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Study of Laplace and Related Probability Distributions and Their Applications

Gokarna Raj Aryal

ABSTRACT

The aim of the present study is to investigate a probability distribution that can be

derived from the Laplace probability distribution and can be used to model various

real world problems. In the last few decades, there has been a growing interest in the

construction of flexible parametric classes of probability distributions. Various forms

of the skewed and kurtotic distributions have appeared in the literature for data anal-

ysis and modeling. In particular, various forms of the skew Laplace distribution have

been introduced and applied in several areas including medical science, environmental

science, communications, economics, engineering and finance, among others. In the

present study we will investigate the skew Laplace distribution based on the definition

of skewed distributions introduced by O’Hagan and extensively studied by Azzalini.

A random variable X is said to have the skew-symmetric distribution if its probabil-

ity density function is f(x) = 2g(x)G(λx), where g and G are the probability density

function and the cumulative distribution function of a symmetric distribution around

0 respectively and λ is the skewness parameter. We will investigate the mathematical

properties of this distribution and apply it to real applications. In particular, we will

consider the exchange rate data for six different currencies namely, Australian Dol-

lar, Canadian Dollar, European Euro, Japanese Yen, Switzerland Franc and United

Kingdom Pound versus United States Dollar.

To describe a life phenomenon we will be mostly interested when the random variable

is positive. Thus, we will consider the case when the skew Laplace pdf is truncated to

the left at 0 and we will study its mathematical properties. Comparisons with other

vii



life time distributions will be presented. In particular we will compare the truncated

skew laplace (TSL) distribution with the two parameter Gamma probability distri-

bution with simulated and real data with respect to its reliability behavior. We also

study the hypoexponential pdf and compare it with the TSL distribution. Since the

TSL pdf has increasing failure rate(IFR) we will investigate a possible application in

system maintenance. In particular we study the problem related to the preventive

maintenance.
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Chapter 1

Introduction

The quality of the procedures used in a statistical analysis depends heavily on the

assumed probability model or distributions. Because of this, considerable effort over

the years has been expended in the development of large classes of standard distri-

butions along with revelent statistical methodologies, designed to serve as models for

a wide range of real world phenomena. However, there still remain many important

problems where the real data does not follow any of the classical or standard models.

Very few real world phenomenon that we need to statistically study are symmetrical.

Thus the popular normal model would not be a useful model for studying every phe-

nomenon. The normal model at a times is a poor description of observed phenomena.

Skewed models, which exhibit varying degrees of asymmetry, are a necessary compo-

nent of the modeler’s tool kit. Genton, M. [8] mentions that actually an introduction

of non-normal distributions can be traced back to the nineteenth century. Edgeworth

[7] examined the problem of fitting assymetrical distributions to asymmetrical fre-

quency data.

The aim of the present study is to investigate a probability distribution that can be

derived from the Laplace probability distribution and can be used to model various

real world problems. In fact, we will develop two probability models namely the skew

Laplace probability distribution and the truncated skew Laplace probability distribu-

tion and show that these models are better than the existing models to model some

of the real world problems. Here is an outline of the study:

In chapter two we will study the development of the Laplace probability distribution
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and its basic properties. We will make a comparisons of this model with the Gaussian

distribution and the Cauchy distribution. Also we will present some representations

of the Laplace distribution in terms of other well known distributions.

In chapter three we will study the statistical model called the skew Laplace probability

distribution. With the term skew Laplace we mean a parametric class of probability

distributions that extends the Laplace probability distribution by additional shape

parameter that regulates the degree of skewness, allowing for a continuous variation

from Laplace to non Laplace. We will study the mathematical properties of the sub-

ject model.

In chapter four we will present an application of the skew Laplace distribution in

financial study. In fact, we will use the currency exchange data of six different cur-

rencies, namely, Australian Dollar, Canadian Dollar, European Euro, Japanese Yen,

Switzerland Franc and the United Kingdom Pound with respect to the US Dollar.

In chapter five we will develop a probability distribution from the skew Laplace dis-

tribution presented in chapter two. In fact, we will truncate the skew Laplace distri-

bution at zero on the left and we will call it the truncated skew Laplace probability

distribution. We will present some of its mathematical properties.

In chapter six we will make a comparison of the truncated skew Laplace distribution

with two existing models namely, two parameter gamma and the hypoexponential

probability distributions.

In chapter seven we will seek an application of the truncated skew Laplace distribu-

tion in the maintenance system. We will develop a model that can be used to find

the optimum time in order to minimize the cost over a finite time span.

In the last chapter we will present possible extension of the present study.

2



Chapter 2

The Laplace Probability Distribution

2.1 Introduction

The quality of the procedures used in a statistical analysis depends heavily on the

assumed probability model or distributions. Because of this, considerable effort over

the years has been expended in the development of large classes of standard distri-

butions along with revelent statistical methodologies, designed to serve as models for

a wide range of real world phenomena. However, there still remain many important

problems where the real data does not follow any of the classical or standard models.

The aim of the present study is to investigate a probability distribution that can be

derived from the Laplace distribution and can be used on modeling and analyzing

real world data.

In the 1923 issue of the Journal of American Statistical Association two papers en-

titled ” First and Second Laws of Error” by E.B. Wilson and ”The use of median in

determining seasonal variation” by W.L. Crum were published. In the first paper E.B

Wilson states that both laws of error were originated by Laplace.

The first law proposed in 1774, states that the frequency of an error could be expressed

as an exponential function of the numerical magnitude of the error, or, equivalently

that the logarithm of the frequency of an error (regardless of the sign) is a linear

function of the error.

The second law proposed in 1778, states that the frequency of the error is an expo-

nential function of the square of the error, or equivalently that the logarithm of the

frequency is a quadratic function of the error.

3



The second Laplace law is called the normal or Gaussian probability distribution.

Since the first law consists the absolute value of the error it brings a considerable

mathematical difficulties in manipulation. The reasons for the far greater attention

being paid for the second law is the mathematical simplicity because it involves the

variable x2 if x is the error. The Laplace distribution is named after Pierre-Simon

Laplace (1749-1827), who obtained the likelihood of the Laplace distribution is maxi-

mized when the location parameter is set to be the median. The Laplace distribution

is also known as the law of the difference between two exponential random vari-

ables. Consequently, it is also known as double exponential distribution, as well as the

two tailed distribution. It is also known as the bilateral exponential law.

2.2 Definitions and Basic Properties

The classical Laplace probability distribution is denoted by L(θ, φ) and is defined by

the probability density function,pdf,

f(x; θ, φ) =
1

2φ
exp

(
−| x− θ |

φ

)
, −∞ < x <∞ (2.2.1)

where θ ∈ (−∞,∞) and φ > 0 are location and scale parameters, respectively. This

is the probability distribution whose likelihood is maximized when the location pa-

rameter is to be median. It is a symmetric distribution whose tails fall off less sharply

than the Gaussian distribution but faster than the Cauchy distribution. Hence, it is

our interest to compare the Laplace pdf with the Gaussian pdf and Cauchy pdf. The

probability density functions of the Gaussian or Normal, N(µ, σ2) and the Cauchy,

C(x0,Γ) distributions are respectively given by

f(x;µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(2.2.2)

and

f(x; x0,Γ) =
1

π

Γ

Γ2 + (x− x0)2
(2.2.3)

4



where σ > 0, −∞ < µ <∞ , Γ > 0 and −∞ < x0 <∞.

Figure 2.1 gives a graphical display of probability density functions of standard Cauchy

C(0, 1), standard Laplace L(0, 1) and standard Normal N(0, 1) pdf’s.
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Figure 2.1: PDF of standard Laplace, Normal and Cauchy distributions

5



The Laplace pdf has a cusp, discontinuous first derivative, at x = θ, the location pa-

rameter. Table 2.1 gives some of the basic and useful properties of Laplace, Gaussian

and Cauchy pdf’s and table 2.2 gives the comparison of the the estimates of sample

mean, sample median, estimator of semi-interquartile range(S), which is an estimator

for half-width at half maximum(HWHM) and the variance estimator (s2) of these

three pdf’s.

The variance of the sample mean is simply the variance of the distribution divided

by the sample size n. For large n the variance of the sample median m is given by

V (m) = 1/4nf 2 where f is the functional value at the median.

By definition S = 1
2
(Q3 −Q1) and s2 = 1

n−1

∑n
i=1(xi − x)2.

Hence,

V (S) =
1

4
(V (Q1) + V (Q3) − 2Cov(Q1, Q3))

=
1

64n

(
3

f 2
1

+
3

f 2
3

− 2

f1f3

)

and

V (s2) =
µ4 − µ2

2

n
+

2µ2
2

n(n− 1)

where f1 andf3 are the functional values at the first quartile Q1 and the third quartile

Q3, respectively. Also µ2 and µ4 are the second and fourth central moments of the

random variable.

Distribution E(X) V (X) Sk(X) Kur(X) HWHM Char. Function Entropy

Normal µ σ2 0 3 σ
√

2ln2 exp(µit − σ2t2

2 ) ln(σ
√

2πe)

Laplace θ 2φ2 0 6 φln2 1
1+φ2t2 exp(θit) 1 + ln(2φ)

Cauchy Und. ∞ Und. ∞ Γ exp(x0it − Γ|t|) ln(4πΓ)

Table 2.1: Some properties of Normal, Laplace and Cauchy distributions

6



Distribution E(X) V (X) E(m) V(m) E(s2) V (s2) E(S) V(S)

Normal µ σ2

n µ πσ2

2n σ2 2σ4

n−1 0.6745σ 1
16nf(Q1)2

Laplace θ 2φ2

n θ φ2

n 2φ2 20φ2

n β φln2 φ2

n

Cauchy Und. ∞ x0
π2Γ2

4n Γ ∞ ∞ π2Γ2

4n

Table 2.2: Parameter estimators of Normal, Laplace and Cauchy distributions

Where β = 1 + 0.4
n−1

if we include the second term in the expression of V (s2) and

1 otherwise and in the table Und. stands for undefined and m denotes the median.

2.3 Discriminating between the Normal and Laplace Distributions

Both the normal and Laplace pdf’s can be used to analyze symmetric data. It is well

known that the normal pdf is used to analyze symmetric data with short tails, whereas

the Laplace pdf is used for data with long tails. Although, these two distributions

may provide similar data fit for moderate sample sizes, however, it is still desirable

to choose the correct or more nearly correct model, since the inferences often involve

tail probabilities, and thus the pdf assumption is very important.

For a given data set, whether it follows one of the two given probability distribution

functions, is a very well known and important problem. Discriminating between any

two general probability distribution functions was studied by Cox [6].

Recently Kundu [17] consider different aspects of discriminating between the Nor-

mal and Laplace pdf’s using the ratio of the maximized likelihoods (RML). Let

X1, X2, ...Xn be a random sample from one of the two distributions. The likelihood

functions, assuming that the data follow N(µ, σ2) or L(θ, φ), are

lN(µ, σ) =

n∏

i=1

fN (Xi, µ, σ)

and

lL(θ, φ) =

n∏

i=1

fL(Xi, θ, φ),

7



respectively. The logarithm of RML is defined by

T = ln

{
lN(µ̂, σ̂)

lL(θ̂, φ̂)

}
.

Note that (µ̂, σ̂) and (θ̂, φ̂) are the maximum likelihood estimators of (µ, σ) and (θ, φ)

respectively based on a random sample X1, X2, ...Xn. Therefore, T can be written as

T =
n

2
ln 2 − n

2
ln π + n ln φ̂− n ln σ̂ +

n

2

where

µ̂ =
1

n

n∑

i=1

Xi, σ̂2 =
1

n

n∑

i=1

(Xi − µ̂)2,

θ̂ = median{X1, X2, ...Xn}, φ̂ =
1

n

n∑

i=1

| Xi − θ̂ | .

The discrimination procedure is to choose the normal pdf if the test statistic T >

0, otherwise choose the Laplace pdf as the preferred model. Note that if the null

distribution isN(µ, σ2), then the distribution of T is independent of µ and σ. Similarly

, if the null distribution is L(θ, φ), then the distribution of T is independent of θ and

φ.

2.4 Representation and Characterizations

In this section we would like to present various representations of Laplace random

variables in terms of the other well known random variables as presented by Kotz et

al. [15]. These various form of the Laplace pdf will be useful to the present study.

We shall derive the relations for standard classical Laplace Random variable whose

probability density function is given by

f(x) =
1

2
exp(− | x |), −∞ < x <∞

8



1. Let W be a standard exponential random variable (r.v.) with probability density

fW (w) = exp(−w), w > 0

and Z be standard normal r.v. with probability density

fZ(z) =
1√
2π

exp(−z2/2), −∞ < z <∞

then X =
√

2WZ has standard classical Laplace pdf.

2. Let R ba a Rayleigh r.v. with probability density given by

fR(x) = x exp(−x2/2), x > 0

and Z be standard normal r.v. with probability density

fZ(z) =
1√
2π

exp(−z2/2), −∞ < z <∞

then X = R.Z has standard classical Laplace pdf.

3. Let T be brittle fracture r.v. with probability density

fT (x) = 2x−3 exp(1/x2) x > 0

and Z be standard normal distribution r.v. with probability density

fZ(z) =
1√
2π

exp(−z2/2),−∞ < z <∞

then X =
√

2Z/T has standard classical Laplace pdf.

4. Let W1 and W2 be i.i.d standard exponential random variables then X = W1 −W2

has standard classical Laplace pdf.

9



5. Let Y1 and Y2 be i.i.d χ2 r.v with two degrees of freedom i.e. having the probability

density

f(x) =
1

2
exp(−x/2)

then X = (Y1 − Y2)/2 has standard classical Laplace pdf.

6. Let W be a standard exponential r.v then X = IW ,where I takes on values ±1

with probabilities 1/2, has standard classical Laplace pdf.

7. Let P1 andP2 are i.i.d. Pareto Type I random variables with density f(x) = 1/x2,

x ≥ 1 then X = log(P1/P2) has standard classical Laplace pdf.

8. Let U1 and U2 be i.i.d. uniformly distributed on [0, 1] then X = log(U1/U2)

has standard classical Laplace pdf.

9. Let Ui, i = 1, 2, 3, 4 be i.i.d. standard normal variables then the determinant

X =

∣∣∣∣∣∣
U1 U2

U3 U4

∣∣∣∣∣∣
= U1U4 − U2U3

has standard classical Laplace pdf.

10. Let {Xn, n ≥ 1} be a sequence of uncorrelated random variables then

X =
∑∞

n=1 bnXn has a classical Laplace pdf, where,

bn =
ξn√

2J0(ξn)

∫ ∞

0

x exp(−x)J0(ξn exp(−x
2
))dx

and

Xn =

√
2

ξnJ0(ξn)
J0(ξn exp(−| x |

2
)),

where ξn is the nth root of J1. Here, J0 and J1 are the Bessel functions of the first

kind of order 0 and 1, respectively. The Bessel function of the first kind of order i is
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defined by

Ji(u) = ui
∞∑

k=0

(−1)ku2k

22k+λk!Γ(i+ k + 1)
.

This is also called the orthogonal representation of Laplace random variables.

2.5 Conclusions

In this chapter we have studied the development of Laplace probability distribution

and its basic properties. More specifically we have derived analytical expressions for

all important statistics and their corresponding estimates, as summarized in Table

2.1 and Table 2.2. In addition we have developed an analytical comparison with the

famous and highly popular Gaussian probability distribution and Cauchy probability

distribution. The reason for the subject comparison is the fact that the Laplace pdf is

symmetric and whose tails fall off less sharply than the Gaussian pdf but faster than

the Cauchy pdf.

We also provide a method when to choose the Laplace pdf over Gaussian pdf in

analyzing and modeling a real world phenomenon. A list of various representations of

the Laplace pdf in terms of some other well known and useful pdf’s is also provided.
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Chapter 3

On the Skew Laplace Probability Distribution

3.1 Introduction

Very few real world phenomenon that we need to statistically study are symmetrical.

Thus the popular normal model would not be a useful pdf for studying every phe-

nomenon. The normal model at times is a poor description of observed phenomena.

Skewed models, which exhibit varying degrees of asymmetry, are a necessary compo-

nent of the modeler’s tool kit. Genton, M. [8] mentions that actually an introduction

of non-normal distributions can be traced back to the nineteenth century. Edgeworth

[7] examined the problem of fitting assymetrical distributions to asymmetrical fre-

quency data. Our interest in this study is about the skew Laplace pdf.

With the term skew Laplace (SL) we mean a parametric class of probability distribu-

tions that extends the Laplace pdf by an additional shape parameter that regulates the

degree of skewness, allowing for a continuous variation from Laplace to non-Laplace.

On the applied side, the skew Laplace pdf as a generalization of the Laplace law

should be a natural choice in all practical situations in which there is some skewness

present.

Several asymmetry forms of skewed Laplace pdf have appeared in the literature.

One of the earliest studies is due to McGill [19] who considered the distributions with

pdf given by

f(x) =






φ1

2
exp(−φ1 | x− θ |), if x ≤ θ,

φ2

2
exp(−φ2 | x− θ |), if x > θ,

(3.1.1)
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while Holla et al.in 1968 studied the distribution with pdf given by

f(x) =





pφ exp(−φ | x− θ |), if x ≤ θ,

(1 − p)φ exp(−φ | x− θ |), if x > θ,
(3.1.2)

where 0 < p < 1. Lingappaiah study (3.1.1) terming the distribution as two-piece

double exponential. Poiraud-Casanova et al. [21] studied a skew Laplace distribution

with p.d.f.

f(x) = α(1 − α)





exp(−(1 − α) | x− θ |), if x < θ,

exp(−α | x− θ |), if x ≥ θ,
(3.1.3)

where θ ∈ (−∞,∞) and α ∈ (0, 1).

Another manner of introducing skewness into a symmetric distribution has been pro-

posed by Fernandez et al.(1998). The idea is to convert a symmetric pdf into a skewed

one by postulating inverse scale factors in the positive and negative orthants. Thus,

a symmetric pdf f generates the following class of skewed distributions

f(x|κ) =
2κ

(1 + κ2)





f(κx), if x ≥ 0,

f(κ−1x) if x < 0,
(3.1.4)

where κ > 0.

Therefore, if f is the standard classical Laplace pdf given by

f(x) =
1

2
exp(− | x |), −∞ < x <∞

then, we have the pdf of the skew Laplace r.v. will be

f(x) =
κ

1 + κ2





exp(−κx), if x ≥ 0,

exp(κ−1x), if x < 0,

The addition of location and scale parameters leads to a three parameter family of

13



pdf given by

f(x) =
1

φ

κ

1 + κ2






exp

(
−κ
φ

(x− θ)

)
, if x ≥ θ,

exp

(
− 1

φκ
(x− θ)

)
, if x < θ,

(3.1.5)

where φ > 0 and κ > 0. Note that for κ = 1 we obtain the pdf of symmetric Laplace

pdf. This was introduced by Hinkly et al.(1977) and this distribution is termed as

asymmetric Laplace (AL) pdf. An in depth study on the skew-Laplace distribution

was reported by Kotz et al.[14]. They consider a three parameters skew-Laplace

distribution with pdf given by

f(x;α, β, µ) =






αβ

α + β
exp (−α(µ− x)) , if x ≤ µ,

αβ

α + β
exp (−β(x− µ)) , if x > µ,

(3.1.6)

where µ is the mean and the parameters α and β describes the left and right-tail

shapes, respectively. A value of α greater than β suggests that the left tails are

thinner and thus, that there is less population to the left side of µ than to the right

side; the opposite is of course true if β is greater than α. If α = β, the distribution is

the classical symmetric Laplace pdf.

In this chapter we will study in detail the skewed Laplace pdf using the idea introduced

by O’Hagan and extensively studied by Azzalini [4].

The standard Laplace random variable has the probability density function and the

cumulative distribution function, cdf, specified by

g(x) =
1

2φ
exp

(
−| x |

φ

)
(3.1.7)

and

G(x) =






1

2
exp

(
x

φ

)
, if x ≤ 0,

1 − 1

2
exp

(
−x
φ

)
, if x ≥ 0,

(3.1.8)
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respectively, where −∞ < x < ∞ and φ > 0. A random variable X is said to have

the skew Laplace pdf with skewness parameter λ, denoted by SL(λ), if its probability

density function is given by

f(x) = 2g(x)G(λx), (3.1.9)

where x ∈ ℜ and λ ∈ ℜ, the real line. The Laplace pdf given by (3.1.7)–(3.1.8) has

been quite commonly used as an alternative to the normal pdf in robustness studies;

see, for example, Andrews et al. [3] and Hoaglin et al. [10]. It has also attracted

interesting applications in the modeling of detector relative efficiencies, extreme wind

speeds, measurement errors, position errors in navigation, stock return, the Earth’s

magnetic field and wind shear data, among others. The main feature of the skew-

Laplace pdf (3.1.9) is that a new parameter λ is introduced to control skewness and

kurtosis. Thus, (3.1.9) allows for a greater degree of flexibility and we can expect this

to be useful in many more practical situations.

It follows from (3.1.9) that the pdf f(x)and the cdf F (x) of X are respectively

given by

f(x) =






1

2φ
exp

{
−(1+ | λ |) | x |

φ

}
, if λx ≤ 0,

1

φ
exp

(
−| x |

φ

){
1 − 1

2
exp

(
−λx
φ

)}
, if λx > 0

(3.1.10)

and

F (x) =






1

2
+

sign(λ)

2

[
1

1+ | λ | exp

{
−(1+ | λ |) | x |

φ

}
− 1

]
, if λx ≤ 0,

1

2
+ sign(λ)

[
1

2
− exp

(
−| x |

φ

)
Φ(λ)

]
, if λx > 0,

(3.1.11)

where Φ(λ) = 1 − 1
2(1+|λ|) exp

(
−λx

φ

)
.

Throughout the rest of our study, unless otherwise stated, we shall assume that λ > 0

since the corresponding results for λ < 0 can be obtained using the fact that −X has

a pdf given by 2g(x)G(−λx).
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Figure 3.1 illustrates the shape of the pdf (3.1.10) for various values of λ and

φ = 1.
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Figure 3.1: PDF of skew Laplace distribution for φ = 1 and different values of λ
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The following properties are very immediate from the definition.

Property 1. The pdf of the SL(0) is identical to the pdf of the Laplace pdf.

Property 2. As λ → ∞, f(x;λ) tends to 2f(x)Ix>0 which is the exponential distribu-

tion.

Property 3. If X has SL(λ) then −X has SL(−λ).

One interesting situation where the skew Laplace random variable may occur is the

following:

Proposition. Let Y and W be two independent L(0, 1) random variables and Z is

defined to be equal to Y conditionally on the event {λY > W} then the resulting

distribution Z will have skew-Laplace distribution.

Proof: We have

P (Z ≤ z) = P (Y ≤ z|λY > W )

=
P (Y ≤ z, λY > W )

P (λY > W )

=
1

P (λY > W )

∫ z

−∞

∫ λy

−∞
g(y)g(w)dwdy

=
1

P (λY > W )

∫ z

−∞
g(y)G(λy)dy

Note that P (λY > W ) = P (λY −W > 0) = 1/2 as λY −W has Laplace pdf with

mean 0. Hence

P (Z ≤ z) = 2

∫ z

−∞
g(y)G(λy)dy

Differentiating the above expression with respect to z we obtain the skew Laplace

pdf.

This proposition gives us a quite efficient method to generate random numbers from

a skew Laplace pdf. It shows that in fact it is sufficient to generate Y and W from
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L(0,1) and set

Z =





Y, if λY > W ,

−Y, if λY ≤W ,

Again, if we consider the Laplace distribution with location parameter being θ

which we call the classical Laplace distribution ( also known as first law of Laplace)

denoted by CL(θ, φ) in this case the pdf and cdf of are respectively

g(x) =
1

2φ
exp

(
−| x− θ |

φ

)

and

G(x) =






1

2
exp

(
−θ − x

φ

)
, if x ≤ θ,

1 − 1

2
exp

(
−x− θ

φ

)
, if x ≥ θ.

Hence in this case for λ > 0 the corresponding pdf and cdf of the skew-Laplace

random variable are, respectively, given by

f(x) =






1

2φ
exp

{
−(1 + λ)(θ − x)

φ

}
, if x ≤ θ,

1

φ
exp

(
−x− θ

φ

){
1 − 1

2
exp

(
−λ(x− θ)

φ

)}
, if x > θ

and

F (x) =






1

2(1 + λ)
exp

(
−(1 + λ)(θ − x)

φ

)
, if x ≤ θ,

1 − exp

(
−x− θ

φ

){
1 − 1

2
exp

(
−λ(x− θ)

φ

)}
if x ≥ θ.
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The skew Laplace pdf – in spite of its simplicity – appears not to have been studied

in detail.

The only work that appears to give some details of this distribution is Gupta et

al. [9] where the pdf of skew Laplace distribution is given by

f(x) =
exp(−|x|/σ)[1 + sign(λx)(1 − exp(−|λx|/σ))]

2σ
x ∈ ℜ (3.1.12)

where λ ∈ ℜ, the real line and σ > 0.

Also they give the expressions for the expectation, variance, skewness and the kurto-

sis. But these expressions are not entirely correct as pointed out by Aryal et al.[1]. In

this study we will provide a comprehensive description of the mathematical proper-

ties of (3.1.10) and its applications. In particular, we shall derive the formulas for the

kth moment, variance, skewness, kurtosis, moment generating function, characteristic

function, cumulant generating function, the kth cumulant, mean deviation about the

mean, mean deviation about the median, Rényi entropy, Shannon’s entropy, cumula-

tive residual entropy and the asymptotic distribution of the extreme order statistics.

We shall also obtain the estimates of these analytical developments and perform a

simulation study to illustrate the usefulness of the skew-Laplace distribution. Our

calculations make use of the following special functions: the gamma function defined

by

Γ(a) =

∫ ∞

0

ta−1 exp (−t) dt;

the beta function defined by

B(a, b) =

∫ 1

0

ta−1(1 − t)b−1dt;

and, the incomplete beta function defined by

Bx(a, b) =

∫ x

0

ta−1(1 − t)b−1dt, (3.1.13)

where a > 0, b > 0 and 0 < x < 1.
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We also use a result from analysis which says that a root of the transcendental equation

1 − x+ wxβ = 0 (3.1.14)

is given by

x = 1 +

∞∑

j=1

(
βj

j − 1

)
wj

j
; (3.1.15)

see, for example, page 348 in Pólya et al. [22].

3.2 Moments

The moments of a probability distributions is a collection of descriptive constants that

can be used for measuring its properties. Using the definition of the gamma function,

it is easy to show that the kth moment of a skew Laplace random variable X is given

by

E
(
Xk
)

=






φkΓ(k + 1), if k is even,

φkΓ(k + 1)

{
1 − 1

(1 + λ)k+1

}
, if k is odd.

(3.2.16)

Also we know that

k∑

i=0

ak =






a0 +

k
2∑

i=1

a2i +

k
2∑

i=1

a2i−1, if k is even,

a0 +

k−1

2∑

i=1

a2i +

k+1

2∑

i=1

a2i−1, if k is odd.
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Using the Binomial expansion and (3.2.16), the kth central moment of X can be

derived as

E
{

(X − µ)k
}

=






µk +

k
2∑

j=1

(
k

2j

)
µk−2jφ2jΓ(2j + 1)

−
k
2∑

j=1

(
k

2j − 1

)
µk−2j+1φ2j−1Γ(2j)Ψ(λ) if k is even

−µk −
k−1

2∑

j=1

(
k

2j

)
µk−2jφ2jΓ(2j + 1)

+

k+1

2∑

j=1

(
k

2j − 1

)
µk−2j+1φ2j−1Γ(2j)Ψ(λ) if k is odd.

(3.2.17)

where µ = E(X) is the expectation of X and Ψ(λ) = 1 − 1
(1+λ)2j .

It follows from (3.2.16) and (3.2.17) that the expectation, variance, skewness and

the kurtosis of X are derived to be

Exp(X) = φ

{
1 − 1

(1 + λ)2

}
,

Var(X) =
φ2
(
2 + 8λ+ 8λ2 + 4λ3 + λ4

)

(1 + λ)4 ,

Ske(X) =
2λ
(
6 + 15λ+ 20λ2 + 15λ3 + 6λ4 + λ5

)
(
2 + 8λ+ 8λ2 + 4λ3 + λ4

)3/2
,

and

Kur(X) =
3
(
8 + 64λ+ 176λ2 + 272λ3 + 276λ4 + 192λ5 + 88λ6 + 24λ7 + 3λ8

)
(
2 + 8λ+ 8λ2 + 4λ3 + λ4

)2 .

Note that these four expressions are valid only for λ > 0. The corresponding expres-

sions given in Gupta et al. [9] are the same as the above, but they appear to claim

the validity of the expressions for all λ ∈ ℜ.
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As pointed out by Aryal et al. [2] if λ < 0, one must replace λ by −λ in each of the

four expressions; in addition, the expressions for the expectation and the skewness

must be multiplied by −1.

Figure 3.2 illustrates the behavior of the above four analytical expressions for λ =

−10, . . . , 10. Both the expectation and the skewness are increasing functions of λ with

lim
λ→−∞

E(X) = −φ, lim
λ→−∞

Skewness(X) = −2,

and

lim
λ→∞

E(X) = φ, lim
λ→∞

Skewness(X) = 2.

Note that the variance and the kurtosis are even functions of λ. The variance decreases

from 2φ2 to φ2 as λ increases from 0 to ∞ which is a significant gain on introducing

the new shape parameter λ in the model. The kurtosis decreases for 0 ≤ λ ≤ λ0 but

then increases for all λ > λ0, where λ0 is the solution of the equation given by

4 + 6λ = 14λ2 + 56λ3 + 84λ4 + 70λ5 + 34λ6 + 9λ7 + λ8.

Numerical calculations show that for λ0 ≈ 0.356. At λ = 0, λ = λ0 and as λ → ∞,

the kurtosis takes the values 6, 5.810 (approx) and 9, respectively.
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random variable as a function of λ for φ = 1
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We know that the skewness of a random variable X is defined by

γ =
third moment about the mean

(s.d)3

Proposition: There is a one to one correspondence between γ, the skewness of a

SL random variable and λ, the shape parameter of SL pdf.

Proof: We know that the skewness for a Skew-Laplace pdf is given by

γ =
2λ
(
6 + 15λ+ 20λ2 + 15λ3 + 6λ4 + λ5

)
(
2 + 8λ+ 8λ2 + 4λ3 + λ4

)3/2
,

which can be written as

γ

2
=

(λ+ 1)6 − 1

[(λ+ 1)4 + 2(λ+ 1)2 − 1]3/2
(3.2.18)

and setting (λ+ 1)2 = x we have

γ =
2(x3 − 1)

(x2 + 2x− 1)3/2
(3.2.19)

If we are given a value of γ we can get the corresponding value of x using simple

calculations. It is clear that x is positive. Table 2.1 below gives some values of λ for

a given values of γ when γ > 0.

γ x λ

0 1 0

0.5 1.4319 0.1966

1.0 3.0409 0.7438

1.5 8.9808 1.9968

1.75 20.9875 3.5812

1.9 56.9946 6.5495

1.99999 599996.9989 773.5947

Table 3.1: Values of the parameter λ for selected values of skewness γ
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Note that if γ is greater than or equal to 2 we will have only imaginary roots. Also

note that when we have λ < 0, then we know that the corresponding expression for

skewness is obtained on replacing λ by −λ and multiplying the whole expression by

-1.

In this case we have

γ = − 2(y3 − 1)

(y2 + 2y − 1)3/2
(3.2.20)

where y = (λ−1)2. Again we can find the value of y and λ once we know the value of

γ. Hence, knowing the value of skewness we can compute the corresponding unique

value of λ.

Consider the case when the location parameter being θ and λ > 0 the kth moments

are given by

E
(
Xk
)

=






φk exp(
θ

φ
)Γ

(
k + 1;

θ

φ

)
− φk

2λk+1
1

{
exp(

λ1θ

φ
)Γ(k + 1;

λ1θ

φ
)

}

+ φk

2λk+1

1

{
exp(−λ1θ

φ
)Γ(k + 1;−λ1θ

φ
)
}

if k is even,

φk exp(
θ

φ
)Γ

(
k + 1;

θ

φ

)
+

φk

2λk+1
1

{
exp(

λ1θ

φ
)Γ(k + 1;

λ1θ

φ
)

}

− φk

2λk+1

1

{
exp(−λ1θ

φ
)Γ(k + 1;−λ1θ

φ
)
}

if k is odd.

where λ1 = λ+ 1
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3.3 MGF and Cumulants

The moment generating function, MGF, of a random variable X is defined by M(t) =

E(exp(tX)). When X has the pdf given (3.1.10), direct integration yields that

M(t) =
tφ

(tφ)2 − (1 + λ)2 +
1

1 − tφ

for t < 1/φ. Thus, the characteristic function defined by ψ(t) = E(exp(itX) and the

cumulant generating function defined by K(t) = logM(t) are of the form

ψ(t) =
itφ

(itφ)2 − (1 + λ)2 +
1

1 − itφ

and

K(t) = log

{
tφ

(tφ)2 − (1 + λ)2 +
1

1 − tφ

}
,

respectively, where i =
√
−1 . By expanding the cumulant generating function as

K(t) =

∞∑

k=1

ak
(t)k

k!
,

one obtains the cumulants ak given by

ak =






(k − 1)!φk

{
1 − 1

(1 + λ)2k

}
, if k is odd,

(k − 1)!φk

{
1 +

2

(1 + λ)k
− 1

(1 + λ)2k

}
, if k is even.

One interesting characterization of a skew Laplace pdf is the following:

We have seen that the characteristic function of a SL random variable X is given by

ψ(t) =
itφ

(itφ)2 − (1 + λ)2 +
1

1 − itφ
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It is clear that

ψX(t) + ψX(−t) =
1

1 − itφ
+

1

1 + itφ
=

2

1 − (itφ)2

In fact we have the following proposition.

Proposition: Let Y be a L(0, 1) random variable with probability density function

g(x) and X be SL(λ) derived from Y, then the even moments of X are independent

of λ and are the same as that of Y.

Proof: Let ψX(t) be the characteristic function of X so that

ψX(t) =

∫ ∞

−∞
exp(itx)[2g(x)G(λx)]dx.

Now,

ψX(−t) =

∫ ∞

−∞
exp(−itx)[2g(x)G(λx)]dx

=

∫ −∞

∞
− exp(itz)[2g(−z)G(−λz)]dz

=

∫ ∞

−∞
exp(itz)[2g(z)(1 −G(λz))]dz

=

∫ ∞

−∞
exp(itx)[2g(x)(1 −G(λx))]dx.

Note that the second from the last expression follows from the fact that g is symmetric

about 0. Hence, we have

h(t) = ψX(t) + ψX(−t) = 2

∫ ∞

−∞
exp(ity)g(y)dy = 2ψY (t)

which is independent of λ.

Also we can show that if (−1)nh(2n)(0)/2 and (−1)nψ
(2n)
Y (0) exist then they are the

even order moments of X and Y, respectively, and they are the same.
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3.4 Percentiles

A percentile is a measure of relative standing of an observation against all other

observations. The pth percentile has at least p% of the values below that point and

at least (100 − p)% of the data values above that point. To know the expression of

percentile is very important to generate random numbers from a given distribution.

The 100pth percentile xp is defined by F (xp) = p, where F is given by (3.1.11). If

0 ≤ p ≤ F (0) = 1/{2(1 + λ)} then inverting F (xp) = p, one gets the simple form

xp =
φ

1 + λ
log {2(1 + λ)p} . (3.4.21)

However, if 1/{2(1+λ)} < p ≤ 1 then xp is the solution of the transcendental equation

1 − exp

(
−xp

φ

){
1 − 1

2(1 + λ)
exp

(
−λxp

φ

)}
= p.

Substituting yp = (exp(−xp/φ))/(1 − p), this equation can be reduced to

1 − yp +
(1 − p)λ

2(1 + λ)
y1+λ

p = 0,

which takes the form of (3.1.14). Thus, using (3.1.15), yp is given by

yp = 1 +
∞∑

j=1

(
(1 + λ)j

j − 1

)
(1 − p)λj

j2j(1 + λ)j

and hence the solution for xp is given by

xp = −φ log

{
1 − p+ (1 − p)

∞∑

j=1

(
(1 + λ)j

j − 1

)
(1 − p)λj

j2j(1 + λ)j

}
. (3.4.22)

3.5 Mean Deviation

The amount of scatter in a population is evidently measured to some extent by the

totality of deviations from the mean or the median. These are known as the mean

deviation about the mean and the mean deviation about the median. Mean deviation

28



is an important descriptive statistic that is not frequently encountered in mathemat-

ical statistics. This is essentially because while we consider the mean deviation the

introduction of the absolute value makes analytical calculations using this statistic

much more complicated. But still sometimes it is important to know the analytical

expressions of these measures. The mean deviation about the mean and the median

are defined by

δ1(X) =

∫ ∞

−∞
|x− µ| f(x)dx

and

δ2(X) =

∫ ∞

−∞
|x−M | f(x)dx,

respectively, where µ = E(X) and M denotes the median. These measures can be

calculated using the relationships that

δ1(X) =

∫ µ

−∞
(µ− x)f(x)dx+

∫ ∞

µ

(x− µ)f(x)dx

and

δ2(X) =

∫ 0

−∞
(M − x)f(x)dx+

∫ M

0

(M − x)f(x)dx+

∫ ∞

M

(x−M)f(x)dx,

where M > 0 because F (0) = 1/{2(1+λ)} < 1/2 for λ > 0. Simple calculations yield

the following expressions:

δ1(X) = φ

[
2 − 1

(1 + λ)2
exp

{
−λ

2(2 + λ)

(1 + λ)2

}]
exp

{
−λ(2 + λ)

(1 + λ)2

}

and

δ2(X) = M − φ+ 2φ exp

(
−M
φ

)
+

φ

(1 + λ)2

[
1 − exp

{
−M(1 + λ)

φ

}]

+
M

2(1 + λ)

[
exp

{
−M(1 + λ)

φ

}
− exp {−(1 + λ)}

]
.
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The corresponding expressions for λ < 0 are the same as above with λ replaced by

−λ.

3.6 Entropy

An entropy of a random variable X is a measure of variation of the uncertainty. Rényi

entropy is defined by

JR(γ) =
1

1 − γ
log

{∫
fγ(x)dx

}
, (3.6.23)

where γ > 0 and γ 6= 1. See [24] for details. For the pdf (3.1.10), note that

∫
fγ(x)dx =

1

(2φ)γ

∫ 0

−∞
exp

{
γ(1 + λ)x

φ

}
dx

+
1

φγ

∫ ∞

0

exp

(
−γx
φ

){
1 − 1

2
exp

(
−λx
φ

)}γ

dx.

By substituting y = (1/2) exp(−λx/φ) and then using (3.1.13), one could express the

above in terms of the incomplete beta function. It follows then that the Rényi entropy

is given by

JR(γ) =
1

1 − γ
log





λ+ γ(1 + λ)2γ(1+1/λ)B1/2

(γ
λ
, γ + 1

)

γλ2γφγ−1(1 + λ)




 . (3.6.24)

Shannon’s entropy defined by E[− log f(X)] is the limiting case of (3.6.23) for γ → 1.

In fact Shannon developed the concept of entropy to measure the uncertainty of a

discrete random variable. Suppose X is a discrete random variable that obtains values

from a finite set x1, x2, ..., xn, with probabilities p1, p2, ...pn. We look for a measure

of how much choice is involved in the selection of the event or how certain we are of

the outcome. Shannon argued that such a measure H(p1, p2, ...pn) should obey the

following properties

1. H should be continuous in pi.

2. If all pi are equal then H should be monotonically increasing in n.

3. If a choice is broken down into two successive choices, the original H should be
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the weighted sum of the individual values of H. Shannon showed that the only H that

satisfies these three assumptions is of the form

H = k
n∑

i=1

pilogpi

and termed it the entropy of X.

It is well known that for any distribution limiting γ → 1 in Rényi we get the

shanon entropy. Hence from (3.6.24) and using L’Hospital’s rule and taking the limits

we have

E [− log f(X)] = 1 + log(2φ) +
λ

2(1 + λ)2

+21/λ

{
1

1 + λ
B1/2

(
2 +

1

λ
, 0

)
−B1/2

(
1 +

1

λ
, 0

)}
.

Rao et al. [23] introduced the cumulative residual entropy (CRE) defined by

E(X) = −
∫

Pr (| X |> x) log Pr (| X |> x) dx,

which is more general than Shannon’s entropy as the definition is valid in the contin-

uous and discrete domains. However, the extension of this notion of Shanon entropy

to continuous probability distribution posses some challanges. The straightforward

extension of the discrete case to continuous distribution F with pdf density f called

differential entropy and is given by

H(F ) = −
∫
f(x) log f(x)dx.

However differential entropy has several drawbacks as pointed out in the paper by

Rao et al. [23].

For the pdf (3.1.10), note that

Pr (| X |> x) = exp

(
−x
φ

)
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as λ approaches ∞. Thus, in this case we have

log Pr (| X |> x) = −x
φ

for x > 0. Hence, the CRE takes the simple form, E(X) = φ.

3.7 Asymptotics

If X1, . . . , Xn is a random sample from (3.1.10) and if X̄ = (X1 + · · ·+Xn)/n denotes

the sample mean then by using the Central Limit Theorem,
√
n(X̄−E(X))/

√
V ar(X)

approaches the standard normal distribution as n → ∞. Sometimes one would be

interested in the asymptotics of the extreme values, Mn = max(X1, . . . , Xn) and

mn = min(X1, . . . , Xn). For the cdf (3.1.11), it can be seen that

lim
t→∞

1 − F (t+ φx)

1 − F (t)
= exp(−x)

and

lim
t→∞

F
(
−t− φ

1+λ
x
)

F (−t) = exp(−x).

Thus, it follows from Theorem 1.6.2 in Leadbetter et al. [15] that there must be

norming constants an > 0, bn, cn > 0 and dn such that

Pr {an (Mn − bn) ≤ x} → exp {− exp(−x)}

and

Pr {cn (mn − dn) ≤ x} → 1 − exp {− exp(x)}

as n→ ∞. The form of the norming constants can also be determined. For instance,

using Corollary 1.6.3 in Leadbetter et al. [18] , one can see that an = 1/φ and

bn = φ logn.

32



3.8 Estimation

Given a random sample X1, X2, . . . , Xn from (3.1.10), we wish to estimate the pa-

rameters stated above by using the method of moments. By equating the theoretical

expressions for E(X) and E(X2) with the corresponding sample estimates, one ob-

tains the equations:

φ

{
1 − 1

(1 + λ)2

}
= m1 (if λ > 0), (3.8.25)

φ

{
1

(1 − λ)2
− 1

}
= m1 (if λ < 0) (3.8.26)

and

2φ2 = m2, (3.8.27)

where

m1 =
1

n

n∑

i=1

xi

and

m2 =
1

n

n∑

i=1

x2
i .

From (3.8.27), one obtain an estimate of the parameter φ, given by

φ̂ =

√
m2

2
. (3.8.28)

Substituting this into (3.8.25) and (3.8.26), one get the estimate of λ, namely

λ̂ =

(
1 −m1

√
2

m2

)−1/2

− 1 (3.8.29)
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and

λ̂ = 1 −
(

1 +m1

√
2

m2

)−1/2

(3.8.30)

respectively. Note that λ̂ in (3.8.29) is positive if and only if m1 > 0 and λ̂ in (3.8.30)

is negative if and only if m1 < 0. Thus, depending on whether m1 > 0 or m1 < 0,

one would choose either (3.8.29) or (3.8.30) as the estimate of λ.

The estimation of the parameters by the method of Maximum likelihood, MLE, is

described below. Let X1, X2, ...., Xn be a random sample from the skew Laplace pdf.

Then the likelihood function is given by

L(φ, λ; x1, x2, . . . , xn) =

j∏

i=1

(
1

2φ
exp(

(1 + λ)xi

φ
)

)

×
n∏

i=j+1

(
1

φ
exp(−xi

φ
)[1 − 1

2
exp(−λxi

φ
)]

)

where we assume that the first j observations take negative values and the rest assume

the positive values. To estimate the parameters λ and φ we consider the log-likelihood

and set equal to zero after differentiating with respect to λ and φ respectively and we

get the following pair of equations

j∑

i=1

xi +

n∑

i=j+1

xi exp(−λxi

φ
)

2 − exp(−λxi

φ
)

= 0 (3.8.31)

and

n+
1

φ

j∑

i=1

xi −
1

φ

n∑

i=j+1

xi = 0, (3.8.32)

Solving this system of equations we obtain the MLE of φ,

φ̂ =
1

n

[
n∑

i=j+1

xi −
j∑

i=1

xi

]
(3.8.33)
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Now, to estimate λ one can simply substitute the value of φ̂ in (3.8.31). In fact if

we suppose that all the observations in a random sample is coming from a random

variable X ∼ SL(φ, λ), with λ > 0 then the maximum likelihood method produces

φ̂ = X and λ̂ = ∞, that is, it is as though we are estimating the data set as coming

from an exponential distribution.

3.9 Simulation Study

In this section we perform a simulation study to illustrate the flexibility of (3.1.10)

over (3.1.7). An ideal technique for simulating from (3.1.10) is the inversion method.

(i) If λ > 0 then, using equations (3.4.21) and (3.4.22), one would simulate X by

X =
φ

1 + λ
log {2(1 + λ)U} (3.9.34)

if 0 ≤ U ≤ 1/{2(1 + λ)} and by

X = −φ log

{
1 − U + (1 − U)

∞∑

j=1

(
(1 + λ)j

j − 1

)
(1 − U)λj

j2j(1 + λ)j

}
(3.9.35)

if 1/{2(1 +λ)} < U ≤ 1, Hence, if λ > 0 then, using equations one would simulate X

by

X =






φ

1 + λ
log {2(1 + λ)U} , if 0 ≤ U ≤ 1/{2(1 + λ)}

−φ log

{
1 − U + (1 − U)

∞∑

j=1

(
(1 + λ)j

j − 1

)
(1 − U)λj

j2j(1 + λ)j

}
,

if 1/{2(1 + λ)} < U ≤ 1

where U ∼ U(0, 1) is a uniform random number.

(ii) If λ < 0 then the value of −X can be simulated by using the same equations

with λ replaced by −λ. Using (3.9.34) and (3.9.35), we simulated two independent

samples of size n = 100. The parameters were chosen as (φ, λ) = (1, 1) for one of the

samples and as (φ, λ) = (1,−2) for the other. This means that one of the samples is
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positively skewed while the other is negatively skewed. We fitted both these samples

to the two models described by the standard Laplace pdf (equation (3.1.7)) and the

skew Laplace pdf(equation (3.1.10)). We used the method of moments described by

equations (3.8.28)–(3.8.30) to perform the fitting. All the necessary calculations were

implemented by using the R language by Ihaka et.al, [11]. The P-P plots arising from

these fits are shown in the following Figure 3.3.

It is evident that the skew-Laplace distribution provides a very significant improve-

ment over standard Laplace pdf for both positively and negatively skewed data.
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Figure 3.3: P-P plots of Laplace and skew Laplace pdf’s for different values of λ
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3.10 Conclusion

In this chapter we have completely developed the skew Laplace probability distribu-

tion. That is, its mathematical properties, analytical expressions for all important

statistical characterization along with the estimations. Utilizing a precise numerical

simulation we have illustrated the usefulness of our analytical developments with re-

spect to positive and negative aspects of the skew Laplace pdf.

Finally, we have concluded that the subject pdf is better model for skewed type of

data than the other popular models. It is easier to work with because of its analytical

tractability and the one to o ne correspondence between the skewness γ and the shape

parameter λ of the model.
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Chapter 4

Application of Skew Laplace Probability Distribution

4.1 Introduction

Various versions of the Laplace and skew Laplace pdf have been applied in sciences,

engineering and business studies. Recently Julia et.al [12] has applied the skew

Laplace pdf in Gram-negative bacterial axenic cultures. In this study the cytometric

side light scatter(SS) values in Gram-negative bacteria were fitted using the skew-

Laplace pdf proposed by Kotz. et.al [15] given by

f(x;α, β, µ) =






αβ

α + β
exp (−α(µ− x)) , if x ≤ µ,

αβ

α + β
exp (−β(x− µ)) , if x > µ,

4.2 An Application of SL Distribution in Finance

In the present study we will present an application of the skew Laplace model pre-

sented in the previous chapter for modeling some financial data. Actually an area

where the Laplace and related probability distributions can find most interesting and

successful application is on modeling of financial data. Traditionally these type of

data were modeled using the Gaussian pdf but because of long tails and asymmetry

present in the data it is necessary to look for a probability distribution which can

account for the skewness and kurtosis differing from Gaussian. Since the Laplace pdf

can account for leptokurtic behavior it is the natural choice and moreover if skewness

is present in the data then the skew Laplace pdf will take care of it. Hence the skew
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Laplace pdf should be considered as the first choice for skewed and kurtotic data.

Klein [14] studied yield interest rates on average daily 30 year Treasury bond from

1977 to 1990 and found that empirical distribution is too peaky and fat-tailed so the

normal pdf won’t be an appropriate model. Kozubowski et al. [16] suggested that an

asymmetric Laplace model to be the appropriate model for interest rate data argu-

ing that this model is easy and capable of capturing the peakedness, fat-tailedness,

skewness and high kurtosis present in the data. Actually they fitted the model for

the data set consisting of interest rates on 30 year Treasury bonds on the last working

day of the month covering the period of February 1977 through December 1993.

Kozubowski and Podgorski [16] fitted asymmetric Laplace (AL) model whose density

is given by

f(x, σ, κ) =
1

σ

κ

1 + κ2
exp

(
−κ
σ
x+ − 1

κσ
x−
)
, x ∈ R, σ > 0, κ > 0

where x+ = max {x, 0}&x− = max {−x, 0}to fit the data set on currency exchange.

Actually they fitted the model for German Deutschmark vs. U.S. Dollar and the

Japanese Yen Vs. the U.S. Dollar. The observation were daily exchange rate from

01/01/1980 t0 12/07/1990, approximately 2853 data points.

Here, we shall illustrate an application of the skew Laplace pdf (3.1.10) that we

have studied in the previous chapter to the financial data. The data we consider are

annual exchange rates for six different currencies as compared to the United States

Dollar, namely, Australian Dollar, Canadian Dollar, European Euro, Japanese Yen,

Switzerland Franc and United Kingdom Pound . The data were obtained from the

web site http://www.globalfindata.com/. The standard change in the log(rate) from

year t to year t+1 is used.

The skew Laplace pdf was fitted to each of these data sets by using the method of

maximum likelihood. A quasi-Newton algorithm in R was used to solve the likelihood

equations. Table 4.1 shows the range of the data and the descriptive statistics of the

data. It includes number of observations(n), mean, standard deviation (SD), Skewness

(SKEW) and kurtosis (KURT) of the data. Estimation of the parameters φ and λ
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and the Kolmogorov- Smirnov D statistic considering the Normal, the Laplace and

the SL models is given in Table 4.2 for the subject data.

Currency Years of Data n Mean SD SKEW KURT

Australian Dollar 1822-2003 182 3.626 1.648 −0.703 2.047
Canadian Dollar 1858-2003 146 1.106 0.176 2.882 16.12
European Euro 1950-2003 54 1.088 0.147 0.307 3.06
Japanese Yen 1862-2003 142 101.672 138.918 0.981 2.294
Switzerland Franc 1819-2003 185 4.105 1.269 -0.932 2.845
United Kingdom Pound 1800-2003 204 4.117 1.384 0.0264 5.369

Table 4.1: Descriptive statistics of the currency exchange data

Currency φ̂ λ̂ DNormal DLaplace DSkewLaplace

Australian Dollar 0.0431 0.0123 0.3414 0.2983 0.1823
Canadian Dollar 0.3846 0.0182 0.4125 0.3846 0.1254
European Euro 0.5556 0.0157 0.2310 0.1765 0.1471
Japanese Yen 0.0651 0.0131 0.3140 0.2971 0.2246
Switzerland Franc 0.0312 −1.627e − 07 0.3168 0.2772 0.1957
United Kingdom Pound 0.0245 0.0039 0.3114 0.2709 0.1478

Table 4.2: Estimated parameters and Kolmogorov-Smirnov D-statistic of currency exchange
data

The figures (4.1-4.6) show how well the this financial data fits the skew Laplace pdf for

the subject data sets. It is evident that the fits are good. The Kolmogorov-Smirnov

D-statistic on fitting the SL pdf is compared with the Normal and Laplace pdf’s for

each data. Table 4.2 shows that for each data the skew Laplace pdf fits better than

the the Gaussian and the Laplace pdf.

We also fitted the data considering the Box-cox transformation. This is a trans-

formation defined by

f(x) =






xη − 1

η
if η 6= 0

log x if η = 0.
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Using the Box-Cox transformation we have a significant improvement over the log

transformation.

Table 4.3 shows the values of the transformation parameter η. Also the table in-

cludes the estimated parameters of the skew Laplace pdf for transformed data and

the Kolmogorov-Smirnov D-statistic for the SL pdf, the Laplace pdf and the Normal

pdf.

Currency η̂ φ̂ λ̂ DNormal DLaplace DSkewLaplace

Australian Dollar 1.36824 0.053 0.0137 0.3133 0.2486 0.1326
Canadian Dollar −5.00 0.357 0.0162 0.4040 0.3675 0.0461
European Euro 0.5 0.555 0.0181 0.2330 0.1765 0.1471
Japanese Yen −0.1727 0.0630 0.0098 0.3349 0.3043 0.2536
Switzerland Franc 2 0.0530 0.0094 0.3085 0.2446 0.1413
United Kingdom Pound 1 0.0369 0.0069 0.2950 0.2414 0.1281

Table 4.3: Kolmogorov-Smirnov D-statistic for currency exchange data using Box-Cox trans-
formations

In each of the figures (4.1-4.6) we can see that the actual data is picky and skewed

so it is obvious that neither the usual Gaussian nor the Laplace pdf would fit the data.

Hence, we choose SL pdf to fit the data using both log transformation and Box-Cox

transformation. In fact, if we carefully observe the figures the data with Box-Cox

transformation support the SL pdf better than the log transformation.
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Percentage Change in Exchange Rates of Australian Dollar to US Dollar
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Figure 4.1: Fitting SL model for Australian Dollar exchange rata data
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Figure 4.2: Fitting SL model for Canadian Dollar exchange rate data
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Percentage Change in Exchange Rates of European Euro to US Dollar
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Figure 4.3: Fitting SL model for European Euro exchange rate data
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Figure 4.4: Fitting SL model for Japanese Yen exchange data
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Figure 4.5: Fitting SL model for Switzerland Franc exchange rate data
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Figure 4.6: Fitting SL model for United Kingdom Pound exchange rate data
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4.3 Conclusion

In the present study we have identified a real world financial data, that is, the exchange

rate for six different currencies, namely, Australian Dollar, Canadian Dollar, European

Euro, Japanese Yen, Switzerland Franc and United Kingdom Pound with respect to

US Dollar. Traditionally the financial analysts are using the classical Gaussian pdf to

model such data. We have shown that the SL pdf fits significantly better the subject

data than the Gaussian and the Laplace pdf. Thus, in performing inferential analysis

on the exchange rate data, one can obtain much better results which will lead to

minimizing the risk in a decision making process. The goodness of fit comparisons

was based on two different approach, namely, using the log transformation and using

the Box-Cox transformation. Table 4.2 and table 4.3 show that in either case the SL

pdf fits better the subject data than the Gaussian pdf and Laplace pdf.
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Chapter 5

On the Truncated Skew Laplace Probability Distribution

5.1 Introduction

To describe a life phenomenon we will be mostly interested when the random variable

is positive. Thus, we now consider the case when skew Laplace pdf is truncated to the

left 0. Throughout this study, unless otherwise stated we shall assume that λ > 0. In

this case we can write

F ∗(x) = Pr(X < x|x > 0) =

∫ x

0
f(t)dt

1 − F (0)

=
F (x) − F (0)

1 − F (0)

Hence, it can be shown that the cdf of the truncated Skew Laplace, TSL, random

variable is given by

F ∗(x) = 1 +
exp

(
− (1+λ)x

φ

)
− 2(1 + λ) exp

(
−x

φ

)

(2λ+ 1)
(5.1.1)

and the corresponding probability density function by

f ∗(x) =






(1 + λ)

φ(2λ+ 1)

{
2 exp

(
−x
φ

)
− exp

(
−(1 + λ)x

φ

)}
if x > 0,

0 otherwise

(5.1.2)

Aryal et al. [1], proposed this probability distribution as a reliability model.
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A graphical presentation of f ∗(x) for φ = 1 and various values of λ is given in

Figure 5.1.
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Figure 5.1: PDF of truncated skew Laplace distribution for φ = 1 andλ = 0, 1, 2, 5, 10, 50
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In this study we will provide a comprehensive description of the mathematical

properties of (5.1.2). In particular, we shall derive the formulas for the kth moment,

variance, skewness, kurtosis, moment generating function, characteristic function, cu-

mulant generating function, the kth cumulant, mean deviation about the mean, ex-

pressions for Rényi entropy, Shannon’s entropy, cumulative residual entropy. Also we

will study reliability and hazard rate behavior of the subject pdf.

5.2 Moments

If X be a random variable with pdf given by (5.1.2), then using the definition of the

gamma function, it is easy to show that the kth moment of X is given by

E
(
Xk
)

=
φk(1 + λ)Γ(k + 1)

(2λ+ 1)

{
2 − 1

(1 + λ)k+1

}
. (5.2.3)

Using the Binomial expansion and (5.2.3), the kth central moment ofX can be derived

to be given by

E
{

(X − µ)k
}

=






µk +

k
2∑

j=1

(
k

2j

)
µk−2jφ2j (1 + λ)Γ(2j + 1)

(2λ+ 1)

×
{

2 − 1
(1+λ)2j+1

}

−
k
2∑

j=1

(
k

2j − 1

)
µk−2j+1φ2j−1 (1 + λ)Γ(2j)

(2λ+ 1)

×
{

2 − 1
(1+λ)2j

}
, if k is even,

−µk −
k−1

2∑

j=1

(
k

2j

)
µk−2jφ2j (1 + λ)Γ(2j + 1)

(2λ+ 1)

×
{

2 − 1
(1+λ)2j+1

}

+

k+1

2∑

j=1

(
k

2j − 1

)
µk−2j+1φ2j−1 (1 + λ)Γ(2j)

(2λ+ 1)

×
{

2 − 1
(1+λ)2j

}
, if k is odd.

(5.2.4)
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where µ = E(X) is the expectation of X. It follows from (5.2.3) and (5.2.4) that the

expectation, variance, skewness and kurtosis of X are given by

Exp(X) = φ
(1 + 4λ+ 2λ2)

(1 + λ)(1 + 2λ)

Var(X) = φ2 (1 + 8λ+ 16λ2 + 12λ3 + 4λ4)

(1 + λ)2(1 + 2λ)2

Ske(X) =
2(1 + 12λ+ 42λ2 + 70λ3 + 66λ4 + 36λ5 + 8λ6)

(1 + 8λ+ 16λ2 + 12λ3 + 4λ4)3/2

and

Kur(X) =
3(176λ10 + 1408λ9 + 4944λ8 + 10000λ7 + 12824λ6 + 10728λ5)

(1 + λ)2(1 + 8λ+ 16λ2 + 12λ3 + 4λ4)2

+
(5800λ4 + 1992λ3 + 427λ2 + 54λ+ 3)

(1 + λ)2(1 + 8λ+ 16λ2 + 12λ3 + 4λ4)2

A graphical representation of these statistical expressions are given in figure 5.2 as a

function of the parameterλ.

Note that for λ = 0, φ = 1 we have Exp(X) = 1,Var(X) = 1, Skewness(X) = 2,

and Kurtosis(X) = 9 yield the standard exponential distribution. Also it is clear that

both expectation and variance are first increasing and then decreasing functions of λ.

The expectation increases from φ to 1.17157φ as λ converges from 0 to 1√
2

and then

decreases to φ as λ goes to ∞. On the other hand the variance increases from φ2 to

1.202676857φ2 as λ increases from 0 to 0.3512071921 and then decreases to φ2 as λ

goes to ∞.
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5.3 MGF and Cumulants

The moment generating function of a random variable X is defined by M(t) =

E(exp(tX)). When X has the pdf (5.1.2) direct integration yields that

M(t) =
(1 + λ)

(1 + 2λ)

(
(1 + 2λ− φt)

(1 − φt)(1 + λ− φt)

)

for t < 1/φ. Thus, the characteristic function defined by ψ(t) = E(exp(itX) and the

cumulant generating function defined by K(t) = log(M(t)) take the forms

ψ(t) =
(1 + λ)

(1 + 2λ)

(
(1 + 2λ− iφt)

(1 − iφt)(1 + λ− iφt)

)

and

K(t) = log

(
1 + λ

1 + 2λ

)
+ log

(
(1 + 2λ− φt)

(1 − φt)(1 + λ− φt)

)
,

respectively, where i =
√
−1 is the complex number. By expanding the cumulant

generating function as

K(t) =
∞∑

k=1

ak
(t)k

k!
,

one obtains the cumulants ak given by

ak = (k − 1)!φk

(
1 +

1

(1 + λ)k
− 1

(1 + 2λ)k

)
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5.4 Percentiles

As mention in chapter 3 we are always interested to compute the percentiles. The

100pth percentile xp is defined by F (xp) = p, where F is given by (5.1.1). Then xp is

the solution of the transcendental equation

1 +
exp

(
− (1+λ)xp

φ

)
− 2(1 + λ) exp

(
−xp

φ

)

(2λ+ 1)
= p

Substituting yp =
2(1+λ) exp(−xp

φ
)

(1+2λ)(1−p)
, this equation can be reduced to

1 − yp +
(2λ+ 1)λ(1 − p)λ

[2(1 + λ)]1+λ
y1+λ

p = 0,

which takes the form of (3.1.14). Thus, using (3.1.15), yp is given by

yp = 1 +

∞∑

j=1

(
(1 + λ)j

j − 1

)
1

j

[(1 + 2λ)(1 − p)]λj

(2 + 2λ)(1+λ)j

and hence the solution for xp is given by

xp = −φ log

{
(1 − p)(1 + 2λ)

2(1 + λ)

(
1 +

∞∑

j=1

(
1 + λ)j

j − 1

)
1

j

[(1 + 2λ)(1 − p)]λj

(2 + 2λ)(1+λ)j

)}
(5.4.5)

5.5 Mean Deviation

As mention in chapter 3, if we are interested to find the amount of scatter in a

population is evidently measured to some extent by the totality of deviations from

the mean. This is known as the mean deviation about the mean and it is defined by

δ1(X) =

∫ ∞

0

|x− µ| f(x)dx
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where µ = E(X). This measures can be calculated using the relationships that

δ1(X) =

∫ µ

0

(µ− x)f(x)dx+

∫ ∞

µ

(x− µ)f(x)dx.

Thus, for a TSL random variable X we have

δ1(X) =
4φ(1 + λ)

(1 + 2λ)
exp

(
− (1 + 4λ+ 2λ2)

(1 + λ)(1 + 2λ)

)

− 2φ

(1 + λ)(1 + 2λ)
exp

(
−(1 + 4λ+ 2λ2)

(1 + 2λ)

)
. (5.5.6)

5.6 Entropy

As mention in chapter 3, we study the entropy to measure the variation of the uncer-

tainty. Rényi entropy is defined by

JR(γ) =
1

1 − γ
log

{∫
fγ(x)dx

}
, (5.6.7)

where γ > 0 and γ 6= 1 (Rényi,) [19]. For the pdf (5.1.2), note that

JR(γ) =
1

(1 − γ)

{
log

(
(1 + λ)

φ(1 + 2λ)

)γ}

+

{
log

(∫ ∞

0

(
2 exp(−x

φ
) − exp(−(1 + λ)x

φ
)

)γ

dx

)}
.

Further calculation yields the entropy in terms of incomplete beta function as

JR(γ) =
γ

1 − γ
log

(
1 + λ

φ(1 + 2λ)

)
+

1

1 − γ
log

(
φ

λ
2γ(1+ 1

λ
)B1/2

(γ
λ
, γ + 1

))
.

The Shanon entropy of a a distribution F is defined by

H(F ) = −
∑

i

pi log pi

where p′is are the probabilities computed from the distribution F. However, the ex-

tension of the discrete case to the continuous case with distribution F and density f
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is called differential entropy and is given by

H(F ) = E (− log f(x)) = −
∫
f(x) log f(x)dx

However this extension has a few drawbacks as pointed out by Rao et al. [23] , like,

it may assume any value on the extended real line, it is defined for the distributions

with densities only.

Rao et al. [23] introduced the cumulative residual entropy (CRE) defined by

E(X) = −
∫

Pr (| X |> x) log Pr (| X |> x) dx,

which is more general than Shannon’s entropy in that the definition is valid in the

continuous and discrete domains. For the pdf (5.1.2), we can write

Pr (| X |> x) =
2(1 + λ) exp(−x

φ
) − exp(− (1+λ)x

φ
)

(1 + 2λ)
.

Hence,

E(X) =
1

(1 + 2λ)

∫ ∞

0

exp(−(1 + λ)x

φ
) log

(
2(1 + λ) exp(−x

φ
) − exp(− (1+λ)x

φ
)

(1 + 2λ)

)
dx

−2(1 + λ)

(1 + 2λ)

∫ ∞

0

exp(−x
φ

) log

(
2(1 + λ) exp(−x

φ
) − exp(− (1+λ)x

φ
)

(1 + 2λ)

)
dx.

Using Taylor expansion and on integrating we have the CRE given by

E(X) =
φ(1 + 6λ+ 6λ2 + 2λ3)

(1 + λ)2(1 + 2λ)
+
φ(1 + 4λ+ 2λ2) log(1 + 2λ)

(1 + λ)(1 + 2λ)

− φ

(1 + 2λ)

∞∑

k=1

2−k(1 + λ)−k

k(λk + λ+ 1)
+

2φ(1 + λ)

(1 + 2λ)

∞∑

k=1

2−k(1 + λ)−k

k(λk + 1)

−φ(1 + 4λ+ 2λ2) log(2 + 2λ)

(1 + λ)(1 + 2λ)
(5.6.8)
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Note that E(X) in (5.6.8) is positive and each series is convergent and is bounded

above by 1. Thus, we have

E(X) ≤ φ(1 + 6λ+ 6λ2 + 2λ3)

(1 + λ)2(1 + 2λ)
+
φ(1 + 4λ+ 2λ2) log(1 + 2λ)

(1 + λ)(1 + 2λ)
+

2φ(1 + λ)

(1 + 2λ)
.

5.7 Estimation

Given a random sample X1, . . . , Xn from (5.1.2), we are interested in estimating the

inherent parameters using the method of moments. By equating the theoretical ex-

pressions for E(X) and E(X2) with the corresponding sample estimates, one obtains

the equations:

m1 = φ
(1 + 4λ+ 2λ2)

(1 + λ)(1 + 2λ)
(5.7.9)

and

m2 = 2φ2 (1 + 6λ+ 6λ2 + 2λ3)

(1 + λ)2(1 + 2λ)
(5.7.10)

where

m1 =
1

n

n∑

i=1

xi

and

m2 =
1

n

n∑

i=1

x2
i .

On solving this system of equations we have

(8m2
1−4m2)λ

4+(28m2
1−16m2)λ

3+(36m2
1−20m2)λ

2+(16m2
1−8m2)λ+(2m2

1−m2) = 0

which contains the parameter λ only. One can solve this equation for λ. Using either

(5.7.9) or (5.7.10) we can get the corresponding value of φ.
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The method of maximum likelihood to estimate the parameters is described below:

The underlying likelihood function for a complete sample of size n is given by

L(λ, φ; x1, x2, ...xn) =
(1 + λ)n

φn(1 + 2λ)n

n∏

i=1

{
2 exp(−xi

φ
) − exp(−(1 + λ)xi

φ
)

}
(5.7.11)

The corresponding log-likelihood function is given by:

lnL(λ, φ) = n ln(1 + λ) − n lnφ− n ln(1 + 2λ) − 1

φ

n∑

i=1

xi +

n∑

i=1

ln[2 − exp(−λxi

φ
)].

Taking the derivative of the above function with respect to λ and φ and equating each

equations to zero we obtain

n

1 + λ
− 2n

1 + 2λ
+

1

φ

n∑

i=1

xi

exp(−λxi

φ
)

[2 − exp(−λxi

φ
)]

= 0 (5.7.12)

and

−n
φ

+
1

φ2

n∑

i=1

xi −
λ

φ2

n∑

i=1

xi

exp(−λxi

φ
)

[2 − exp(−λxi

φ
)]

= 0. (5.7.13)

These equations can not be solved analytically but statistical software can be used to

find the maximum likelihood estimators of λ and φ.
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5.8 Reliability and Hazard Rate Functions

The subject pdf can be a useful characterization of failure time of a given system

because of the analytical structure. Thus, The reliability function R(t), which is the

probability of an item not failing prior to some time t, is defined by R(t) = 1− F (t).

The reliability function for TSL(λ, φ) probability distribution is given by

R(t) =
2(1 + λ) exp

(
− t

φ

)
− exp

(
− (1+λ)t

φ

)

(2λ+ 1)
. (5.8.14)

The hazard rate function, also known as instantaneous failure rate function is

defined by

h(t) = lim
∆t→0

Pr(t < T ≤ t+ ∆t|T > t)

∆t
=
f(t)

R(t)
.

It is immediate from (5.1.2) and (5.1.1) that the hazard rate function for TSL distri-

bution is given

h(t) =
(1 + λ)

φ

{
2 − exp

(
−λt
φ

)}

{
2 + 2λ− exp

(
−λt
φ

)} .

It is clear that h is an increasing function, it increases from 1
φ

(1+λ)
(1+2λ)

to 1
φ

as t varies

from 0 to ∞.

This is an important feature of this pdf which makes it quite different from the

exponential and Weibull pdf’s where the hazard rate for an exponential distribution is

constant whereas the hazard rate for Weibull distribution is either strictly increasing

or strictly decreasing. In the present study we will present a comparisons of TSL

distribution with some other life time distribution whose probability density function

are similar to that of TSL distribution.
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The cumulative hazard rate function for TSL is given by

H(t) =

∫ t

0

h(u)du = − log(R(t))

=
t

φ
+ log

(
1 + 2λ

2 + 2λ− exp(−λt
φ
)

)
.

Also we have

A(t) =
1

t

∫ t

0

h(τ)dτ,

as the failure(hazard) rate average. Thus, for a TSL random variable the failure rate

average is given by

A(t) =
1

φ
+

1

t
log

(
1 + 2λ

2 + 2λ− exp(−λt
φ
)

)
.

A graphical representation of the reliability R(t) and the hazard rate h(t) for φ = 1

and various values of the parameter λ is given in Figure 5.3.

Note that TSL has increasing failure rate(IFR) hence the reliability function is de-

creasing. Also note from the figures that significance differences occur at the early

time. In fact the hazard rate is constant for λ = 0 which means exponential pdf is

a particular case of TSL pdf. Moreover, for a given value of the parameter φ, the

reliability increases until it attains λ = 1 and then it decreases.
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Figure 5.3: Reliability and hazard rate of TSL distribution for φ = 1
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5.9 Mean Residual Life Time and the Mean Time Between Failure

The mean residual life (MRL) at a given time t measures the expected remaining life

time of an individual of age t. It is denoted by m(t) and is defined as

m(t) = E (T − t|T ≥ t)

=

∫∞
t
R(u)du

R(t)

The cumulative hazard rate function is given by H(t) = − log(R(t)) and we can

express the mean residual life time in terms of H by

m(t) =

∫ ∞

0

exp(H(t) −H(t+ x))dx (5.9.15)

Now, if we consider the converse problem, that of expressing the failure rate in terms

of the mean residual life and its derivatives we have

m′(t) = h(t)m(t) − 1. (5.9.16)

Hence, the MRL for a TSL random variable is given by

m(t) =
φ

(1 + λ)

{
2(1 + λ)2 − exp(−λt

φ
)

2(1 + λ) − exp(−λt
φ
)

}
(5.9.17)

Now, we discuss the mean time between failure(MTBF) for the truncated skew-

Laplace pdf. The time difference between the expected next failure time and current

failure time is called the Mean Time Between Failure(MTBF). Many scientists and

engineers consider the reciprocal of the intensity function (also called the hazard rate

function) at current failure time as the MTBF. That is,

MTBF =
1

ν(t)
(5.9.18)

where ν(t) is the intensity function. Based on this definition the MTBF for TSL
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distribution will be given by

MTBF =
φ

(1 + λ)

{
2(1 + λ) − exp

(
−λt

φ

)}

{
2 − exp

(
−λt

φ

)} . (5.9.19)

But the Mean time between failure is indeed the expected interval length from the

current failure time, say Tn = tn, to the next failure time, Tn+1 = tn+1. We will use

MTBFn to denote the MTBF at current state Tn = tn. Hence, it follows that

MTBFn =

∫ ∞

tn

tfn+1(t|t1, t2, . . . , tn)dt− tn (5.9.20)

where
∫∞

tn
tfn+1(t|t1, t2, . . . , tn)dt is the expected (n+1)th failure under the condition

Tn = tn.

For TSL distribution , we have

fn+1(t|t1, t2, ..., tn) =
1

φ

2(1 + λ) exp(− t
φ
) − (1 + λ) exp(− (1+λ)t

φ
)

2(1 + λ) exp(− tn
φ

) − exp(− (1+λ)tn
φ

)
(5.9.21)

Hence, the MTBFn is given by

MTBFn = φ
[2(1 + λ) exp(− tn

φ
) − 1

(1+λ)
exp(− (1+λ)tn

φ
)]

[2(1 + λ) exp(− tn
φ

) − exp(− (1+λ)tn
φ

)]

=
φ

(1 + λ)

{
2(1 + λ)2 − exp(−λtn

φ
)
}

{
2(1 + λ) − exp(−λtn

φ
)
} . (5.9.22)

It is clear that for the special case λ = 0 we have MTBFn = φ.

Thus , in the case λ = 0, we have

MTBFn =
1

νn

(5.9.23)

Note that, in this special case the process has a constant intensity function.For other

values of λ we always have MTBFn <
1
νn

.
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5.10 Conclusion

In this chapter we have studied all analytical aspects of TSL pdf. We have derived

the analytical form of moments, moment generating function, cumulant generating

function, cumulants, percentiles and entropy if a random variable follows the TSL pdf.

In addition we have developed the corresponding estimations forms of the subject

parameters. Also, we have developed the reliability model and its corresponding

hazard rate function when the failure times are characterized by TSL pdf. In addition,

we have developed the analytical forms of mean residual life times and mean time

between failures and its relationship to the intensity function for systems that exhibit

the characteristic of subject pdf.
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Chapter 6

Comparison of TSL Probability Distribution with Other Distributions

6.1 Introduction

In the present study we will discuss a comparison of the truncated skew Laplace pdf

with some other popular pdf , namely, the gamma pdf and the hypoexponential pdf

whose graphical representation and characterization are similar to that of TSL pdf.

In section 6.2 we will consider the comparisons with two parameter gamma model

and in section 6.3 we will be comparing TSL pdf with the so called hypoexponential

pdf. We will make comparisons in terms of the reliability behavior. In fact, we will

simulate data from TSL pdf and check whether it has the same reliability if the data

was assumed to be gamma pdf and hypoexponential pdf. Also we will consider a data

consisting of the failure time of pressure vessels data which was studied by Keating

et al.[13] using gamma pdf.

6.2 TSL Vs. Two Parameter Gamma Probability Distribution

The gamma probability distribution plays a crucial role in mathematical statistics

and many applied areas. A random variable X is said to have gamma probability

distribution with two parameters α and β, denoted byG(α, β), ifX has the probability

density function given by

f(x;α, β) =
1

Γ(α)βα
tα−1 exp(− t

β
), α, β, t > 0.
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where Γ(α) denotes the gamma function evaluated at α. The parameters α and β are

the shape and scale parameters, respectively. The reliability and hazard functions are

not available in closed form unless α happens to be an integer; however, they may be

expressed in terms of the standard incomplete gamma function Γ(a, z) defined by

Γ(a, z) =

∫ z

0

ya−1 exp(−y)dy, a > 0.

In terms of Γ(a, z), the reliability function for the G(α, β) distribution is given by

R(t;α, β) =
Γ(α) − Γ(α, t/β)

Γ(α)
,

and, if α is an integer,it is given by

R(t;α, β) =

α−1∑

k=0

(t/β)k exp(−t/β)

k!
.

The hazard rate is given by

h(t;α, β) =
tα−1 exp(−t/β)

βα[Γ(α) − Γ(α, t/β)]
,

for any α > 0 and, if α is an integer it becomes

h(t, α, β) =
tα−1

βαΓ(α)
∑α−1

k=0(t/β)k/k!
.

The shape parameter α is of special interest since whether α− 1 is negative, zero

or positive, corresponds to a decreasing failure rate(DFR), constant, or increasing

failure rate(IFR), respectively.

It is clear that the gamma model has more flexibility than that of TSL model as the

former one can be used even if the data has DFR. In fact, the exponential model

is a particular case of both models, that is, TSL(0, 1) and Gamma(1, 1) are the

exponential models. But if in the gamma model α > 1, it has IFR which appears to

be the same as that of TSL model but a careful study shows that there is a significant

difference in these two models even in this case.
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Figure 6.1 gives a graphical comparisons of the reliability functions of TSL and

Gamma pdf. It is clearly seen that Gamma(1, 1) and TSL(0, 1) are identical yielding

the exponential EXP (1) model.

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

t

R
(t

)

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

 

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

 

0 2 4 6 8 10

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

 

 

TSL(0, 1)
TSL(1, 1)
GAMMA(1, 1)
GAMMA(1.32, 0.93)

Reliability of TSL and Gamma distributions

Figure 6.1: Reliability of TSL and Gamma distributions
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Table 6.1 gives a comparisons of two parameter gamma model with respect to TSL

model. We simulate 100 data for different values of the TSL parameters λ and φ as

indicated in the table. We used the Newton-Raphson algorithm to get its estimates.

Again we get the estimates of the parameters α and β of gamma model assuming that

the data satisfy the gamma model.

φ λ φ̂ λ̂ α̂ β̂ n1 n2

1 0 1.045522 0.06166375 1.013032 1.085437 4 4

1 1 1.056979 1.341615 1.317944 0.9267452 3 7

1 2 1.067631 1.478364 1.379657 0.8905008 5 7

1 5 1.012352 4.362386 1.231728 0.8906503 6 6

1 10 1.011322 9.99997 1.189242 0.8872343 6 6

2 0 2.081052 0.000026 0.9989892 2.083215 5 5

2 1 2.055891 0.91154 1.380973 1.74020 6 8

2 2 2.098627 2.024318 1.313875 1.809048 5 6

2 5 1.965912 5.942018 1.20621 1.738104 6 6

2 10 2.10125 10.92677 1.250668 1.747456 4 4

5 0 4.619639 0.6206207 1.126453 4.801781 7 7

5 1 5.45453 1.144246 1.378976 4.597368 6 8

5 2 5.128795 1.554738 1.358207 4.335356 5 6

5 5 4.817129 4.976809 1.223907 4.235068 5 5

5 10 5.488563 9.635667 1.238111 4.631146 3 3

Table 6.1: Comparison between TSL and gamma models when both parameters are unknown

In Table 6.1 we have used the Kolmogrov-Smirnov non-parametric test to check

whether the data generated from TSL(λ, φ) also satisfied the Gamma(α, β). The

table shows that the TSL pdf closely resembles a two parameter gamma pdf. In the

table n1 and n2, respectively, denote the corresponding number of item failed before

TT and TG. Where TT and TG are defined by

P (T ≥ TT ) ≥ 0.95

and

P (T ≥ TG) ≥ 0.95
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respectively. Note that TT and TG respectively denote the failure time assuming TSL

and Gamma pdf.

Table 6.1 shows that the significance difference occurs when parameter λ = 1 and

they are identical for λ = 0. Also if λ > 1 then bigger the value of λ closer the

relation with gamma pdf subject to the condition that the parameter φ remains the

same.

If the two models happen to be identical we should be able to find the parameters

of one distribution knowing the parameters of the other. A usual technique is by

equating the first two moments. If this is the case we must have the following system

of equations






φ(2τ 2 − 1)

2τ 2 − τ
= αβ

2φ2(2τ 3 − 1)

2τ 3 − τ 2
= α2β2 + αβ2

where τ = 1 + λ. On solving the system of equations we get

α =
(2τ 2 − 1)2

(4τ 4 − 4τ 3 + 4τ 2 + 1)
,

and

β =
φ(4τ 4 − 4τ 3 + 4τ 2 + 1)

(2τ 2 − τ)(2τ 2 − 1)
.

This shows that one can get the parameters α and β of a Gamma distribution if we

know the parameters λ and φ of a TSL distribution.

If we know or have data to estimate the parameter λ then the MLE of φ is given

by

φ̂ =
(2λ+ 1)(λ+ 1)

n(2λ2 + 4λ+ 1)

n∑

i=1

Xi

Again we compare the TSL pdf with gamma pdf assuming that the parameter λ

is known. We follow the same procedure as in the previous case and the Table 6.2
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also presents the same quantities as Table 6.1 does.

φ λ φ̂ α̂ β̂ n1 n2

1 1 1.011927 1.200189 0.9836633 4 5

1 2 1.009196 1.102708 1.037224 4 4

1 5 0.9884295 1.111627 0.9565353 2 2

1 10 1.010180 1.166273 0.9036562 3 3

1 50 0.923165 1.015271 0.9181059 5 5

2 1 1.812826 1.168546 1.809911 2 3

2 2 2.013709 1.190309 1.917320 5 6

2 5 2.031695 1.186196 1.842538 5 5

2 10 2.008019 1.219654 1.717656 2 2

2 50 1.835290 1.217294 1.522315 4 4

5 1 5.45453 1.378976 4.597368 6 8

5 2 5.128795 1.358207 4.335356 5 6

5 5 4.817129 1.223907 4.235068 5 5

5 10 5.488563 1.238111 4.631146 3 3

5 50 4.716769 1.043489 4.565573 5 5

Table 6.2: Comparison between TSL and gamma models when one parameter is known

Table 6.2 also supports the conclusion we have drawn from the previous table.

That means there is a significance difference between these two models when the pa-

rameter λ = 1. But for a large value of λ we do not see much differences in terms of

reliability subject to the condition the value of the parameter φ remains the same.

Finally, we would like to present a real world problem where the TSL model gives

a better fit than the competing gamma model.

The following data is the failure times(in hours) of pressure vessels constructed of

fiber/epoxy composite materials wrapped around metal lines subjected to a certain

constant pressure. This data was studied by Keating et al.[12].

274, 1.7, 871, 1311, 236

458, 54.9, 1787, 0.75, 776

28.5, 20.8, 363, 1661, 828

290, 175, 970, 1278, 126
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Pal, N. et al. [20] mention that the Gamma(1.45, 300) model fits for the subject

data. We have run a Kolmogorove Smirnov nonparametric statistical test and ob-

served the following results:

K-S statistics DGamma = 0.2502 and DTSL = 0.200 for Gamma(1.45,300) and TSL(

5939.8, 575.5) distribution respectively.

Figure 6.2 exhibits the p-p plot of the pressure vessel data assuming TSL and

Gamma pdf. It is evident that TSL fits better than the Gamma model. Hence we

recommend that TSL is a better model for the pressure vessel data.
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Table 6.3 below gives the reliability estimates using TSL pdf and Gamma pdf and

Figure 6.3 exhibits the reliability graphs. There is a significance differences on the

estimates.

t R̂TSL(t) R̂GAMMA(t) t R̂TSL(t) R̂GAMMA(t)

0.75 0.999 0.999 363 0.532 0.471

1.70 0.997 0.999 458 0.451 0.365

20.80 0.965 0.984 776 0.260 0.150

28.50 0.952 0.976 828 0.237 0.129

54.90 0.909 0.940 871 0.220 0.113

126.0 0.803 0.826 970 0.185 0.085

175.0 0.738 0.745 1278 0.108 0.034

236.0 0.664 0.647 1311 0.102 0.030

274.0 0.621 0.590 1661 0.056 0.010

290.0 0.604 0.567 1787 0.045 0.007

Table 6.3: The Reliability estimates of Pressure Vessels Data
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6.3 TSL Vs. Hypoexponential Probability Distribution

Observing the probability structure of the truncated skew Laplace pdf it is our inter-

est to look for an existing probability distribution which can be written as a difference

of two exponential function. We will compare TSL pdf with the hypoexponential pdf.

Many natural phenomenon can be divided into sequential phases. If the time the pro-

cess spends in each phase is independent and exponentially distributed, then it can be

shown that the overall time is hypoexponentially distributed. It has been empirically

observed that the service times for input-output operations in a computer system

often possess this distribution see K.S. Trivedi [25]. It will have n parameters one

for each of its distinct phases. Her we are interested in a two-stage hypoexponential

process. That is, if X be a random variable with parameters λ1 and λ2(λ1 6= λ2), then

its pdf is given by

f(x) =
λ1λ2

λ2 − λ1
{exp(−λ1x) − exp(−λ2x)} x > 0.

We will use the notation Hypo(λ1, λ2) to denote a hypoexponential random variable

with parameters λ1 and λ2, respectively. Figure 6.4 gives a graphical display of the

pdf of the hypoexponential distribution for λ1 = 1 and different values of λ2 > λ1. In

fact, because of the symmetry it doesn’t matter which parameter need to be bigger

and which one to be smaller.

Figure 5.4 has the parameters λ1 = 1 and λ2 = 1.5, 2, 3, 5, 10, 50. From the figure it

is clearly seen that as the value of the parameter λ2 increases the pdf looks like TSL

pdf. The corresponding cdf is given by

F (x) = 1 − λ2

λ2 − λ1
exp(−λ1x) +

λ1

λ2 − λ1
exp(−λ2x) x ≥ 0.

The Reliability function R(t) of a Hypo(λ1, λ2) random variable is given by

R(t) =
λ2

λ2 − λ1

exp(−λ1t) −
λ1

λ2 − λ1

exp(−λ2t). (6.3.1)
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The hazard rate function h(t) of a Hypo(λ1, λ2) random variable is given by

h(t) =
λ1λ2[exp(−λ1t) − exp(−λ2t)]

λ2 exp(−λ1t) − λ1 exp(−λ2t)
. (6.3.2)

It is clear that h(t) is increasing function of the parameter λ2. It increases from 0

to min{λ1, λ2}. Figure 6.5 exhibits the reliability function and hazard hazard rate

function of a hypoexponential random variable with parameters λ1 = 1 and different

values of λ2 > λ1.
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Also, note that the mean residual life (MRL) time at time t for Hypo(λ1, λ2) is

given by

mHypo(t) =
1

λ1λ2

λ2
2 exp(−λ1t) − λ2

1 exp(−λ2t)

[λ2 exp(−λ1t) − λ1 exp(−λ2t)]
.

We now proceed to make a comparison between TSL and hypoexponential pdf in

terms of the reliability and the mean residual life times. We will generate from the

hypoexponential distributions a random samples of size 50, 100 and 500 for different

values of the parameters λ1, λ2 and then proceed to fit the data to TSL model.

n λ1 λ2 λ̂1 λ̂2 φ̂ λ̂ MTSL MHY PO

50 1 2 0.934 2.325 2.745 1.349 1.362 1.129

50 1 5 0.975 5.133 2.779 1.097 1.108 1.029

50 1 10 0.979 12.223 1.042 6.968 1.042 1.021

50 1 20 0.940 26.742 1.069 15.349 1.069 1.063

100 1 2 0.876 2.565 1.376 2.403 1.391 1.184

100 1 5 0.903 6.835 1.178 6.216 1.179 1.108

100 1 10 0.950 9.838 1.098 8.439 1.099 1.052

100 1 20 1.029 26.322 0.892 0.242 0.982 0.971

500 1 2 0.915 2.576 1.339 3.076 1.348 1.132

500 1 5 0.961 6.489 1.088 3.453 1.093 1.042

500 1 10 0.881 10.224 1.174 8.355 1.173 1.135

500 1 20 1.016 27.411 0.988 14.044 0.988 0.983

Table 6.4: Comparison between TSL and Hypoexponential Models

To create Table 6.4 we generate a random sample of sizes 50, 100 and 500 from

hypoexponential pdf with parameters λ1 and λ2 = 2, 5, 10&20 for each sample size.

We have used the Newton-Raphson algorithm to estimate the maximum likelihood

estimators of λ1 and λ2. We expect that the data will fit the TSL model, so assuming

the data satisfies TSL model we estimate the parameters φ and λ.

In addition we computed the mean residual life times for both the models at T = Tn/2.

From the table we can observe that if the sample size is large and the difference be-

tween the two parameters λ1 and λ2 is large both TSL and hypoexponential model

will produce the same result whereas for small size and small difference between λ1
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and λ2 there is a significant differences. The figures(6.6-6.8) below also support this

argument.
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Figure 6.8: Reliability of TSL and Hypoexponential distributions for
n = 500, λ1 = 1, and(a)λ2 = 2, (b)λ2 = 5, (c)λ2 = 10, (d)λ2 = 20
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6.4 Conclusion

In this chapter we have compared the TSL model with two commonly used existing

models namely, the Gamma model and hypoexponential models in terms of their

reliability behavior. We have seen that both TSL(0, 1) and Gamma(1, 1) are identical

as both yield the exponential model but a careful study shows there are some situations

where the TSL model gives a better fit than gamma model. In deed we have illustrate

this with a real information of Pressure Vessels failure data.

Also we make a comparison with the hypoexponential pdf and have concluded that if

the sample size is large and the difference between the two parameters λ1 and λ2 is

also large both TSL and hypoexponential model will produce the same result whereas

for small size and small difference between λ1 and λ2 there is a significant differences.

In fact the shape of the hazard rate function of the TSL model seems like a graph of

a function of the form h(t) = 1 − exp(−αt). Working backward, we have derived the

corresponding pdf as shown below.

Since the relation between the hazard rate function and the CDF can be expressed

in terms of a differential equation given by

h(t) = − d

dt
log(1 − F (t)),

and on solving this equation we have

1 − F (t) = exp

(
−
∫ t

0

h(u)du

)

which yields a new distribution whose pdf and CDF are respectively

f(t) = (1 − exp(−αt)) exp

(
1

α
(1 − exp(−αt)) − t

)
(6.4.3)

and

F (t) = 1 − exp

(
1

α
(1 − exp(−αt)) − t

)
(6.4.4)
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Figure below shows the probability distribution function of this distribution for

different values of α.
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Chapter 7

Preventive Maintenance and the TSL Probability Distribution

7.1 Introduction

In many situations, failure of a system or unit during actual operation can be very

costly or in some cases quite dangerous if the system fails. Thus, it is better to repair

or replace before it fails. But on the other hand, one does not want to make too

frequent replacement of the system unless it is absolutely necessary. Thus we try to

develop a replacement policy that balances the cost of failures against the cost of

planned replacement or maintenance.

Suppose that a unit which is to operate over a time 0 to time t, [0,t] is replaced

upon failure (with failure probability distribution F). We assume that the failures

are easily detected and instantly replaced. A cost c1 that includes the cost resulting

from planned replacement and a cost c2 that includes all costs resulting from failure

is invested. Then the expected cost during the period [0,t] is

C(t) = c1E(N1(t)) + c2E(N2(t)),

where E(N1(t)) and E(N2(t)) denotes the expected number of planned replacement

and expected number of failures.

We would like to seek the policy minimizing C(t) for a finite time span or minimizing

limt→∞
C(t)

t
for an infinite time span. Since the TSL probability distribution has an

increasing failure rate we except this model to be useful in maintenance system.
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7.2 Age Replacement Policy and TSL Probability Distribution

First we consider the so called the “Age replacement policy”. In this policy we

always replace an item exactly at the time of failure or t∗ hours after its installation,

whichever occurs first. Age replacement policy for an infinite time span seems to have

received the most attention in the literature. Morese(1958) showed how to determine

the replacement interval minimizing cost per unit time. Barlow et al.[5] proved that

if the failure distribution, F, is continuous then there exists a minimum-cost age

replacement for any infinite time span.

Here we would like to determine the optimal t∗ at which preventive replacement should

performed. The model determines the t∗ that minimizes the total expected cost of

preventive and failure maintenance per unit time. The total cost per cycle consists

of the cost of preventive maintenance in addition to the cost of failure maintenance.

Hence,

EC(t∗) = c1(R(t∗)) + c2(1 − R(t∗)) (7.2.1)

where, c1 and c2 denote the cost of preventive maintenance and failure maintenance

respectively. R(t∗) is the probability the equipment survives until age t∗. The expected

cycle length consists of the length of a preventive cycle plus the expected length of a

failure cycle. Thus, we have

Expected cycle length = t∗R(t∗) +M(t∗)(1 − R(t∗)) (7.2.2)

where,

M(t∗)(1 − R(t∗)) =

∫ t∗

−∞
tf(t)dt

is the mean of the truncated distribution at time t∗. Hence, the

Expected cost per unit time =
c1R(t∗) + c2[1 − R(t∗)]

t∗R(t∗) +M(t∗)[1 − R(t∗)]
. (7.2.3)
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We assume that a system has a time to failure distribution being the truncated skew

Laplace pdf. We would like to compute the optimal time t∗ of preventive replacement.

Hence, we have

R(t) =
2(1 + λ) exp

(
−t
φ

)
− exp

(
−(1+λ)t

φ

)

(2λ+ 1)
(7.2.4)

and

M(t∗) =
1

1 −R(t∗)

∫ t∗

0

tf(t)dt (7.2.5)

Thus, we can write

∫ t∗

o

tf(t)dt =
2λ1φ

2λ1 − 1
[1 − exp(−t∗/φ)] − φ

(2λ1 − 1)λ1

[1 − exp(−λ1t
∗/φ)]

+
t∗

(2λ1 − 1)
exp(−λ1t

∗/φ) − 2λ1t
∗

2λ1 − 1
exp(−t∗/φ). (7.2.6)

where λ1 = λ+ 1.

On substituting from (7.2.4),(7.2.5) and (7.2.6) in (7.2.3)and simplifying the expres-

sions we get the expected cost per unit time(ECU) given by

ECU(t∗) =
λ1

φ

{2λ1(c2 − c1) exp(−t∗/φ) − (c2 − c1) exp(−λ1t
∗/φ) − c2(2λ1 − 1)}

{2λ2
1 exp(−t∗/φ) − 2λ2

1 − 1 − exp(−λ1t∗/φ)}

Now we want to find the value of t∗ which minimizes the above expression subject

to the condition that c1 = 1 and c2 = 10. The following so called “Golden Section

Method” is used to obtain the optimal value of t∗. The Golden section method is

described as follows:
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To minimize a function g(t) subject to a ≤ t ≤ b we can use so called Golden

section method and the steps to use the algorithm are as follows:

Step 1. Choose an allowable final tolerance level δ and assume the initial interval

where the minimum lies is [a1, b1] = [a, b] and let

λ1 = a1 + (1 − α)(b1 − a1)

µ1 = a1 + α(b1 − a1)

Take α = 0.618, which is a positive root of c2 + c − 1 = 0, and evaluate g(λ1) and

g(µ1), let k=1 and go to step 2.

Step 2. If bk − ak ≤ δ, stop as the optimal solution is t∗ = (ak + bk)/2. otherwise,

if g(λk) > g(µk), go to step 3; and if g(λk) ≤ g(µk), go to step 4.

Step 3: Let ak+1 = λk and bk+1 = bk. Furthermore let λk+1 = µk and µk+1 =

ak+1 + α(bk+1 − ak+1). Evaluate g(µk+1) and go to step 5.

Step 4: Let ak+1 = ak and bk+1 = µk. Furthermore let µk+1 = λk and λk+1 =

ak+1 + (1 − α)(bk+1 − ak+1). Evaluate g(λk+1) and go to step 5.

Step 5: Replace k by k + 1 and go to step 1.

To implement this method to our problem we proceed as below

Iteration 1

Consider [a1, b1] = [0, 10], α = 0.618 so that 1 − α = 0.382

λ1 = a1 + (1 − α)(b1 − a1) = 3.82 and µ1 = a1 + α(b1 − a1) = 6.18.

ECU(λ1) = 8.561 and ECU(µ1) = 8.570.

Since

ECU(λ1) ≤ ECU(µ1)

the next interval where the optimal solution lies is [0, 6.18]
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Iteration 2

[a2, b2] = [0, 6.18]

λ2 = 2.36, and µ2 = 3.82

ECU(λ2) = 8.533 and ECU(µ2) = 8.561

Since

ECU(λ2) ≤ ECU(µ2)

the next interval where the optimal solution lies is [0, 3.82]

Iteration 3

[a3, b3] = [0, 3.82]

λ3 = 1.459 and µ3 = 2.36

ECU(λ3) = 8.516 and ECU(µ3) = 8.533

Since

ECU(λ3) ≤ ECU(µ3)

the next interval where the optimal solution lies is [0, 2.36]

Iteration 4

[a4, b4] = [0, 2.36]

λ4 = 0.901 and µ3 = 1.459

ECU(λ4) = 8.613 and ECU(µ3) = 8.516

Since

ECU(λ4) ≥ ECU(µ4)

the next interval where the optimal solution lies is [0.901, 2.36].
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Iteration 5

[a5, b5] = [0.901, 2.36]

λ5 = 1.459 and µ5 = 1.803

ECU(λ5) = 8.516 and ECU(µ5) = 8.517

Since

ECU(λ5) ≤ ECU(µ5)

the next interval where the optimal solution lies is [0.901, 1.803]

Iteration 6

[a6, b6] = [0.901, 1.803]

λ6 = 1.246 and µ6 = 1.459

ECU(λ6) = 8.528 and ECU(µ6) = 8.516

Since

ECU(λ6) ≥ ECU(µ6)

the next interval where the optimal solution lies is [1.246, 1.803]

Iteration 7

[a7, b7] = [1.246, 1.803]

λ7 = 1.459 and µ7 = 1.590

ECU(λ7) = 8.516 and ECU(µ7) = 8.514

Since

ECU(λ4) ≥ ECU(µ4)

the next interval where the optimal solution lies is [1.459, 1.803]

If we fix the δ level less than or equal to 0.5 we can conclude that the optimum value

lies in the interval [1.459, 1.803] and it is given by 1.459+1.803
2

= 1.631.

We have perform this numerical example assuming that the failure data follows

the TSL(1, 1) model and we obtain that to optimize the cost we have to schedule the

maintenance time after 1.631 units of time.
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7.3 Block Replacement Policy and TSL Probability Distribution

Here we consider the case of the so called “Block-Replacement Policy” or the constant

interval policy. In this policy we perform preventive maintenance on the system after it

has been operating a total of t∗ unites of time, regardless of the number of intervening

failures. In case the system has failed prior to the time t∗, minimal repair will be

performed. We assume that the minimal repair won’t change the failure rate of the

system and the preventive maintenance renews the system and it become as good as

new . Thus, we want to find the t∗ that minimizes the expected repair and preventive

maintenance cost. The total expected cost per unit time for preventive replacement

at time t∗ , denoted by ECU(t∗) is given by

ECU(t∗) =
Total expected cost in the interval(0, t∗)

Length of the interval
.

The total expected cost in the interval (0, t∗) equals to the cost of preventative main-

tenance plus the cost of failure maintenance, that is = c1 + c2M(t∗), where M(t∗) is

the expected number of failure in the interval (0, t∗)

Hence,

ECU(t∗) =
c1 + c2M(t∗)

t∗
.

But we know that the expected number of failure in the interval (0, t∗) is the integral

of the failure rate function ,that is

M(t∗) = E(N(t∗)) = H(t∗) =

∫ t∗

0

h(t)dt

So if the failure of the system follows the TSL distribution we know that

M(t∗) =

∫ t∗

0

h(t)dt =
(1 + λ)t∗

φ
− log ((2 + 2λ) exp(λt∗/φ) − 1) + log(2λ+ 1)

Thus we have

ECU(t∗) =
c1 + c2[

(1+λ)t∗

φ
− log ((2 + 2λ) exp(λt∗/φ) − 1) + log(2λ+ 1)]

t∗
.
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Again we would like to minimize this equation subject to the condition c1 = 1 and

c2 = 10. We shall use again so called ”Golden Section Method” to obtain the value

of t∗ that minimizes ECU(t∗)

Iteration 1

consider [a1, b1] = [0, 10], α = 0.618 so that 1 − α = 0.382

λ1 = a1 + (1 − α)(b1 − a1) = 3.82 and µ1 = a1 + α(b1 − a1) = 6.18.

ECU(λ1) = 9.523 and ECU(µ1) = 9.697.

Since

ECU(λ1) ≤ ECU(µ1)

the next interval where the optimal solution lies is [0, 6.18]

Iteration 2

[a2, b2] = [0, 6.18]

λ2 = 2.36, and µ2 = 3.82

ECU(λ2) = 9.30 and ECU(µ2) = 9.523

Since

ECU(λ2) ≤ ECU(µ2)

the next interval where the optimal solution lies is [0, 3.82]

Iteration 3

[a3, b3] = [0, 3.82]

λ3 = 1.459 and µ3 = 2.36

ECU(λ3) = 9.124 and ECU(µ3) = 9.30

Since

ECU(λ3) ≤ ECU(µ3)

the next interval where the optimal solution lies is [0, 2.36]

Iteration 4

[a4, b4] = [0, 2.36]

λ4 = 0.901 and µ3 = 1.459

ECU(λ4) = 9.102 and ECU(µ3) = 9.124
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Since

ECU(λ4) ≤ ECU(µ4)

the next interval where the optimal solution lies is [0, 1.459]

Iteration 5

[a5, b5] = [0, 1.459]

λ5 = 0.557 and µ5 = .901

ECU(λ5) = 9.405 and ECU(µ5) = 9.102

Since

ECU(λ5) ≥ ECU(µ5)

the next interval where the optimal solution lies is [0.557, 1.459]

Iteration 6

[a6, b6] = [0.557, 1.459]

λ6 = 0.9015 and µ6 = 1.114

ECU(λ6) = 9.102 and ECU(µ6) = 9.08

Since

ECU(λ6) ≥ ECU(µ6)

the next interval where the optimal solution lies is [.901, 1.459]

Iteration 7

[a7, b7] = [0.901, 1.459]

λ7 = 1.114 and µ7 = 1.245

ECU(λ7) = 9.08 and ECU(µ7) = 9.09

Since

ECU(λ4) ≤ ECU(µ4)

the next interval where the optimal solution lies is [.901, 1.245]

Again if we fix the δ level less than or equal to 0.5 we can conclude that the optimum

value lies in the interval [0.901, 1.245] and it is given by 0.901+1.245
2

= 1.07.
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As in the case of Age replacement case in this numerical example we assume that the

failure data follows the TSL(1, 1) model and we have seen that to optimize the cost

we have to schedule the maintenance time every 1.07 units of time.

7.4 Maintenance Over a Finite Time Span

The problem concerning the preventive maintenance over a finite time span is of great

important in industry. It can be viewed in two different prospective; whether the total

number of replacements (Failure+planned)times are known or not. The first case is

straightforward and it is known in the literature from a long time. Barlow et al.(1967)

derive the expression for this case. Let T ∗ be the total time span which means we

would like to minimize the cost due to replacement or due to planned replacement

until T = T ∗. Let Cn(T ∗, T ) be the expected cost in the time span 0 to T ∗, [0, T ∗],

considering only the first n replacements following a policy of replacement at interval

T. It is clear that considering the case when T ∗ ≤ T is equivalent to no planned

replacement.It is clear that

C1(T
∗, T ) =





c2F (T ∗) if T ∗ ≤ T ,

c2F (T ) + c1(1 − F (T )) if T ∗ ≥ T

Thus, for n = 1, 2, 3, ..., we have

Cn+1(T
∗, T ) =






∫ T ∗

0

[c2 + Cn(T ∗ − y, T )]dF (y) if T ∗ ≤ T ,
∫ T

0

[c2 + Cn(T ∗ − y, T )]dF (y) + C(T ∗, T ) otherwise.

(7.4.7)

where C(T ∗, T ) = [c1 + Cn(T ∗ − T, T )][1 − F (T )].

Here we would like to develop a statistical model which can be used to predict the

total cost before we actually used any item. Let T be the predetermined replacement

time. We always replace an item exactly at the time of failure or T hours after

its installation, whichever occurs first. Let τ denotes the first time to failure or
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replacement then we have

E(cost) =

∫ T

0

[c2 + CT (T ∗ − y)]fτ(y)dy + [1 − Fτ (T )][c1 + CT (T ∗ − T )]

where c1 is the cost for preventive maintenance and c2(> c1) is the cost for failure

maintenance.

Thus, we can write

C(T ) =

∫ T

0

[c2 + C(T ∗ − y)]f(y)dy + [1 − F (T )][c1 + C(T ∗ − T )]

= c2 × F (T ) + c1 ×R(T ) +R(T ) × C(T ∗ − T ) +

∫ T

0

C(T ∗ − y)]f(y)dy,

and

C
′

(T ) = (c2 − c1) × F ′(T ) +R
′

(T ) × C(T ∗ − T ) −R(T ) × C
′

(T ∗ − T )

+C(T ∗ − T ) × f(T )

= (c2 − c1) × F ′(T ) + [R
′

(T ) + f(T )] × C(T ∗ − T ) − R(T ) × C
′

(T ∗ − T )

We need to solve this differential equation to find the total cost. We would like

to consider a numerical example to see whether the minimum exist if we assume

the failure model being TSL(1, 1). We generate a random sample of size 100 from

TSL(1, 1) and fix a time T to perform preventive maintenance. We consider the

preventive maintenance cost c1 = 1 and failure replacement cost c2 = 1, 2and 10.

We repeat the process several times and computed the total cost for first 40 failures

and got the table below. Table 7.1 shows the existence of minimum cost.
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T FC10 FC2 FC1

1.00 340.55 88.95 57.50

1.01 347.25 89.65 57.45

1.02 336.95 87.75 56.60

1.03 342.95 88.15 56.30

1.04 339.15 87.15 55.65

1.05 341.25 87.25 55.50

1.06 334.40 86.40 55.40

1.07 343.75 87.35 55.30

1.08 332.15 84.95 54.05

1.09 338.55 85.81 54.22

1.10 318.48 82.67 53.19

1.11 327.68 84.04 52.59

1.12 344.76 86.48 54.19

1.13 333.70 84.50 53.35

1.14 340.40 85.20 53.30

1.15 338.86 84.68 53.90

1.16 331.28 82.90 53.86

1.17 338.27 84.09 54.31

1.18 335.24 83.05 53.52

1.19 341.90 84.00 54.76

1.20 363.90 87.50 56.95

Table 7.1: Comparisons of costs for different values of preventive maintenance times

In Table 7.1, FCi, i = 1, 2&10 represents the total cost due to preventive mainte-

nance cost c1 = 1 and the failure replacement cost c2 = i, i = 1, 2&10. Table shows

that the minimum FCi exists about at T = 1.1 units of time.

7.5 Conclusion

In this chapter we have studied the analytical behavior of the TSL pdf when it is used

to model preventative maintenance strategies in both the age replacement and block

replacement polices . We also have developed all essential estimates of the parameters

that are inherited in such analysis.

Using numerical data we have illustrated the usefulness of determining the opti-

mum cost utilizing a preventive maintenance that was initially modeled by a differ-

ential equation.
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Chapter 8

Future Research

In this Chapter we shall identify some important research problems that resulted from

the present study, that we shall investigate in the near future.

It should be noted that in the present study we are restricted to a univariate skew

Laplace probability distribution. It is of great interest to extend this distribution to

the multivariate cases. In fact, a random vector z = (Z1, . . . Zp)
T is a p-dimensional

skew Laplace random variable denoted by z ∼ SLp(Ω, λ), if it is continuous with

pdf given by

f(z) = 2gp(z; Ω)Gp(λ
Tz), z ∈ R

p,

where gp(z; Ω) and Gp(λ
Tz) denotes the pdf and cdf of the p-dimensional multivari-

ate Laplace probability distribution with the correlation matrix Ω and λ is the vector

of shape parameters. All analytical developments in the present study, we believe,

can be extended, however, it may brings some difficulties.

It should be also noted that in the present study we introduced several real world

data strictly for the purpose of identifying the goodness of fit of the different types

of probability density functions that we have introduced. Furthermore we compared

the fitness with the fitness of the actual probability density that was used to analyze

the subject data. We have demonstrated that the developed probability distribution

gives a better probabilistic characterization on this real world phenomenon.
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Thus, it is the aim of the future research projects to statistically fully analyze and

model this real world data using the proposed analytical results we have developed.

We anticipate that our analysis will result in better decisions and estimation of

the various unknowns related to each of the projects, because our analytical methods

gave better fits than the one which were used to analyze the subject data.

We have presented two real world data namely the currency exchange data and the

pressure vessels data in Chapter 4 and Chapter 6 respectively. In the currency ex-

change data we were mainly interested on whether our proposed models, the skew

Laplace probability distribution, fits the exchange rate data better than the tradi-

tionally used Gaussian model. We have observed graphically and statistically that

the goodness of fit of the SL pdf fits much better. Now we are interested to study the

possible impact of choosing this model on the financial analysis and decision making

of this data. More specifically, we are interested on estimation and the inferential

statistical study of the data.

We shall also investigate analytically and by simulation the relationship between

the skew Laplace probability distribution and the skew Normal probability distribu-

tion. We will use this currency exchange rate data to verify the relation.

In Chapter 6 we have observed, graphically and statistically that the by goodness

of fit of the truncated skew Laplace (TSL) probability distribution fitted the pressure

vessels failure data better than the two parameter gamma distribution that was used

to analyze the data. Now it is of interest to investigate the inferential study of the

TSL model to this data and compare the findings.

Finally, in Chapter 7 we have observed that the TSL probability distribution can

be used in the preventive maintenance over an infinite and over a finite time span. We

shall study the existence, instability behavior of the delay differential equation that

was resulted on computing the expected cost over a finite time span. Furthermore,
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we shall study the most appropriate numerical technique to obtain the estimates of

the solution of the nonlinear differential, delay equation and apply quasi linearization

methodology to reduce the subject differential system into a quasi-linear form so that

we can obtain an exact analytical solution of the system. These two approaches will

be compared to determine their effectiveness.
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