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ABSTRACT 
 

In the course of exploiting spacecraft formations for use in separated interferometry 
(or other missions), it is possible that the separation distance between vehicles will be on 
the order of ten meters.  This paper investigates the effects of spacecraft charging on the 
dynamics of very closely spaced formations.  For certain high Earth orbits, the ambient 
plasma conditions will conspire to produce significant spacecraft charging in an 
environment with a plasma Debye length of more than 100 m.  For such conditions, this 
paper shows the potential to develop disruptive inter-spacecraft Coulomb forces and 
torques with magnitude comparable to candidate formation-keeping thrusters over 
distances of tens of meters.  Owing to the unexpectedly large interaction forces, the paper 
also explores the concept of purposely charging spacecraft to affect formation-keeping 
Coulomb forces.  Analytic methods are developed that show the existence of static 
equilibrium formations in Earth orbit using only inter-vehicle Coulomb forces for one- 
two- and three-dimensional formations.  Such Coulomb formations would be free of the 
risk of plume contamination due to thrusters firing in close proximity.  Figures of merit 
for the proposed Coulomb control system are calculated analogous to traditional 
propulsion systems and it is shown that required forces can be created with milliwatts of 
power, can be controlled on a millisecond time scale, and imply specific impulse that can 
be as high as 1013 seconds. 

 
 

 

1. Introduction 
 
Swarms of microsatellites are envisioned as an 

alternative  to traditional large spacecraft.  Such 
swarms, acting collectively as virtual satellites, will 
benefit from the use of cluster orbits where the 
satellites fly in a close formation.1  The formation 
concept, first explored in the 1980’s to allow 
multiple geostationary satellites to share a common 
orbital slot,2,3 has recently entered the era of 
application with many missions slated for flight in 
the near future.  The promised payoff of formation-
flying has recently inspired a large amount of 
research in an attempt to overcome the rich 
technical problems.  A variety of papers can be 
found in the proceedings of the 1999 AAS/AIAA 
Space Flight Mechanics Meeting,4,5,6 the 1998 Joint 
Air Force/MIT Workshop on Satellite Formation 
Flying and Micro-Propulsion,7 a recent textbook on 
micropropulsion,8 and numerous other 
sources.9,10,11,12,13,14,15 

Relative position control of multiple spacecraft 
is an enabling technology for missions seeking to 
exploit satellite formations.  Of the many 
technologies that must be brought to maturity in 
order to realize routine formation flying, perhaps 
the most crucial is the spacecraft propulsion 
system.  The most challenging propulsion system 
demands will be made in close formations where 
inter-vehicle spacing may be as small as five or ten 
meters.  Apart from the obvious danger of 
collision, exhaust plume contamination of sensitive 
instruments is a legitimate concern for spacecraft in 
a formation.  In close proximity, the propellant 
emitted by such devices as micro-PPT’s (vaporized 
Teflon), FEEP (ionized cesium), or colloid 
thrusters (liquid glycerol droplets doped with NaI) 
may impinge upon neighboring vehicles with the 
potential to damage payloads.  To worsen the 
problem, orbital mechanics for many clusters of 
interest mandate continuous thruster firings pointed 
directly towards other vehicles in the formation. 

Work reported in this paper represents what 
the authors believe is a new mode of propulsive 
interaction between spacecraft in close formation.  
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The interaction arises from Coulomb forces 
between vehicles in a swarm of electrically charged 
spacecraft.  Forces can be produced as a result of 
natural charging due to space plasma interaction.  
In the case of natural charging, the Coulomb forces 
represent perturbations on vehicles in the 
formation, which on-board thrusters must 
counteract.  It will be shown in following sections 
that, in high orbits such as GEO, natural charging 
is capable of producing forces and torques with 
magnitudes comparable to those of microthrusters 
over separation length scales of tens of meters. 

In addition to an analysis of parasitic Coulomb 
forces from space plasma interaction, this paper 
reports on an exploratory study to examine the 
feasibility of using Coulomb forces to maintain 
rigid satellite formations in high earth orbit.  In the 
Coulomb control scenario, on-board power would 
be used to actively charge vehicles in a swarm to 
affect formation-keeping forces and possibly act as 
an emergency collision avoidance system.  The use 
of Coulomb forces would provide nearly 
propellantless formation control with little or no 
risk of exhaust plume contamination of 
neighboring vehicles.  Analytic and numeric 
calculations show that the dynamic equations 
permit rigid Coulomb formations in orbit and that 
these formations are controllable in three 
dimensions.  It is also shown that the amount of on-
board power required to affect charge control is 
negligible and that continuous thrust variation is 
possible over rapid time scales. 

 

2. Coulomb Perturbations 

2.1. GEO Plasma Environment 

 
The Coulomb force between two point charges 

in the presence of a plasma is represented by the 
typical inverse square relationship modified by an 
exponential term to account for the Debye 
shielding 

Eqn. 1 
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Where q1,q2 are the charges, d1,2 is the separation 
distance, and λd is the plasma Debye length.  The 
potential for interaction between charged 
spacecraft is then limited to regimes in which the 
separation between vehicles is less than the plasma 
Debye length.  Since the Debye length in low-Earth 
orbit (LEO) is on the order of centimeters, 

Coulomb interaction will be present only in high-
earth orbits.  Analysis in this study will be limited 
to geostationary Earth orbit (GEO) to take 
advantage of the wealth of plasmaphysical data 
available for GEO conditions. 

An excellent discussion of the space plasma 
environment can be found in the textbook by 
Hastings and Garret,16 some of which is repeated 
here for convenience.  A spacecraft at GEO is at 
the edge of plasmapause.  This collisionless plasma 
does not follow a single Maxwellian distribution. 
Instead, plasma parameters must be measured 
experimentally. The particle detectors on the 
ATS17,18,19 and SCATHA20 spacecraft have 
measured plasma variations between 5-10 eV and 
50-80 eV approximately, for 50 complete days at 1 
to 10 minute resolution from 1969 through 1980, 
bracketing one solar cycle. 

Garrett and Deforest17 fitted an analytical two-
temperature model to data collected over 10 
different days from ATS-5 spacecraft between 
1969 and 1972. These data were selected in such a 
way to show a wide range of geomagnetic activity 
including plasma injection events (i.e. sudden 
appearance of dense, relatively high energy plasma 
at GEO occurring at local midnight). The model 
gives reasonable and consistent representation of 
the variations following a substorm injection event 
at GEO. The parameters for this model during 
average GEO conditions are shown in Table 1 with 
“Worst-case” GEO conditions given in Table 2.  
Calculations based on these parameters show that 
the Debye length at GEO ranges from about 140 m 
to greater than 1400 m. 

 
Parameter Electrons Ions 

n1 (m
- 3) 0.78 x 106 0.19 x 106 

kT1/e (eV) 550 800 
n2 (m

- 3) 0.31 x 106 0.39 x 106 
kT2/e (eV) 8.68 x 103 15.8 x 103 

 

Table 1.  Average GEO environment.17 

 
Parameter Electrons Ions 

n1 (m
- 3) 1 x 106 1.1 x 106 

kT1/e (eV) 600 400 
n2 (m

- 3) 1.4 x 106 1.7 x 106 
kT2/e (eV) 2.51 x 104 2.47 x 104 

 

Table 2.  Worst-case GEO environment.17 

2.2. Modelling Spacecraft Charging 
 
Spacecraft charging, especially differential 

charging, has been of prime concern to spacecraft 
designers because of its detrimental effects such as 
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electrostatic discharge in spacecraft and spacecraft 
subsystems. The NASA Space Environment 
Effects (SEE) Interactive Spacecraft Charging 
Handbook21 is one of the tools available to model 
the plasma environment and spacecraft charging.  
The SEE tool allows specification of plasma 
parameters, spacecraft size, materials, and charging 
time, whereupon the program predicts potentials of 
elements on the spacecraft surface.  The transient 
response of a spacecraft in plasma is calculated by 
modeling the spacecraft – ambient plasma system 
as an equivalent electric circuit.  The equilibrium 
charge of a vehicle is obtained from the SEE model 
as the transient solution reaches steady state. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
Component Color Size Material 

Chassis Red 
Green 

1mx1mx1m Kapton 
OSR 

Solar 
Arrrays 

Blue 
Yellow 

1mx4m Solar Cells 
Black Kapton 

Antennae Red 1-m-dia. Kapton 
Omni 

Antenna 
Red 0.2-m-dia. 

1-m-long 
Kapton 

 

Figure 1.  Spacecraft model used in SEE code seen from 
sun direction (left) and from opposite direction (right) with 

representative materials of each component. 

The SEE code was used to predict spacecraft 
charging, with the intent of using the results of the 
SEE predictions to calculate Coulomb 
perturbations.  The default spacecraft materials of 
the SEE code were used for these tests, which are 
shown in Figure 1.  The SEE code has three pre-
loaded GEO plasma environments, namely Worst-
Case environment, ATS-6 environment and 
4Sept97 environment. The specifications of these 
environments are given in Table 3.  A 
representative solution from the SEE tool is shown 
in Figure 2.  This figure shows the surface potential 
distribution (in units of volts) as a color-contour 
map.  

 
Parameter Worst-case ATS-6 4-Sept.-97 

ne (m
- 3) 1.2 x 106 1.22 x 106 3.00 x 105 

Te (eV) 1.2 x 103 1.6 x 106 0.4 x 103 
ni (m

-3) 2.36 x 105 2.36 x 105 0.30 x 105 
Ti (eV) 2.95 x 103 2.95 x 103 0.40 x 103 

 

Table 3.  Parameters of the three pre-loaded GEO plasma 
environments in the SEE Interactive Spacecraft Charging 

Handbook. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  SEE prediction of spacecraft surface potentials 
for vehicle subject to worst-case GEO plasma 

environment in non-eclipse conditions.  Units are volts. 

2.3. Natural  Forces and Torques 
 
The output of the SEE model includes a value 

of potential for each finite element of the 
spacecraft surface.  Using a vacuum Green’s 
function 

 

Eqn. 2 ∑=
j ij
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it is possible to calculate the equivalent point 
charge at the center of each finite element that is 
self consistent with the potential distribution.  The 
interaction between two charged spacecraft can 
then be modeled as a superposition of the 
interactions of the equivalent point charges.  For 
example, the collection of charges on spacecraft 
‘B’ will produce an electric field at a point ‘i’ on 
spacecraft ‘A’ according to 
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Separation=d 

Spacecraft A Spacecraft B 

where nB is the number of elements (charges) on 
spacecraft ‘B’.  If there is an electric charge qi at ‘i’ 
it will experience a force iii EqF

vv
= .  The net force 

on spacecraft ‘A’ resulting from the nB charges on 
spacecraft ‘B’ is then simply 

Eqn. 4 ∑
=

=
An

i
iAB FF

1

vv
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Using the same equivalent point charge method it 
is also straightforward to compute the moment on 
the charged spacecraft ‘A’ about its geometric 
center resulting from the distribution of charges on 
spacecraft ‘B’. 

The Coulomb interaction between closely 
spaced satellites was performed using the SEE 
code to predict the charging of representative 
spacecraft.  Two identical vehicles, with material 
properties and physical dimensions as shown in 
Figure 1, were assumed to be in GEO separated 
along the direction of orbital velocity to mimic a 
leader-follower type of formation.  The relative 
orientation of the vehicles is indicated in Figure 3. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  Relative orientation of two-spacecraft leader-
follower formation for natural Coulomb interaction study.  
The vehicles are displaced only along the orbital velocity 

direction. 

Three GEO plasma environments (see Table 3) 
were used to predict the spacecraft charging in both 
eclipse and non-eclipse conditions due to natural 
plasma interaction.  The forces and torques were 
computed based on the SEE results for a range of 
spacecraft separations from 10 to 100 meters.  The 
resulting inter-spacecraft forces and torques about 
geometric center are shown in Figure 4.  The 
Coulomb interaction forces were found to be as 
large as 1 mN for spacecraft 10 m apart in the 

ATS-6 eclipse environment, with all environments 
except the 4-Sept.-97 case showing interaction 
forces greater than 10 µN at the closest spacing.  
The decay in force with separation is not purely 
1/r2 due to the finite size effects of the vehicles.  At 
the largest spacing considered (100 m) the inter-
spacecraft forces vary from 10-10 N up to about 100 
nN, depending upon the orbital conditions used in 
the SEE prediction.  The electric-dipole-induced 
torques were found to be as large as 100 µN-m for 
the closest spacing in the ATS-6 Eclipse 
conditions, falling as low as 10-10 N-m for the 4-
Sept.-97 case at 100-m spacing. 

A surprising result of the Coulomb interaction 
study was that the magnitude of the inter-spacecraft 
forces is comparable with and may exceed that of 
candidate micropropulsion systems proposed for 
formation keeping.  One method for eliminating 
the parasitic Coulomb forces and torques would be 
to actively control the spacecraft charge and ensure 
that vehicle potential remains very near the 
ambient plasma potential.  This could be performed 
using a hollow-cathode plasma contactor as used 
on the International Space Station (ISS).  Another 
interesting concept, however, is to use an ion or 
electron emitter to actively control the spacecraft 
charge and, thus, the Coulomb force to affect 
relative propulsion within a formation.  The 
feasibility of forming Coulomb-stabilized 
formations will be the focus of Section 3. 
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Figure 4.  Predicted inter-spacecraft Coulomb force for 

two identical satellites in a GEO leader-follower formation 
as a function of the formation spacing. 
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3. Formation Dynamics 
 
This section presents a summary of Coulomb 

formation dynamics that can be found in much 
more detail in the references.22  Analytic methods 
are presented for determining static (rigid) 
formations of spacecraft flying in close proximity 
using inter-vehicle Coulomb forces to offset orbital 
perturbations.  The vehicles are approximated as 
spheres and it is assumed that the plasma Debye 
length is much longer than a typical inter-vehicle 
separation.  Such conditions are a reasonable 
approximation of formations in GEO with vehicle 
spacing on the order of tens of meters.   

3.1. Dynamic Equations 
 
As in many formation studies, Hill’s equations 

are used here to describe the motion of spacecraft 
in a formation relative to a reference point that is 
assumed to maintain a circular Keplerian orbit.  
With an application slanted towards separated 
spacecraft interferometry, the central reference 
vehicle is referred to as a “combiner” where the 
surrounding vehicles are called “collectors”.  It is 
assumed that the combiner has its own station 
keeping system, but the collectors do not.  Thus the 
only external forces on the collectors are the 
Coulomb interactions between them and the 
combiner. 

Within the Hill’s system, the motion of the i’th 
collector with respect to the central combiner-fixed 
coordinate system can be written for a formation of 
n vehicles interacting via Coulomb forces as 

 

Eqn. 5 
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where ipv denotes the position vector of the i’th 
vehicle, mi is the spacecraft mass, Ω is the orbital 
angular velocity, qi is the vehicle charge in 
Coulombs, and kc=1/4πε0 is Coulomb’s constant.  

The coordinate notation is such that the y direction 
is along the orbital velocity vector, x is in the 
zenith-nadir direction, and z is normal to the orbit 
plane.  The axis system is shown in Figure 5.  The 
interesting difference between this set of equations 
and the typical Hill’s system used in formation 
studies lies in their coupling: the dynamics of any 
vehicle in the formation is influenced 
simultaneously by all of the other vehicles in the 
group. 
 

 
 

Figure 5.  Illustration of combiner-fixed relative coordinate 
system used in the Hill’s equation formulation (Figure 

reprinted from Ref. 23). 

 
A static (rigid) formation geometry must 

satisfy the Hill’s system of Eqn. 5 with zero 
relative velocity and acceleration for each vehicle 
( 0====== zzyyxx &&&&&&&&& ).  The nature of 
the Coulomb coupling of the system stipulates that 
control forces can only be applied along the lines 
“connecting” spacecraft coordinates.  Thus, the 
goal is to find suitable formation geometries such 
that the vector sum of the Coulomb forces is 
sufficient to enable solution of the Hill’s system 
with velocities and accelerations set to zero.  The 
equilibrium system of equations is then found to be 
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Eqn. 6 

( )

( )

( )

  1   

0

3

0
3

2

0
3

0
3

2

j  ,n and i, i          

qq
pp

zz

m
k

z

qq
pp

yy

m
k

qq
pp

xx

m
k

x

n

j
ji

ji

ji

i

c
i

n

j
ji

ji

ji

i

c

n

j
ji

ji

ji

i

c
i

≠=

−

−
=Ω

−

−
=

−

−
=Ω−

∑

∑

∑

=

=

=

K

vv

vv

vv

 

 

3.2. Formation Geometries 
 
The method chosen for exploring the behavior 

of  Eqn. 6 was to assume geometric formations and 
search for solution sets.  Although numerous 
formations were studied in the reference work,22 
discussion here will be limited to three canonical 
cases.  The first case considered was a simple 
linear three-vehicle formation with vehicles 
separated by L.  With the combiner fixed to the 
origin, three sub-formations follow depending 
upon orientation with the axis system.  The linear 
formations are shown in Figure 6. 

 
 
 
 
 
 
 

Figure 6.  Linear three-spacecraft formations. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Illustration of the five-satellite formation. 

 

  The second formation studied was a simple 
two-dimensional formation that suggests an 
application for Earth observation through separated 
spacecraft interferometry.  This configuration is 
shown in Figure 7, where the four collectors are 
distributed evenly about the Hill’s y and z axes to 
create a five-spacecraft planar formation.  The third 
formation represented a three-dimensional 
configuration, with six collectors distributed evenly 
about the principal axes with spacing L.  The three-
dimensional formation is shown in Figure 8. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 8.  Illustration of seven-satellite formation. 

 

3.3. Equilibrium Formation Solutions 
 
Although results will be presented for all of 

the formations outlined above, the analytic solution 
method will be presented only for the 
representative three-spacecraft x-axis aligned case, 
which we call the “Coulomb tether” due to its 
similarity with physical tether configurations.  For 
three spacecraft aligned along the combiner 
coordinate frame’s x-axis as shown in Figure 6, 
n=3 and the following relative displacement 
constraints hold 

Eqn. 7 
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where L is the distance from the combiner to either 
collector.  Forming all six of the equilibrium 
equations from Eqn. 6 and eliminating duplicate 
equations leaves only two conditions: 
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Eqn. 9 03
4
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If we further assume that the collectors have equal 
mass, m=m1=m2 and introducing the normalized 
charges defined by  

Eqn. 10 
3Lm
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allows Eqn. 8 and Eqn. 9 to be written without 
explicit mass and length dependencies 

Eqn. 11 
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where the subscript n denotes a normalized 
quantity.  Assuming spherical spacecraft we can 
use Gauss’ Law to relate the vehicle surface 
potential in volts to the equivalent encircled point 
charge qi as Vi=qi/4πε0ri where ri is the spacecraft 
radius.  In a loosely analogous fashion we will 
define a normalized voltage Vin based on the 
normalized charge qin 

Eqn. 12 incin qkV ≡  

then the equilibrium equations of Eqn. 11 are 

Eqn. 13 
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These are readily solved analytically.  Given a 
suitable combiner spacecraft normalized voltage, 
V0n, the two collector normalized voltages must be 
equal and are 

Eqn. 14 22
0021 322 Ω−±−== cnnnn kVVVV  

where the combiner normalized voltage must 
satisfy the constraint 

Eqn. 15 03 22
0 ≥Ω− cn kV  

Knowing the actual collector mass, m, radius, r, 
separation, L, and the orbital angular rate Ω, the 
equilibrium collector physical voltage can be 
obtained from Eqn. 14 and the normalization 
relationship 

Eqn. 16 
3mL

rV
V ii

in =  

where the quantity Viri (which is equal to qi/4πε0 
by Gauss’ Law) is called the reduced charge of 
spacecraft i.  The normalized collector voltages, 
obtained from Eqn. 14, are shown in Figure 9 as a 
function of the combiner voltage, V0n.  The angular 
rate Ω is for a geosynchronous orbit, Ω = 
7.2915×10-5 rad/s.  Similar analytic methods were 
used to compute the y- and z-axis aligned 
formations.  These solutions are also shown in 
Figure 9. 

The three-spacecraft solution set yield some 
interesting insight.  The most trivial case is the y-
axis geometry.  For this alignment within the Hill’s 
system, a solution set is possible where all of the 
vehicles are uncharged.  Indeed, if any vehicle has 
a non-zero charge, the net effect of the solution is 
to exactly cancel the effect of this charge such that 
the net force is always zero.  The z-axis formation 
permits solutions where the central combiner has 
no charge, however there is no solution where all 
vehicles are neutral and Coulomb forces are 
required to maintain the static equilibrium.  Lastly, 
the x-axis formation does not permit any solutions 
with uncharged spacecraft.  There is a clear 
minimum magnitude for V0n (about 20 in the 
normalized units) below which no solution is 
possible. 
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Figure 9.  Analytic solution set for equilibrium three-

spacecraft linear formations. 

 
The analytic method was extended to the five-

spacecraft two-dimensional formation and the 
seven-spacecraft three-dimensional formation.  
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When the constraints of the two- and three-
dimensional formations were applied to the 
equilibrium requirements of Eqn. 6, the result was, 
respectively, eight and eighteen unique necessary 
conditions for equilibrium. 

The two-dimensional five-spacecraft 
formation yielded two families of solutions.  The 
first family was somewhat trivial and produced 
solutions where two of the vehicles had zero 
charge, such that the remaining vehicles assumed 
the same three-spacecraft linear solutions described 
above.  The second family of solutions was found 
by forcing the symmetry condition that q1=q3 and 
q2=q4;  this reduced the set of eight unique 
conditions to two. 

Eqn. 17 
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Eqn. 17 can be solved conditionally such that q1 
(and, hence q3) have the form q1=q1(q4) and 
q0=q0(q1,q4).  The resulting solution set is shown in 
Figure 10.  The solid and dashed lines represent 
consistent solutions within the set.  For example, if 
V2n=V4n=-50, then either V1n=V3n=-10 with V0n=20, 
or V1n=V3n=-50 with V0n=50 
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Figure 10.  Solution set for equilibrium five-spacecraft two-

dimensional formation. 

 
The seven-spacecraft equilibrium solution was 

found by requiring the symmetry condition that 
q1=q3, q2=q4, and q5=q6, reducing the set of 
eighteen conditions to three unique equations: 
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Assuming a value of q2 (or similarly q4), Eqn. 18 
can be solved analytically such that the collectors’ 
charges are functions of q2  

Eqn. 19 
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)(

2565

2131

qqqq
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==
==

 

The combiner charge, q0, can then be expressed as 
),,( 52100 qqqqq = .  A plot of the equilibrium 

solution set is shown in Figure 11.  In the figure, 
solid and dashed lines represent consistent 
solutions within the set.  For example, if V2n is –50, 
then the solution is either V1n=V3n=-50, V5n=V6n=-
60, with V0n=75 or V1n=V3n=-10, V5n=V6n=8, with 
V0n=10. 
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Figure 11.  Equilibrium solution set for seven-spacecraft 

three-dimensional formation. 

3.4. Physical Estimates 
 
The normalized and reduced variables utilized 

in the analytic solution method can be used to 
estimate physically meaningful parameters.  It is 
apparent from a study of Figure 9, Figure 10, and 
Figure 11 that an infinite number of possible 
vehicle charge states (voltages) exist for any of the 
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formations.  One method of selecting an “optimal” 
set of parameters was based on minimizing the 
overall charging required by the formation.  Using 
the sum of the squares of the vehicle charges as a 
cost function, the optimum solution for each 
formation was calculated analytically.  The optimal 
solutions can be used to provide estimates of 
physical parameters.  For discussion sake, it is 
assumed here that the vehicles each have identical 
mass of 150 kg, and that the inter-spacecraft 
separation for all of the formations was L=10 m.  
From the optimum solutions the value of reduced 
charge, Viri, can be calculated.  The reduced charge 
can be thought of as the surface potential required 
for a spherical vehicle with 1-m-radius, with 
scaling to different radii vehicles a straightforward 
calculation.  The magnitude of optimal vehicle 
reduced charge for each formation is presented in 
Table 4. 

 
 V0r0 V1r1 V2r2 V3r3 V4r4 V5r5 V6r6 

3-x 13.8 13.8 13.8     
3-z 2.39 2.39 2.39     
5 4.78 3.96 7.92 3.96 7.92   
7 12.7 3.96 7.92 3.96 7.92 11.2 11.2 

 

Table 4.  Minimum total charge equilibrium solutions for 
each of the formations.  For the linear formations, only the 

x-axis aligned and z-axis aligned three-spacecraft 
solutions are shown.  The units of the vehicle reduced 

charges (V iri) are in kV-m.  The numbers can be thought 
of as the surface potential of a 1-m-radius spherical 

spacecraft in kilovolts. 

4. Propulsion Figures of Merit 
 
The purpose of this section is to evaluate some 

fundamental performance metrics of a Coulomb 
control system on a spacecraft formation.  Aspects 
such as control force, input power, required 
consumable mass, and environment interaction will 
be calculated for a simple two-spacecraft system. 

4.1. Required Power 
 

An isolated spacecraft will assume an 
equilibrium potential (voltage) such that the net 
environmental current due to plasma and 
photoelectron emission is zero. It is possible to 
change the vehicle potential by emitting charge 
from the spacecraft.  For example, if it is desired to 
drive the spacecraft potential lower than 
equilibrium (more negative), the emission of 
positive ions from the vehicle will cause a net 
surplus of on-board electrons and a lowering of the 
potential.  In order to emit such a current, the 
charges must be ejected from the vehicle with 

sufficient kinetic energy to escape the spacecraft 
potential well. Thus, if the vehicle as at a 
(negative) potential -VSC, then ions must be emitted 
from a source operating at a power supply voltage, 
VPS, greater than |-VSC|. 

Basic concepts can be used to calculate the 
power required to maintain the spacecraft at some 
steady state potential.  To maintain the spacecraft 
at a voltage of |VSC|, current must be emitted in the 
amount of |Ie| = 4pr2|Jp|, where Jp is the current 
density to the vehicle from the plasma, using a 
power supply having voltage of at least |VPS| = 
|VSC|.  Quantitatively,  

Eqn. 20 eSC IVP = . 

For a two-spacecraft formation with each vehicle 
using Power P, the total system power is just the 
sum of the individual power to each vehicle.  
Assuming spherical spacecraft and using Gauss’ 
Law to relate the surface potential to the encircled 
point charge, it is possible to relate the Coulomb 
force (thrust) on a vehicle to the emission current 
and the required power 

Eqn. 21 
eBeA

BAd
C IId

PrreF d
2

2
/

04 λπε −=  

where rA(B) and IeA(B) are the radius and emission 
current of spacecraft A(B), and d is the vehicle 
separation. 

Eqn. 21 yields the power required to produce a 
steady-state thrust for a given emission current.  
Since the space environment will be constantly 
changing (and, hence the emission current to 
maintain steady state), it is important to calculate 
the required power to affect a change in potential 
from some initial value to a desired steady state 
value.  In the pedagogical analysis here, the 
capacitance of the spherical spacecraft can be used 
to estimate the power required for a change in 
voltage (thrust).  Using an equivalent circuit model 
where dVSC/dt=I/C, the rate of change of spacecraft 
potential can be related to the current absorbed 
from the plasma and the emitted control current 

 

Eqn. 22 
r

IJr

dt
dV epSC

0

2

4

4

πε

π +
=  

where Jp is the absorbed plasma current density.  
The value of Jp can easily be evaluated using 
traditional plasma probe theory for a sphere and 
will take the form Jp=Jp(VSC, Te, Ti).  If Vfinal is the 
desired steady state spacecraft voltage, then the 
emission current power supply must have power 
P=IeVfinal.  Substituting Ie=P/Vfinal into Eqn. 22 and 
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using an analytic form for the plasma current, an 
explicit equation is obtained of the form 

Eqn. 23 ( )rTTVPf
dt

dV
ieSC

SC ,,,,=  

which can be numerically integrated to produce a 
function 

Eqn. 24 ( )tPrTTVV ieSCSC ,,,,= . 

As a numerical example, Figure 12 shows a 
plot of the function obtained for Eqn. 24 assuming 
a 1-m-diameter spacecraft charging from VSC=0 to 
Vfinal=6 kV in the average GEO plasma 
environment.  From this plot it is evident that only 
200 mW of power is required to change the 
spacecraft potential by 6 kV within 8 msec. 
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Figure 12.  Numerical integration of the transient response 

of a 1-m-diameter model spacecraft in an average GEO 
plasma as a function of the power in the emitted control 

beam. 

 

4.2. Mass Flow Rate and Isp 
 
Mass flow rate is defined by the rate of 

gaseous ions  expelled out per unit time to maintain 
potential of the vehicle. As electrons have 
negligible mass we can say that mass flow rate of 
electrons  is negligible and thus driving the 
potential positive requires zero mass flow. If Ie is 
the emission current constituting ions, mion is the 
mass of ion, and qion is the charge, then mass flow 
rate is given by 

Eqn. 25 
ion

ione

q
mI

m =& . 

Since the only purpose of the ion emission is to 
carry charge (and not momentum) from the 
vehicle, it makes sense to use the least massive 
ions that are practical.   For a two spacecraft 
combination, propellant mass flow rate will be the 
sum of mass flow rates for individual spacecraft 
and can be related to their individual emission 
currents 

Eqn. 26 ( )eBea
ion

ion
Total II

q
m

m +=& . 

A common performance parameter used for 
propulsion systems is specific impulse Isp. This 
parameter compares the thrust derived from a 
system to the required propellant mass flow rate.24 
Although Isp is traditionally used as a parameter to 
evaluate momentum transfer (rocket) systems, we 
can use the formal definition to compare the 
Coulomb system. For a Coulomb control system 
the specific impulse Isp is given by 

Eqn. 27 
0gm

F
I

Total
sp &

=  

Since Coulomb force calculations are meaningless 
for a single vehicle, we will treat the system as two 
separate vehicles, each subject to a force of Fc 
given by Eqn. 21, so that the sum of the forces 
experienced by all spacecraft in the formation is 
F=2Fc. 

Eqn. 28 

( )eBeAeBeA

BA

ion

ion
d

sp IIIId
Prr

mg
qe

I
d

+
=

−

2

2

0

/
08 λπε

 

 
Where g0 is the gravitational constant. If rA = rB = 
rsc, and Ie = IeA = IeB, then Eqn. 28 becomes,  

 

Eqn. 29 32
0

22/
04

eion

SCion
d

sp Idmg
Prqe

I
dλπε −

= . 

 
Note that, unlike a rocket system, the definition of 
Isp of a coulomb system is meaningless for a single 
vehicle. For a formation of two spacecraft, Eqn. 29 
indicates that the specific impulse of the formation 
is a function of the radii of the spacecraft, power 
supplied to the ion (electron) gun, the separation 
between the two spacecraft, the emission currents 
of both vehicles, and the mass of the charge 
carriers, mion.   

Consider a two-spacecraft formation with 
identical 1-m-diameter vehicles in the average 
GEO plasma environment charged to the same 
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negative potential.  In order to reach and maintain 
this negative potential, the vehicles must emit an 
ion current.  Consequently, the spacecraft will 
attract ion saturation current from the plasma, so Ie 
must be equal to the plasma ion saturation current 
for steady state.  It is apparent that light ions will 
provide the most efficient Isp, so assume that the 
emitted species is H+.  Calculated values of specific 
impulse for each vehicle in the formation is shown 
in Figure 13 for various system input power levels.  
For 1 mW systems with vehicle separation on the 
order of 20 m, Isp values of 104 seconds are 
obtained, with values increasing to 1010 sec for just 
1 W of power.  It should be noted that for a 
positive vehicle potential the emitted species would 
be electrons and, thus, the calculated values of Isp 
would be a factor of 2,000 greater. 
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Figure 13.  Specific impulse for a two-spacecraft Coulomb 

formation as a function of spacecraft separation, d, and 
input power, P. 

 

4.3. Emission Current Jet Force 
 
Generating net charge on a spacecraft for 

Coulomb force requires the emission of current.  In 
principle, the charge is carried away from the 
vehicle by particles with non-zero mass.  Such 
mass ejection results in a momentum jet force on 
the vehicle as in a traditional electric propulsion 
thruster.  In the case of electron emission, the mass 
of the charge carriers is insignificant and the 
resulting jet force is negligible.  Ion emission, 
however, may produce a significant reaction force.  
It is instructive to consider how the Coulomb force 
between spacecraft compares with the momentum 

reaction on the vehicle induced by the beam of ion 
current. 

The reactive thrust force of an ejected mass 
flow is computed as 

Eqn. 30 eJ umF &= , 

where m&  is the ejected mass flow rate and ue is the 
exhaust velocity at which the mass is emitted. 
Assuming steady state Coulomb force generation, 
the ions will be electrostatically accelerated 
through a spacecraft potential of VSC, such that 

Eqn. 31 
ion

SCion
e m

Vq
u

2
= . 

With this simplification and recognizing that the 
mass flow is related to the emission current, the 
momentum jet force of the emitted ion current is 

Eqn. 32 
ion

SCion
eJ q

Vm
IF

2
= . 

The jet force can also be written in terms of the 
input power to the emission system as 

Eqn. 33 
ion

eion
J q

PIm
F

2
= . 

We can compare the magnitude of the jet 
reaction force with the induced Coulomb force 
between two vehicles.  Assume identical spacecraft 
charged to the same value of VSC. From Eqn. 21 
and Eqn. 33 we can write the ratio of FC/FJ (taking 
Fc as the total Coulomb force on both vehicles) in 
terms of the input power as 

Eqn. 34  

( ) 2

/2/3

024
dIIII

ePrr
m
q

F
F

eBeAeBeA

d
BA

ion

ioin

J

C
d

+
=

− λ

πε . 

 
If rA = rB = rsc, and Ie = IeA = IeB then Eqn. 34 
becomes, 

Eqn. 35  

23

/2/32

022
dI
ePr

m
q

F
F

e

d
SC

ion

ion

J

C
dλ

πε
−

= . 

 
For a formation of two spacecraft, we find that 

the FC/FJ ratio is a function of the radii of the 
spacecraft, power supplied to the ion (electron) 
gun, the separation between the two spacecraft and 
the emission currents of both of them. Similar to 
the calculations for specific impulse, if we consider 
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formation of two identical spacecraft in GEO 
having same diameter of 1 m, charged to same high 
negative voltage VSC and provided with same 
power P for each of them, they will each draw ion 
saturation current from the ambient plasma.  So the 
(ion) emission current Ie will be also the same.  
Figure 14 shows the ratio of Coulomb to jet force 
assuming hydrogen ion emission in average GEO 
plasma. 
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Figure 14.  Comparison between induced Coulomb force 

and the momentum reaction of the emitted ion beam used 
to maintain the spacecraft charge for three power levels. 

 

It can be seen from Figure 14 that for 
separations up to 100 m and system power greater 
than 1 mW the Coulomb force is considerably 
higher than the jet force. This implies two 
conclusions: 1) the Coulomb force is a wiser use of 
power than a mass-emitting EP thruster, and 2) the 
directional jet force will not be a significant 
perturbation to the Coulomb control system. 

5. Conclusions 
 
A new mode of potential spacecraft interaction 

was identified for closely spaced formations of 
vehicles in high Earth orbit.  Using typical GEO 
conditions found in the literature, modeling and 
calculations were performed to show that Coulomb 
forces between vehicles may be as large as 1 mN 
for spacecraft 10 m apart, with electric dipole 
disturbance torques as high as 100 µN-m at the 
closest separations.  For larger spacing most 
models showed the potential for forces of tens of 
µN and µN-m torques persisting out to 50 m 
separation. 

The Coulomb disturbance forces are 
commensurate with those expected from 
micropropulsion systems that will likely be used 
for formation maintenance.  In an exploratory 
study, the possibility to purposefully exploit the 
Coulomb interactions as formation-keeping forces 
was investigated.  The dynamic equations were 
formed within Hill’s relative coordinate system for 
a collection of interacting vehicles.  Analytic 
methods were developed to prove the existence of 
static equilibrium solutions using only Coulomb 
forces for propulsion within the swarm.  Unique 
solution sets were found for one-dimensional three-
spacecraft formations, a two-dimensional five-
spacecraft formation, and a three-dimensional 
seven-spacecraft formation.  Assuming 150-kg 
vehicles with physical dimensions of 1 meter, it 
was shown that kilovolt spacecraft potentials are 
sufficient to maintain most formations in a rigid 
geometry. 

The Coulomb control system was evaluated in 
classical propulsion terms.  It was shown that the 
specific impulse can be as high as 1013 seconds.  
Due to the novel scaling of thrust, power, and 
specific impulse in this non-momentum thrust 
system, power levels as low as tens of milliwatts 
were shown sufficient to maintain the forces and to 
change their magnitude within a timescale of 
milliseconds. 
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