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Analysis of �ight delay and causal factors is crucial in maintaining airspace eciency and safety. However, delay samples are not
independent since they always show a certain aggregation pattern.�erefore, this study develops a novel spatial analysis approach to
explore the delay and causal factors which is able to take dependence and the possible problem involved including error correlation
and variable lag e�ect of causal factors on delay into account. �e study �rst explores the delay aggregation pattern by measuring
and quantifying the spatial dependence of delay. �e spatial error model (SEM) and spatial lag model (SLM) are then established
to solve the error correlation and the variable lag e�ect, respectively. Results show that the SEM and SLM achieve better �t than
ordinary least square (OLS) regression, which indicates the e�ectiveness of considering dependence by employing spatial analysis.
Moreover, the outcomes suggest that, aside from the well-known weather and �ow control factors, delay-reduction strategies also
need to pay more attention to reducing the impact of delay at the previous airport.

1. Introduction

With the rapid development of the civil aviation industry,
airspace has become increasingly crowded.�is crowdedness
causes increasingly frequent delays in most major airports
worldwide. �is situation seriously a�ects airports, airlines,
and passengers. From2007 to 2017, the annual �ights inChina
consistently increased from 3.65million to 10.83million, with
an average increasing rate of approximately 12.2% in the past
�ve years. Meanwhile, the rate of �ights arriving on time
decreased from 83.19% in 2007 to 71.67% in 2017.�e annual
cost of �ight delays in China was estimated to be more than
$7.4 billion. Such high economic costs of delay necessitate
delay causal factor analysis and delay-reduction strategies.

Several approaches have been taken to analyze the factors
that a�ect �ight arrival and departure delay. Allan et al.
[1] studied several determining causes of �ight delay at the
Newark International Airport (EWR) using a comprehensive
approach. �e results show that adverse weather conditions,
low ceilings, and low visibility conditions strongly in�uence
�ight delays. Similarly, Asfe et al. [2] investigated the major

causal factors of �ight delays by ranking di�erent factors
using the analytical hierarchical process. �ey found techni-
cal failure and delayed entries as two of the most in�uential
factors. Based on the identi�cation of causal factors, further
researches explored the quantitative e�ect of each factor
on �ight delay. By analyzing the characteristics of �ight
departure and arrival delays by constructing probability
density functions, Mueller et al. [3] explored several causal
factors of delays, such as trac volume, aircra� type, aircra�
maintenance, airline operations, weather conditions, change
of procedures en route, capacity constraints, customer service
issues, and late aircra� or crew arrival. �e results show that
weather contributed to 69% of the delays. Di�erent results
can be achieved by di�erent method and variables; research
results of Kwan and Hansen [4] show that airport congestion
contributed to approximately 32% of the average delays, in
which a series of econometricmodelswas established to iden-
tify the key causal factors of �ight delays, including airport
congestion, total trac, and en route weather. In addition to
identifying the causal factors and their quantitative e�ect on
�ight delay, more studies focus on the development of models
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to determine the probability of aircra� delay. Wesonga et al.
[5] proposed and evaluated a multiple parametric approach,
which includes the apparently signi�cant meteorological and
aviation parameters, to predict the probability of aircra�
delay. Recent research and development e�ort in delay proba-
bility prediction are seeking to develop asymmetric Bayesian
logit model to take the asymmetric distribution pattern of the
dependent variable into consideration (see Perez-Rodriguez
et al. [6]). By using data from BTS and IATA, this article
corroborates the necessity and superiority of the proposed
asymmetric Bayesian logit model, as well as identifying new
signi�cant factors a�ecting the probability of arrival delay.

In addition to traditional statistical methods, machine
learning algorithms were used by several studies. Bayesian
network was a commonly used approach to establish delay
model to explore the delay propagation mode and estimate
delay [7, 8]. Arti�cial neural network was also utilized to
examine the relationship between departure delay and di�er-
ent causal factors comparing to linear and nonlinear regres-
sions [9]. Deep learning models have also been investigated
for air trac delay prediction tasks [10]. Moreover, a number
of studies attempted to determine the major causal factors of
�ight delays by detecting the time series data trend.Abdel-Aty
et al. [11] applied the “two-stage approach” to detect periods
of regularly repeating patterns in their data and to identify
the factors correlated with them. Tu et al. [12] employed a
smoothing spline model to identify the relationship between
seasonal trends, random e�ects, and daily delay propagation
pattern. Delay propagation has also been deeply investigated
by many researches to help to understand the air congestion
[13–15] and alleviate �ght delay [16, 17]. �e e�ects of day
and time were assumed to be additive, and the residuals were
assumed to be identically and independently distributed in
the study.

However, delays show a certain aggregation pattern in
the temporal dimension; high delays are normally clustered;
and low delays tend to be surrounded by low delays. In
other words, the delay value of samples with shorter distance
between them is normally similar compared to the delay value
of delays with longer distance between them. �e correlation
between two delay values depends on their spatial attribute
such as spatial location and spatial distance. Without doubt,
there is high degree of spatial dependence among delays in a
space organized by hour and by day. Given that most of the
aforementioned methods were based on certain assumptions
which either ignore or simplify the correlation of samples in
the dataset, Diana [18] initially introduced the approach of
spatial analysis for delay prediction, which is able to take the
spatial dependence in every direction into account. In the
study, delay was considered as a spatially distributed variable
in a space coordinated by day and time. A spatial error model
(SEM) was built to consider spatial dependence in error.

Actually, �ight departure delay is a complex problem
with substantial direct causal factors and many concealed
indirect causal factors. Flight departure delay is caused by the
abovementioned factors, as well as by the �ight delays that
occur earlier [12], as the operation resources required by the
current �ight, such as the crew, aircra�, and passenger gates,
might have been utilized by previously delayed �ights. �is

resources correlation may lead to delay daily propagation.
�e spatial dependence exists in every direction since the
aggregation is observed in both day of week and hour of
day, which probably lead to error correlation and variable lag
e�ect of causal factors on delay [19].

Motivated by the exploration of the main causal factors
of �ight departure delays in consideration of correlation
between delay samples, our study analyzes departure delay
as a geographic problem instead of a statistical problem by
assuming delay as a spatially distributed variable organized by
hour and by day. Causal factor analysis using spatial analysis
enables the existence of spatial dependence in variables,
which solves the problemof sample correlations among hours
and days simultaneously. Speci�cally, spatial regression mod-
els were built to absorb the delay spatial dependence by
adding a spatial independent variable. �e spatial lag model
(SLM) and spatial error model (SEM) are established in
our study to solve the variable lagged e�ect and the error
correlation, respectively. Comparisons between the SLM, the
SEM, and the OLS estimation are also conducted.

�is paper is structured as follows. Section 2 introduces
the spatial analysis methodology. Section 3 describes the
data sources, de�nes the variables, and describes the data-
processing methodology. Section 4.1 shows the exploration
analysis of �ight departure delay with a distribution map
and trend analysis. Section 4.2 demonstrates identi�cation of
delay pattern. Section 4.3 maps the semivariogram to quan-
tify the spatial dependence of �ight departure delay. Based
on the results of Section 4.3, Section 4.4 illustrates spatial
prediction considering spatial autocorrelation by employing
ordinary kriging method. Section 4.5 discusses the establish-
ment of the classical regressionmodel, SEM, and SLM, as well
as the comparative analysis of the three models to explore
the main causal factors of �ight departure delays. Finally, this
paper is concluded with a summary.

2. Methods

�is study employs the spatial analysis method to explore
the delay distribution pattern and causal factors of �ight
departure delays while considering delay spatial dependence.
Delay is assumed to be a spatially distributed variable. Spatial
analysis is a quantifying technique used in the study of spatial
variables [20].

2.1. Delay Pattern Analysis

(1) Exploring Delay Distribution.�e �rst step to analyze delay
pattern is to explore the distribution. By de�ning a space
with � coordinate of day of week and � coordinate of hour,
the delay is added to each hour unit as an attribute. �e
delay distribution can be plotted with di�erent colors as the
delay minutes. �e time when an intense delay occurred is
recognized in the distribution map. 3D trend analysis can be
used to visualize the departure delay distribution and trend
in the temporal dimension.

(2) Identifying the Pattern of Delay. �e pattern of delay
is then identi�ed by calculating Moran’s � and general �
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to measure the degree of delay spatial dependence among
observations. Positive autocorrelation suggests that the values
of the one hour unit and its neighbors are similar. Negative
autocorrelation suggests that the values of the one hour unit
and its neighbors are di�erent. No autocorrelation suggests
that the values are randomly distributed over the space.

Moran’s � is calculated as

� =
∑�� ∑
�
� ��� (�� − �) (�� − �)
�2 ∑�� ∑

�
� ���
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where � is the value of Moran’s I, �� is the total minutes of
departure delay during the hour unit i, and ��� is the spatial
weight matrix. Z value is generally used to test Moran’s �
value. A test result against the null hypothesis indicates that
no spatial autocorrelation exists.

Most of the spatial weight matrices are built based on
spatial connectivity and spatial distance. �e weight matrix
in this study is generated based on distance measured by
the inverse Euclidean distance between two hour units. �e
value of Moran’s � ranges from −1 to 1. Moran’s � identi�es
the similarity between units with delay and the spatial
distribution pattern. However, it cannot distinguish high-
from low-value clusters. General� identi�es the two di�erent
patterns of spatial cluster; it is computed as

� (�) =
∑�� ∑
�
� ��� (�) ����

∑�� ∑
�
� ����

� = � − � (�)
√��� (�)

(4)

When the � value is signi�cant, a general � value that
is greater than its average indicates a high-value cluster, as
opposed to a general � value that is less than its average.
A general � value that is equal to its average indicates no
autocorrelation.

�e cluster type in the �ight departure delay is then
identi�ed, and the hot and cold spots of �ight departure delay
are explored.

(3) Quantifying Delay Spatial Dependence. A�er measuring
the degree of spatial dependence, the semivariogram is mod-
eled to quantify the departure delay spatial dependence and to
analyze its randomand structural properties. Departure delay
is considered as a regionalized variable because it is correlated
with the hour and the day. Structural property indicates the
existence of the autocorrelation between the departure delay
at location � and at location � + ℎ (h is the distance from x).
Semivariance calculates the average di�erence on departure

delays between pairs of hour units at a given interval [9]; it is
computed as

� (ℎ) = 1
2� (ℎ)

�(ℎ)
∑
�=1

[� (��) − � (�� + ℎ)]
2 , (5)

where�(��) is the total minutes of departure delay of location
��; �(�� + ℎ) is the total minutes of departure delay of the
locations with ℎ distance from ��; and�(ℎ) is the number of
locations with ℎ distance from ��.

(4) Delay Prediction. A�er the spatial dependence structure
of a variable is determined, the measured data can be used to
estimate the variable at unmeasured locations.�is interpola-
tion method is known as kriging interpolation. Based on the
unbiased estimation and the minimum variance principle,
the kriging interpolation method can quantify the spatial
dependence between the known sample and the estimated
point according to the statistical characteristics and spatial
variation of the sample.

2.2. Causal Factor Analysis. A�er the identi�cation of delay
dependence, causal factor analysis is performed using spatial
analysis, which enables the existence of spatial dependence
in variables. To explore the causal factors of �ight departure
delay, spatial econometric models were built to absorb the
delay spatial dependence by adding a spatial independent
variable, and the outcomes of the SLM, SEM, and classical
regression model are compared.

(1) Classical Regression Model. A classical regression model
can be written as

� = �X + �, (6)

where � represents the total minutes of departure delay at
the target airport and X represents the factor variables. �
represents the e�ect of the independent variables on the
dependent variable, and � is the random error term vector
subjected to normal distribution.

(2) SEM. SEM is able to consider the spatial dependence in
error terms by adding spatial error term as an explanatory
variable. �e SEM takes the following form:

� = �X + �

� = �W� + �,
(7)

where � is the total minutes of departure delay and X is the
factor variables. � represents the e�ect of the independent
variables on the dependent variable, � is the random error
term vector, � is the spatial error coecient, W is the spatial
weight matrix of error term generated based on distance
measured by the inverse Euclidean distance between two
hour units, and � is the random error term vector subjected
to normal distribution.
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Table 1: Frequency and e�ect of each factor of �ight departure delay.

Factors of departure delay Frequency Rank of frequency Average delay minutes Rank of average delay minutes

T 21 7 206.5 4

TL 34 5 235.8 2

W 30 6 238.6 1

WL 161 2 154.8 6

WD 9 9 176.1 5

WR 13 8 212.2 3

CF 650 1 99.2 11

CR 71 4 126.9 8

A 115 3 134.8 7

F 3 11 110.7 10

P 2 12 98.0 12

D 7 10 118.0 9

(3) SLM. SLM is able to consider the spatial autocorrelation
in delay variable by adding a spatial lag variable as an
explanatory variable. �e SLM takes the following form:

� =  W� + �X + �, (8)

where � is the total minutes of departure delay and X is the
factor variables. � represents the e�ect of the independent
variables on the dependent variable; W is a spatial weight
matrix of the dependent variables generated based on dis-
tance measured by the inverse Euclidean distance between
two hour units;  is the spatial regression coecient, which
re�ects the e�ects of the delay in the neighbor hoursW� on
the delay in one hour Y ; and � is the random error term vector
subjected to normal distribution.

3. Data Collection

3.1. Data Sample. �e data in this study are obtained from
the database of an international hub airport in China in June
2016. To maintain the privacy of the institution, the name of
the airport is not revealed. In June 2016, 8788 �ights departed
from the target airport, among which 18 �ights returned, 51
�ights were canceled, and 5357 �ights (60.96%) were delayed
for more than 15 minutes; 3180 �ights (36.19%) were delayed
for more than half an hour; 1528 �ights (17.39%)were delayed
for more than one hour; and 489 �ights (5.56%) were delayed
for more than two hours. �e most severe delay lasted for
888 minutes. Approximately 70% of the delays were within
60 minutes. �e data are organized by day of week and
hour of day. To demonstrate the spatial dependence of delay
distribution intuitively, the study assumed delay as a spatially
distributed variable. �e space is de�ned with day of week
as the x coordinate and hour of day as the y coordinate.
Compared with the total number of �ights (8788), there were
few �ights (72) from 0:00 to 7:00, and hour units with less
than �ve �ights are not considered since it could bias the
average. �e study area covers 7:00 to 24:00, including a total
of 510 hour units with departure delays.

3.2. De
nitions of Variables. First step of variable construc-
tion is to �nd out factors a�ecting �ight departure delay.

�e �ight delay determinants considered in previous studies
include weather, delay propagation, �ight schedule, airplane
shortage, air route, airplane type, �ight order, air trac
�ow, hub airport, ability of the airline to pay debt, ability
of the airline to pro�t, load factors of the airline, load rate
of the airline, and other factors [21, 22]. Chinese aviation
determined the following factors of �ight delay. Technical
failure includes technical failure at the target airport (T)
and technical failure at the previous airport (TL). Weather
refers to weather conditions at the target airport (W), at the
previous airport (WL), at the destination airport (WD), and
en route (WR). Control factors include �ow control (CF) and
route restriction (CR). Other factors include the airline (A),
airport facility (F), passenger (P), and capacity allocation (D).

�en, nominal factors are selected by calculating the
frequency and the e�ect of each factor in our dataset. E�ect
of each factor of �ight delay in Table 1 is measured by average
delay minutes caused by each factor. As shown in Table 1, the
frequency of the �ow control factor is signi�cantly higher
than the others, but the average delay minutes caused by
the �ow control factor is lower. Conversely, the frequency of
the weather condition at the target airport and the technical
failure at the previous airport are signi�cantly lower, with
high average delay minutes.

All factors are classi�ed into three categories: high fre-
quency and low e�ect, low frequency and high e�ect, and low
frequency and low e�ect. Flow control, airline factor, route
restriction, and weather condition at the previous airport
caused most of the departure delays; however, these factors
can be usually controlledwell, and the delay can be eliminated
in a short time. �e e�ects of weather conditions at the target
airport and en route and the technical failure at the target,
previous, and destination airports, although they did not
happen o�en, have dramatic impacts with long departure
delays. Airport facility, passenger, and capacity allocation are
the minor reasons for �ight departure delay, and we will not
focus on these factors in the following discussion.

In addition, delay can be related to time period (morning,
a�ernoon, night, and weekday or weekend). �e total trac
and passengers are also important factors. Aviation industry
experts are interviewed about the limitations of the data
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Table 2: Descriptive statistics and de�nitions of the variables used in the model.

Variables De�nition Mean s.d. Min Max

Delay Total minutes of departure delay 587.824 428.433 0 2341

T
Technical failure at the target
airport (equals 1 if technical

failure occurs)

0.039 0.194 0 1

TL
Technical failure at the previous
airport (equals 1 if technical

failure occurs)

0.065 0.246 0 1

W
Weather condition at the target
airport (equals 1 if weather is

adverse)

0.018 0.132 0 1

WL
Weather condition at the

previous airport (equals 1 if
weather is adverse)

0.251 0.434 0 1

WR
Weather condition en route

(equals 1 if weather is adverse)
0.016 0.124 0 1

CF
Flow control (equals 1 if conduct

�ow control)
0.571 0.496 0 1

CR
Route restriction (equals 1 if
conduct route restriction)

0.122 0.327 0 1

NF Scheduled departure trac 16.943 4.414 4 27

collection, and the �nal list included 15 factors that a�ected
�ight departure delays.

We then conducted a stepwise-backwards regression in
variable construction and determined a signi�cant level of
introduced independent variable as !in = 5% and a signif-
icant level of excluded independent variable as !out = 10%.
Seven factors are excluded, and the remaining 8 explanatory
variables comprise the regression model (Table 2). All vari-
ables are calculated in an hour unit.

3.3. Data Processing. �e data are processed with various
so�ware. �e exploration analysis module in ArcGIS 10.2 is
used for the distribution mapping and the 3D trend analysis.
�e geostatistic module in ArcGIS 10.2 so�ware is adopted
to generate the theoretical and empirical semivariograms, as
well as the kriging interpolation. �e Geoda so�ware is used
to develop the spatial econometric models.

4. Results and Discussion

4.1. Exploring Delay Distribution

(1) Distribution Map. �e distribution map is a commonly
used spatial data visualization method. Each grid de�ned by
day and hour is colored according to the departure delay in
minutes that occurred in an hour unit. Red represents high
departure delay, whereas dark blue indicates low departure
delay. �e distribution map highlights delay intensity, the
day on which the delay occurred, and the duration of the
delay. As demonstrated in Figure 1, the delay levels between
neighborhoods are usually similar, which indicates obvious
spatial cluster characteristics. �e distribution map also
shows that intense delay occurred mostly at 16:00, 18:00, and
21:00, especially from June 18 to June 22 in our dataset.

(2) 3DTrendAnalysis.�e trend analysis generated a 3D trend
map of the departure delay. In Figure 2, the x-axis and y-axis
represent the day and the hour of delay, respectively, and the
z-axis represents the total minutes of departure delay. �e
green line in the x–z plane and the blue line in the y–z plane
indicate the trend of the delay. �e �gure shows that �ight
departure delay is intensively late in the month and exhibits a
parabola with the peak at 18:00 in our dataset.

4.2. Identifying the Pattern of Delay. As mentioned in Intro-
duction, there exists a high degree of spatial dependence
among delays. Moran’s � and general � are calculated to
measure the degree of spatial autocorrelation and to identify
the pattern of delay.�eMoran’s � and general � values of all
variables are calculated. Values with a signi�cant autocorre-
lation are listed in Table 3.

Table 3 shows signi�cant positive spatial autocorrelation
in variables such as the total minutes of departure delay,
weather conditions at the target airport, weather conditions at
the previous airport, weather conditions en route, �ow con-
trol, total departure trac, and number of passengers. Gen-
eral � test showed that all of the abovementioned variables
are high-value clusters, indicating that the hours of intense
delay are clustered.

�e hot and cold spots of delay are explored a�er the
degree of autocorrelation is measured and the hour units of
high-value clusters in �ight departure delay are identi�ed.
A high degree of delay from June 18 to 22 that lasted for
8 hours from 14:00 to 22:00 is noted, as shown by the red
area in Figure 3. Among all the factors responsible for �ight
departure delay, this large-scale cluster is probably caused by
an exogenous variable such as sudden adverse weather con-
ditions. �is conclusion corresponded to the actual weather
report record of the target airport in June 2016. Between
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Figure 1: Distribution map of departure delay.
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Figure 2: 3D trend map of departure delay.

Table 3: Autocorrelation statistics for selected variables.

Variables Coecient Observed Expected Stddev Z P

Delay
Moran’s I 0.580509 -0.001965 0.001016 18.275923 0.000000

General G 0.010119 0.007496 0.000000 19.158604 0.000000

W
Moran’s I 0.397390 -0.001965 0.000915 13.198725 0.000000

General G 0.194444 0.007496 0.000201 13.177839 0.000000

WL
Moran’s I 0.161547 -0.001965 0.001021 5.116695 0.000000

General G 0.011565 0.007496 0.000001 5.576605 0.000000

WR
Moran’s I 0.248777 -0.001965 0.000901 8.352514 0.000000

General G 0.142857 0.007496 0.000260 8.398764 0.000000

CF
Moran’s I 0.341630 -0.001965 0.001024 10.738782 0.000000

General G 0.009717 0.007496 0.000000 11.624289 0.000000

NF
Moran’s I 0.532762 -0.001965 0.001018 16.761879 0.000000

General G 0.007859 0.007496 0.000000 14.762860 0.000000

NP
Moran’s I 0.489845 -0.001965 0.001019 15.405064 0.000000

General G 0.007888 0.007496 0.000000 12.831494 0.000000



Journal of Advanced Transportation 7

Table 4: �eoretical model �t comparison of isotropic semivariogram.

Model Nugget Sill Range RSS R2

Exponential 66979.4200 219070.4200 17.6000 5.48E+08 0.977

Spherical 90023.7000 206937.5788 14.0439 1.12E+09 0.955

Gaussian 105523.0000 203931.7816 11.4025 1.35E+09 0.947
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Figure 3: Hot and cold spots of departure delay.

June 18 and 22, there were cloudy skies for 5 days and a
thunderstorm for 3 days.

4.3. Quantifying Delay Spatial Dependence. A�er measuring
the degree of delay spatial dependence between observations,
the variogram is utilized to quantify the spatial dependence
based on the theory of regionalized variables. �e exper-
imental semivariogram is mapped to quantify the spatial
dependence of delays and to provide the spatial structure for
the subsequent kriging interpolation.

�e following are the key parameters in the semivari-
ogram:

(1) Nugget e�ect "0 is estimated from the empirical
variogram at ℎ = 0.�is represents the measurement error or
random property of the departure delay.�e"0 value re�ects
the variation caused by the stochastic factor.

(2) Range �0 is the distance where the variogram reaches
plateau. �is represents the largest distance of autocorrela-
tion. Data can be considered uncorrelated if their distance
exceeds the range.

(3) Sill"+"0 is the plateau atwhich the variogram reaches
the range. �is represents the total variance of regionalized
variables, which is equal to the sumof the autocorrelation and
stochastic variances.

�e following are the other two parameters that can be
calculated from the three parameters mentioned above:

5.52 11.04 16.560

Separation Distance (h)
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52549

105098
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210196
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Figure 4: Isotropic semivariogram of departure delay.

(4) Structural variance " represents the structural prop-
erty of delay. �e value of " re�ects the variance caused by
the autocorrelation.

(5)Nugget–sill ratio "0/(" + "0) represents the percent-
age of variance caused by randomness. A low nugget–sill
ratio re�ects that the variation is mainly a�ected by the
autocorrelation factors.

�eoretical semivariogram is necessary to obtain the
spatial structure of delay. �e experimental semivariogram
generated from limited samples is used to estimate the corre-
lation in the whole area by �tting a theoretical semivariogram
to an empirical semivariogram. Di�erent theoretical models
are compared in Table 4. �e comparison shows that, when
�tting the isotropic semivariogram, the exponential model is
more e�ective than others, such as the spherical andGaussian
models.

According to results of semivariogram, the low nugget–
sill ratio (30.6%) suggests that the variation of delay is mainly
caused by autocorrelation (69.4%). In Figure 4, the delays
separated by short intervals are strongly correlated to one
another. �e correlation decreases as the intervals increase to
a distance of 17.60.

4.4. Delay Prediction. Spatial interpolation allows us to fur-
ther comprehend the overall situation of the entire study
area from a limited number of spatial sample points. We
randomly select 10% of the sample dataset as the test set
and the remaining 90% as the training set. Spatial autocor-
relation undermines the accuracy and e�ectiveness of some
commonly used interpolation methods such as trend surface
method or inverse distance weighting (IDW) method. We
use the ordinary kriging method to interpolate delays since
it can take spatial dependence into account by considering
spatial structure obtained by semivariogram. Similar to the
IDW method, the ordinary kriging method predicts the
value on unmeasured position by generating weights of the
surrounding points. IDW generates weights according to
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Figure 5: Prediction surface of delay.

Table 5: Results of the comparison of cross-validation between di�erent interpolation methods.

Interpolation method M RMS A Std Std M Std RMS

IDW 8.0616 298.4739

Ordinary kriging

Exponential 1.7808 301.0585 312.6256 0.0040 0.9665

Spherical 3.0301 307.9240 331.4682 0.0077 0.9312

Gaussian 2.9745 316.4641 336.4019 0.0075 0.9426

the distance between unmeasured position and surrounding
points. Di�erent from IDW, kriging method generates weight
from the semivariogram, which is developed by considering
spatial properties and spatial structure of the data. �e
interpolation results of the prediction surface are shown in
Figure 5, in which the x-axis represents the day of week, y-
axis represents the hour of day, and the z-axis represents the
value of delay. In this way the value of unmeasured locations
can be interfered according to the value of measure locations
and the spatial relation between them.

A�er the generation of prediction surface, it is important
to evaluate the interpolation precision, which is conducted by
cross-validation. Cross-validation leaves one point out and
uses the rest to predict a value at that location. �e point is
then changed to another in turn, and �nally this process is
performed for all samples in the dataset. Similar to another
typical interpolation method, prediction performance can
be evaluated by Mean Error (M) and Root Mean Square
Error (RMS). �e smaller the RMS, the better. Besides,
ordinary kriging has other indicators to evaluate prediction
performance, including Average Standard Error (A Std),
whichmeasures the average of the prediction standard errors;
Mean Standardized Error (Std M), whose value should be
close to 0; Root Mean Square Standardized Error (Std RMS),
which should be close to 1. A Std RMS greater than 1 indicates
underestimating the variability in the predictions. A Std RMS
less than 1 indicates overestimating the variability in the
predictions.

Cross-validation can also be an e�ective selection
approach between di�erent interpolation methods. Com-
paring the cross-validation results, exponential semivari-
ogram shows the minimum RMS and Std RMS closest to
1. �erefore, the best result is obtained in this study using
the exponential �tting semivariogram for ordinary kriging
interpolation (Table 5).

4.5. Spatial Econometric Analysis. �e regression model is
commonly used to analyze the factors of departure delay.
First, we perform an ordinary least square (OLS) estimation
based on the classical regression model (as in (6)). �e

estimation results of each variable are demonstrated as �̂
in Table 6. A�er the model parameters are estimated, it is
necessary to perform the statistical test of the model, which
includes the goodness of �t test, the signi�cance test of the
equation, and the signi�cance test of the variables.

�e goodness of �t test can be re�ected by R2. R2 value is
the ratio of the sum of the squares of the regression and the
sum of the squares of the total deviations, and it indicates the
degree of interpretation of all the explanatory variables to the
variation of the dependent variables. �e value is between 0
and 1; the closer to 1, the better the estimated regressionmodel
�ts.

�e F test is a joint signi�cance test for multiple coe-
cients to infer whether the linear relationship between the
dependent variable and explanatory variables is signi�cant.
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Table 6: Estimation results of delay and causal factors for each model.

Variable
OLS estimation Spatial lag model Spatial error model

�̂ p �̂ p �̂ p

Constant -189.2450∗∗∗ 0.0008 -275.3832∗∗∗ 0.0000 81.4065 0.2570

T 192.5201∗∗∗ 0.0066 163.5734∗∗∗ 0.0029 197.2891∗∗∗ 0.0003

TL 179.6183∗∗∗ 0.0013 150.6237∗∗∗ 0.0005 140.6904∗∗∗ 0.0006

W 1059.5640∗∗∗ 0.0000 699.4476∗∗∗ 0.0000 769.7684∗∗∗ 0.0000

WL 247.8793∗∗∗ 0.0000 181.4880∗∗∗ 0.0000 161.2410∗∗∗ 0.0000

WR 275.8793∗∗ 0.0187 90.3014 0.3228 147.4748 0.1265

CF 292.8883∗∗∗ 0.0000 139.7609∗∗∗ 0.0000 128.7156∗∗∗ 0.0000

CR 205.2254∗∗∗ 0.0000 141.3503∗∗∗ 0.0002 120.0013∗∗∗ 0.0002

NF 28.3640∗∗∗ 0.0000 19.8473 0.0000 28.7060∗∗∗ 0.0000

 0.5806∗∗∗ 0.0000

� 0.6926∗∗∗ 0.0000

R2 0.5977 0.7928 0.7884

F 62.0591 ∗∗∗

Log likelihood -3638.21 -3539.13 -3554.8640

SC 7332.53 7140.61 7165.84

AIC 7294.43 7098.26 7127.73

Likelihood Ratio 198.1630 ∗∗∗ 166.6973∗∗∗

Note: ∗∗∗ , ∗∗ , and ∗ represent signi�cance in 1%, 5%, and 10% levels, respectively.

Table 7: Test results of OLS residuals’ spatial dependence.

TEST MI/DF VALUE PROB

Moran’s I (error) 0.3640 11.5242 0.0000

Lagrange Multiplier (lag) 1 195.3046 0.0000

Robust LM (lag) 1 68.0750 0.0000

Lagrange Multiplier (error) 1 127.4078 0.0000

Robust LM (error) 1 10.1783 0.0000

�enull hypothesis (H0) of the F test is that all the parameters
to be estimated are simultaneously zero. �e larger the F
value, the less likely the null hypothesis.

�e p-value measures the probability of correctly reject-
ing the null hypothesis when testing the signi�cance of a
single variable. A larger p-value indicates greater probability
of erroneously rejecting the null hypothesis.

In Table 6, the OLS estimation shows an F value of
62.0591 at a 1% level of signi�cance and a goodness of �t R2

value of 0.5977, which indicates that the explanation variables
and the dependent variable have relatively signi�cant linear
correlation, and the dependent variable can be e�ectively
predicted by the explanation variables. p-value indicates
signi�cant variables such as the technical fault at the target
airport (T), the technical fault at the previous airport (TL), the
weather condition at the previous airport (WL), the weather
condition at the airport of departure (W), the �ow control
(CF), the route restriction (CR), and the number of scheduled
departure �ights (NF).

However, the Moran’s � test shows a signi�cant spatial
autocorrelation in the residuals of the OLS estimators. �e
spatial dependence test results of the error and lag are
positive, as shown in Table 7.

Classical regression model fails to re�ect the spatial
dependence between hour units and the in�uence of their
interactions on the total minutes of departure delay. �ere-
fore, spatial factors are introduced into the regression model,
and spatial econometric analysis is necessary. SEM and SLM
are built to measure the spatial dependence in error terms
and the spatial dependence of delay between the hour units,
respectively [23].

�e spatial lag variable and spatial error terms are
considered as the explanatory variables because of the spatial
e�ects. �e use of the OLS results in a biased and irregular
estimation. �erefore, the maximum likelihood estimation
method is used in this study. �emodel selection is based on
the value of Log likelihood (Log L), the Akaike information
criterion (AIC), and the Schwartz criterion (SC), which
are �t statistic measures of the accuracy of the model, as

well as the test for goodness of �t (R2). A greater Log
likelihood and goodness of �t value and smaller Akaike
information and Schwartz criteria indicate a better model
�t.

Comparing the estimation results between the OLS esti-
mation, spatial lag model, and spatial error model in Table 6,

the goodness of �t R2 is 0.7918 for the SLM, which is greater
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than 0.5978 in the OLS estimation and 0.7884 in the SEM.
�e AIC (7098.26) and SC values (7140.61) of the SLM
are both less than the values of the OLS estimation (AIC
7294.43, SC 7332.53) and the SEM (AIC 7127.73, SC 7165.84).
Moreover, the SLM and OLS estimations are nested, as with
the SEM. Increasing the model parameters must result in
high likelihood scores.�erefore, judging the �t of the model
based on the log likelihood value is inaccurate. We conduct
the likelihood ratio test for both models.

�e likelihood ratio test uses a likelihood function to
evaluate a simplemodel and a complexmodel with parameter
constraints. �e likelihood ratio is de�ned as the ratio of the
maximum value of the likelihood function under constrained
conditions to that under unconstrained conditions. A statistic
that obeys the chi-square distribution can be constructed
based on the likelihood ratio. �e null hypothesis H0 is that
there is no signi�cant di�erence in the goodness of �t between
model A and model B. �e rejection or acceptance of the
null hypothesis can be judged based on the constructed chi-
square statistic value or p-value. In this way, we can judge
whether the di�erence between models is signi�cant. �e
results of the likelihood ratio test of SLM-OLS and SEM-OLS
show that the likelihood ratio values are greater than the chi-
squared distribution with the degree of freedom of 1 at 1%
signi�cance level, and the null hypotheses are rejected, which
means that the SLM and SEM provide signi�cantly better
�t compared with the OLS estimation, and the explanatory
capacity is enhanced by adding the spatial e�ect to the
model.

Among the explanatory variables, the e�ects of the
weather condition at the previous airport, the weather con-
dition at the airport of departure, �ow control, and the num-
ber of scheduled departure �ights are the most signi�cant.
Moreover, the technical failure at the target airport and the
previous airport and the route restriction also signi�cantly
a�ect departure delay. Adverse weather is the primary cause
of �ight departure delays with harsher in�uence than �ow
control. Delay reduction primarily focuses on weather fore-
casts and dynamically adjusts to weather changes.

Besides, the comparison results in Table 6 show that the
WR variable, which is signi�cant in the OLS estimation, is
insigni�cant in the SLM and SEM. Delay-reduction strategies
may focus on the weather prediction on route according to
the OLS estimation but would not achieve a signi�cant e�ect
in delay reduction according to SLM and SEM. �e SLM
shows that the spatial lag variable is at the 1% signi�cance
level, which indicates a strong spillover e�ect of the departure
delay in the temporal dimension.

Comparing with the results of causal factors obtained
from the previous study, this study also indicates that the
e�ect of weather condition at the target airport on �ight
delay is much greater than that of other factors. However,
this study exhibits an interesting �nding that the technical
failure and weather condition at the previous airport have a
larger e�ect on departure delays than �ow control, which is
one of the two most signi�cant factors that a�ect delays aside
from weather condition. �is �nding suggests that dealing
with technical failure and weather prediction at the previous
airport is crucial in delay reduction.

5. Conclusions

�is study studied the �ight departure delay and its causal
factors by developing a novel spatial analysis method, which
enables the correlation in data samples. �e main conclusion
can be presented as below.

First, spatial analysis is con�rmed as a useful method in
the delay and causal factor analysis in this study. Exploration
analysis can intuitively demonstrate the distribution pattern
of �ight departure delay in the temporal dimension, semi-
variogram can quantify the spatial structure of the delay, and
kriging interpolation allows delay estimation at unmeasured
locations.

Besides, the results of the spatial econometrics models
achieve better �t performance by taking the spatial depen-
dence into consideration, since the �t of SLM and SEM is
better than that of OLS estimation. Results achieved by this
study recon�rm the signi�cant e�ect of theweather condition
and technical failure on �ight departure delay.

�is study also indicates that the weather condition and
technical failure at the previous airport signi�cantly a�ect
departure delay. �ese e�ects are more signi�cant than the
�ow control factor, which is regarded as one of the two most
important factors that a�ect delay. �is result suggests that
delay-reduction strategies must also focus on reducing the
impact of delay at the previous airport.
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