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The effect of a magnetic field dependent viscosity on a Soret driven ferro thermohaline convection in a 

rotating porous medium has been investigated using the linear stability analysis. The normal mode technique is 
applied. A wide range of values of the Soret parameter, magnetization parameter, the magnetic field dependent 
viscosity, Taylor number and the permeability of porous medium have been considered. A Brinkman model is 
used. Both stationary and oscillatory instabilities have been obtained. It is found that the system stabilizes only 
through oscillatory mode of instability. It is found that the magnetization parameter and the permeability of the 
porous medium destabilize the system and the Soret parameter, the magnetic field dependent viscosity and the 
Taylor number tend to stabilize the system. The results are presented numerically and graphically. 
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1. Introduction 
 
 Ferrofluids are single-magnetic-domain, two-phase three component fluids (Rosensweig, 1985), 
where the core represents the single domain, the core and carrier fluid represent the two phases, the 
surfactant and carrier fluids represent the three components. A distinguishing feature of a ferrofluid is its 
promising applications in various disciplines. Some practical applications of ferrofluids are dynamic sealing, 
heat dissipation, damping and doping of technological materials. 
 Ferroconvection studies were initiated by Cowley and Rosensweig (1947) followed by Finlayson 
(1970) and Lalas and Carmi (1971). Finlayson (1970) studied the convective instability of a single 
component ferrofluid heated from below in the presence of a vertical uniform magnetic fluid and explained 
the concept of thermo mechanical interaction in a ferrofluid. Bernard convection (Chandrasekhar, 1961) in 
magnetic fluids has been analyzed by Schechter and Velarde (1974) and Schwab et al. (1993). 
 Double diffusive convection is of great importance in various fields such as high quality crystal 
production, oceanography, production of pure medicine, solidification of molten alloys, geothermally heated 
lakes and magmas. Double diffusive convection occurs when the above system is heated up. In this 
convection, mass transfer is included and the density variation is caused by two different components which 
have different rates of diffusion (Huppert and Turner 1981; Turner, 1974). Vaidyanathan et al. (1995; 1997)  
investigated the ferrothermohaline convection in the presence and absence of a porous medium. The solute is 
ferromagnetic, which modifies the magnetic field established as a perturbation. They obtained the conditions 
for the onset of thermal stability through stationary and oscillatory modes.  
 When a salty fluid gets heated up two types of interdiffusive phenomena occur. They are known as 
(i) the Soret effect, (ii) Dufour effect. Thermodiffusion, also called the Soret effect, is characterized by the 
Soret coefficient. Thermodiffusion in a ferrofluid in the presence of a magnetic field was investigated by 
Voelker and Odenbach (2005). 
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 Hurle and Jakeman (1971) analyzed the Soret-driven thermosolutal convection. They experimentally 
analyzed the non-linear stability of double diffusive phenomena. Self-oscillatory convection caused by the 
Soret effect was studied by Shliomis and Souhar (2000). They analyzed the influence due to magnetophoreis 
and the Soret effect in the convective instability of magnetized ferrofluids. By considering the magnetic fluid 
as a binary mixture, thermodiffusive problems in magnetic fluids in the presence of magnetic fields were 
analyzed by Lange (2004). Shevtsova et al. (2006) carried out a study on the onset of convection in Soret 
driven instability. Soret – driven convection in a horizontal porous layer was analytically and numerically 
studied by Charier – Mojtabi et al. (2007). They found that for a cell heated from below the monocellular 
flow loses stability and when it is heated from above it remains stable.  
 Soret driven ferrothermohaline convection in the presence and absence of a porous medium was 
investigated by Vaidyanathan et al. (2005) and Sekar et al. (2006).  They also analyzed the effect of dust 
particles in ferrothermohaline convection due to the Soret effect (Sekar et al., 2008 and 2009) and 
(Hemalatha et al., 2011). A linear stability analysis on the onset of Soret driven motion in nanoparticles 
suspension was made by Kim (2011). 
 The effect of rotation on ferrothermohaline convection saturating a porous medium was analyzed by 
Sekar et al. (1998). A non linear stability analysis of a rotating double diffusive magnetized ferrofluid was 
carried out by Sunil et al. (2011). The effect of porosity on revolving ferrofluid flow with a rotating disk was 
analyzed by Kushal Sharma et al. (2011a).  
 It is interesting to study the nature of variable viscosity on fluids. Viscosity may depend on 
temperature (Ramanathan and Mukhil, 2006) and the magnetic field also. Thermal convection in a 
ferromagnetic fluid in the presence of a magnetic field dependent viscosity was investigated by many authors 
(Kushal Sharma et al., 2010; 2011b) and (Vaidyanathan et al., 2002a; 2002b and 2002c). The effect of a 
magnetic field dependent viscosity on ferroconvection and ferrothermohaline convection in the presence and 
absence of dust particles was studied by Sunil et al. (2005 and 2006). Nanjundappa et al. (2009) analyzed the 
effect of a magnetic dependent viscosity on the onset of a ferromagnetic fluid layer heated from below and 
cooled from above with constant heat flux. The effect of a magnetic field dependent viscosity on 
ferroconvection in an anisotropic porous medium in the presence of a horizontal thermal gradient was 
studied by Hemalatha and Sivapraba (2012). 
 Vaidyanathan et al. (2007) discussed the effect of Coriolis force on a Soret driven ferrothermohaline 
convection in a medium of sparse particle suspension. In the present work, it is intended to include the effect 
of a magnetic field dependent viscosity, Coriolis force and Soret effect in a ferrofluid saturating a porous 
medium. A linear stability analysis has been carried out. A Brinkman model is used. It is found that the 
system stabilizes only through oscillatory mode. The values are presented graphically. 
 
2. Mathematical formulation 
 
 A horizontal layer of an incompressible Boussinesq ferromagnetic fluid of thickness ‘d’ in the 
presence of a transversely applied magnetic field heated from below and salted from below and above is 
considered. The temperature and salinity at the bottom and top surfaces z = � d/2 are T0 � � T/2 and S0 �
� S/2 respectively. Both boundaries are taken to be free and perfect conductors of heat and solute. 
Considering the Soret effect on the temperature gradient the mathematical equations governing the above 
investigation are as follows.  
 The fluid is assumed to be an incompressible fluid having a variable viscosity given by 
 
  � �1 1 B� � � � 	 
  (2.1) 
 
where� 1�  is taken as the viscosity of the fluid when the applied magnetic field is absent. The variation in the 
coefficient of the magnetic field dependent viscosity 	  has been taken to be isotropic 1 2 3	 � 	 � 	 . Hence 
the component wise �  can be written as 
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  � � ,x 1 11 B� � � � 	  
 
  � � ,y 1 21 B� � � � 	  
 
  � �.z 1 31 B� � � � 	  
 
 The continuity equation for an incompressible Boussinesq fluid is 
 
   .0� 
 �q  (2.2) 
 
 The momentum equation as given by Finlayson (1970) is 
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0 0

D p 2 .
Dt k
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 The temperature equation for an incompressible ferrofluid is 
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 The mass flux equation is given by 
 

  TS2 2
S

DS K S T   
Dt

� � � �  (2.5) 

 
where , ,1 SK K  � , and ST are the thermal conductivity, concentration diffusivity, viscous dissipation factor 
containing second order terms in velocity and the Soret coefficient respectively.  
 Using Maxwell’s equations for non-conducting fluids, one can assume that the magnetization is 
aligned with the magnetic field and depends on the magnitude of the magnetic field, temperature and salinity, 
so that 
 

  � �, , .M H T S
H

�
HM                                        (2.6) 

 

 The magnetic equation of state is linearized about the magnetic field ,0H  the average temperature 

0T  and the average salinity 0S  to become 
 
  � � � � � �0 0 0 2 0M M H H K T T K S S� � � � � � � �                  (2.7) 
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 are the magnetic susceptibility, the 

pyromagnetic coefficient and the salinity magnetic coefficient, respectively. 
 The density equation of state for a Boussinesq two-component fluid is  
 
  � � � �� �0 0 0t s1 T T S S� � � � �                                                               (2.8) 
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where t  is the thermal coefficient and s  the solute analog of t . The basic state is assumed to be a 
quiescent state and the basic state quantities are obtained by substituting the velocity of the quiescent state in 
the governing Eqs (2.1)-(2.5) and the solutions of Eqs (2.1)-(2.8) are obtained using the techniques of the 
linear stability analysis and normal mode technique. 
 Normal mode solution of all dynamical variables can be written as  
 
  � � � � � �, , , , exp x yf x y z t f z t i k x k y� �                                          (2.9) 

 
where f (z,t) represents � � � � � � � � � �, , , , , , , , , .w z t z t S z t z z t z t� ! � �� �  
 The wave number k0 is given by 
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 The modified Fourier heat conduction equation is 
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where  .0 0 V,H 0 0C C KH �  �   (2.11) 
 
 The vertical component of the momentum equation can be written as 
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 The z component of the vorticity equation can easily be obtained as 
 

   
2

2
0 0 02

wk 2
t z kz

� ��# � � �
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                                                                 (2.13) 

 

where v u
x y

� �� �
# � �� �� �� �

, is the z component of vorticity. 
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 The pressure term, the magnetic body force term vanish from the vorticity equation. 
 The salinity equation is 
 

  TS .
2 2

2 2
s S 0 02 2

S w K k S k
t z z

� � � �� � �
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                                                (2.14) 

 
 The magnetic potential equation is 
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     (2.15) 

 
 Following the normal mode analysis, the linearized perturbation dimensionless equations for the 
thermosolutal convection due to Soret effect in a ferrofluid are 
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where the non-dimensional variables can be written as 
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where the dimensionless parameters used are 
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where , , PrSR R  and ST are, respectively, the critical thermal Rayleigh number, salinity Rayleigh number, the 
Prandtl number, Soret coefficient and other parameters to represent non dimensional parameters used 
appropriately. 
 
3. Exact solution for free boundaries 
 
 The boundary conditions on velocity, temperature, salinity and the magnetic potential are 
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 The exact solutions satisfying Eq.(3.1) are 
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where , , ,1 1 1A B C  and F1 are constants and ( is the growth rate. In the above solution, the lowest mode of sin 
(n�z), for n=1 is assumed as a solution. The solution can be odd or even modes compatible with boundary 
conditions. In the present case of choosing the reference at the centre enables one to choose the lowest even 
mode, namely cos (n�z) for all dynamical variables. Substitution of Eqs (3.2) in Eqs (2.16) - (2.20) leads to 
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 For the existence of non-trivial eigen functions the determinant of the coefficients of A1, B1, C1, and 
F1 in Eqs (3.3) - (3.6) must vanish. Following the techniques and analysis of Finlayson on Eqs (3.3) - (3.6) 
leads to 
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W=W1+W2R, X=X1+X2R, Y=Y1+Y2R, where R is the thermal critical Rayleigh number. Also, 
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 For obtaining stationary instability the time independent term is made equal to zero. The critical 
thermal Rayleigh number for stationary instability is obtained from Eq.(3.8), using the formula 
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 It is worthwhile to mention that in the absence of the magnetic field dependent viscosity, the Taylor 
number and the permeability of the porous medium, the critical thermal Rayleigh number given by Eq.(3.8), 
reduces to the critical thermal Rayleigh number obtained by Vaidyanathan et al. (2005). In the absence of the 
field dependent viscosity and the Soret parameter this Eq.(3.8) reduces to the thermal Rayleigh number 
obtained by Vaidyanathan et al. (1997). For very large M1, one gets the results for the magnetic mechanism, 
and the critical thermomagnetic Rayleigh number for stationary mode is obtained using 
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 The conditions for the onset of oscillatory stabilities are obtained as follows. Taking ( =i(1 and 
(1

2>0 in (28) we get 
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where if 0CR � SCR , then the system stabilizes through stationary mode. If 0CR � SCR , then the system 
stabilizes through oscillatory mode, where 0CR  and SCR  are the critical thermal Rayleigh numbers for the 
oscillatory and stationary convection system. 

 
4. Results and discussions 
 
 The Soret-driven convective instability of a two component ferrofluid in the presence of acmagnetic 
field dependent viscosity in a rotating sparsely distributed porous medium has been analyzed. A Brinkman 
model is used. A Linear stability analysis has been carried out as the perturbations are assumed to be small. 
The magnetization parameter M1 is taken to be 1000. The Soret parameter ST is allowed to vary from -0.002 
to 0.002. The salinity Rayleigh number RS is assumed to take values from -500 to 500 and the magnetization 
parameter M3 is varied from 5 to 25. The ratio of mass transport to heat transport � is assumed to have values 
from 0.05 to 0.13. The Prandtl number Pr is assumed to be 0.01. For these fluids M2 will have a negligible 
value and hence is taken as zero. The magnetic field dependent viscosity � is allowed to take values from 
0.01 to 0.07. The Talyor number Ta which decides about the amount of rotation is allowed to vary from 10 to 
108. The permeability of the porous medium k is given values ranging from 0.1 to 0.9. 
 Figure 1 represents the variation of the critical thermal Rayleigh number Rc versus the 
permeability of the porous medium k for different values of 	 , the dependent viscosity. It is seen from the 
figure that the system destabilizes as the permeability of the porous medium k increases. This is indicated 
by a decrease in Rc values. The reason is that as the pore size increases, it becomes easier for the flow to 
destabilize the system. It is observed from the figure that the dependent viscosity 	  is found to stabilize 
the system. 
 
 

 
 

Fig.1. Variation of Rc versus k for different values of .	  
 
 

 From Fig.2, the critical thermal Rayleigh number variation with respect to the magnetization 
parameter M3 for different values of the permeability of the porous medium k indicates that the system 
destabilizes as the magnetization parameter M3 increases. This is seen by a decrease in Rc values. A 
destabilizing trend of k is also seen in this figure.  
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Fig.2. Variation of Rc versus M3 for different values of k. 
 
 It is observed from Figs 3a, 3b and 3c that the Soret parameter ST stabilizes the system, thereby 
delaying the onset of convection. All the three graphs exhibit a stabilizing trend. This is due to the fact that 
the modulation of the salinity gradient by the temperature gradient promotes stabilization. Positive values of 
ST stabilize the system more. The destabilizing trend of M3 and k is also seen from Figs 3a and 3b. A 
stabilizing behaviour of 	  is seen from Fig.3c. 
 

 
 
 

Fig.3a. Variation of Rc versus ST for different values of k. 
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Fig.3b. Variation of Rc versus ST for different values of M3 �. 
 

 
 

Fig.3c. Variation of Rc versus ST for different values of .	  
 
 Figures 4a, 4b and 4c analyze the variation of RC versus LogTa for different values of M3, k and .	  
When LogTa increases from 1 to 5, the stabilization is not much pronounced. But when it takes values from 
6 to 8, the increase in Rc values is maximum.  
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 Figures 5a and 5b investigate the variation of Rc versus M3 for different values of 	  and Rc versus 	  
for different values of M3. Both figures illustrate that as M3 increases, the values of Rc decrease for small 
values of 	 , whereas for higher values of 	 , Rc decreases for lower values of M3, and then increases for 
higher values of M3.  
 
 

 
 

Fig.4a. Variation of Rc versus LogTa for different values of M3 � �����������������������������when Pr=0.01. 
 

 
 

Fig.4b. Variation of Rc versus LogTa for different values of .	  
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Fig.4c. Variation of Rc versus LogTa for different values of k. 
 

 
 

Fig.5a. Variation of Rc versus M3 � for different values of .	  
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Fig.5b. Variation of Rc versus 	  for different values of M3 �. 
 

 Figure 6 analyzes the variation of Rc versus 	  for different values of Ta. The figure exhibits a 
stabilizing behaviour. The stabilization is minimal when the Taylor number Ta assumes values from 10 to 
105, and then it increases phenomenally. This is indicated by an increase in Rc values. 
 

 
 

Fig.6. Variation of Rc versus � 	  or different values of Ta. 
 

In this figures 10pn indicates 10 to the power of n, where n=2, 3, 4, 5, 6, 7, 8. 
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Nomenclature 
 
 a  – particle radius m 
 B  – magnetic induction T 
 b  – subscript; basic state 
 CV, H  – specific heat at constant volume and magnetic field kJm-3K-1 

 D/Dt=(�/�t+q��)  – the convective derivative s-1 
 d  – thickness of the ferrofluid layer m  
 g  – acceleration due to gravity g=(0,0,-g) ms-2 

 H  – magnetic field intensity Ampm-1 

 k  – permeability of porous medium 
 kx, ky  – wave number in the x and y direction m-1

 
 k0

2 =kx
2+ky

2  – resultant wave number m-1 
 M  – magnetization Ampm-1 

 q  – velocity of the ferrofluid ms-1 

 qq
�

� �
0

  – perculatory velocity ms-1 

 S  – solute concentration kg 
 T  – temperature K 
 t  – time s 
  s  – analogous solvent coefficient of expansion K-1 
  t  – coefficient of thermal expansion K-1 

 "s  – uniform concentration gradient kgm-1 
 "t  – uniform temperature gradient Km-1 
 �  – dynamic viscosity kgm-1s-2 
   – fluid density kgm-3 
 0  – mean density of the fluid kgm-3 
 (  – growth rate s-1 
 1  – magnetic potential Amp 
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