage provided by the actual

recovery algorithm for the recovery blocks, (i.e., coverage

9 - 16

provided by the acceptance test) and for N-Version program-
ming, (i.e., coverage provided by the comparison algorithm).
In addition, the user must specify the repair rate of each
of the modules, the number of modules, and the time of
interest.

Hypothetical values could be assumed and used in the
Soneriu model in a manner similar to that used by Scott.
This approach would be useful to gain initial experience in
using the model. It must be supplemented by estimated
values at some subsequent point.

9.1.5 Wei Reliability Model for Fault-Tolerant

Software System

Wei's model [WEISI] provides a basis for decomposing

processes into segments which can represent individual soft-

ware functions such as algorithm version, fault-detection,

etc., and computing the resulting process reliability based

upon the reliability of the segments and the probability of

their execution. Wei's model can be applied to recovery

blocks or N-Version programming (two out of three majority

voting) as well as consensus recovery blocks [SCOT83a,84]

and the Tandem Method [SONE81].

Wei assumes a real-time system consisting of M(>0)

periodic processes with request periods tl, tg, ..., t M

where t I < t_ <...< t. and t.._ is a multiple of t_ for i =z M . tl . . i
i, 2, 3, ..., M-I. The fallu_e probab111ty for process i is

: The probability of total system failure can then befl"
approximated by:

M t M

F - _ n. * fi where n. = .
i=l 1 1 _.

1

Wei then looks at the segments that compose the

processes in an attempt to express the overall probability

of failure F as a function of the individual failure proba-

bilities for the segments of process i.

To do this, he introduces el4, the conditional proba-

bility that segment j will be exe_dted during the execution

of process i and examines the probability of failures along

each of the paths (or sequence of segments) that comprise

the process. He then shows that the probability of failure

of process i can be approximated by :

N0

fi = _ _e i *f where N i is the number of segments
j=l j ij

9 - 17

and then

m

M N

ni _ eij *fij-
i=l j=l

In other words, Wei shows that the probability of

failure of any process can be approximated by the linear

sums of the failures of the individual segments of the

process over the conditional probabilities that the segments
will be executed.

Wei then uses this model to examine

recovery blocks and majority voting.

reliability of

9.1.5.1 Assumptions

Assumption i. A real-time software system could be

expressed as a set of periodic processes and each process's

request period is a multiple'of' the next smallest request.

Assumption 2. Each process in a real-time system can

be further decomposed into a set of segments in a structured

way. Three basic structures are used extensively for the

refinement, i.e., sequence, if-then-else, and while loop.

Wei assumes that process i contains Ni segments of which

each has failure probability fij where 3 = 1,2,---,N i.

Assumption 3. There are two alternates in the recovery

block and that in a majority vote the probability of failure

of the voting component is 0.

9.1.5.2 Analysis/Evaluation

Wei's model appears to be useful in the design of soft-

ware. Because Wei's model captures the conditional probabi-

lities that each segment will be executed given the fact

that the preceding segment has been executed, the model is

very representative of the actual process of software
execution.

Also, because the model examines the paths of segments

internal to processes, the critical paths can be identified,

(quantatively paths with large n. *e_) and segments with
1 ±3

"high-execution probability reslding in a frequently exe-

cuted process" can be designed with greater fault-tolerance.

One extension to the model would be to develop a method

to accurately estimate the failure probability of each seg-

ment in a path. This would include not only the primary and

alternate version, but also the acceptance test in the case

of the recovery block.
o

9 - 18

In its present status, the model is useful in evaluating
tradeoffs between recovery blocks and majority voting con-

cepts. The model should be used in an experiment in order

to further verify its assumptions. Since many of the higher

order terms were discarded in the linear approximation, the

experiment would test this use of the linear approximation.

9.1.6 Melliar-Smith Probabilistic Model of the

Reliability of Recovery Blocks

Peter Michael Melliar-Smith developed a probabilistic

analysis of nested recovery blocks. [MELL83] The model is

only applicable to recover_y blocks and includes some analy-

sis of the effect of correlated errors. The model estimates

the probability of obtaining an erroneous result or proba-

bility of an error return using nested recovery blocks.

9.1.6.1 Assumptions

Assumption. This model assumes complete

between the alternates and the acceptance test,
the various alternates.

independence
and between

9.1.6.2 Analysis/Evaluation

Melliar-Smith's model for the recovery block is similar

to that developed by Scott for the recovery block.

The user of the model must furnish the probability of

error associated with each version, as well as the

probability of the acceptance test not detecting any errors

that have been submitted to it. The classic problem with

these types of models is that the developer exercises the

model using hypothetical data, just as Scott has done.

Regarding the assumption, Melliar-Smith states: "It

would be very desirable to be able to include the correla-

tions between those programs and the model, but at present

we do nQt know how to measure, to express, or to analyze the

correlations between programs. We will consider the problem

further, but a conceptual breakthrough is required and there

can be no expectation of a quick solution." [MELL83]

Melliar-Smith extended the model to include the effect
%

of correlated faults due to design error. ThDs extension

formed the basis for his conclusions. These are:

Recovery blocks should substantially improve the relia-

bility of new or little tested programs, because many of the
coding faults will be random and will be caught by the

acceptance test. However, in well tested operational pro-

grams, such as flight-critical functions, recovery blocks

9 - 19

will show less improvement in reliability because, Melliar
Smith hypothesizes, the program faults will tend to be
correlated between the validation procedures and the accep-
tance test. Most random faults will normally have been
detected by the validation procedures and during operation.
Because the acceptance test will normally be correlated with
the validation process, program faults will tend to escape
detection.

"If recovery blocks are to substantially improve relia-
bility, it must be because almost all of the residual faults
left in the operational progra m are faults that are highly
correlated to the validation procedures but uncorrelated, or
only partially correlated to the acceptance tests and alter-
natives. Since the validation procedures and the acceptance
tests are already highly correlated, it will be hard to
argue that such faults predominate.

"...this analysis shows that recovery blocks do not, by
themselves, provide a reliability improvement sufficient to
meet the stringent reliability.requirements of flight-con-
trol applications. However, once an initial version of the
programs (of adequate reliability) has been obtained, recov-
ery blocks can be used to allow some modification and
enhancement of programs without loss of reliability."
[MELL83]

9.1.7 Bhargava Software Reliability Model for Recovery
Blocks

Bhargava developed a probabilistic model for recovery

blocks. [BHAR81] The model is based upon computing the

probability of reliability in four types of software: A

primary module with an acceptance test; a primary module

decomposed into a number m submodules, each with its own

acceptance test; a primary module with a number n-i of

alternatives; and, a primary module composed of m sub-

modules, each with its own acceptance test and alternative.

He then computes the probability of failure for each of

these types.

Bhargava's basic purpose is to look at the tradeoffs

involved in implementing a recovery block sYstem [and

specifically to examine the effects of increasing the number

of alternates, the testing granularity and module structure

relative to achieving a specific reliability within a

constrained cost for acceptance testing. [BHAR81]

9.1.7.1 Assumptions

Assumption i. All acceptance tests are perfect.

9 - 2_

Assumption 2. The probability of
mary and alternates are independent.

failure of the pri-

Assumption 3.
failure is small
module." [BHARSI]

"The cost of recovering states after a
compared to the cost of executing the

9.1.7.2 Analysis/Evaluation

This probabilistic model requires extensive rework in

order to incorporate dependency and realistic assumptions.

Bhargava states that assumption 1 has been made for

simplicity. Clearly, this assumption severely restricts the
usefulness of this model.

The second assumption is also suspect. As Melliar-Smith

hypothesized in his analysis of the reliability of recovery

blocks, in highly tested flight-critical operational soft-

ware, there may well be a correlation between the faults in

the programs and the alternatives (as well as the acceptance

tests). [MELL83] To assume in a probabilistic model that

these are independent is a major concern. Bhargava makes

this assumption because "it is very difficult to obtain

dependencies between failures of primary and alternates. Of

course this assumption can be generally true for indepen-

dently designed modules".

Bhargav& is currently working on generalizing his anaiy-

sis by relaxing the assumption of perfect acceptance tests,

and introducing probabilities that the acceptance test will

or will not operate properly. Bhargava gives no further

information in this paper on the status of extensions.

9.2 Summary

This study has not identified a single well developed,

fully validated model to quantitatively assess the effects
of fault-tolerant software.

Of the models in Table 9.8, only those of Grnarov,

Scott, Soneriu, and Wei are sufficiently developed to war-

rant further consideration.

Only the Grnarov and Scott models have been subjected to

limited validation testing. Both of these model developers

have structured their models to permit extension to more

than a single fault-tolerant software technique. Both model

developers assumed hypothetical data values for their models

and derived numerical results, plotted curves of these

results, and drew Conclusions. Unfortunately, their

conclusions contradicted each other

9 - 21

TABLE 9.8 COMPARISON OF FAULT-TOLERANT SOFTWARE

RELIABILITY MODELS

°
UO

9_

u
I N

Z

_,4UN

n_

,,,4 :) _
WOO
act N

0_0

wE
,40

°1:°

'H_ w

o_

N N N N N N _, _q o

N N N N N N N N N I_ _e •

N N X N t¢ N N N N m m o

N N N N N N .N _, ,4) m

N

N N

_ _- _ _ _

N I_ N N N N N _ _

C

,. t., t: ._

(,_} O_'t*IOA03

,°

9 - 22

Soneriu's model for fault-tolerance can be used to

represent both of the major fault-tolerant software tech-

niques. The specific extension to both the recovery block

and N-Version programming has not been done.

Wei's model requires the user to decompose the technique

into segments which represent each software function and to

provide failure probabilities for each segment during one

request period as well as the conditional probabilities

related to the frequency of execution of the segment. This

was not specifically done by Wei for either of the major

fault-tolerant software techniques.

While it has not been possible to select a single model

that has been fully validated, the models can be useful in

estimating the reliability of the fault-tolerant software

techniques in contrast to the reliability of fault-intoler-

ant software, and they all predict that fault-tolerant

software can improve the reliability of the resulting sys-
tems, if properly applied.

While both Scott and Grnarov used hypothetical data,

their results for both recovery blocks and N-Version

programming indicate that either technique is more reliable

than the fault-intolerant technique if certain conditions
are satisfied:

For the recovery block, the acceptance test must be

more reliable than the primary version, and the pro-

bability of correlated faults between the versions

and the acceptance test must be small;

In the case of N-Version programming, the probability

of correlated faults in the versions must be quite

small. N-Version programming "success as a method

for run-time tolerance of software faults depends on

whether the residual design faults in each version

are distinguishable". [AVIZ82] Another system level

reliability consideration which should be kept in

mind in N-Version programming is the impact of the

reliability of the N processors executing the N-

Versions on the overall system reliability.

It is not possible to state that one of the two primary

fault-tolerant software techniques is more reliable than the

other. Based upon the assumptions and hypothetical data

used by Grnarov, his models indicate that N-Version program-

ming is more reliable than recovery blocks. Scott's hypo-

thetical data assumptions and models indicate that the

recovery block is more reliable than N-Version programming.

Clearly, the state of the art in modelling fault-toler-

ant software is still in its infancy and much additional

work needs to go on before any definitive conclusions can be

reached. The most that one can say today is that a start

9- 23

has been made and that work is required to develop and
refine the analyses already conducted and to extend the
results to the real world. Furthermore, much empirical data
is required to validate and verify the model results. With-
out this empirical data and verification, the models will
continue to suffer.

9 - 24

I0.0 Conclusions and Recommendations

ORIGINAL P;,_-__ =._

OF POOR QUALi'_

This chapter presents the conclusions and recommenda-

tions of this study.

i0.i Conclusions

10.1.i Current State of the Art

Fault-tolerant software is just emerging from the

research environment into the real world. Practical exper-

ience has been limited and results have been mixed; on the

whole these results have been more positive than negative.

For example:

• Fault-tolerant software can improve the reliability

of the programs;

The cost, performance impact, overheads, applications

most susceptible to improvements and the quantifica-

tion of the resulting improved reliability, as well

as other important factors are not known at this

time;

The quantitative data to support definitive

u** i** L**_ areas has not been developed;

conclu-

• There has been significant conceptual development of

the ideas and techniques of fault-tolerant software;

Techniques considered include multi-version, recovery

blocks, exception handlers, and variants of these;

All techniques appear to follow the same

model or strategy - error detection, damage

ment, error recovery, fault treatment;

general

assess-

Many of fault-tolerant software techniques have

developed from programming practices that have been

used successfully for a number of years - dissimilar

software, exception handlers, assertions, etc.;

No "best" fault-tolerant software technique exists.

No validated model or other quantitative method

exists to predict the "best" fault-tolerant• software

technique for a given application;

There has been limited practical experience with

fault-tolerant software and the results, while gen-

erally favorable, have been mixed;

I0 - 1

Most of the practical implementations uncovered in
this study were for applications that were critical
to the performance of a pa[ticular function;

The NASA Shuttle is the only example of a complete
operational multi-version sYstem uncovered;

Most of the applications were imposed by regulatory
bodies as part of a certification process rather than
originated by the implementors. Applications were
typically in failure critical areas such as commer-
cial aircraft, nuclear reactors, and transit systems;

Because the functions were so critical, the software
was generally tested as thoroughly as if there had
been no fault-tolerance. As a result, the software
was well tested when :put into service and the
incidence of error caught bY the fault-tolerant soft-
ware has been small;

No empirical data was collected in an organized way
during most implementations. (The only exception is
the work currently underway by University of

Newcastle-upon-Tyne for the'British Navy.) The very

limited empirical data that does exist was generally

collected by universities and other research institu-

tions, and is, therefore, somewhat skewed toward an

academic environment;

Opinions have been expressed which suggest that use

of fault-tolerant software will expedite the software

development process by reducing the requirements for

testing. (In this way the costs of the redundancy

can be recouped). This study found no "hard data" to

support this claim one way or the other, although it

appears to be reasonable;

Research into fault-tolerant software is entering the

"second generation" at such institutions as UCLA and

Newcastle-upon-Tyne; .

The "first generation" research looked to the

bility of the concepts;

feasi-

The second generation seeks to expand the concepts

into new areas such as telecommunications, operating

systems and distributed systems. It also is oriented

to producing the empirical data needed to support the
analysis of the processes;

Models are not sufficiently developed to provide

accurate predictions on the improvements in relia-

bility, costs, overheads, etc., resulting from the

introduction of fault-tolerant software into an

application;

i0 - 2

Models cannot be used to quantitatively predict the
effects of alternatives in the implementation of
fault-tolerant software except in the broadest sense;

Well-conceived and controlled experiments must be
conducted to acquire useable data to validate these
(or any other) models or identify deficiencies of
these models;

10.i.2 Implications on Hardware/Operatinq Systems/Languages

Modern computer design principles and practices are
generally consistent with the requirements of fault-
tolerant software;

Encapsulation of data, programs and other computa-
tional entities facilitates the introduction of
fault-tolerant software;

Other concepts such as hierarchical decomposition of
hardware and software, kernel and ring based designs,
context management and name based memory management
(associative processing) also make the use of fault-
tolerant software easier;

Trends of reduced costs for computer hardware will
generate increased use of hardware redundancy and
thus also acr_1_ the introduction of fault-
tolerant software;

Specialized hardware such as processors, multiple
register sets, controllers, memory caches and other
logical units, needed to efficiently support various
fault-tolerant software functions will become more
economical;

The concept of Idealized Fault-Tolerant Components
(IFTC) offers promise in that it may give the
designer control over the amount of error detection
and the kind of error recovery techniques most
appropriate to a specific application;

Ada, as currently defined, provides significant sup-
port for highly fault-tolerant software. However,
Ada also has certain major shortcomings in this
regard, and changes and enhancements are required
before it can be an effective language support tool.
Ada provides significant encapsulation capabilities
including control encapsulations over procedures,
functions, and tasks, as well as strong data typing
(packages);

Ada rendezvous specifications provide no way to term-
inate a rendezvous once it has begun;

i0 - 3

Ada timing constraint specifications are not general-

ized and need to be extended;

Ada does not support a "single
model for exception handling";

level terminating

e C does not provide many of the constructs for fault-
tolerant supports. Basic facilities such as con-
current processing and exception handling must be
implemented external to C.

10.2 Recommendations

This section presents the reco_nendations that have been

developed in the course of this study. Recommendations are
given in two areas: (i) research issues requiring immediate
attention if fault-tolerant software is to be developed
conceptually to its full potential; and (2) developmental
issues which are deemed important because they will provide
the base required to practically implement systems using
these techniques.

i0.2.1 Research Issues

It is apparent that much additional work is needed

before fault-tolerant software can be considered a truly
mature technology. The purpose of this section is to out-
line research issues that were identified in the course of

the study as requiring additional research before the state
of the art of fault-tolerant software can be significantly
advanced. These issues are shown below:

The first issue that must be addressed is the

question of the relative independence of alternate
versions of software and the correlatlon'of errors.
Fault-tolerant software is based upon the assumption
that software errors will be random and that redun-

dancy in the form of multiple versions or alternates
will improve the overall reliability of the software
because the simultaneous occurrence of faults occur-

ring in all or most of the versions will be small. If

it is shown that this assumption is not valid, or
valid only in selected application areas, then this
will have a major effect on the introduction and
utility of fault-tolerant software in these environ-
ments;

The second issue is the ability of certain specific
modern structures to support fault-tolerant software.

This study briefly reviewed the capabilities of Ada

and the Advanced Information Processing System (AIPS)
to accommodate fault-tolerant software. Additional

study and analysis is required to determined more

i0 - 4

specifically the changes, enhancements, costs and

impacts of modifying Ada and AIPS to accommodate

fault-tolerant software in a more efficient manner;

The third issue requiring immediate attention is the

application of fault-tolerant software to problems

involving a high degree of concurrency between pro-

cesses and computers. Research into fault-tolerant

software in a distributed highly concurrent environ-

ment must address such problems as eliminating ser-

vice requests from software that has been cancelled,

release of resources required by concurrent

processes, etc.;

The fourth major research issue is the need for a

validated model or other analytical technique to

predict the impact of introducing fault-tolerant

software into software design. As stated earlier in

this paper, the models which have been developed have

problems and require further validation using empiri-

cal data. It may be that the only modeling approach

which is possible is so highly applications dependent

that the best generalization that can be achieved a

set of guidelines _v_ _-_o_A__,.__ which,LL_ _ be

included. In any case, goodand accurate quantita-

tive assessment tools are needed to advance the tech-

nology;

The fifth research issue is the need for a method-

ology to be used to manage processes in the case of

reconfiguration. In the case of a major software

failure (e.g., the system enters a region of the

input space which consistently causes a version to

fail), reconfiguration will have to take place under

the guidance of the application program itself. Also,

in the case where a significant portion of the compu-

tational resources are lost, it may be necessary to

reconfigure the system to a minimum essential set of

functions.

How such a set is specified and guaranteed to be

operational is unresolved. It is imagined that this

last problem can be solved by defining several

domains and using a domain manager to control the

execution of domains depending upon resources. In

order to be able to perform its task, this domain

manager will require information concerning the

availability of hardware resources and some history
of the failures of the software. It will also need

the ability to abort processes and restart them.

(This implies some rebinding of the names of these
processes will be necessary);

_ i0 - 5

The sixth major research issue is the applicability
of fault-tolerance in the design and implementation
of operating systems. While the introduction of
fault-tolerant software technology at the application
level has been demonstrated, the use of these tech-
niques in operating systems is not clear;

The last major research issue is the need to develop
a comprehensive engineering methodology for applying
fault-tolerance to systemS architecture. [Design
principles and procedures need to be evolved in the
areas of specifications development, systems func _
tional design, systems detailed design and implemen-
tation techniques.] The IFTC provides a beginning for
this development. This concept should be expanded
and unfolded to provide the_tools necessary for real
world application of fault-tolerance.

10.2.2 Development Issues

J

There is a great lack of empirical data with which to

make decisions concerning the impacts and costs of fault-

tolerant software and upon which to base predictions on the

effectiveness of the various proposed techniques.

• The first development issue is the immediate need for

an engineering test bed for which to capture the

empirical data on the use, efficacy, practicality and

costs of fault-tolerant software;

|

• The second development issue is the introduction of

fault-tolerant software into the Advanced Information

Processing System (AIPS);

To provide empirical data, a test facility must be

developed; the facility should provide the tools

(language notations and mechanisms)needed to con-

veniently and efficiently implement and test various

fault-tolerant software techniques; the facility

should also provide the data capture tools and

strategies needed to introduce controlled redundancy

into software and to measure its impact; finally, it

should provide the software development mechanisms
needed to test the use of fault-tolerant software in

realistic environments.

AIPS, as a new highly reliable system, is a good candi-
date for an engineerlng and development tested facility.

AIPS, however, is several years in the future, and the

empirical data collection needed can not wait. Therefore,

some interim test facility should be constructed and an

active experimentation program developed to use the
facility.

i0 - 6

BIBLIOGRAPHY

ANDE76

Anderson, T. and R. Kerr. Recovery Blocks i_nn Action: A

System Supportinq High Reliability. Proceedings of 2nd

International Conference on Software Engineering. October

1976. pp 447-457.

ANDES1

Anderson, T. and P. A. Lee. Fault-Tolerance Principles and

Practice. Prentice-Hall International. 1981.

ANDE81a

Anderson, T. and John Knight. Practical Software Fault-

Tolerance in Real-Time Systems. ICASE Report 81-10. NASA

Langley Research Center. May 1981. (a)

ANDES3

Anderson, T. and John Knight. A Framework for Software

Fault Tolerance in Real-Time Systems. IEEE Transactions on

Software Engineer--_ng, Vol SE-9(3). May 1983. pp 355-364.

ANDE84

Anderson, T. Personnel communication provided by T. Ander-

son at NASA Langley. University of Newcastle upon Tyne.

1984.

ANDR79

Andrews, D. M. Usinq Executable Assertions for Testinq an__dd

Fault-Tolerance. Digest of Papers of FTCS 9: The 9th Annual

International Symposium on Fault-Tolerant Computing. IEEE

Computer Society. June 1979. pp 102-105.

AVIZ77

Avizienis, A. and L. Chen. On the Implementation of N-

version Proqramming for Software Fault-Tolerance Durinq

Execution. Proceedings of COMPSAC 77. November 1977.

149-155.

PP

AVIZ82

Avizienis, A. and John Kelly. Fault-Tolerant Multi-version

Software: Experimental Results of a Design Diversity Ap-

proach. UCLA Computer Science Dept, Quarterly. Spring,

1982.

AVIZ83

Avizienis, A. Personal communication between Battelle Colum-

bus Laboratories and A. Avizienis. UCLA. Los Angeles,

California. November 1983.

ii- 1

AYAC79
Ayache, J. M., P. Azema, and M. Diaz. Observer: A Concept

for On-Line Detection of Control Errors in Concurrent

tems. Digest of Papers of FTCS 9: The 9th Annual Interna-

tional Symposium on Fault-Tolerant Computing. IEEE Computer

Society. June 1979. pp 79-86.

BACK78

Backus, J. Can Programminq b_ee Liberated from the von Neu-

mann Style?. Communications of the ACM. August 1978. pp

613-641.

BEUS69

Beuscher, H. J., G. E. Gessler, D. W. Huffman, P. J. Ken-

nedy, and E. Nussbaum. Administration and Maintenance Plan.

Bell System Technical Journal, Vol 48. October 1969.

BHAR81

Bhargava, B. Software Reliability i__nnReal-Time Systems.

Proceedings of National Computer Conference 1981.

BLAC80

Black, J. P., D. J. Taylor, and D. E. Morgan. An Intro-

duction to Robust Data Structures. Digest of Papers of

FTCS 10: The 10th Annual International Symposium on Fault-

Tolerant Computing. IEEE Computer Society. June 1980.

BLACSI

Black, J. P., D. J. Taylor, and D. E. Morgan. A Compendium

of Robust Data Structures. Digest of Papers of FTCS ii:

The llth Annual International Symposium on Fault-Tolerant

Computing. IEEE Computer Society. 1981.

BOI81

Boi, P. M., et. al. Exception Handlinq and Error Recovery

Techniques in Modular Systems--and Application to the ISAURE

System. Digest of Papers of FTCS ii: The llth Annual

International Symposium on Fault-Tolerant Computing. IEEE

Computer Society. 1981.

BOUT80

Boute, R. Simplifying Ada by Removinq Limitations.

SIGPLAN, Vol 15(2). February 1980. pp 17-28.

CAMP79

Campbell, R. H., K. H. Horton, and G. G. Belford. Simul-
tions of a Fault-Tolerant Deadline Mechanism. Digest of

Papers of FTCS 9: The 9th Annual International Symposium on

Fault-Tolerant Computing. IEEE Computer Society. June

1979.

ii- 2

CART83
Carter, W. C. Architectural Considerations fo____rDetecting

Run Time Errors in Programs. Digest of Papers of FTCS 13:

The 13th Annual International Symposium on Fault-Tolerant

Computing. IEEE Computer Society. June 1983. pp 249-256.

CHEN78a

Chen, L. and A. Avizienis. N-Version Programming: A Fault-

Tolerant Approach to the Reliability of Software Operation.

Digest of Papers of FTCS 8: The 8th Annual International

Symposium on Fault-Tolerant Computing. IEEE Computer

Society. June 1978. pp 3-9. (a)

CHEN78b

Chen, L. Improving Software Reliability by N-version Pro-

gramming. Technical Report, UCLA Computer Science Dept.

September 1978. (b)

CLARS0

Clarke, L., Jack Wileden, and A. Wolf. Nesting i_nn Ad___aa

Programs is for the Birds. SIGPLAN, Vol 15(11). November

1980. pp 139-145.

CONN72

Connet, J.R., E.J. Pasterrak and B.D. Wagner. Software

Defenses in Real-Time Control Systems. Digest of Papers of

FTCS 2: The 2nd Annual International Symposium on Fault-

Tolerant Computing. IEEE Computer Society. 1972.

CRIS82a

Cristian, F.

Tolerance.

June 1982.

Exception Handling and Software Fault-
IEEE Transactions on Computers, Vol C-31(6).

pp 531-540.

CRIS82b

Cristian, F. Robust Dat____aT_y._.

1982. pp 365-397.

Acta Informatics, Vol 17.

CRIS83

Cristian, F. Correct and Robust Programs. Technical

Report, University of Newcastle upon Tyne, Computing Labora-

tory. February 1983.

CSDL83

Charles Stark Draper Laboratory, AIPS System Requirements.

CSDL Report # AIPS-83-50, August 70, 1983.

DALE82 •

Dale, C. J. and L. N. Harris. Software Reliability Evalu-

ation Methods. British Aerospace Report No. ST 26750.

September 1982.

ii - 3

DE81
DE, B.B. and H.B. Krakan, Fault-tolerance in a Multi-

Processorf Digital Switching System. IEEE Transaction on

Reliability, Vol R-30, No. 3, August 1981.

DIJK76

Dijkstra, Edger.

Hall. 1976.

Discipline of Programming. Prentice-

DIJK78

Dijkstra, Edger. On the GREEN Language Submitted to the

DOD. SIGPLAN Vol 13(10). October 1978. pp 16-21.

GEPH78

Gephart, L. S., C. M. Greenwald, M. M. Hoffman, and D. H.

Osterfeld. Software Reliability: Determination and Predic-

tion. Technical Report AFFDL-TR-78-77. June 1978.

GILB84

Gilbert, Ray and Norm Ichiyen. Personal communication

between Battelle Columbus Laboratories and Gilbert and

Ichiyen. Atomic Energy of Canada Limited. January 1984.

GILO83

Giloi, W. K. and P. Behr. Hierarchical Function Distribu-

tion - A Design Principle for Advanced Multicomputer Archi-

tecture. Proceedings of the 10th Annual International Sym-

posium on Computer Architecture. IEEE Computer Society and

ACM. 1983. pp 318-325.

GOEL82

Goel, A. L.

Techniques.

Software Reliability Modeling and Estimation

RADC-TR-82-263. October 1982.

GOLD80

Goldberg, Jack. SIFT: A Provable Fault-Tolerant Computer

for Aircraft Flight Control. IFIPS World Computer Congress.
IFIPS. 1980.

GOLD84

Goldberg, Jack, et al. Development and Analysis of the

Software Implemented Fault-Tolerance (SIFT). Technical

Report, NASA Contractor Report 172146, Contract NASI-15428.

SRI International, Menlo Park, California. February 1984.

GREV83

Greve, W. E., and R. J. Schroder. A Distinct Software

Implementation i__nna Vehicle Controller. Boeing Aerospace

Company. IEEE Proceedings of 334 Vehicular Technology Con-

ference. Toronto, Canada. May 25-27, 1983.

II - 4

GRNAS0

Grnarov, A., J. Arlatt, and A. Avizienis. Modeling of Soft-

ware Fault-Tolerance Strateqies. Proceedings of 1980 Pitts-

burgh Modeling and Simulation Conference. Pittsburgh, Penn-

sylvania. May 1980.

GRNA81

Grnarov, A., J. Arlatt, and A. Avizienis. Modelinq and

Performance Evaluation of Software Fault-Tolerance Strate-

gies. Technical Report, UCLA Computer Science Dept. 1981.

HECH76

Hecht, H. Fault-Tolerant Software Software for Real-Time

Systems. Computing Surveys, Vol 8(4). ACM. December 1976.

pp 391-407.

HECH79

Hecht, H. Fault-Tolerant Software. IEEE Transactions on

Reliability, Vol R-28(3). August 1979. pp 227-232.

HECH82

Hecht, H. and M. Hecht. Use of Fault Trees for the Desiqn

o__f Recovery Blocks. Digest of Papers of FTCS 12: The 12th

Annual International Symposium on Fault-Tolerant Computing.

IEEE Computer Society. June 1982. pp 134-139.

HOAR81

Hoare, C. A. R. The Emperor's Old Clothes.

24(2). February 1981. pp 75-83.

CACM, Vol

HORT78

Horton, K. H., R. H. Campbell, and G. G. Belford. Meeting

Real-Time Deadlines. Proceedings of Computers, Electronics,

and Control. Acta Press. 1978.

HOSS83

Hosseini, S., J. Kuhl and S. Readdy. An Integrated Approach

to Error Recovery i__nnDistributed Computing Systems. IEEE.

1983.

JAME82

James, L. E., J. E. Angus, J. B. Bowen, and J. McDaniel.

Combined Harware-Software Reliability Models. Technical

Report RADC-TR-82-88. April 1982.

JESS82

Jessop, W.

Vol 17(2).

Ada Packages and Distributed Systems.

February 1982. pp 28-36.

SIGPLAN,

JONES0

Jones, Dougla s . Taskinq and Parameters: _A Problem Area in
Ada. SIGPLAN, Vol 15(5). May 1980. pp 37-40.

II- 5

KELL82

Kelly, John. Specification o__f Fault-Tolerant Multi-version

Software: Experimental Studies of a Design Diversity

Approach. PhD Dissertation, UCLA. 1982.

KELL83

Kelly, John and A. Avizienis. A Specification-Oriented

Multi-version Software Experiment. Digest of Papers of FTCS

13: The 13th Annual International Symposium on Fault-

Tolerant Computing. IEEE Computer Society. June 1983.

KNIG83

Knight, John and John Urquhart. Fault Tolerant Distributed

Systems Using Ada. AIAA Computers in Aerospace IV Con-

ference. October 1983. pp 37-44.

KNIG84

Knight, John. Personal communication between Battelle

Columbus Laboratories and John Knight. University of Vir-

ginia. Charlottesville, Virginia. January 1984.

LEE78

Lee, P. A. A Reconsideration of the Recovery Block Scheme.

Computer Journal, Vol 21(4). November 1978. pp 306-310.

LEE79

Lee, P. A., N. Ghant, and K. Heron. A Recovery Cache for

the PDP-II. Digest of Papers of FTCS 9: The 9th Annual

International Symposium on Fault-Tolerant Computing. IEEE

Computer Society. June 1979.

LEE83

Lee, P. A. Structuring Software Systems for Fault Toler-

ance. AIAA Computers in Aerospace IV Conference. October

1983. pp 30-36.

LEVE83

Leveson, N. G. and T. J. Shimeall. Safety Assertions in

Process Control Systems. Digest of Papers of FTCS 13: The

13th Annual International Symposium on Fault-Tolerant Com-

puting. IEEE Computer Society. 1983. pp 236-240.

LIND82

Linden, Peter van der. Ambiguity and Orthoqonality in Ada.

SIGPLAN, Vol 17(3). March 1982. pp 93-94.

LISK79

Liskov, Barbara and Alan Snyder. Exception Handling i_nn

CLU. IEEE Transactions on Software Engineering,

Vol SE-5(6). November 1979. pp 546-558.

Ii - 6

MAHJ81
Mahjoub, Ahmed. Some Comments o__nnAd___aaas a Real-Time Pro-

gramming Language. SIGPLAN, Vol 16 (2). February 1981.

pp 89-95.

MAKA82

Makam, S. V. Design of a Fault-Tolerant Computer System to

Execute N-version Software. Technical Report, UCLA Computer

Science Dept. December 1982.

MART82

Martin, D. J. Dissimilar Software in High Integrity Appli-

cations in Flight Controls. NATO AGARD Conference Pro-

ceedings No. 330 "Software for Avionics". October 6, 1982.

MART84a

Martin, David. Personal communication between Battelle

Columbus Laboratories and David Martin. Marconi Avionics.

Rochester, Kent, England. January 1984.

MART84b

Martin, Don. Personal communication between Battelle

Columbus Laboratories and Don Martin. Boeing. Seattle,

Washington. January 1984.

MATS83

Matsumoto, Y. and H. Nakamura. TREX/MCS: A Fault-Tolerant

Multicomputer. Proceedings IFAC Safecomp 83. IFAC. 1983.

pp 255-260.

MCAL83

McAllister, David. Personal communication between Battelle

Columbus Laboratories and David McAllister. North Carolina

State University, North Carolina. December 1983.

MCWH84

McWha, Jim and Peter O'Toole. Personal communication bet-

ween Battelle Columbus Laboratories and Jim McWha and Peter

O'Toole. Boeing. Seattle, Washington. January 1984.

MELL82

Melliar-Smith, P.M. and R. Schwartz. Formal Specifications

and Mechanical Proof of S__IFT: A Fault-Tolerant Flight

Control System. IEEE Transactions on Computers, Vol C31(7).

July 1982.

MELL83

Melliar-Smith, P. M.

Tolerance Techniques.

Development of Software Fault-

NASA CR-172122. March 1983.

MIGN82

Migneault, G. E. The Cost of Software Fault-Tolerance.

NASA Technical Memorandum 84546, NASA-Langley Research

Center. September 1982.

II- 7

MIGN83 •

Migneault, G.E. On Requirements for Software Fault-

Tolerance for Flight Controls. Te-_nical Report, NASA

Langley Research Center. 1983.

MORR81

Morris, M. A. An Approach to the Design o_ff Fault-Tolerant

Software. M.S. Thesis. Cranfield Institute of Technology.

September 1981.

NAMJ83

Namjoo, M. CEREBRUS-16: An Architecture for a General Pur-

pose Watchdoq Processor. Digest of Papers of FTCS 13: The

13th Annual International Symposium on Fault-Tolerant Com-

puting. IEEE Computer Society. 1983. pp 17-20.

NEUM80

Neumann, P. G., et al. A Probabiy Secure Operatinq System:

Th__eeSystem, it___ssApplications and Proofs. Technical Report,

Computer Science Laboratory No. CSL-II6. SRI International.

Menlo Park, California. May 1980.

ORNS75

Ornstein, S.M., et al. Pluribus- A Reliable Multipro-

cessor. AFIPS National Computer Conference. AFIPS. 1975.

pp 551-559.

PARN72

Parnas, D. On the Response o__[fDetected Errors in Heirarchi-

call Z Structured Systems. Technical Report, Car-negie Mellon
University. 1972.

PATT82

Patterson, D. A. and C. H. Sequin. RISC I: A Reduced

Instruction Set VLSI Computer. Proceedings of the 8th

Annual Symposium on Computer Architecture. ACM. 1982.

PEAS80

Pease, M. C., R. Shostak and L. Lamport. Reaching Agreement
in the Presence of Faults. Journal of the ACM. Vol 27(2).

April 1980. pp 228-234.

PRAT83

Pratt, T. W., J. Knight, and S. T. Gregory. On the

Engineering of Crucial Software. NASA Grant No, AG-I-233,

Report No. UVA/52808/AMCS83102.. February 1983.

RAMA82

Ramamoorthy, C. V. and F. B. Bastani. Software Reliability

- Status and Perspectives. IEEE Transactions on Software

Engineering, Vol SE-8(4). July 1982.

11 - 8

RAND75

Randell, B. System Structure fo___[rFault-Tolerance.

Transactions on Software Engineering Vol SE-I(2).
June 1975. pp 220-232.

IEEE

RAND78a

Randell, B.

W. Germany.
Reliable Computing Systems.
1978. (a)

SpringerVerlay.

RAND78b

Randell, B. Error Recovery i__nnDistributed Computer Systems.
Computer Bul. Set. 2, No. 16. June 1978. (b)

RAND78c

Randell, B., P. A. Lee, and P. C. Treleaven. Reliability
Issues in Computinq System Desiqn. Computer Surveys, Vol
10(2). June 1978. pp 123-165. (c)

RAND79

Randell, B. Software Fault-Tolerance. EURO IFIP. 1979.

RAND83a

Randell, B. Fault Tolerance an___ddSystem Structure. 4th
Jerusalem Conference on Information Technology (TB Given).
Computing Laboratory, University of Newcastle upon Tyne.
December 2, 1983. (a)

RAND83b

Randell, B. Recursively Structured Distributed Computing
Systems. Technical Report. University of Newcastle upon
Tyne. May 1983. (b)

RANE83

Raney, L. H. The Use of Fault-Tolerant Software for Flight
Control Systems. NAECON. 1983.

RUSH83

Rushby, J. and B. Randell. A Distributed Secure System.

IEEE Transactions on Computer. July 1983. pp 55-67.

RUSS80

Russell, D. L. State Restoration in Systems of Communica-
ti_!9_q Processes. IEEE Transactions on Software Engineering,
Vol SE-6(2). March 1980. pp 183-194.

SANT83

Santo, M. Di, L. Nigro, and W. Russo. Pro@ramminq Reliable
and Robust Software in Ada. Digest of Papers of FTCS 13:
The 13th Annual International Symposium on Fault-Tolerant

Computing. IEEE Computer Society. 1983. pp 196-203.

SCHI78

Schick, G. J. and R. W. Wolverton. ____Analysis of Computinq
Software Reliability Models. IEEE Transactions on Software
Engineering, Vol SE-4(2). March 1978.

11 - 9

SCOT83a

Scott, R. K. Data Domain Modeling of Fault-Tolerant Soft-
ware Reliability. PhD Dissertation. North Carolina State

University, Raleigh, North Carolina. 1983. (a)

SCOT83b

Scott, R. K., J. W. Gault, and D. F. McAllister. Modelling

Fault-Tolerant Software Reliability. Proceedings of the

3d Symp. on Reliability in Distributed Software and Database

Systems. 1983. (b)

SCOT84

Scott, R. K., J. W. Gault, D. F. McAllister, and J. Wiggs.

Experimental Validation of Six Fault-Tolerant Reliability

Models. Submitted to 14th Annual International Symposium on

Fault-Tolerant Computing. 1984.

SHAWS0

Shaw, Mary. The Impact of Abstraction Concerns on Modern

Programming Languages. Proceedings of the IEEE, Vol 68(9).

September 1980. pp 1119-1130.

SHRI78

Shrivastava, S.K. and J.P. Banatre. Reliable Resource

Allocation Between Unreliable Processes. IEEE Transaction

on Software Engineering. Vol SE-4, May 1978, pp. 230-241.

SHRI82

Shrivastava, S. K., and F. Panzieri.

able Remote Procedure Call Mechanism.

Computers, Vol C-31(7). July 1982.

The Design of a Reli-
IEEE Transactions on

SILBSI

Silberschatz, Abraham. On the Synchronization Mechanism of

the Ada Language. SIGPLAN, Vol 16(2). February 1981.

pp 96-103.

SMITSI

Smith, T. B. Generic Data Manipulative Primitives of Syn-

chronous Fault-Tolerant Systems. Digest of Papers of FTCS

ii: The llth Annual International Symposium on Fault-Tolerant

Computing. IEEE Computer Society. 1981.

SMYT84

Smyth, Richard. Personal communication between Battelle

Columbus Laboratories and Richard Smith. Milco Inter-

national. Huntington Beach, California. January 1984.

SONESI

Soneriu, M. D. A Methodology for the Design and Analysis of

Fault-Tolerant Operating Systems PhD Dissertation.

Illinois Institute of Technology[Chicago, Illinois. 1981.

11 - I0

SUKE76

Sukert, A. N. A Software Reliability Modeling Study. In-
house Technical Report. RADC-TR-76-247, AD A030-437. 1976.

TAYL80

Taylor, D. J., D. E. Morgan, and J. P. Black. Redundancy i__nn
Data Structures: Some Theoretical Results. IEEE Trans-

actions on Software Engineering, Vol SE 6(6). November
1980. pp 595-602.

TAYLSI

Taylore, R. Redundant Programming in Europe.
SEN, Vol 6. No. i, January 1981.

ACm SIGSOFT

TROY84

Troy, Alan. Personal Communications Between Battelle

Columbus Laboratories and alan Tro Z. Rockwell - Space
Division. Downey, California. February 1984.

TYNE81

Tyner, P.
Manual.

iAPX 432 General Data Processor Architecture

Technical Report, Intel Corporation. 1981.

VONL79

von Linde, Otto Berg. Computers Can Now Perform Vital
Functions Safely. Railway Gazette International.
November 1979.

WE_GN83

Wegner, P. On the Unification of Data and Program Abstrac-
tion in Ada. Conference Record of the 10th Annual ACM Sym-
posium on Principles of Programming Languages. ACM.
January 1983.

WEISI

Wei, Anthony. Real-Time Programming with Fault-Tolerance.
PhD Dissertation (N82-20897). University of Illinois.
Urbana, Illinois. 1981.

WELC83

Welch, H. O. Distributed Recovery Block Performance in a

Real-Time Control Loo m . Proceedings of Real-Time Systems
Symposium. December 6-8, 1983.

WILL82

Willett, R. J. Design of Recovery Strategies for a Fault-

Tolerant No. 4 Electronic Switching System. Bell System
Technical Journal, Vol 61(10). December 1982.

WILL83

Williams, J. F., L. J. Yount, and J. B. Flannigan. Advanced
Autopilot-Flight Director System Computer Architecture for
Boein@ 737-300 Aircraft. 5th Digital Avionics Systems Con-
ference. October 31 - November 3, 1983.

11 - 11

WILL84
Williams, John. Personal Communication between Battelle
Columbus Laboratories and John Williams. Sperry Corpora-
tion. Phoenix, Arizona. January 1984.

WOOD80

Wood, W. G. Recovery Control of Communicating Processes i__nn

a Distributed System. Technical Report 158, Computing
Laboratories, University of Newcastle upon Tyne. November
1980.

YAU80
Yau, S. S. and F. Chen. An Approach to Concurrent Control
Flow Checking. IEEE Trans-_ctions on Software Engineering,
Vol SE-6(2). March 1980. pp 126-137.

YOSH83
Yoshihara, K., Y. Koga, and T. Ishihara. A Robust Data
Structure Scheme with Checking Loops. Digest of Papers of
FTCS 13: The 13th Annual International Symposium on Fault-

Tolerant Computing. IEEE Computer Society. 1983.
pp 241-248.

ZUBE84

Zuber, Pierre. Personal Communication Between Battelle

Columbus Laboratories and _ierre Zuber. Westing House
Transportation Division, Pittsburgh, Pennsylvania.

II - 12

I, Re_t No. _ 2. Government Acc_ion No.

INASA CR-172385

4. Title a_ Subtitle

Study of Fault-Tolerant Software Technology

7. Author(s) T. Slivinski, C. Broglio, C. Wild,

J. Goldberg, K. Levitt, E. Hitt,

J. Webb

9. _forming Or_nization Name and Addr_

MANDEX, INC.

5201 Leesburg Pike

Suite #207

Falls Church, Virginia 22041

12. S_n_ing Age_y Name md A_,_

National Aeronautics and Space Administration

Washington, D.C. 20546

3. Recipient's Catalog No.

5. Report Date

September 1984

6. Performing Organization Code

8. Performing Orglnization Report No.

10. Work Unit No.

11. Contract or Grant No.

NASI-17412

13. Type of Report and Period CoverKI

Contractor Report

14. Sponsoring Agency Code

15. _p_ementary Not_

Langley technical monitor:

Final Report

Dr. David Eckhardt

16. Abstract

mh_ nan_r presents an overview of the _urrent state of the art

of fault-tolerant software and an analysis of quantitative

techniques and models that have been developed to assess its impact.

It examines research efforts as well as experience gained from

commercial application of these techniques. The paper also

addresses the computer architecture and design implications on

hardware, operating systems and programming languages (including

Ada) of using fault-tolerant software in real-time aerospace

applications.

The paper concludes that fault-tolerant software has progressed

beyond the pure research state. The paper also finds that, although

not perfectly matched, newer architectural and language capabilities

provide many of the notations and functions needed to effectively

and efficiently implement software fault-tolerance.

17. Key Wor_ (Suggest_ _ Author(s))

Fault-tolerance software;

Computer software, Recovery

blocks, and Multiversion

programming.

19. Sec_ity Oasif. {of this report) T_" Security Cla=f. (of this _)

UNCLASSIFIED _ UNCLASSIFIED

_. Distribution Statement

22. Price

