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Intrinsic localized modes ~ILMs! have been observed in micromechanical cantilever arrays, and

their creation, locking, interaction, and relaxation dynamics in the presence of a driver have been

studied. The micromechanical array is fabricated in a 300 nm thick silicon–nitride film on a silicon

substrate, and consists of up to 248 cantilevers of two alternating lengths. To observe the ILMs in

this experimental system a line-shaped laser beam is focused on the 1D cantilever array, and the

reflected beam is captured with a fast charge coupled device camera. The array is driven near its

highest frequency mode with a piezoelectric transducer. Numerical simulations of the nonlinear

Klein–Gordon lattice have been carried out to assist with the detailed interpretation of the

experimental results. These include pinning and locking of the ILMs when the driver is on,

collisions between ILMs, low frequency excitation modes of the locked ILMs and their relaxation

behavior after the driver is turned off. © 2003 American Institute of Physics.
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An advance of the theory of nonlinear excitations in dis-

crete lattices was the discovery that some localized vibra-

tions in perfectly periodic but nonintegrable lattices

could be stabilized by lattice discreteness. The modula-

tional instability of extended large amplitude vibrational

modes has been proposed as a mechanism for the realiza-

tion of dynamical localization on the scale of the lattice

constant. Although theoretically a variety of methods to

excite the instability of a homogeneous vibrational mode

have been proposed, these ideas have yet to be tested

experimentally. Since the observation of nanoscale local-

ized vibrational modes still cannot be achieved there is

definite advantage to examining a macroscopic array,

which is small enough so that the entire time dependence

of the instability dynamics occurs in a practical measure-

ment interval. This has been accomplished by using mi-

cromechanical silicon technology to fabricate up to 248

identical cantilevers with a 40 micron lattice constant.

Optical techniques have been used to track the motion of

individual cantilevers in the presence of an inertial

driver. In addition to experimentally characterizing the

modulational instability and identifying the best method

for producing intrinsic localized modes a new discovery is

the locking of the local mode amplitude with the

driver frequency. Numerical simulations have been used

to better understand the nature of this synchronization

effect.

I. INTRODUCTION

The concept of nonlinear energy localization in periodic

lattices characterizes a new class of dynamical excitations,

namely, intrinsic localized modes ~ILMs!.1 In addition to the-

oretical and numerical studies involving nonlinear crystal

dynamics,2–7 applications to other topics have appeared such

as magnetic systems,8–17 electron–phonon systems,18,19 reac-

tion dynamics,20 molecular biophysics,21,22 and lattice-

assisted energy/charge transfer in polarizable matter.23 Some

of these efforts devoted to examining the nonlinear dynamics

of nanoscale lattices have made contact with other possible

applications for ILMs such as in friction24 and crack

propagation.25 Still other larger scale applications deal with

ILMs in Josephson arrays,26,27 E&M ILMs in optical

switches,28 and in nonlinear photonic crystal wave

guides.29,30 The largest scale application has to do with lo-

calized multibunch modes in accelerators.31 Thus from con-

densed matter physics to arrays used in high technology, one

sees a new class of problems emerging, which share a com-

mon denominator.

At the smallest scale, details of ILM quantization18,32,33

are still to be explored. For a classical nonlinear oscillator

array, there are a number of characteristic ILM properties,

probed theoretically, such as their interaction with an ac

driver,14,34–36 their propagation5,37–40 and amplitude depen-

dent mobility4,6,40–42 in a discrete lattice potential,43,44 as

well as their interactions with impurities,45–50 that still need
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to be examined experimentally. Note that strongly excited

ILMs42 can be trapped anywhere in the lattice, so they also

could approach impurity mode behavior. Thus the explora-

tion of the amplitude-dependent properties of ILMs is one of

the important experimental issues at the present time.

Although some experimental studies have been reported

for large scale mechanical systems,51,52 for somewhat

smaller Josephson-junction arrays,26,27,53,54 and for nanoscale

lattices,15–17,55 none of these studies have examined the

driven amplitude dependent trapping phenomena. The low

resonant frequency of the mechanical systems makes the

time scale too long to perform the necessary experiments.

ILMs can be seeded in Josephson-junction arrays and they

are stable so that trapped ILMs can be measured; however,

the high oscillation frequency, 1 GHz to 10 THz,56 makes it

difficult to observe their dynamical motion. Finally, observ-

ing the dynamics in nanoscale lattices has not yet been ac-

complished. Recently micro-electro-mechanical system

~MEMS! silicon technology has matured sufficiently so that

now it is relatively straight forward to make many identical

elements.57–59 While previous experimental studies of indi-

vidual micromechanical oscillators have focused on issues of

nonlinearity and specific applications,60–63 in this paper we

describe our experimental investigation of ILM creation, re-

laxation, locking, and interaction in 1D coupled oscillator

arrays of the cantilever design.

In the next section the experimental and numerical-

simulation procedures are described. An optical arrangement

with a 1D charge coupled device ~CCD! is used to display

the motion of localized modes. Numerical simulations have

been made using coupled nonlinear Klein–Gordon equations

to represent the oscillator array. In Sec. III, the experimental

results are presented and compared with the simulations. The

breakup of the uniform mode excitation, the development of

localized modes, and stationary localized modes locked to

the driver frequency have been observed in this time depen-

dent investigation. Simulations play an important role as they

are used to interpret and understand these experimental ob-

servations. The conclusions are presented in Sec. IV.

II. EXPERIMENTAL DETAILS

A. Physical

1. Fabrication and linear measurements to
characterize cantilever coupling

To fabricate SiNx cantilever arrays on a silicon substrate,

the starting film is a low stress silicon nitride layer, silicon

rich to alleviate tensile stresses. After coating with a photo-

resist mask it is exposed and then etched via a CF4 plasma in

a reactive ion chamber. Next, the silicon substrate is undercut

using an anisotropic KOH etch, thus releasing the SiNx can-

tilevers. A top view of the resulting structure is shown in Fig.

1~a!. The relative scale of the cantilevers and overhang can

be seen. The overhang region provides the coupling between

the cantilevers. A 3D rendition of one unit cell of the result-

ing array is shown in Fig. 1~b!. The physical characteristics

of the four oscillator arrays studied here are given in Table I.

To examine the coupling properties of the overhang be-

tween the cantilevers, some initial tests have been carried out

with small arrays composed of nine identical cantilevers.

These are samples A and B in Table I. A piezoelectric trans-

ducer ~PZT! with variable frequency is used to drive the

monocantilever array to obtain the frequency dependent re-

sponse of individual cantilevers.

The optical apparatus used to measure the dependence of

the spectral bandwidth on the overhang is shown in Fig. 2.

The sample is attached to the PZT and situated in an evacu-

ated chamber maintained below 1 mTorr at ambient tempera-

ture. A cantilever is chosen, and a laser beam focused on it,

as can be seen in the figure. A variable frequency ac voltage

drives the PZT which uniformly shakes the entire sample so

that the cantilever array experiences a common acceleration.

The resulting deflection of the laser beam from the oscillat-

ing cantilever is measured by a position sensitive photodiode

detector ~PSD!, with output voltage proportional to the opti-

cal spot position. For a linear response of the array the PZT

ac voltage is typically set to 0.05 V; for examining the non-

linear shift of a resonance frequency, and hence the anhar-

monicity of the system, the driving voltage is ;0.1 V. For

ILM creation it is ;10 V.

Figures 3~a! and 3~b! show the signal versus driving fre-

quency for test samples A and B, respectively. These two

samples, which are identical except for different overhang

widths, produce different spectral bandwidths as expected.

Figures 3~a! and 3~b! clearly show that the bandwidth in-

creases with the length of the overhang. Ignoring for the

moment any normal modes of the overhang itself, the canti-

levers should produce nine degrees of vibrational freedom.

The nine peaks observed are the resonant frequencies of

these nine normal modes. The solid and dotted curves denote

the spectra taken of the center and edge cantilever, respec-

tively, so that all modes are counted.

With the coupling between oscillators characterized, the

design of the large oscillator arrays can now be considered. It

FIG. 1. Characteristic dimensions of a di-element type silicon nitride canti-

lever array. ~a! Top view photograph. White region to the right is the 300 nm

thick SiNx array and overhang, while the dark gray region on the left is the

film supported by the substrate. The parameters for this sample ~D! are

given in Table I. ~b! 3D sketch showing one unit cell.
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is known that cantilevers of this design have a hard

nonlinearity.61,62 The procedure of choice for the production

of ILMs is to drive a uniform mode to large amplitude so that

it becomes unstable and breaks up into localized excitations.

To achieve the large amplitude uniform mode instability for

an array with hard anharmonicity, the highest frequency uni-

form mode of the array needs to be driven.64

For a mono-type cantilever 1D lattice this would be the

zone-boundary excitation. ~Although our arrays have fixed

boundary conditions they are sufficiently large that terminol-

ogy consistent with periodic boundary conditions will be

used throughout the paper.! To excite the zone boundary

mode shown in Fig. 4~a! would require a special driver, one

that could produce p out-of-phase amplitude on neighboring

cantilevers. In order to use the PZT driver, which accelerates

the entire lattice uniformly, two different-length cantilevers

per unit cell have been constructed in arrays C and D, as

displayed in Fig. 1. With this di-element array, the dispersion

curve is folded over @see Fig. 4~b!# so that the highest fre-

quency vibrational mode is now at the zone center. This

optic-like mode can be excited with the PZT driven at the

appropriate frequency. Any ILMs should appear near the top

of the upper band as shown in the figure.

2. Linear measurements of large di-element cantilever
arrays

The frequency dependent linear response of individual

cantilevers for a large di-element array ~sample D! is shown

in Fig. 5. The laser beam, shown in Fig. 2, is now focused on

a cantilever, near the center of the sample. The drive fre-

quency is incremented in 100 Hz steps in the lower fre-

quency region and 50 Hz steps in the higher frequency re-

gion. For each frequency point, a measurement takes about

three seconds. Optic-like normal modes can be activated by

the uniform driver, and can be seen in this figure. As ex-

pected, there are two pass bands, with the upper band

~143.2–147.0 kHz! much narrower than the lower one

~60.8–127.7 kHz!. Due to the coupling of the driver to the

normal modes the frequency dependence of the response de-

creases with increasing frequency in the lower band, and

increases with increasing frequency in the upper band. There

is at least one other band at around 235–240 kHz, which

may be related to the vibration of the overhang. However,

FIG. 3. Linear spectra for mono-element arrays showing the dependence of

the bandwidth on the overhang. ~a! Sample A with 28.5 mm overhang, and

~b! sample B with 35.6 mm overhang. Samples A and B contain nine canti-

levers; see Table I for more details. Solid and dotted curves correspond to

the spectrum for the center and for the edge cantilever, respectively.

TABLE I. Summary of the characteristics of the micromechanical samples.

Sample label A B C D

Type Mono-element Mono-element Di-element Di-element

Thickness ~nm! 300 300 300 300

Pitch ~mm! 110 110 65 40

Length ~mm! 50 50 50/55 50/55

Width ~mm! 10 10 15 15

Total number 9 9 152 248

Overhang ~mm! 28.5 35.6 70 67

f a ~kHz!a 180.43 186.2 136.1 147.0

f b ~kHz!a 133.0 143.2

f c ~kHz!a 121.2 127.7

f d ~kHz!a 171.43 158.4 72.7 60.8

aResonant frequencies at the upper zone center, upper zone boundary, lower zone center, and lower zone

boundary, as shown in Fig. 7. For the mono-element type arrays, only two frequencies are specified which

correspond to the same modes in folded dispersion curve as if the samples were of the di-element type.

FIG. 2. Experimental setup for a one-cantilever linear response measure-

ment. The cantilever array is in a vacuum chamber. A PZT is employed to

drive the sample. A beam from a He–Ne laser is focused on one cantilever.

A position-sensitive photodiode detector ~PSD! which outputs voltage pro-

portional to the laser beam position is used to pick up the deflection of the

reflected laser beam. By scanning the frequency of the oscillator and mea-

suring the ac voltage with the lock-in amplifier, linear spectra are obtained.
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this region is beyond the frequency limit of the photosensitve

detector and the lock-in amplifier, and it has not been mea-

sured accurately.

To examine the response of the system to large ampli-

tude excitation and in particular to explore ILM dynamics, it

is necessary to measure a large number of cantilevers simul-

taneously. Figure 6 shows the experimental setup for mea-

suring ILM dynamics versus time. In Fig. 6~a! the He–Ne

laser beam is focused with a cylindrical lens into a line along

the static array. The reflected beam is then imaged onto a 1D

CCD camera. The PZT is driven with a voltage-controlled

oscillator for variable or constant frequency operation as

shown in the figure. The switch and the ramp generator are

synchronized with the camera by using a pulse generator.

Images are captured by a computer, which is triggered by the

pulse generator. The speed of the camera, about 18 kHz, is

insufficient to monitor the sinusoidal motion of the cantile-

vers. However, as the vibration of a cantilever grows, the

reflected laser beam increasingly misses the 1D CCD camera

as illustrated in Fig. 6~b!, and the image of that particular

cantilever becomes darker.

The maximum lateral capturing speed of the camera can

be defined as the array pitch divided by the camera period,

i.e., 183103 a/s, where a is the cantilever pitch. This is

sufficient to observe the fastest traveling ILMs, which move

at speeds of up to 143103 a/s. It should be emphasized that

ILMs excited near the top of the band are far slower than this

maximum speed. Consequently, the capturing speed of the

camera is fast enough to observe both the lateral motion of

an ILM and its time development. This relatively straightfor-

ward observational method permits a systematic monitoring

of the excitation pattern for large amplitude ILM creation

and interaction with a driver.

It has been shown theoretically that changing the fre-

quency ~chirping! of a large amplitude driver is an effective

method by which to excite a nonlinear system to large am-

plitude so that the resulting instability produces ILMs.35,65

Since the resonant frequency of the nonlinear cantilevers in-
FIG. 4. Schematic dispersion curves. ~a! Mono-element cantilever array: an

ILM can be expected to appear at the zone boundary frequency for hard

nonlinearity. ~b! Di-element cantilever array: the dispersion curve for the

mono-element array ~thin dotted line! is folded back and a stop band ap-

pears. For hard anharmonicity ILMs will be created at the zone center.

FIG. 5. Linear spectrum obtained for a large di-element cantilever array.

The laser was focused on a cantilever near the middle of sample D that

contains 248 cantilevers. Frequency is step incremented in 100 Hz steps

over the lower frequency region and in 50 Hz steps in the higher frequency

region. The lower band begins at 60.8 kHz and ends at 127.7 kHz. The

upper band begins at 143.2 kHz and ends at 147.0 kHz.

FIG. 6. ~a! Experimental setup for the ILM measurements. A beam from a

He–Ne laser is focused along the array by using a cylindrical lens. The

elliptical spot from the cylindrical lens is positioned so that the short axis of

the ellipse lies along the length of the cantilever, while the longer axis

encompasses many cantilevers. A 1D CCD is used to detect the beam re-

flected from the cantilevers. A voltage controlled oscillator ~vco!, switch

~sw! and amplifier are used to drive the PZT. The frequency of the vco is

controlled by a ramp generator. A pulse generator, which controls the switch,

and the ramp generator are synchronized to the camera. A scanner attached

to the mirror is driven by an oscillator ~not shown in this figure!. Two-

dimensional images can be captured by synchronized scanning of the mirror

and the camera. This feature is used to observe the amplitude pattern of

stationary ILMs. ~b! Schematic showing the relation between cantilever am-

plitude and detector response. At large vibration amplitudes the deflection of

the laser beam from the cantilever changes and the image at the CCD site

becomes darker. In this picture the elements of the 1D CCD camera are

arranged horizontally.

705Chaos, Vol. 13, No. 2, 2003 Study of ILMs in MEMS cantilever arrays

Downloaded 23 May 2003 to 128.84.231.133. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



creases with amplitude, it is necessary to increase the driver

frequency with time to track the highest resonant frequency.

In addition, since the oscillators are necessarily damped, cw

driving is required for steady state observation of the result-

ant ILMs.

A scanner attached behind the mirror in front of the CCD

as shown in Fig. 6~a! can be used to obtain a two-

dimensional image of the cantilevers. This oscillator driven

scanner is synchronized with the camera. During the time

development measurement of ILMs, which is the main focus

of most experiments, this mirror is mechanically fixed to

observe individual cantilever motion.

B. Numerical

The lowest frequency v of a simple cantilever with one

end fixed is given by66

v2
5

~3.52!2

L4 S EI

rtw
D5

~3.52!2

12L3

E

m
t3w5

k

m
. ~1!

Here E is the Young’s modulus, the second moment-of-area

I5t3w/12, where t is the thickness of the beam, and w is its

width ~see Table I for these values!, L is the length of the

beam, and r is the density of the material.

Our experimental system consists of an array of cantile-

ver beams that are coupled together by the overhang region

between them. Since the two cantilevers in a unit cell have

different lengths, then, according to Eq. ~1!, both their linear

spring constants and masses will be different. As a first ap-

proximation, the dynamics of the overhang will be ignored,

so that it acts only as a massless coupler between cantilevers.

For small oscillations an individual cantilever in the array is

assumed to obey Eq. ~1! but with an effective spring and

mass, in order to include some contribution of the overhang.

For the large amplitude problem, each cantilever is then rep-

resented by a mass and an onsite potential which has both

harmonic ~quadratic! and anharmonic ~hard quartic! terms.

The coupling between cantilevers is assumed to be harmonic

for all cantilever amplitudes. Such a di-element lattice model

obeys the nonlinear Klein–Gordon equation,67 namely,

ma

d2

dt2 xai1

ma

t

d

dt
xai1k2axai1k4axai

3

1k I~2xai2xbi2xbi21!5maa , ~2!

mb

d2

dt2 xbi1

mb

t

d

dt
xbi1k2bxbi1k4bxbi

3

1k I~2xbi2xai112xai!5mba , ~3!

where the subscripts a and b correspond to the different

length cantilevers, xai and xbi are the displacements of the

cantilever ends, ma and mb are their masses, t is a linear

~energy! lifetime, k2a and k2b are the onsite harmonic spring

constants, k4a and k4b are onsite quartic spring constants,

and k I is the harmonic coupling constant. The PZT does not

apply a force directly to the cantilevers, but causes accelera-

tion and deceleration of the cantilever’s inertial frame with

magnitude a.

The masses are estimated from the density of silicon

nitride and the size of the cantilevers. The lifetime t is ex-

perimentally determined. In order to determine the spring

constants k2a , k2b , and k I experimentally, four frequencies

have been measured: the maximum and minimum frequen-

cies for the upper and for the lower bands. These points on a

dispersion curve are identified in Table I.

By choosing the top three experimental frequencies for

the fit to the small oscillation case, a good approximation to

the upper branch of the dispersion curve can be obtained.

The lowest experimental frequency ~lower branch, zone cen-

ter! is not reproduced within our model. One way to obtain

different bandwidths is to introduce longer-range interac-

tions, which would stem from the dynamical properties of

the overhang. To reproduce the entire experimental disper-

sion curve takes up to sixth nearest-neighbor interactions.

Since ILMs are created at the top of the upper branch, the

exact shape of the lower branch is not expected to play a

crucial role so this long-range interaction is not included in

our simulations.

With the harmonic spring constants of the model chosen,

its linear response can be determined and the dispersion

curve obtained. The system is driven with a uniform distri-

bution of acceleration noise, with a ranging between

61023 m/s2 ~compared to the a ;1014 m/s2 that will be

needed for ILM production!. The beam displacements of the

entire array are recorded as a function of time. A Fourier

transform ~FT! of a single oscillator displacement as a func-

tion of time yields the frequencies that the particular cantile-

ver experiences during the given time interval. Likewise, a

FT ~taken over a finite spatial interval! of the displacements

of all the cantilevers at any instant of time will yield the

excited wave vector modes that are participating in the col-

lective motion. Performing FTs in both space and time

changes the real-space data (x ,t) representation to reciprocal

space (v ,k). Such a two-dimensional FT of the beam dis-

placement data is shown in Fig. 7~a!. The time interval is

equivalent to 1000 periods of oscillation. A one-dimensional

FT for the oscillations of a single cantilever from the middle

of the sample is shown in Fig. 7~b!. In both of these frames

it is clear that the simulated bandwidth is almost the same for

the acoustic and optic branches.

The nonlinear onsite quartic spring constant in Eqs. ~2!
and ~3! is determined in the following manner: ~1! k4a and

k4b are set equal to each other and ~2! the value is deter-

mined so that the upper-branch frequency in a simulation

shows the same frequency shift as for experiment at a power

level below the threshold for the uniform mode instability.

This power still needs to be sufficiently high so that the

nonlinear frequency shift of the resonant frequency can be

determined accurately. A complete list of simulation param-

eter values can be found in Table II.

III. RESULTS AND DISCUSSION

A. Trapping and locking

1. Experiment

Two sequential time-dependent response measurements

of the 152-cantilever array ~sample C! for a large amplitude
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driver are shown in Fig. 8. The cantilever positions can be

identified by the white lines to the left of the time50 marker.

The high-power, PZT driver (;20 V) is chirped from the top

of the optic band, f a , to 1.011 f a between time50 and 14.2

ms as indicated by the dotted vertical line in the figure. The

CCD camera images a portion of the sample, which is 100

cantilevers in this case. The dark tracks versus time identify

large amplitude localized excitations. Although the starting

conditions are the same for the experiments shown in Figs.

8~a! and 8~b! different results are observed as would be ex-

pected for a process initiated by random noise. Note that

some moving ILMs form during the chirp phase. At longer

times between 14.2 ms and 72.7 ms, with a cw driver some

ILMs continue to receive energy while the others die out. At

some point the large amplitude ILMs become trapped at a

lattice site. This can be seen around lattice site 60 in Fig. 8~a!
and at two locations, namely, 38 and 80 in Fig. 8~b!. After

the driver is turned off at time572.7 ms the trapped ILMs

decay.

Figure 9 shows cantilever responses versus time with the

high-power, chirped driver for the 248-element array, sample

D in Table I. Before the pulse is turned on (time,0), each

stripe corresponds to a stationary cantilever. The PZT voltage

is again about 20 V. The viewing size is now 230 cantilevers.

Figures 9~a! and 9~b! show different results for identical

starting conditions. Here, the driver frequency is chirped

from 0.9986 f a to 1.016f a . Figure 9~c! shows the results for

a slightly different starting condition, where the driver fre-

quency is chirped from 0.9986 f a to 1.034 f a . As long as the

chirping starts near the top of the band and ends 2–3 %

higher than f a , the different chirping schemes give similar

results. The pulse duration is 48.9 ms and the chirp time is

16.2 ms ~dotted line!. The pulse interval is highlighted in

these figures. At early times ILMs are observed to form,

move, oscillate and hop until the chirp ends; then a few

ILMs continue to pick up energy and become trapped at

lattice sites. Using an optical probe coupled to a spectrum

analyzer to monitor the center of such a pinned ILM con-

firms that the fixed mode is frequency-locked to the driver.

After the pulse, these stationary ILMs lose energy, become

broader, break free from the trapping site, and sometimes

oscillate about it. Note that these oscillations range over

10–20 lattice sites and hence they have a much larger am-

FIG. 7. Simulated linear response for a di-element cantilever array. The

physical parameters of the di-element array are given in Table II. Applying

low noise amounting to a5061023 m/s2, the displacements are measured

as a function of time. ~a! The time-space Fourier transform of the shorter

cantilever displacements gives the excitation pattern in k space only where

normal modes exist. The three experimental frequencies, 147.0, 143.2, and

127.7 kHz at the top and bottom of the upper band, and top of the lower

band of sample D are reproduced. The bottom of the lower band frequency

~123.3 kHz! in simulation is much higher than the experimental one ~60.8

kHz!. ~b! The time Fourier spectrum of a single cantilever displacement

pattern.

TABLE II. List of parameters used in the simulations.

Parameters Cantilever a Cantilever b

Mass 5.46310213 kg 4.96310213 kg

Damping constant, t 8.75 ms 8.75 ms

Harmonic, k2 0.303 kg/s2 0.353 kg/s2

Anharmonic, k4 5.03108 kg/s2 m2 5.03108 kg/s2 m2

Harmonic intersite, k I 0.0241 kg/s2 0.0241 kg/s2

FIG. 8. Cantilever excitation versus time showing the production, interac-

tion and decay of ILMs. These experimental results for sample C are taken

with the 1D CCD camera. Frames ~a! and ~b! have identical starting condi-

tions. The PZT frequency is chirped from f a5136.3 kHz to 1.011 f a . The

chirp ends at 14.2 ms ~dotted line!. The dark regions identify localized

excitations. Highlighted region corresponds to the time where the pulse is

on. Some localized excitations become trapped during this cw phase. Pulse

duration is 72.7 ms.
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plitude than the one unit cell oscillations described in Refs.

38 and 43. The moving ILMs have speeds ranging from 2–6

lattice sites per millisecond. This should be compared to the

maximum possible speed of an optic branch linear mode

wave packet of about 13 lattice sites per millisecond. The

oval identifiers in Figs. 9~a! and 9~c! indicate regions where

fairly uniform background excitations can be seen. Such pat-

terns exist even after the pulse. The amplitude of such exci-

tations in Fig. 9~c! is less than in frames ~a! and ~b! and

probably accounts for the absence of any motion of the

trapped ILM after the pulse is turned off. A brief description

of some of these results has already been given.68

Close inspection of the large-amplitude trapped ILMs in

Fig. 9 reveals an experimental artifact in the central region of

the ILM image. The experiments indicate a smaller ampli-

tude at the center of the mode than actually exists there. A

systematic investigation shows this feature is false. By taking

a 2D image of two trapped ILMs, which are shown in Fig.

10, it is possible to identify the single peaked nature of the

excitation. The two arrows in the figure identify the center of

the two localized excitations. In each case the large ampli-

tude peak is centered on the short cantilever.

2. Simulations

To understand in more detail a number of the features

observed in Figs. 8 and 9 it is necessary to turn to numerical

simulations, which have parameters very similar to those in

the experiment. Figure 11 summarizes some of the results of

such an investigation. The chirping scheme used in this

simulation is shown in Fig. 11~a!. The system is initialized

with a small amount of random noise. The system is then

allowed to settle for 500 periods of the resonant frequency, at

which point the driver is turned on (time50). The driver

frequency starts at the top of the upper band, then continu-

ously increases linearly to frequency 1.027 f a over a time

interval of 2500 periods. When the uniform mode becomes

highly excited the noise perturbation triggers the modula-

tional instability. In the cw mode the fixed driver frequency

is 1.027 f a until the driver is turned off at 7500 periods.

Figure 11~b! shows a density-plot of the energy of each

lattice site as a function of time for a typical simulation re-

sult. The energy of a particular lattice site in the di-element

array, at a given instant of time, is
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where i indexes the unit cell number, and the actual lattice

site number is given by j52i21 and j52i for the long

~cantilever a) and short ~cantilever b) sites, respectively. The

energy consists of the kinetic energy and onsite potential

terms, as well as the potential energy stored in the coupling

springs. The parameter set used here for sample D is given in

Table II. The total number of cantilevers is 250 with fixed-

FIG. 9. Cantilever excitation versus time showing the production and decay

of ILMs. Experimental results for sample D taken with the 1D CCD camera.

Frames ~a! and ~b! have identical starting conditions. The frequency of the

PZT is chirped from 0.9986 f a to 1.016 f a . For frame ~c! the chirp extends

from 0.9986 f a to 1.034 f a . Chirp ends at 16.2 ms ~dotted line!. Dark pat-

terns identify localized excitations. The pulse is on over the highlighted time

interval and its duration is 48.9 ms. Ovals indicate some of the many regions

where fairly uniform background excitations can be seen. The amplitude of

this normal mode noise is larger in ~a! and ~b! than it is in ~c!. After Ref. 68.

FIG. 10. Two-dimensional image of the amplitude pattern for sample D

showing two trapped ILMs. Note that each ILM is centered on a short

cantilever site. The two stationary ILM patterns are obtained by scanning the

mirror in front of the CCD shown in Fig. 6. A scanner, synchronized with

the CCD, is used to vibrate the mirror. The cantilevers and the overhang

region are illuminated by the laser and the small amplitude ones appear

bright in this image. Strongly vibrating cantilevers appear darker. The shape

of each pinned ILM is single peaked.
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end boundary conditions. As expected there is no qualitative

difference between simulations with the periodic- and fixed-

end boundary conditions except near the boundaries.

During the chirping phase of the driver many moving

ILMs appear which then coalesce into several trapped ILMs.

Most of the ILMs appear to die out after only a few hundred

periods of oscillation. In this particular simulation, four

modes can be identified that persist much longer than the

others. These are identified in Fig. 11~b! as LS1, LS2, LS3,

and NL1. The first three of these are trapped at particular

lattice sites and in addition, have their frequency locked to

that of the driver. Because of this synchronization with the

driver there is a continual transfer of energy to the ILMs,

which keeps them pinned at the particular lattice sites and

prevents them from decaying. The fourth large-amplitude

ILM, NL1, fails to frequency lock to the driver in the cw

region, and hence ultimately decays after a time lapse of

;2600 periods. Once the driver has been turned off, the

three locked states decay. Mode LS3 is seen to decay peace-

fully, maintaining its symmetry without further motion in the

lattice. In contrast, LS1 and LS2 are close enough together

so that once the decay begins and they become unpinned,

they repel one another, and move in the lattice.

Figure 11~c! shows the average energy for a particular

locked ILM ~LS3! as a function of time as determined by

ELS35 (
j543

45

E j , ~5!

where the E j are defined by Eq. ~4!. The low frequency

oscillation of the average mode energy at frequency

0.0056 f a decays slowly over a long time interval. It requires

the presence of the driver and disappears immediately after

the driver is turned off. The figure shows that during the

chirp, the energy of this mode increases with time to an

amplitude value compatible with the fixed synchronization

frequency of the driver. Thus, the amplitude of such a locked

ILM is rigidly connected to the driver frequency.

To explore the development of locked ILMs from an-

other view, the double Fourier transform of the cantilever

motion over a specific time interval is taken. The resulting

time development of excitations both in real space and in k

space is shown in Fig. 12. The energy density as a function

of time for this particular simulation is presented in Fig.

12~a!. The same parameters are used as those for Fig. 11;

only the initial noise is different. The frequency chirp ( f a

→1.027 f a) lasts for 2500 periods @left solid vertical line in

~a!#. At long times only one locked ILM appears. An exami-

nation of the energy versus time for the center cantilever and

two neighboring sites shows a monochromatic strength os-

cillation frequency at 0.0056 f a the same as was described

above for LS3. The pulse is turned off at time57500 periods

@right solid vertical line in ~a!#. By time–space Fourier trans-

forming the displacement over the different time intervals

identified by the dotted lines: b , c , d , e , f , and g , in Fig.

12~a!, the (v ,k) excitation plots shown in frames ~b!–~g! are

obtained. The dotted curves in these six frames identify the

linear dispersion curve of the optic branch for the di-element

cantilever array. Figures 12~b! and 12~c! show time cuts dur-

ing the chirp. The position of the nonlinear dispersion curve

and the interference between different ILMs can be seen in

Fig. 12~c!. The early and late stages of the single locked state

appear in Figs. 12~d! and 12~e!. Figures 12~f! and 12~g! iden-

tify the decaying state. A brief description of these findings

has been presented earlier.68

The time evolution of Fig. 12 shows that initially the

region above the linear dispersion curve is almost uniformly

excited @Fig. 12~b!# in k space, while in real space there are

many different levels of excitations and localized excitation

speeds. By the middle of the chirp, several horizontal-line

tracks, characteristic of stationary ILMs, emerge in the

k-space representation @Fig. 12~c!#. In the initial stage after

the chirp one strong horizontal excitation is accompanied by

flat, relatively weak side bands as shown in Fig. 12~d!. The

side bands are caused by the strength modulation of the

locked ILM. Both the background and these side bands to the

locked mode are nearly gone by Fig. 12~e!. The blue line at

the 151 kHz, k50 point, in Fig. 12~e!, is a real feature which

occurs at the driver frequency. It comes about because the

center of the locked ILM is in phase with the driver, while

the rest of the lattice is out of phase. In k space, the locked

ILM is represented by a near uniform distribution while the

FIG. 11. Computer simulations of ILM production, dynamics, and decay.

Cantilever parameters are listed in Table II. ~a! Driver frequency as a func-

tion of time for this simulation. Pulse is on from 0 to 7500 periods. Driver

frequency starts at f a , increases up to 1.027 f a linearly until 2500 periods,

and then, remains at that frequency. The magnitude of the acceleration is

kept constant, a51.03104 m/s2. ~b! A density plot of the energy versus

time. Dark regions identify localized modes. During the time that the cw

driver is on three locked stationary ILMs ~LS1, LS2, LS3! are found. NL1

identifies an ILM, which is not locked to the driver. Hopping motion of

ILMs can be seen in the oval markers. ~c! Energy as a function of time for

the ILM labeled LS3 averaged over three lattice sites. The characteristic

oscillation frequency of the slowly decaying feature is 0.0056 f a with a Q

;13. Horizontal arrow shows a linear energy lifetime ~8.75 ms! used in this

simulation.
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out of phase component of the lattice is represented by a near

delta function. These two contributions cancel at k50 pro-

ducing the blue spot. After the pulse is turned off, the ILM

loses energy, and its frequency decreases as shown in Figs.

12~f! and 12~g!.

3. Discussion

Due to the lack of dynamic range and linearity of the

amplitude measurement only limited experimental informa-

tion about ILM sizes has been obtained. Even though the

sizes of ILMs shown in Figs. 8 and 9 appear broader than in

the simulation shown in Fig. 11, this may be a feature of the

experiment, since the measured darkness is not proportional

to the amplitude of the cantilever due to the nonlinearity in

the optical response of the cantilever motion and the electri-

cal response of the CCD.

The general picture from observations and simulations is

that a number of moving localized modes are created ini-

tially, but that there are only very few modes, which grow in

amplitude and survive until the end of the chirp and even

fewer survive until the end of the cw pulse. From our simu-

lations, these ILMs are frequency locked to the driver. In this

way sufficient energy can be transferred to maintain their

strongly localized state and fixed vibrational amplitude.

Other ILMs that fail to lock their frequency to the driver are

seen to decay. In theoretical work Rössler and Page34 have

reported a locked in-phase driven single-peaked ILM with

out-of-phase background for a realistic anharmonic potential.

Their description is somewhat similar to that observed here

in Figs. 12~d! and 12~e!.
Simulations demonstrate that the mobility of localized

modes decreases with increasing amplitude,37 and if the am-

plitude becomes large enough, the localized mode is trapped

at a site.42 Although the nonlinear KG lattice does not sup-

port a Peierls–Nabarro potential43,44 due to the presence of

internal degrees of freedom,40,69 a pinning potential of some

sort still appears to be a valid concept.

The two trapped ILMs shown in Fig. 10 have maximum

amplitude at the short cantilever site, as do the locked ILMs

in the simulations shown in Fig. 11~b!. Thus, the single-

peaked mode is more stable than the double peaked mode, in

agreement with the early studies of stationary and moving

ILMs in antiferromagnets14 which have both anharmonic in-

trasite and intersite potentials.

B. Interactions

1. Experiment

Various types of interactions have been identified in

which a locked/pinned ILM participates. Figure 13 addresses

the interaction of a pinned ILM with traveling ILMs. The

data, a magnified image of a section of Fig. 9~a!, is presented

in Fig. 13~b!, and a schematic representation of the time

evolution identifying important features is given in Fig.

13~a!. After the pulse is turned on at time50, the initial

excitation stage followed by modulational breakup into sev-

eral small amplitude localized excitations is marked as re-

gion ~A! in Fig. 13~a!. Compare with the data in Fig. 13~b!.
At longer time, three main excitation sequences appear as

outlined in Fig. 13~a!. The chirp interval extends to 16.2 ms.

Within the center sequence ~region B!, hopping of an ILM

across the lattice can be observed. The random hopping mo-

tion of an otherwise pinned ILM is a consequence of its

interaction with traveling ILMs and/or background excita-

tions associated with the other normal modes of the array.

Markers C-1 and C-2 identify collisions between traveling-

ILMs and/or other excitations and a strongly pinned ILM. In

each case the traveling excitation appears to be reflected

from the stationary one.

In addition to pinned ILMs, an underlying normal mode

excitation pattern is another characteristic feature. The ovals

shown in Fig. 9 mark three of the many regions where fine

grained, small amplitude background excitation patterns can

be seen, even after the end of the pulse. These excitations are

FIG. 12. ~Color! Simulated formation, locking and decay of an ILM in the

k space. ~a! Energy density as a function of time. All parameters used are the

same as for Fig. 11, except for the initial noise. The pulse is turned on at

time50 and off at 7500 periods. Chirping starts from the top of the band

f a , and ends at 1.027 f a at time52500 periods. The solid lines show when

the chirp ends and when the pulse is turned off. Only one ILM is trapped

during the cw part of the pulse. A low frequency oscillation of 0.0056 f a is

observed at the center ILM site, similar to that shown in Fig. 11~c!. The

Q;15. ~b!–~g!: Time–space Fourier transform of the displacement in sev-

eral time windows. The time windows for these frames are indicated by the

letters b – g above frame ~a!. The time development during the initial

chirped excitation are shown in frames ~b! and ~c! locked state in frames ~d!
and ~e!, and the decaying ILM state in frames ~f! and ~g!. Dotted curves in

frames ~b!–~g! identify the linear dispersion curve for the upper band. Note

the side bands in frame ~d! and the blue line at k50 in frame ~e!. After Ref.

68.
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maintained by the strong driver via nonlinear effects. The

exact mechanism of this normal mode excitation is still not

completely under experimental control.

The fact that an identical experimental starting condition

in Figs. 9~a! and 9~b! give different end results demonstrates

the importance of the underlying excitation spectrum of the

array. Even when some level of impurities is present ~un-

avoidable for a fabricated system!, random ILM creation is

possible if the normal mode excitation effect is larger than

the impurity effect, which is the case in these experiments.

Also the observation of random final conditions during the

cw driver interval is experimental evidence that the intrinsic

pinning effect dominates any underlying impurity effects.

Hence the nonrepeatability of the pinning location strongly

supports our claim that the localized excitations in the can-

tilever array are intrinsic localized modes, as opposed to im-

purity modes.

2. Simulations

Numerical studies show behavior similar to experiment

regarding the interaction of a pinned ILM with traveling

ILMs. Examination of Fig. 11~b! in the vicinity of the pinned

ILMs LS2 and LS3 in the time interval 2000–4000 periods,

shows the reflection of localized wavepackets. The reflection

of a moving ILM wave packet from a locked ILM comes

about because of the effective rigidity of the latter. The am-

plitude and frequency of a locked ILM are fixed by the fre-

quency and strength of the driver. Since the amplitude of the

locked ILM is fixed and there is no remaining freedom, col-

liding ILMs are reflected, as though from a boundary.

Most ILMs created during the initial breakup stage of

the uniform mode do not lock to the driver, instead they

decompose into small amplitude traveling ILM/wavepackets

which continually collide with locked ILMs. Near the middle

of the chirping stage some locked ILMs are still easily

moved by collisions with such traveling modes, since the

pinning effect is still weak. Due to the stability difference

between the single- and double-peaked modes, ILMs remain

longer as single-peaked modes, and when the pinning effect

is weak, an ILM appears to hop among its preferred sites as

shown by the oval near LS1 in Fig. 11~b!. Collisions of an

unlocked ILM with small amplitude traveling ILM/wave

packets can also be seen in the oval associated with NL1.

The hopping process is evident.

The repulsive interaction between two strong ILMs can

be seen in Fig. 11~b! to start at around 9000 periods. After

the pulse is turned off at 7500 periods, the two ILMs, LS1,

and LS2 lose energy, broaden and unpin. Once they are mo-

bile the repulsion between them can be observed.

C. Excitation of a pinned ILM

1. Experiment

Since a locked ILM appears to be a stable, somewhat

rigid excitation state with a fixed amplitude, there is value in

examining its time dependence at higher resolution. Figure

14~a! shows an expanded image of the pinned ILM from Fig.

8~a!. Clearly the amplitude near the center of the ILM is

oscillating with time. Since the experimental signal for the

central site, 58, is saturated, only the signal for the perimeter

region can be used in any analysis. Let the total signal from

site 55 to site 61, excluding 58, be called

FIG. 13. Experimental demonstration of pinning and hopping of ILMs.

Magnified section of part of Fig. 9~a!. Enhanced contrast to emphasize only

strongly excited modes. Even sites are the shorter cantilever sites. Chirp

ends at 16.2 ms. ~b! Experimental data: The initial excitation stage ~A! is

followed by breaking up into several localized excitations, the ~B! region

shows the hopping of an ILM, region ~C-1! and ~C-2! illustrate collision and

repulsive interaction, and region ~D! identifies the final stationary locked

state. Note that long-lived strongly excited modes are only at even ~short!
cantilever sites. The bright center of these ILMs is an experimental artifact.

FIG. 14. Low frequency excitations of a pinned ILM. ~a! Magnified image

of Fig. 8~a!. Only cantilever sites shown; the darker the image, the stronger

the signal. There is one stable, pinned ILM centered at site 58. ~b! The total

normalized signal sexp obtained from the signals at site 55 through site 61 as

described in the text. ~c! Normalized lateral difference signal dexp , as de-

scribed in the text. The signal at site 58 is almost saturated and cannot be

used in the analysis.

711Chaos, Vol. 13, No. 2, 2003 Study of ILMs in MEMS cantilever arrays

Downloaded 23 May 2003 to 128.84.231.133. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



S5 (
n555
nÞ58

61

Sn , ~6!

where Sn is the signal at the nth site. With the time average

of Eq. ~6! represented by ^S& , then the dimensionless quan-

tity of interest becomes

sexp5S/^S&. ~7!

The lateral difference signal can be defined in a similar man-

ner. Let

A5 (
n555

57

Sn2 (
n559

61

Sn ~8!

then

dexp5A/^S&. ~9!

Figures 14~b! and 14~c! show the measured total ampli-

tude, sexp , and the lateral difference, dexp , versus time, re-

spectively. An oscillating sexp indicates that there are low

frequency amplitude modes of the ILM. Figure 14~c! shows

an oscillation in dexp , which identifies slow lateral motion of

the pinned ILM relative to its center. Both of these oscilla-

tions represent a slow transient response of the pinned ILM

over the entire time that the cw driver is on. The complete

time dependence is shown in Fig. 15~a!. The relaxation time

is very long compared to the linear energy lifetime ~8.75 ms!
of a cantilever.

The Fourier transform of the data in Fig. 15~a! gives the

frequencies associated with these small oscillations. The sexp

spectrum, shown in Fig. 15~b! has one broad peak centered

around 0.011 f a . The dexp spectrum displays several peaks at

somewhat lower frequencies.

Another experimental property of these small oscilla-

tions is shown in Fig. 16 where the dependence of their

frequency versus pinning strength can be seen. This figure is

a magnified image of part of Fig. 9~b!. The initial traveling

localized modes at short times are pinned by the end of the

chirp. At longer times there is the fine-grained oscillation

pattern that appears on all three stationary localized modes.

In some regions these patterns suggest that the center of

gravity of the pinned mode is moving side to side while in

other regions it appears that the center of gravity is fixed and

that the excitation takes a variable intensity character. Note

that the period of this oscillation at site 162 ~region denoted

by the arrow! is larger than for the other two modes shown in

the figure. Since the mode at 162 is losing energy and be-

coming less strongly pinned @see Fig. 9~b! for longer times#,
the period of this fine structure pattern increases. It is a sig-

nature of the pinning strength.

2. Simulations

The oscillatory behavior found for the locked ILM state

in the experiment provides the motivation to compare the

results with simulations. The simulation of the energy versus

time for the three central sites of LS3 during the cw region

shown in Fig. 11~c! illustrate that a low frequency mono-

chromatic oscillation in the ILM strength is an important

feature. A similar strong oscillatory feature in the ILM

strength has been observed for the single locked ILM at site

74 shown in Fig. 12~a!. Besides this prominent oscillation,

which has most of the amplitude on the center site, there are

other weaker oscillatory properties of the ILM that can be

identified.

A magnified density plot of the energy for an ILM

pinned at site 74 in Fig. 12~a! is presented in Fig. 17~a!. In

this time window where the cw driver has been on for some

time the energy at sites nearby the center of the locked ILM

oscillates with time. These time dependent data are now ana-

lyzed using similar notation in the same way as the experi-

FIG. 15. ~a! Transient response of the low frequency excitations of the

pinned ILM. The complete time interval of the pinned ILM is shown. ~b!

The Fourier transform spectrum of the low frequency excitations of the sexp

type. A broad spectrum centered near 0.011 f a is shown by the arrow. ~c!

The Fourier transform spectrum of the low frequency excitations of the dexp

type. Several peaks at low frequency region around 0.001→0.009 f a indi-

cated by the arrow are observed.

FIG. 16. Another experimental example of small amplitude excitation about

a stable ILM state. Magnified section of part of Fig. 9~b!. Three ILMs are

seen and the lower two become locked. Initially all three show a fine-

grained oscillation but the top ILM at around time515– 22 ms, in the region

of the arrow, loses energy, the period of the small oscillation increases and

finally the ILM becomes unpinned.
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ments were analyzed with Eqs. ~7! and ~9!. The two quanti-

ties of interest are ~1! the total energy over a restricted region

around the pinned mode, excluding the central site, defined

as

E5 (
n572
nÞ74

76

En , ~10!

where En is the energy at nth site. With the time average of

Eq. ~10! identified as ^E&, the normalized value is

s5E/^E&. ~11!

The second quantity ~2!, the lateral difference energy, is de-

fined as

D5 (
n572

73

En2 (
n575

76

En , ~12!

to obtain the normalized value

d5D/^E&. ~13!

Equations ~11! and ~13! now can be used to characterize the

small scale oscillatory behavior shown in Fig. 17~a!. Figure

17~b! gives the oscillations in the total energy, s, the central

site, while Fig. 17~c! shows oscillations in d, indicating lat-

eral motion of the pinned ILM relative to its center.

To identify the significant spectral regions, the Fourier

transforms of the two curves in Figs. 17~b! and 17~c! are

taken and displayed in Fig. 18. As with the monochromatic

low frequency oscillation of the central peak at 0.0056 f a

discussed earlier, the characteristic frequencies for the two

quantities presented here are very small compared to the

highest frequency normal mode, f a . There are two broad

peaks in the s spectrum, 0→0.015 f a and 0.02→0.04 f a as

shown in Fig. 18~a!. The lateral mode spectrum d also has

two broad peaks, 0.003→0.011 f a and 0.02→0.04 f a as

shown in Fig. 18~b!.

3. Discussion

With regard to the stability and rigidity of the locked

ILM, several types of deformations from that stable shape

have been observed experimentally. One broad frequency re-

gion of response is seen for each of the excitation types,

namely, sexp and dexp . Since the experimental signal for the

central site of such an ILM is saturated, the identities for the

different kinds of modes cannot be made as yet. Using the

same kind of analysis in the simulations, two broad fre-

quency responses are found for the two kinds of dynamical

signatures. In addition a single large amplitude, low fre-

quency mode is found for the central cantilever of the ILM,

which appears to represent oscillations in the ILM strength.

Given the basic model used to describe the experimental sys-

tem and the absence of experimental data for the central

cantilever, the fact that the small oscillation spectra do not

match in detail is perhaps not too surprising. Still a key result

has been obtained: both experiment and simulations show

that low frequency oscillations are a natural feature of locked

ILMs. The strength oscillation found in simulations indicates

that the central cantilever response of the ILM must be mea-

sured in experiment in order to develop a more complete

understanding of these low frequency oscillatory modes and

to determine whether or not a more detailed simulation

model is warranted.

D. Trapped ILM oscillations

1. Experiment

After the finish of the cw pulse, oscillatory features can

still be detected. The excitation region around site 80 in Fig.

8~b! shows interesting behavior as the pinned ILM decays.

FIG. 17. Simulated demonstration of low frequency excitations about the

pinned locked ILM state. ~a! Magnified section of Fig. 12~a! which shows

one stable ILM pinned at site574. Oscillation of energy between sites 72

and 76 can be seen. ~b! Normalized total energy s over sites 72–76 while

the cw mode driver is on to bring out low frequency oscillations, as de-

scribed in the text. ~c! Normalized lateral difference energy d to bring out

other types of low frequency oscillations, as described in the text.

FIG. 18. Fourier transform spectra showing low frequency modes. The cw

driver time interval time52500– 7500 periods in Fig. 12~a! is used. ~a! The

s spectrum shows response in two different frequency regions, 0

→0.015 f a and 0.02 →0.04 f a , illustrated by the arrows. ~b! The two broad

peaks in the d spectrum, 0.003 →0.011 f a and 0.02→0.04 f a are due to

lateral oscillations.
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Figure 19 can be characterized as an oscillating wavepacket

trapped by the pinned ILM. Only pixels corresponding to

cantilever sites are shown in this figure in order to enhance

the excitation pattern. The main feature is the pinned ILM,

which has evolved from a previously locked ILM at the end

of the pulse. As time passes, the amplitude of the center

region decreases, and the ILM broadens. Additionally, sev-

eral running wavepackets trapped within the center region

can be identified.

An example of another kind of trapped oscillation about

a pinned ILM is shown in Fig. 20. Figure 20~a! presents the

magnified image of a portion of Fig. 9~a!, which shows a

stationary ILM just after the end of the pulse. The bright

center in Fig. 20~a! is an optical artifact. The change in the

darkness of the center region with time indicates that the

amplitude of the pinned mode is decreasing. Superimposed

on this pinned excitation is an oscillating mode. Its period of

oscillation increases with time, as shown schematically in

Fig. 20~b!.

2. Simulations

Figure 21 shows the evolution of ILM-trapped wave

packets in simulation. This is a magnified picture of a region

of Fig. 12~a!, after the end of the pulse ~dotted line!. Initially

a variable intensity mode pattern can be seen. Later, a run-

ning wavepacket pattern becomes prominent.

Since there is no driver, all the energy for these trapped

modes comes from the locked state before the pulse is turned

off. Part of this locked mode is converted into the trapped

running wave packets, still confined to the original spatial

region of the ILM. When the amplitude in the central region

becomes sufficiently small so that the pinning effect weak-

ens, and if enough energy is converted to the trapped running

modes, then the pinned mode can move. Thus, the trapped

running modes and the lateral oscillation of the perimeter are

the precursors to the ILM launching from the pinned loca-

tion.

IV. CONCLUSIONS

Experiments have been carried out in which the creation,

interaction, and relaxation of intrinsic localized modes pro-

duced in di-element cantilever arrays have been imaged and

recorded. The experimental method permits examination of

the vibration envelope of a micromechanical oscillator array.

By using this experimental setup together with a chirped

driver, the evolution of the unstable uniform mode into ILMs

has been examined in some detail. Initially traveling ILMs

are created but finally locked ILMs are pinned at specific

sites in the array. The ILM hopping motion and subsequent

stationary behavior can be explained by an amplitude depen-

dent pinning effect plus the collision with traveling ILMs/

wave packets which stems both from unlocked ILM excita-

tions and normal-mode excitations created by the strong

driver. A repulsive interaction between a stable, locked ILM

and a moving unlocked ILM has been observed. Small am-

FIG. 19. Trapped excitations oscillating around a pinned ILM. The data are

from a section of Fig. 8~a!. Only cantilever sites are shown and the darker

the image, the stronger the signal. The pulse is turned off at time572 ms.

Decay of the pinned ILM is shown. From time592 ms, traverse patterns

due to running wave packets trapped in the ILM envelope appear as oblique

lines.

FIG. 20. A trapped excitation oscillating around a pinned but decaying ILM.

~a! Experimental image. The ILM becomes unpinned at time ;56 ms during

which time the period of the lateral oscillation increases. ~b! Schematic

image. This ILM starts to oscillate laterally from time ;50 ms, which is

shown as the dotted line.

FIG. 21. Simulation of trapped modes in a decaying but pinned ILM. This is

a magnified section of Fig. 12~a!. The pulse is turned off at time57500

periods. The decay of the pinned ILM is evident from its broadening. After

8700 periods, running wave packets trapped in the ILM envelope appear as

oblique patterns.
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plitude excitations of the pinned ILM from the stable locked

state, and trapped excitations by a pinned ILM also have

been identified. The stability and rigidity of locked ILMs

depend on the existence of the cw driver plus damping. By

modeling the array with a nonlinear Klein–Gordon lattice,

many of the experimental observations can be identified and

examined in more detail, such as the synchronization and

pinning, the rigidity and dynamics of the locked ILM mode,

and the repulsive interaction.

Three possible extensions to these experiments, which

would provide more dynamical information, should be men-

tioned. ~1! The combination of single cantilever optics of

Fig. 2 with the experimental setup of Fig. 6 to identify the

low frequency modulation of the ILM center. ~2! Modulate

the laser beam close to the driver frequency to observe the

displacement amplitude and phase using the same CCD. The

cantilever would again modulate the laser beam, and the

slow CCD would then pick up the difference frequency sig-

nal as long as the difference is smaller than the speed of the

camera. This method could be used to observe both the sta-

tionary and traveling locked mode. ~3! Another extension

would be to use optimal control65 in this finite array to excite

the individual eigenvector of a specific ILM.
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