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Abstract

PET is a popular medical imaging modality for various clinical applications, including diagno-

sis and image-guided radiation therapy. The low-dose PET (LDPET) at a minimized radia-

tion dosage is highly desirable in clinic since PET imaging involves ionizing radiation, and

raises concerns about the risk of radiation exposure. However, the reduced dose of radioac-

tive tracers could impact the image quality and clinical diagnosis. In this paper, a supervised

deep learning approach with a generative adversarial network (GAN) and the cycle-consis-

tency loss, Wasserstein distance loss, and an additional supervised learning loss, named as

S-CycleGAN, is proposed to establish a non-linear end-to-end mapping model, and used to

recover LDPET brain images. The proposed model, and two recently-published deep learn-

ing methods (RED-CNN and 3D-cGAN) were applied to 10% and 30% dose of 10 testing

datasets, and a series of simulation datasets embedded lesions with different activities,

sizes, and shapes. Besides vision comparisons, six measures including the NRMSE, SSIM,

PSNR, LPIPS, SUVmax and SUVmeanwere evaluated for 10 testing datasets and 45 simu-

lated datasets. Our S-CycleGAN approach had comparable SSIM and PSNR, slightly higher

noise but a better perception score and preserving image details, much better SUVmean and

SUVmax, as compared to RED-CNN and 3D-cGAN. Quantitative and qualitative evaluations

indicate the proposed approach is accurate, efficient and robust as compared to other state-

of-the-art deep learning methods.

Introduction

Positron Emission Tomography (PET) is a widely used imaging modality for various clinical

applications, such as lesion malignancy, disease stage, and treatment monitoring [1–3]. Com-

pared with computed tomography (CT) and magnetic resonance imaging (MRI), PET is a

functional imaging technique that detects the metabolism processes of human body [4].

To reach a certain PET image quality for diagnostic purposes, a typical dose of injected radio-

active tracers usually ranges from 185�555 MBq, depending on PET scanners, protocols,
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reconstruction methods, patients and so on. Since high gamma radiation dosage in a patient

may induce genetic damages and cancerous diseases [5–7], it inevitably raises concerns about

the potential higher risk of radiation exposure damage. Thus, it is desirable to reduce the

dose of radioactive tracers in PET imaging. However, the major drawback of dose reduction is

that higher noise, worse contrast and information loss may be involved in the reconstructed

images, resulting in an inferior image quality and unreliable diagnosis.

A series of methods has been proposed to improve the image quality for the low-dose PET

(LDPET) imaging, while preserving crucial diagnosis information. Those algorithms can be

roughly categorized into traditional methods such as iterative reconstruction algorithms [8, 9],

post-processing methods [10–13] and deep learning based methods [14–22]. In general, those

strategies for improving PET image quality are either hardware-oriented or computationally

intensive. Besides, the LDPET image contains more complex spatial variations, correlations

and statistical noise than the full-dose PET (FDPET) image, which limits the performance of

the traditional methods.

Recently, deep learning has drawn a mount of attention in computer vision applications

and medical image analysis areas [4–7, 23]. For instance, the image classification [24] and face

verification [25] can achieve human-level performance. Algorithms based on deep learning

have made some success in low-dose CT (LDCT) reconstruction and denoising [14–18]. These

methods learn a non-linear mapping from a LDCT image to high-quality CT image to recover

missing high-frequency details. While in recovering or denoising LDPET, there are much

fewer works with deep learning methods reported. Xiang et al. [19] proposed a deep auto-con-

text CNNmodel that synthesized a high quality image from 1/4 of FDPET image and corre-

sponding MR T1-image. Xu et al. [20] used a U-Net [26] like network to recover a full-dose

quality PET image from 1/200 of FDPET image, and applied a multi-slice input strategy to

make the network more robust to noise. Wang et al. [21] designed an end-to-end framework

based on 3D conditional GANs (3D-cGANs) to estimate the high-quality PET image from the

corresponding LDPET image. The 3D convolution operation makes the model avoid the dis-

continuous cross-like artifacts that usually occurs in 2D convolution based models. Kaplan

et al. [22] proposed a deep learning model that takes specific image features into account in the

loss function to denoise 1/10 of FDPET image. Chen et al. [27] proposed to combine both PET

and MR information to synthesize high quality and accurate PET images. More recent work

from Ouyang et al. [28] suggests that combining a generative adversarial network (GAN) with

feature matching into the discriminator can lead to similar performance even without the MR

information.

Rather than using deep learning method as a post-processing tool, Gong et al. [29] pro-

posed a residual convolutional auto-encoder within a Machine Learning framework to denoise

PET images. More recently, Haggstrom et al. [30] took the PET sinogram data as the input and

directly generate PET reconstructed images, highlighting a 100-fold speedup for reconstruc-

tion compared to standard iterative techniques such as ordered subset expectation maximiza-

tion (OSEM).

In general, physicians use both the maximum SUV (SUVmax) and the mean SUV (SUVmean)

to characterize the high uptakes [31], but SUVmax is more often used in practice since SUVmean
heavily depends on volume of interest (VOI) selected, while SUVmax value is unique and repro-

ducible in VOI [32, 33]. Inspired by the most recent advanced neural networks, such as Dense-

Net [34], Residual CNN [35], and CycleGAN [36], a cycle Wasserstein regression adversarial

training framework, named S-CycleGAN, is proposed and studied for the PET brain imaging

in this paper. Although some good performance in recovering or denoising LDPET images

were reported, those deep learning based methods mentioned above were not evaluated

quantitatively for lesion SUVs, which limited their usage in clinical applications. In order to

PLOS ONE Study of low-dose PET image recovery using supervised learning with CycleGAN

PLOSONE | https://doi.org/10.1371/journal.pone.0238455 September 4, 2020 2 / 17

specific roles of these authors are articulated in the

‘author contributions’ section. The funders played a

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript. No additional external funding was

received for this study.

Competing interests: The authors have read the

journal’s policy and have the following competing

interests: HY, LZ, SG, XW, and YW are paid

employees of MinFoundMedical Systems Co., Ltd.

There are no patents, products in development or

marketed products associated with this research to

declare. This does not alter our adherence to PLOS

ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0238455


evaluate the clinical performance of our model, we also proposed a simulation framework to

produce a series of simulation data to mimic complex clinical situations. The S-CycleGAN

model was then applied to the clinical and simulated LDPET datasets (10% and 30% of FDPET

datasets), and studied qualitatively and quantitatively.

Methods

The goal of this work is to train a model to learn the non-linear mapping between LDPET and

FDPET images. As shown in Fig 1, the proposed network is based on a CycleGAN architecture.

The proposed model includes two generators and two discriminators. We denote GAB is

the mapping from LDPET domain (A) to FDPET domain (B), the GBA represents the opposite

direction mapping. In addition, there are two discriminators DA and DB which intend to iden-

tify whether the output of each generator is real or fake. Then, we train the generators and dis-

criminators simultaneously. Thus, we have the following optimization problem:

min
GAB;GBA

max
DA;DB

LðGAB;GBA;DA;DBÞ ð1Þ

Our proposed network combines four types of loss functions: adversarial loss (Ladv), cycle-

consistency loss (Lcyclic), identity loss (Lidentity) and supervised learning loss (Lsup). Therefore,

the overall loss is defined by:

L ¼ Ladv þ aLcyclic þ bLidentity þ gLsup ð2Þ

where α, β and γ are hyperparameters.

Adversarial loss: We employ adversarial losses to generate image samples to obey the

empirical distributions in the source and target domains. To improve the training stability of

GANs, we apply the 1-Wasserstein distance [37] instead of the original log-likelihood function.

The 1-Wasserstein distance or Earth-Mover (EM) distance is defined as follows.

WðPr; PgÞ ¼ inf
g2PðPr ;Pg Þ

Eðx;yÞ�g½kx � yk� ð3Þ

WhereP(Pr, Pg) denotes the set of all joint distributions γ(x, y) whose marginals are respec-

tively Pr and Pg.

Fig 1. S-CycleGAN framework.Overview of the proposed framework for LDPET image recovery.

https://doi.org/10.1371/journal.pone.0238455.g001

PLOS ONE Study of low-dose PET image recovery using supervised learning with CycleGAN

PLOSONE | https://doi.org/10.1371/journal.pone.0238455 September 4, 2020 3 / 17

https://doi.org/10.1371/journal.pone.0238455.g001
https://doi.org/10.1371/journal.pone.0238455


Thus, the adversarial objective function LðGAB;DBÞ is defined as follows.

min
GAB

max
DB

LðGAB;DBÞ ¼ �ExB�PB ½DBðxBÞ�

þExA�PA ½DBðGABðxAÞÞ� þ lE
~y ½ðkr~yDAð~yÞk2

� 1Þ
2
�

ð4Þ

Where λ is a regularization parameter, which controls the trade-off between the Wasser-

stein distance and the gradient penalty term. ~y is uniformly sampled along straight lines for

pairs of GAB(xA) and xB. The adversarial loss for the reverse direction LðGBA;DAÞ is defined in

a similar way. The final adversarial loss(Ladv) is defined

Ladv ¼
1

2
ðLðGAB;DBÞ þ LðGBA;DAÞÞ ð5Þ

Cycle consistency loss: We adopt a cycle consistency term that the FDPET and LDPET

images could be transformed mutually as an additional regularization to help learning of GAB
and GBA. The cyclic loss is defined by

LcyclicðGAB;GBAÞ ¼ ExA�PA ½kGBAðGABðxAÞÞ � xAk1�

þExB�PB ½kGABðGBAðxBÞÞ � xBk1�
ð6Þ

Where k:k1 denotes the l1-norm. This allows for additional information to be shared

between LDPET and FDPET images in learning their corresponding generators.

Identity loss: In real clinical situation, the input to the generator GAB can be a full-dose

image, but we expect the generator does not alter such clean image, and vice versa. Besides,

indentity loss provides another regularization in the training procedure and is formulated as

follows:

LidentityðGAB;GBAÞ ¼ ExA�PA ½kGBAðxAÞ � xAk1�

þExB�PB ½kGABðxBÞ � xBk1�
ð7Þ

Supervised learning loss: Since we have paired datasets, we can train our model in a super-

vised fashion. Then, we can define a supervision loss as follows:

LsupðGAB;GBAÞ ¼ ExA�PA ½kGABðxAÞ � xBk1�

þExB�PB ½kGBAðxBÞ � xAk1�
ð8Þ

Network architecture

Our proposed model, S-CycleGAN, is constituted of two generator networks, GAB and GBA,

and two discriminator networks, DA and DB. The generator networks take one domain’s

image and estimate another domain’s image. The discriminator networks aim to differentiate

between the real and estimated image.

Generative networks: The network architecture of two generators GAB and GBA is illus-

trated in Fig 2. The basic structure is optimized for the LDCT image denoising in [38, 39]. To

reduce network complexity and adapt to PET image, we set the filter number to 64 instead of

128 in the original model and add a ReLU layer before model output. As shown in Fig 2, the

first two convolution layers use 64×3×3 convolution kernels to produce 64 feature maps, and

connect to 6 sets of residual modules, where each module is composed of 3 sets of convolution,

batch normalization, and a ReLU layer, and one residual connection with a ReLU layer. Later
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on, a concatenation layer that concatenates the inputs of each module and the output of the

last module, and two convolution layer with 64 feature maps are applied. Finally, the last con-

volution layer with 3×3 convolution kernel combined with an end-to-end bypass connection

and an additional ReLU layer are used to estimate the FDPET image.

Discriminator: The discriminators take either a real PET image or an estimated one as

input, and determines whether the input is real or not. As shown in Fig 3, the discriminator

network is designed to have 4 stages of convolutions, followed by two fully-connected layers,

of which the first has 1024 outputs and the last has 1 output. We apply 4×4 filter size for the

convolution layers which have different numbers of filters as 64, 128, 256, 512 respectively. In

addition, we use Leaky ReLU activation in the discriminator for all layers, with slope 0.2.

Experimental setup

Datasets

We trained our model by using human brain datasets. A total of 109 clinic patient (range 44.3-

103kg) PET/CT images were taken by the Minfound ScintCare PET/CT 720L scanner with

injection of 370.81±64.38 MBq of 18F-fluorodeoxyglucose(FDG), and we randomly selected

89, 10 and 10 patient data for training, validation and testing, respectively. All scans were

taken about 5 minutes and usually start at 45-60 minutes later after injection. The reconstruc-

tion was performed using the manufacturer-provided software with all physical corrections,

including attenuation, scatter, randoms, dead-time and SUV correction. The size of each 3D

reconstructed PET image is 192×192×96 with pixel size of 2.1 mm. FDPET and LDPET images

were reconstructed with the same parameters and post filters to ensure comparable spatial

Fig 2. Generator. A generator architecture in the proposed framework.

https://doi.org/10.1371/journal.pone.0238455.g002

Fig 3. Discriminator. A discriminator architecture in the proposed framework.

https://doi.org/10.1371/journal.pone.0238455.g003
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resolution in both images. Two different simulated doses, i.e. 10% and 30% counts of original

scan, where generated by randomly discarding events in FDPET list mode data. Although the

10% and 30% images were generated by emulated low-count scans, however, those images

have comparable quality with actual low-dose scan, and confirmed by the recent work [40]. By

this way, FDPET and LDPET images are spatially aligned.

In order to evaluate the clinical feasibility of our proposed model, a Monte Carlo simulation

framework using GATE [41, 42] was carefully designed and shown in Fig 4. At the first step,

lesion maps with different shapes, sizes, and locations were extracted from a few of known

patient’s datasets (different from the above 109 patients), and a patient’s attenuation map

(μ-map) was generated from its corresponding CT image. Then, these two maps were fed into

GATE, and were simulated with the same system settings as Minfound ScientCare PET/CT

720L scanner. Finally, the simulated coincidence data of lesions combined with the clinical

coincidence data of the patient were reconstructed by the manufacturer-provided software

to produce the final PET image. To systematically evaluate model performance, a series of

simulation data with various activities, sizes and shapes were produced and reconstructed. In

order to reduce statistical variations, each simulation configuration was repeated 3 times and

total 45 simulations were used in later quantitative evaluations. The details of those lesions are

also provided in Table 1 and Fig 5. The activity for background is about 30 kBq/ml. Some typi-

cal simulated PET images are shown in Fig 6.

In order to reduce the computational cost for training, we extracted overlapping patches

from LDPET and FDPET images instead of directly feeding entire PET images to the training

pipeline. We cropped LDPET and FDPET images into patches of 56×56 at the same place for

the supervised learning with sliding step 40. In total, there are 136704 and 15360 patches for

training and validation. Since PET images have a large range in pixel values, we scaled pixel

values to [0, 1].

Evaluation measures

Six measures are used to evaluate the model performance including the normalized root mean

square error (NRMSE), structural similarity index (SSIM [43]), peak signal-to-noise ratio

(PSNR), learned perceptual image patch similarity (LPIPS) [44], relative errors (RE) for

SUVmean and SUVmax, which are defined as following.

SSIM ¼
2mxmy þ C

1

m2

x þ m2

y þ C
1

�
2sxy þ C

2

s2

x þ s2

y þ C
2

¼ lði; jÞ � csði; jÞ

ð9Þ

Fig 4. Simulation architecture. A GATE based simulation architecture.

https://doi.org/10.1371/journal.pone.0238455.g004
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NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN

i¼1

PM

j¼1
ðxij � yijÞ

2

PN

i¼1

PM

j¼1
y2ij

v

u

u

t � 100 ð10Þ

PSNR ¼ 20 � log
10
ð
MAX

MSE
Þ ð11Þ

RE ¼ ð
SUVModel � SUVFDPET

SUVFDPET

Þ � 100 ð12Þ

Where C1 and C2 are constants, μx, μy, σx, σy, and σxy are mean and standard deviation in the

patch centered at pixel (i,j). MAX is the peak intensity of the image, MSE is absolute mean

square error.

The SUV (standardized uptake value) is commonly used as a relative measure of FDG

uptake. The basic expression for SUV [32] is

SUV ¼
r

a0=w
ð13Þ

Where r is the radioactivity activity concentration [kBq/ml] measured by the PET scanner

within a region of interest (ROI), a0 is the decay-corrected amount of injected radiolabeled

Table 1. Lesion position and size information.WhereDmax andDmean are the maximum and mean diameters, respectively.

No. Center Position
(x,y,z)

Dmax

[mm]
Dmean

[mm]
Volume
[mm

3]
Label

1 99,92,29 9.39 7.72 240.78 small

16 9.72 481.57 middle

18.78 12.25 963.14 large

2 108,62,49 8.9 7.41 213.0 small

12.2 9.27 416.74 middle

16 11.67 833.49 large

3 95,86,61 17.3 9.91 509.36 small

18.78 12.45 1009.45 middle

21.9 15.68 2018.9 large

4 74,68,43 10.5 7.5 222.26 small

13.5 9.05 388.96 middle

16.2 11.32 759.4 large

5 98,35,57 12.4 8.09 277.83 small

16.4 9.85 500.09 middle

16.8 12.33 981.67 large

https://doi.org/10.1371/journal.pone.0238455.t001

Fig 5. Embedded lesions. The distribution of 5 embedded lesions in the GATE simulation.

https://doi.org/10.1371/journal.pone.0238455.g005
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FDG (kBq), and w is the weight of the patient (g), which is used as a surrogate for a distribu-

tion volume of tracer.

Implementation details

In the proposed model, training was performed by minimizing the loss function 2. We utilized

the Adam optimizer [45] with β1 = 0.5 and β2 = 0.999 to minimize the total loss function of the

proposed network. We set the learning rate to 2×10−4, hyperparameters α = 10, β = 5, and γ = 5.

The trade-off parameter λ betweenWasserstein distance and gradient penalty was set to be 10, as

[37] suggested. The hyperparameters basically were derived from the original CycleGAN paper.

As for the parameter, γ, it was determined by experiment in order to get a trade-off between the

noise and the bias of SUV at the lesion regions. The size of the patch was set to 56×56 and the

mini-batch is 16. Kernels were initialized randomly from a Gaussian distribution. All experiments

were conducted using Keras [46] with Tensorflow backend on a NVIDA TITANGTX GPU.

The training epoch was set to 200 based on experience with early-stop strategy when the

validation loss is minimal (the patience value is 5). It takes 7 days for training at current GPU

hardware. Although the training was done on patches, the proposed network can process

images of arbitrary sizes. All the testing images were simply fed into the network without

decomposition and required 74ms of inference time per image slice.

Experimental results

Comparison with other methods

To study the effectiveness of our proposed model, we compared it with RED-CNN [15] and

3D-cGAN [21]. The network structure and parameters of these competing methods were set

Fig 6. Simulation PET images. Typical FDPET images with embedded lesions using the proposed simulation
architecture.

https://doi.org/10.1371/journal.pone.0238455.g006
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per the suggestions from the original papers and re-implemented by Keras. For a qualitative

comparison, some sample images of the predicted FDPET from three deep learning methods,

the corresponding LDPET and FDPET reconstruction are shown in Figs 7 and 8 for 10% and

30% dose of FDPET, respectively. The estimated images by all deep learning methods show

better image quality than low-dose images, providing better noise reduction and structure

details recovery.

The quantitative measures in terms of NRMSE, SSIM and PSNR are shown in Table 2 using

10 testing patient datasets. All three predicted images have better noise control and structure

similarities than low-dose images, but similar peak signal to noise ratios. RED-CNN and 3D-

Fig 7. Model comparison for 10% of FDPET.Qualitative comparison of PET images by S-CycleGAN, RED-CNN
and 3D-cGAN, where low-dose data is 10% of FDPET.

https://doi.org/10.1371/journal.pone.0238455.g007

Fig 8. Model comparison for 30% of FDPET.Qualitative comparison of PET images by S-CycleGAN, RED-CNN
and 3D-cGAN, where low-dose data is 30% of FDPET.

https://doi.org/10.1371/journal.pone.0238455.g008
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cGANmodels have better NRMSE scores than S-CycleGAN, however, their predicted images

suffer from over-smoothing issues and may compromise the diagnostic performance, as

shown in Figs 8 and 7 (indicated by red arrows).

As suggested by Zhang et al. [47], the traditional metrics (L2/PSNR, SSIM, FSIM) disagree

with human judgments, a learned perceptual image patch similarity metric was proposed to

evaluate image quality. The LPIPS measurements between model prediction and FDPET is

shown in Fig 9. The estimated images by all deep learning methods show better LPIPS scores

than low-dose images and S-CycleGAN obtains the best score. The average LPIPS scores of

LDPET (30% of FDPET), S-CycleGAN, RED-CNN and 3D-cGAN are 0.035, 0.026, 0.031 and

0.031, respectively.

Clinical evaluation for specific VOIs

In clinic, the mean and maximum SUVs are often used as bases for diagnosis to characterize

suspicious high uptakes [31, 32]. Therefore, the SUVmeasures are used to investigate the

Table 2. Quantitative comparison on normal subjects (all 10 patients).

Method Dose
Level

NRMSE
Mean±std.

SSIM
Mean±std.

PSNR(dB)
Mean±std.

Low-dose 10% 25.985±5.962 0.962±0.0186 66.408±1.654

30% 12.218±2.567 0.991±0.00388 67.208±1.954

S-CycleGAN 10% 17.531±3.702 0.981±0.00803 65.861±1.918

30% 10.405±2.056 0.994±0.00262 67.185±2.176

RED-CNN 10% 13.838±2.606 0.989±0.00510 64.886±1.780

30% 8.901±1.781 0.994±0.00212 66.901±1.995

3Dc-GAN 10% 14.021±2.296 0.989±0.00415 64.964±1.998

30% 9.395±1.682 0.995±0.00203 67.034±2.019

https://doi.org/10.1371/journal.pone.0238455.t002

Fig 9. LPIPS score comparison for 30% of FDPET. LPIPS score (smaller is better) comparison of PET images by
LDPET (30% of FDPET), S-CycleGAN, RED-CNN and 3D-cGAN.

https://doi.org/10.1371/journal.pone.0238455.g009
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effectiveness of the proposed method for specific VOIs on both the normal and lesion tissues.

The datasets were produced by our proposed simulation framework as mentioned in Experi-

mental Setup section. In this analysis, the mean and maximum SUV biases and deviations

were evaluated for all deep learning models mentioned above.

The average biases and standard deviations of SUVmean and SUVmax of lesion tissues are

shown in Tables 3, 4 and Tables 5, 6, respectively. Since SUVmax is not critical for normal tis-

sues, only SUVmean error is shown in Table 7. The results of different lesion sizes and FDG

concentrations are also shown in above tables.

Table 3. The average bias and standard deviation for SUVmean of lesion tissues recovering from 10% of FDPET datasets.

Lesion size Method 45.23
[kBq/ml]

60.56
[kBq/ml]

91.12
[kBq/ml]

152.23
[kBq/ml]

274.47
[kBq/ml]

Small S-CycleGAN -7.38±4.65 -12.03±5.98 -11.00±4.82 -7.18±4.80 -5.17±5.21

RED-CNN -15.48±3.74 -24.88±8.03 -31.67±11.29 -21.70±13.93 -24.31±16.54

3Dc-GAN -13.49±6.48 -21.46±9.58 -22.30±10.09 -21.45±10.44 -34.78±10.41

Middle S-CycleGAN -6.90±4.61 -10.44±3.93 -7.12±5.15 -4.20±3.39 -2.97±3.38

RED-CNN -12.29±5.61 -21.45±8.70 -25.08±10.41 -13.92±12.28 -16.57±14.28

3Dc-GAN -11.90±6.97 -21.16±7.90 -18.55±9.01 -18.15±13.15 -26.62±9.52

Large S-CycleGAN -6.92±2.13 -9.75±4.85 -4.56±3.32 -1.82±2.50 -0.81±1.22

RED-CNN -12.43±5.25 -20.28±8.19 -19.12±10.10 -11.77±12.17 -14.39±11.26

3Dc-GAN -13.42±4.74 -21.33±7.22 -18.14±10.23 -18.42±10.13 -21.19±10.02

https://doi.org/10.1371/journal.pone.0238455.t003

Table 4. The average bias and standard deviation for SUVmean of lesion tissues recovering from 30% of FDPET datasets.

Lesion size Method 45.23
[kBq/ml]

60.56
[kBq/ml]

91.12
[kBq/ml]

152.23
[kBq/ml]

274.47
[kBq/ml]

Small S-CycleGAN -0.55±5.66 -3.16±7.15 -5.14±4.35 -2.81±3.83 -2.62±2.48

RED-CNN -6.59±6.27 -11.55±8.39 -11.09±5.38 -3.08±4.74 -4.76±8.27

3Dc-GAN -5.27±5.84 -8.67±6.47 -8.87±3.17 -11.41±3.60 -16.68±6.51

Middle S-CycleGAN -1.50±4.84 -3.73±3.52 -2.99±1.65 -1.37±1.31 -1.17±1.95

RED-CNN -5.95±6.05 -10.81±5.64 -7.96±3.24 -1.88±4.90 -3.33±6.95

3Dc-GAN -6.05±5.53 -9.27±4.88 -7.02±3.05 -11.61±5.15 -14.67±3.07

Large S-CycleGAN -1.90±1.79 -3.89±1.03 -2.13±1.59 -0.38±1.07 -0.35±1.09

RED-CNN -6.29±3.58 -9.67±4.56 -6.27±4.09 -2.31±4.15 -3.60±4.73

3Dc-GAN -6.74±4.09 -9.36±3.82 -6.49±4.95 -7.72±5.03 -10.16±4.19

https://doi.org/10.1371/journal.pone.0238455.t004

Table 5. The average bias and standard deviation for SUVmax of lesion tissues recovering from 10% of FDPET datasets.

Lesion size Method 45.23
[kBq/ml]

60.56
[kBq/ml]

91.12
[kBq/ml]

152.23
[kBq/ml]

274.47
[kBq/ml]

Small S-CycleGAN -2.52±18.50 -12.75±13.81 -6.86±8.65 -4.95±8.08 -5.01±8.25

RED-CNN -22.14±10.95 -38.52±12.44 -44.96±13.78 -22.99±20.91 -24.25±25.41

3Dc-GAN -22.53±10.56 -37.25±11.82 -32.85±14.51 -24.20±17.38 -40.52±16.64

Middle S-CycleGAN -1.53±18.13 -10.22±20.20 -0.03±23.77 -9.99±10.11 -3.26±7.59

RED-CNN -19.76±11.16 -38.95±8.91 -38.01±15.41 -18.49±14.93 -12.36±20.97

3Dc-GAN -19.28±12.50 -38.26±10.47 -28.79±17.26 -22.40±16.16 -31.75±15.05

Large S-CycleGAN -1.42±17.67 -7.52±23.74 4.95±19.97 4.05±12.46 1.28±4.22

RED-CNN -23.52±7.92 -35.11±12.13 -22.94±18.51 -6.85±16.13 -2.42±18.15

3Dc-GAN -22.36±8.82 -37.36±14.17 -25.15±15.89 -17.86±15.92 -18.41±19.70

https://doi.org/10.1371/journal.pone.0238455.t005
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SUVmean deviation: As observed in Table 7, all the models have very similar SUV-mean val-

ues in normal tissues which biases are less than 5% for both 10% and 30% dose levels. How-

ever, as seen in Tables 3 and 4, the RED-CNN and 3D-cGAN have much larger biases than

S-CycleGAN in lesion tissues, especially for smaller lesion sizes and lower activities. The aver-

age SUVmean biases of S-CycleGAN, RED-CNN and 3D-cGAN for all lesions and activities are

-6.4±5.3%, -18.7±11.8% and -20.0±10.8% for 10% dose level, and -2.8±4.1%, -6.3±6.4% and

-9.8±6.0% for 30% dose level, respectively. It can be also seen that the biases and deviations

of SUVmean decrease as the lesion size and activities increases for S-CycleGANmodel in most

cases. Those observations indicate the good robustness of our proposed model.

SUVmax deviation: The SUVmax results of all three deep learning methods are shown in

Tables 5 and 6 for 10% and 30% dose of FDPET, respectively. Since the single pixel value in

the VOI is largely affected by the statistical property of data, the SUVmax values in LDPET

images have large biases and deviations, especially for the lower dose level. Our proposed

S-CycleGANmodel is trending to reduce the biases and deviations but this ability gets worse

as lesion sizes decrease. The average SUVmax biases of S-CycleGAN, RED-CNN and 3D-cGAN

for all lesions and activities are -3.7±16.2%, -24.9±11.7% and -28.0±16.5% for 10% dose level,

and -5.2±6.8%, -11.4±11.7% and -14.8±9.8% for 30% dose level, respectively. Those results are

suggesting the S-CycleGANmethod can better preserve the SUVmax values than other two

methods.

Ablation study

Impact of supervised learning loss: The impact of the supervised learning loss was studied

for the proposed model. A modified model, named as CycleGAN, was trained and tested with

all the loss functions except the supervised loss Lsup. Image artifacts of missing structures are

observed in about 7% of the slices generated by the CycleGANmodel, as indicated by the red

and yellow rectangle in Fig 10. Therefore, the use of supervised learning loss could reduce

these artifacts and maintaining the fidelity of the PET image.

Table 6. The average bias and standard deviation for SUVmax of lesion tissues recovering from 30% of FDPET datasets.

Lesion size Method 45.23
[kBq/ml]

60.56
[kBq/ml]

91.12
[kBq/ml]

152.23
[kBq/ml]

274.47
[kBq/ml]

Small S-CycleGAN -1.44±8.87 -6.49±9.43 -10.58±4.59 -6.52±6.45 -4.91±3.92

RED-CNN -15.36±10.89 -24.32±8.96 -19.56±6.54 -6.09±6.10 -5.37±14.29

3Dc-GAN -11.76±7.59 -18.75±6.06 -14.00±7.20 -16.96±5.70 -19.79±9.37

Middle S-CycleGAN -4.05±7.01 -8.32±2.41 -6.49±3.70 -4.50±3.67 -2.56±5.20

RED-CNN -15.59±8.45 -23.36±5.64 -14.97±5.90 -2.59±5.63 0.91±11.38

3Dc-GAN -12.75±7.15 -20.06±4.77 -11.37±7.51 -18.67±5.90 -16.89±9.29

Large S-CycleGAN -2.75±3.31 -6.96±4.73 -3.89±5.56 -0.14±3.88 0.54±4.78

RED-CNN -16.73±5.01 -20.56±6.84 -10.52±7.31 0.34±6.44 1.32±7.78

3Dc-GAN -13.16±6.03 -17.79±7.46 -5.50±11.45 -5.98±8.82 -5.91±11.22

https://doi.org/10.1371/journal.pone.0238455.t006

Table 7. The bias and deviations for SUVmean of normal tissues.

Dose
Level

S-CycleGAN
Mean±std.

RED-CNN
Mean±std.

3Dc-GAN
Mean±std.

10% -3.11±7.14 -4.42±7.60 -3.49±7.77

30% -0.78±3.08 -1.15±3.16 -0.57±3.72

https://doi.org/10.1371/journal.pone.0238455.t007
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Impact of cycle-consistency loss: The effectiveness of cycle consistence loss was also

studied by comparing the S-CycleGAN and 3D-cGANmodel which didn’t involve this loss.

As shown in Tables 3, 4, 5 and 6, S-CycleGANmodel can better preserve the SUVmean and

SUVmax values than 3D-cGAN, which indicates the effectiveness and necessity of the cycle

consistence loss even if it is originally designed for the unpaired datasets training.

Discussion

In order to systematically evaluate model performance, we designed a novel simulation frame-

work to produce clinical-like data, in which the embedded lesions are exacted from the clinical

data by considering realistic structures, sizes, activities and dose levels. Such simulations

would be helpful to understand the clinical performance of the proposed method since it is

almost impossible to know the true lesion uptakes in clinic. Moreover, this method can be

extend to other related model performance studies.

Although our model has achieved the compelling results, there still exist some limitations.

Our proposed model, S-CycleGAN, requires longer training time than other standard GAN-

based and CNN-based methods. The future work should consider more efficient architectures.

Though this paper mainly focuses on PET brain images, the same model with different hyper-

parameters has been applied to PET body images too. More results will be presented in the

near future once enough PET body datasets are acquired and trained.

Recent published papers [20–22] on LDPET image recovery were extended to even lower

doses. However, it is difficult to conclude which approach can reduce more dose since differ-

ent paper uses different datasets, acquisition protocols and scanners. In this paper, the training

set of 99 patients has 110±23M average coincidence counts. Consequently, our proposed

S-CycleGANmodel actually takes the count variation into account in the training and can be

used for a relatively widespread dose levels in complicated clinical situations. The recently

published paper [48] uses a very similar method, the CycleGAN, for LDPET denoising, but

they still didn’t investigate the metrics of SUVmax and robustness to different count levels.

Fig 10. LDPET denoising with CycleGAN. A typical PET slice image with artifact from CycleGAN.

https://doi.org/10.1371/journal.pone.0238455.g010
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All of those approaches usually compared the structure similarity, noise, signal-to-noise

ratio or SUVmean, but none of them involved the evaluation on SUVmax. SUVmax is more often

used in the clinical practice due to its better reproducibility than SUVmean since the maximum

value within a VOI (or region-of interest) is invariant with respect to small spatial shifts [32,

33]. Due to the supervised training mode, the SUVmean can be easily preserved, but not the

SUVmax. From systematic study of SUVmean and SUVmax, our proposed model has demon-

strated promising results in recovering a high quality image from a LDPET image. However,

smaller lesion size and lower activity actually degrade the performance of all models compared

in this paper.

As shown in Tables 3, 4, 5 and 6, the SUVmean values can be relatively easier to be preserved

as compared the SUVmax values. Our proposed model has demonstrated better quantitative

results than RED-CNN and 3D-cGAN no matter which dose level is used. When predicted

images in the same dose level are compared, the SUVmean values show strong dependence on

lesion sizes and activity concentrations. On the other hand, the SUVmax values only show

strong dependence on lesion sizes, but not the activity concentrations. Moreover, the SUVmax
values still have quite large variations even though 45 simulations are used in evaluations.

These phenomena can be partially explained by two factors: one is image noise caused by data

itself and reconstruction/post-processing methods, which can strongly affect SUVmax values

relying only on the single pixel values; another is the partial volume effect caused by the

finite system spatial resolution and image sampling, which can heavily reduce the accuracy of

SUVmean and SUVmax values, especially for the smaller volumes of VOIs, or the lower activity

ratio between VOIs and their surrounding background [49].

As compared to the 30% dose level, the images recovered from the 10% dose level still have

good scores in normal tissues in terms of NRMSE, SSIM and PSNR, but much larger biases

and deviations for the SUVmean and SUVmax in lesion tissues for all three deep learning meth-

ods. This alerts us a potential risk that any diagnosis relying on these two indexes could be

changed in clinical practice. Therefore, we should be cautious in developing any deep learning

approaches which could largely change SUVmean and SUVmax while reducing dose. For this

reason, the 30% dose level is preferred in this study since it can better balance the tradeoff

between SUV values and dose reduction.

Conclusion

In conclusion, we have introduced a novel deep learning based generative adversarial model

with the cycle consistent to estimate the high-quality image from the LDPET image. The pro-

posed S-CycleGAN approach has produced comparable image quality as corresponding

FDPET images by suppressing image noise and preserving structure details in a supervised

learning fashion. Systemic evaluations further confirm that the S-CycleGAN approach can bet-

ter preserve mean and maximum SUV values than other two deep learning methods, and sug-

gests the amount of dose reduction should be carefully decided according to the acquisition

protocols and clinical usages.
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