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Abstract: The decays B0
s → J/ψπ+π−K+K− are studied using a data set corresponding

to an integrated luminosity of 9 fb−1, collected with the LHCb detector in proton-proton
collisions at centre-of-mass energies of 7, 8 and 13TeV. The decays B0

s → J/ψK∗0K∗0 and
B0

s → χc1(3872)K+K−, where the K+K− pair does not originate from a φ meson, are ob-
served for the first time. Precise measurements of the ratios of branching fractions between
intermediate χc1(3872)φ, J/ψK∗0K∗0, ψ(2S)φ and χc1(3872)K+K− states are reported.
A structure, denoted as X(4740), is observed in the J/ψφ mass spectrum and, assuming
a Breit-Wigner parameterisation, its mass and width are determined to be

mX(4740) = 4741± 6 ± 6 MeV/c2 ,

ΓX(4740) = 53± 15± 11 MeV ,

where the first uncertainty is statistical and the second is systematic. In addition, the most
precise single measurement of the mass of the B0

s meson is performed and gives a value of

mB0
s

= 5366.98± 0.07± 0.13 MeV/c2 .
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1 Introduction

Decays of beauty hadrons to final states with charmonia provide a unique laboratory to
study the properties of charmonia and charmonium-like states. A plethora of new states
has been observed in such decays, including the χc1(3872) particle [1], pentaquark [2–5]
and numerous tetraquark [5–14] candidates as well as conventional charmonium states,
such as the tensor D-wave ψ2(3823) meson [15, 16]. The nature of many exotic charmo-
nium-like candidates remains unclear. A comparison of production rates with respect to
those of conventional charmonium states in decays of beauty hadrons can shed light on
their production mechanisms [17]. For example, the D∗D rescattering mechanism [18, 19]
would give a large contribution to the χc1(3872) production and affect the pattern of decay
rates of beauty hadrons. A modified pattern is also expected for a compact-tetraquark
interpretation of the χc1(3872) state [20].

The decay chain B0
s→

(
χc1(3872)→ J/ψπ+π−

) (
φ→ K+K−

)
is experimentally easiest

to study in (quasi) two-body decays of a B0
s meson with a χc1(3872) particle in the final

state. This decay has recently been studied by the CMS collaboration, which found the ratio
of branching fractions for the B0

s → χc1(3872)φ and B0 → χc1(3872)K0 decays to be
compatible with unity, and two times smaller than the ratio of branching fractions for
B0

s→ χc1(3872)φ and B+→ χc1(3872)K+ decays [21].
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The decay of the B0
s meson into the J/ψπ+π−K+K− final state allows the mass spec-

trum of the J/ψφ system to be studied. Four tetraquark candidates have been observed by
the LHCb collaboration using an amplitude analysis of B+→ J/ψφK+ decays [12]. These
states are denoted by the PDG as χc1(4140), χc1(4274), χc0(4500) and χc0(4700) [22].
In B0

s→ J/ψπ+π−φ decays, the J/ψφ mass can be probed up to approximately 300MeV/c2

above the allowed kinematic limit in B+→ J/ψφK+ decays.
The B0

s → J/ψφφ decay has been observed by the LHCb collaboration [23] using
a data set collected in 2011–2012 LHC data taking. While the energy release in this decay
is small, the measured branching fraction is large, possibly indicating a non-trivial decay
dynamics that enhances the decay rate. A comparison of the rate of the B0

s→ J/ψφφ decay
with that of B0

s → J/ψη′φ, B0
s → J/ψη′η′ and B0

s → J/ψK∗0K∗0 decay modes could clarify
the dynamics: the first two modes have similar quark content while the third is formed by
three vector mesons and results in the J/ψK+K−π+π− final state.

In this paper, a sample of B0
s→ J/ψπ+π−K+K− decays is analysed, with the J/ψ meson

reconstructed in the µ+µ− final state. The study is based on proton-proton (pp) collision
data, corresponding to integrated luminosities of 1, 2 and 6 fb−1, collected with the LHCb
detector at centre-of-mass energies of 7, 8 and 13TeV, respectively. This data sample is used
to measure the rates of the B0

s→ χc1(3872)φ, B0
s→ J/ψK∗0K∗0 decays, where K∗0 denotes

the K∗(892)0 resonance, and B0
s→ χc1(3872)K+K− decays, where the K+K− pair does not

originate from a φ meson. The presence of B0
s→

(
ψ(2S)→ J/ψπ+π−

) (
φ→ K+K−

)
decays

in the same sample provides a convenient mode for normalising the observed rates of
the different final states since the branching fraction of this decay is known [22]. This paper
presents measurements of the following ratios of branching fractions (B),

Rχc1(3872)φ
ψ(2S)φ ≡ B

(
B0

s→ χc1(3872)φ
)
× B

(
χc1(3872)→ J/ψπ+π−

)
B (B0

s→ ψ(2S)φ)× B (ψ(2S)→ J/ψπ+π−) , (1.1a)

RJ/ψK∗0K∗0

ψ(2S)φ ≡
B

(
B0

s→ J/ψK∗0K∗0
)
×

(
B

(
K∗0→ K+π−

))2

B (B0
s→ ψ(2S)φ)× B (ψ(2S)→ J/ψπ+π−)× B (φ→ K+K−) , (1.1b)

RK+K− ≡
B(B0

s→ χc1(3872)
(
K+K−

)
non-φ)

B (B0
s→ χc1(3872)φ)× B (φ→ K+K−) . (1.1c)

The J/ψφmass spectrum from B0
s→ J/ψπ+π−φ decays is investigated to search for resonant

contributions. The large size of the analysed sample and the low level of background also
allows for a precise determination of the mass of the B0

s meson. The mass is measured
using a subsample enriched in B0

s→ ψ(2S)φ decays, which have a small energy release.

2 Detector and simulation

The LHCb detector [24, 25] is a single-arm forward spectrometer covering the pseudo-
rapidity range 2 < η < 5, designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system consisting of a silicon-strip vertex
detector surrounding the pp interaction region [26], a large-area silicon-strip detector lo-
cated upstream of a dipole magnet with a bending power of about 4 Tm, and three stations
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of silicon-strip detectors and straw drift tubes [27, 28] placed downstream of the magnet.
The tracking system provides a measurement of the momentum of charged particles with
a relative uncertainty that varies from 0.5% at low momentum to 1.0% at 200GeV/c.
The momentum scale is calibrated using samples of J/ψ→ µ+µ− and B+→ J/ψK+ decays
collected concurrently with the data sample used for this analysis [29, 30]. The rela-
tive accuracy of this procedure is estimated to be 3 × 10−4 using samples of other fully
reconstructed b hadrons, Υ and K0

S mesons. The minimum distance of a track to a pri-
mary pp-collision vertex (PV), the impact parameter (IP), is measured with a resolution of
(15 + 29/pT)µm, where pT is the component of the momentum transverse to the beam,
in GeV/c. Different types of charged hadrons are distinguished using information from
two ring-imaging Cherenkov detectors (RICH) [31]. Photons, electrons and hadrons are
identified by a calorimeter system consisting of scintillating-pad and preshower detectors,
an electromagnetic and a hadronic calorimeter [32]. Muons are identified by a system
composed of alternating layers of iron and multiwire proportional chambers [33].

The online event selection is performed by a trigger [34], which consists of a hardware
stage, based on information from the calorimeter and muon systems, followed by a soft-
ware stage, which applies a full event reconstruction. The hardware trigger selects muon
candidates with high transverse momentum or dimuon candidates with a high value of
the product of the pT of the muons. In the software trigger two oppositely charged muons
are required to form a good-quality vertex that is significantly displaced from every PV,
with a dimuon mass exceeding 2.7GeV/c2.

Simulated events are used to describe signal shapes and to compute the efficiencies
needed to determine the branching fraction ratios. In the simulation, pp collisions are
generated using Pythia [35] with a specific LHCb configuration [36]. Decays of unstable
particles are described by the EvtGen package [37], in which final-state radiation is gen-
erated using Photos [38]. The χc1(3872)→ J/ψπ+π− decays are simulated proceeding via
an S-wave J/ψρ0 intermediate state [39]. The model described in refs. [40–43] is used to
describe the ψ(2S) decays. The simulation is corrected to reproduce the transverse mo-
mentum and rapidity distributions of the B0

s observed in data. The interaction of the gen-
erated particles with the detector, and its response, are implemented using the Geant4
toolkit [44, 45] as described in ref. [46]. To account for imperfections in the simulation of
charged-particle reconstruction, the track reconstruction efficiency determined from simu-
lation is corrected using data-driven techniques [47].

3 Event selection

Candidate B0
s → J/ψπ+π−K+K− decays are reconstructed using similar selection criteria

to those used in refs. [48–50]. Muon and hadron candidates are identified using combined
information from the RICH, calorimeter and muon detectors [51]. They are required to
have a transverse momentum larger than 550, 200 and 400MeV/c for muon, pion and
kaon candidates, respectively. To ensure that the particles can be efficiently separated by
the RICH detectors, kaons and pions are required to have a momentum between 3.2 and
150GeV/c. To reduce the combinatorial background due to particles produced promptly in
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the pp interaction, only tracks that are inconsistent with originating from a primary vertex
are used. Pairs of oppositely charged muons consistent with originating from a common
vertex are combined to form J/ψ candidates. The mass of the dimuon candidate is required
to be between 3.05 and 3.15GeV/c2.

Selected J/ψ candidates are combined with two oppositely charged kaons as well as
two oppositely charged pions to form B0

s→ J/ψπ+π−K+K− candidates. A requirement on
the quality of the common six-prong vertex is imposed. To improve the mass resolution
for the B0

s candidates, the mass of the µ+µ− pair is constrained to the known mass of
the J/ψmeson [22] and the B0

s candidate is constrained to originate from its associated PV.1

Finally, the decay time of the B0
s candidates is required to be between 0.2 and 2.0mm/c.

The lower limit is used to reduce background from particles coming from the PV while
the upper limit suppresses poorly reconstructed candidates.

A possible background from Λ0
b→ J/ψπ+π−pK− and B0→ J/ψπ+π−K+π− decays,

with the proton or a pion misidentified as a kaon, is suppressed using a veto. After assign-
ing the proton or pion mass to one of the kaons, only candidates outside the mass inter-
vals 5.606 < mJ/ψπ+π−pK− < 5.632GeV/c2 and 5.266 < mJ/ψπ+π−K+π− < 5.288GeV/c2 are
retained in the analysis. The mass distribution of the selected B0

s→ J/ψπ+π−K+K− can-
didates is shown in figure 1. The data are fit with the sum of a modified Gaussian function
with power-law tails on both sides of the distribution [52, 53] and a linear combinatorial
background component. The B0

s signal yield is (26.5± 0.2)× 103 candidates.

4 B0
s→ χc1(3872)φ and B0

s→ ψ(2S)φ decays

The yields of B0
s→ Xccφ decays, where Xcc denotes either the ψ(2S) or the χc1(3872) state,

are determined using a three-dimensional unbinned extended maximum-likelihood fit to
the J/ψπ+π−K+K− mass (mJ/ψπ+π−K+K−) the J/ψπ+π− mass (mJ/ψπ+π−) and the K+K−

mass (mK+K−) distributions. The fit is performed simultaneously in two separate regions
of the mJ/ψπ+π− , 3.67 < mJ/ψπ+π− < 3.70GeV/c2 and 3.85 < mJ/ψπ+π− < 3.90GeV/c2, cor-
responding to B0

s→ ψ(2S)φ and B0
s→ χc1(3872)φ signals, respectively. Only candidates

with 0.995 < mK+K− < 1.060GeV/c2 and 5.30 < mJ/ψπ+π−K+K− < 5.48GeV/c2 are consid-
ered. To improve the resolution on the J/ψπ+π− mass and to eliminate a small correlation
between the mJ/ψK+K−π+π− and mJ/ψπ+π− variables, the mJ/ψπ+π− variable is computed us-
ing a kinematic fit [54] that constrains the mass of the B0

s candidate to its known value [22].
In each region, the three-dimensional fit model is defined as a sum of eight components.
Four of these components correspond to decays of B0

s mesons:

1. a signal B0
s → Xccφ component, described by the product of B0

s , Xcc and φ signal
templates, discussed in detail in the next paragraph;

2. a component corresponding to B0
s→ XccK+K− decays, where the K+K− pair does

not originate from a φmeson, parameterised by the product of B0
s and Xcc signal tem-

plates and a slowly varying template describing the non-resonant K+K− distribution,
referred to below as the non-resonant K+K− function;

1The associated PV is the one that is most consistent with the flight direction of the B0
s candidate.
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Figure 1. Distribution of the J/ψπ+π−K+K− mass of selected B0
s candidates shown as points with

error bars. A fit, described in the text, is overlaid.

3. a component corresponding to B0
s→ J/ψπ+π−φ decays, parameterised as a product

of the B0
s and φ signal templates and a slowly varying template describing the non-

resonant J/ψπ+π− mass distribution, referred to as the non-resonant J/ψπ+π− func-
tion hereafter;

4. a component corresponding to the decay B0
s→ J/ψπ+π−K+K− with no narrow res-

onance in either the J/ψπ+π− or the K+K− systems, described by the product of
the B0

s signal template and a slowly varying function fbkg
(
mJ/ψπ+π− ,mK+K−

)
, de-

scribed below.

Four additional components correspond to random Xccφ, XccK+K−, J/ψπ+π−φ and
J/ψπ+π−K+K− combinations. Their parameterisation uses a second-order polynomial
function in mJ/ψK+K−π+π− , denoted as FB0

s
. These four background components are:

1. a component corresponding to random combinations of Xcc and φ signals, parame-
terised as a product of the FB0

s
function and the Xcc and φ signal templates;

2. a component corresponding to random combinations of an Xcc signal with a
non-resonant K+K− pair, parameterised as a product of the FB0

s
function, the signal

Xcc template and the non-resonant K+K− function;
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3. a component corresponding to random combinations of a φ signal with a non-resonant
J/ψπ+π− combination, parameterised as a product of the FB0

s
function, the signal φ

template and the non-resonant J/ψπ+π− function;

4. a component corresponding to random J/ψπ+π−K+K− combinations parameterised
as a product of the FB0

s
function and the function fbkg

(
mJ/ψπ+π− ,mK+K−

)
.

In the mJ/ψπ+π−K+K− distribution, the B0
s signal shape is modelled with a modi-

fied Gaussian function with power-law tails on both sides of the distribution [52, 53].
The tail parameters are fixed from simulation, while the mass of the B0

s meson is allowed
to vary. The detector resolution taken from simulation is corrected by a scale factor,
sB0

s
, that accounts for a small discrepancy between data and simulation [16] and is al-

lowed to vary. The φ and Xcc signal templates are modelled with relativistic P-wave and
S-wave Breit-Wigner functions, respectively, convolved with the detector resolution func-
tions described below. Due to the proximity of the χc1(3872) state to the D0D∗0 threshold,
modelling this component with a Breit-Wigner function may not be adequate [18, 55–58].
However, the analyses in refs. [16, 59] demonstrate that a good description of data is ob-
tained with a Breit-Wigner line shape when the detector resolution is included. The mass
of the ψ(2S) state is allowed to vary, while the width is fixed to its known value [22].
The width of the χc1(3872) state and the mass difference mψ(2S) −mχc1(3872) are con-
strained to their known values [16, 59] using Gaussian constraints. The detector resolution
is described by a symmetric modified Gaussian function with power-law tails on both sides
of the distribution [52, 53], with all parameters determined from simulation. The resolution
functions for the Xcc templates are corrected by a common scale factor, sXcc , to account for
a small discrepancy in the detector resolution between data and simulation [16, 59]. This
factor is determined from data. The non-resonant K+K− and J/ψπ+π− distributions are
modelled by the product of a linear function and two-body, Φ2,5 (mK+K−), and three-body,
Φ3,5

(
mJ/ψπ+π−

)
phase-space distributions for five-body B0

s decays [60].2 The function fbkg
is parameterised by

fbkg
(
mJ/ψπ+π− ,mK+K−

)
≡ Φ3,5

(
mJ/ψπ+π−

)
Φ2,5 (mK+K−)Pbkg

(
mJ/ψπ+π− ,mK+K−

)
,

(4.1)
where Pbkg is a polynomial function that is linear in one variable for each fixed value of
the other variable.

The fit is performed simultaneously to the two J/ψπ+π− mass regions, with the B0
s

and Xcc masses and the resolution scale factors, sB0
s
and sXcc , as shared parameters. The

J/ψπ+π−K+K−, J/ψπ+π− and K+K− mass distributions together with projections of the
simultaneous fit are shown in figures 2 and 3. The fit procedure is tested using a large sam-
ple of pseudoexperiments, generated using the nominal model with parameters extracted
from data. Biases of O(1%) on the yields of different fit components are observed and the
results are corrected for these biases. The corrected yields of the B0

s→ χc1(3872)φ and
2The phase-space mass distribution of an l-body combination of particles from a n-body decay is ap-

proximated by Φl,n(x) ∝ x
(3l−5)/2
∗ (1− x∗)3(n−l)/2−1, where x∗ ≡ (x−xmin)/(xmax−xmin), and xmin, xmax

denote the minimal and maximal values of x, respectively.
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Figure 2. Distributions of the (top left) J/ψπ+π−K+K−, (top right) K+K− and (bottom
left) J/ψπ+π− mass of selected B0

s→ χc1(3872)φ candidates shown as points with error bars. A fit,
described in the text, is overlaid.

B0
s→ ψ(2S)φ decays and the resolution scale factors are listed in table 1. The statistical

significance for the B0
s→ χc1(3872)φ signal is calculated to be in excess of 10 standard devi-

ations using Wilks’ theorem [61]. Apart from the signal B0
s→ ψ(2S)φ component, only the

B0
s→ ψ(2S)K+K−, and the combinatorial J/ψπ+π−φ and J/ψπ+π−K+K− components are

found to contribute in a non-negligible way to the ψ(2S) mass region. In the χc1(3872) re-
gion, the contribution from the B0

s→ χc1(3872)K+K− component is found to be small and
the combinatorial components χc1(3872)φ and χc1(3872)K+K− are negligible. The resolu-
tion scale factors, sB0

s
and sXcc , are similar to those obtained in refs. [16, 59].

The results are cross-checked using a two-dimensional unbinned extended maximum-
likelihood fit to the background-subtracted J/ψπ+π− and K+K− mass distributions, where
the sPlot technique [62] is used with the J/ψπ+π−K+K− mass as a discriminating variable.
The results of this fit are found to be in very good agreement with the results listed
in table 1.
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Figure 3. Distributions of the (top left) J/ψπ+π−K+K−, (top right) K+K− and (bottom
left) J/ψπ+π− mass of selected B0

s→ ψ(2S)φ candidates shown as points with error bars. A fit,
described in the text, is overlaid.

Parameter B0
s→ ψ(2S)φ B0

s→ χc1(3872)φ
NB0

s→Xccφ
4180± 66 154± 15

mB0
s

[
MeV/c2]

5366.89± 0.08
sB0

s
1.04± 0.02

sXcc 1.06± 0.02

Table 1. Signal yields, NB0
s→Xccφ

, mass of the B0
s meson, mB0

s
, and detector resolution scale factors,

sB0
s
and sXcc , from the fit described in the text. The uncertainties are statistical only.
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The ratio of branching fractions defined in eq. (1.1a) is calculated from

Rχc1(3872)φ
ψ(2S)φ =

NB0
s→χc1(3872)φ

NB0
s→ψ(2S)φ

×
εB0

s→ψ(2S)φ
εB0

s→χc1(3872)φ
, (4.2)

where the signal yields, NB0
s→χc1(3872)φ and NB0

s→ψ(2S)φ, are taken from table 1
and εB0

s→χc1(3872)φ and εB0
s→ψ(2S)φ are the efficiencies to reconstruct and select the

B0
s→ χc1(3872)φ and B0

s→ ψ(2S)φ decays, respectively. The efficiencies are defined
as the product of the detector geometric acceptance and the reconstruction, selec-
tion, hadron identification and trigger efficiencies. All of the efficiency contribu-
tions, except the hadron-identification efficiency, are determined using simulated sam-
ples. The hadron-identification efficiency is determined using large calibration samples
of D∗+→

(
D0→ K−π+)

π+, K0
S→ π+π− and D+

s →
(
φ→ K+K−

)
π+ decays selected in

data [31, 63]. The efficiency ratio is found to be 0.66± 0.01, where the uncertainty is
only that due to the size of the simulated samples. The efficiency ratio differs from unity
due to the harder pT spectrum of pions in the B0

s→ χc1(3872)φ decays. The resulting value
of Rχc1(3872)φ

ψ(2S)φ is

Rχc1(3872)φ
ψ(2S)φ = (2.42± 0.23)× 10−2 , (4.3)

where the uncertainty is statistical. Systematic uncertanties are discussed in section 9.

5 B0
s→ χc1(3872)K+K−decays

The decay B0
s→ χc1(3872)K+K−, where the K+K− pair does not originate from a φ

meson, is studied using a sample of selected B0
s→ J/ψπ+π−K+K− candidates with the

J/ψπ+π− and J/ψπ+π−K+K− masses in the ranges 3.85 < mJ/ψπ+π− < 3.90GeV/c2 and
5.30 < mJ/ψπ+π−K+K− < 5.48GeV/c2. A two-dimensional unbinned extended maximum-
likelihood fit is performed to the J/ψK+K−π+π− and J/ψπ+π− mass distributions. The fit
function comprises the sum of four components:

1. a component corresponding to B0
s→ χc1(3872)K+K− decays, parameterised as

a product of the B0
s and χc1(3872) signal templates described in section 4;

2. a component corresponding to B0
s→ J/ψπ+π−K+K− decays, parameterised as a prod-

uct of the B0
s signal template and the non-resonant J/ψπ+π− function;

3. a component corresponding to random combinations of χc1(3872) particles with
a K+K− pair, parameterised as a product of the χc1(3872) signal template and
the FB0

s
function;

4. a component corresponding to random J/ψπ+π+K+K− combinations, parame-
terised as a product of the three-body phase-space function Φ3,5

(
mJ/ψπ+π−

)
and

a two-dimensional non-factorisable bilinear function.
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Figure 4. Distributions of the (left) J/ψπ+π−K+K− and (right) J/ψπ+π− mass of selected B0
s→

χc1(3872)K+K− candidates shown as points with error bars. A fit, described in the text, is overlaid.

The J/ψπ+π−K+K− and J/ψπ+π− mass distributions together with projections of
the fit are shown in figure 4. The yield of B0

s→ χc1(3872)K+K− signal decays is

NB0
s→χc1(3872)K+K− = 378± 33 , (5.1)

which significantly exceeds the yield of NB0
s→χc1(3782)φ shown in table 1, pointing to a size-

able contribution from the B0
s→ χc1(3872)K+K− decays, where the K+K− pair does not

originate from a φ meson.
The fraction of B0

s→ χc1(3872)
(
φ→ K+K−

)
decays is estimated using an unbinned

maximum-likelihood fit to the background-subtracted K+K− mass distribution from sig-
nal B0

s→ χc1(3872)K+K− decays. The background-subtracted K+K− mass distribution is
obtained by applying the sPlot technique [62] to the results of the two-dimensional fit to
the B0

s→ χc1(3872)K+K− decays described above. The background-subtracted K+K− mass
distribution is further corrected for the K+K− mass-dependent efficiency by applying
a weight,

wε (mK+K−) ≡
εB0

s→χc1(3872)φ
εB0

s→χc1(3872)K+K− (mK+K−) , (5.2)

to each candidate. The efficiencies εB0
s→χc1(3872)φ and εB0

s→χc1(3872)K+K− are calculated
using simulated samples, where a phase-space decay model is used for the three-body
B0

s→ χc1(3872)K+K− decays. The background-subtracted and efficiency-corrected K+K−

mass distribution of the B0
s→ χc1(3872)K+K− candidates is shown in figure 5. In addition

to a clear narrow structure, corresponding to B0
s→ χc1(3872)

(
φ→ K+K−

)
decays, a size-

able number of B0
s→ χc1(3872)K+K− decays, where the K+K− pair does not originate from

the φ meson is visible. The K+K− mass distribution for mK+K− > 1.1GeV/c2 cannot be
described by phase-space, and possibly contains contributions from the f0(980), f2(1270),
f0(1370) and f ′2(1525) resonances decaying to a pair of kaons, as has been observed in
B0

s→ J/ψK+K− decays [64, 65]. An amplitude analysis of a larger data sample would be
required to properly disentangle individual contributions. However, a narrow φ component
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Figure 5. Background-subtracted and efficiency-corrected K+K− mass distribution (points with
error bars) of the B0

s→ χc1(3872)K+K− decays. For a better visualisation, the high-mass region
the plot is shown with a reduced vertical scale. A fit, described in the text, is overlaid. The expec-
tation for phase-space simulated decays is shown as a green solid line. A distribution with extended
vertical scale is shown inset.

can be separated from the non-φ components using an unbinned maximum-likelihood fit
to the background-subtracted and efficiency-corrected K+K− mass distribution. The fit
function comprises two components

1. a component corresponding to B0
s→ χc1(3872)

(
φ→ K+K−

)
decays, modelled by the

φ signal template (see section 4) multiplied by the phase-space function Φ2,3(mK+K−)
for the three-body B0

s→ χc1(3872)K+K− decay;

2. a component that accounts for non-resonant B0
s→ χc1(3872)K+K− decays and de-

cays via broad high-mass K+K− intermediate states, modelled by a product of a
phase-space function Φ2,3(mK+K−) for three-body B0

s→ χc1(3872)K+K− decays and
a third-order polynomial function.

The shape of the second component is flexible enough to accommodate contributions from
wide K+K− resonances. The projection of the fit is overlaid in figure 5. The fraction of
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the φ→ K+K− signal component is found to be

fφ = (38.9± 4.9) % . (5.3)

This fraction is converted into the ratio of branching fractions RK+K− , defined in eq. (1.1c),

RK+K− = 1
fφ
− 1 = 1.57± 0.32 , (5.4)

where the uncertainty is statistical. Systematic uncertanties are discussed in section 9.
This is the first observation of the decay B0

s→ χc1(3872)K+K−, where K+K− pair does not
originate from a φ meson.

6 B0
s→ J/ψK∗0K∗0 decays

The yield of B0
s → J/ψK∗0K∗0 decays is determined using a three-dimensional unbinned

extended maximum-likelihood fit to the J/ψπ+π−K+K−, K+π− and K−π+ mass distribu-
tions in the region defined by mK+π− < 1.2GeV/c2 and mK−π+ < 1.2GeV/c2. To elimi-
nate overlap with the samples used in section 4, only J/ψπ+π−K+K− combinations with
mK+K− > 1.06GeV/c2 that do not fall into the narrow regions around the ψ(2S) and
χc1(3872) masses, 3.679 < mJ/ψπ+π− < 3.694GeV/c2 and 3.864 < mJ/ψπ+π− < 3.881GeV/c2,
are used here.

The fit model is similar to that used in section 4 but with some modifications. First,
the model is symmetric with respect to an interchange of K+π− and K−π+ pairs. Second,
for components that account for K∗0K∗0, K∗0K−π+ or K+π−K∗0 combinations, correc-
tions are applied due to the limited phase space available in the decays. These shapes are
derived from fits to simulated samples and comprise symmetric products of phase-space
functions and linear polynomials. The K∗0(K∗0) signal is parameterised by a relativis-
tic P-wave Breit-Wigner function. The width of the K∗0 meson, 47.3± 0.5MeV, is not
small [22] and the fit ranges are wide, hence the correct determination of all components
would require a full amplitude analysis that properly accounts for interference effects.
Such an analysis is beyond the scope of this paper. However, fits to simulated samples of
B0

s→ J/ψπ+π−K+K− decays with different compositions of intermediate states show that
the simple model described here allows for a reliable determination of the B0

s→ J/ψK∗0K∗0

component. The J/ψπ+π−K+K−, K+π− and K−π+ mass distributions together with pro-
jections of the fit are shown in figure 6 and the parameters of interest are summarized
in table 2. A study of a large sample of pseudoexperiments generated and fitted with
the nominal model, indicates a small bias of O(1%) on the signal yield. The quoted yield
is corrected for this bias.

The ratio of branching fractions RJ/ψK∗0K∗0

ψ(2S)φ , defined in eq. (1.1b), is calculated as

RJ/ψK∗0K∗0

ψ(2S)φ =
NB0

s→J/ψK∗0K∗0

NB0
s→ψ(2S)φ

×
εB0

s→ψ(2S)φ
εB0

s→J/ψK∗0K∗0
= 1.22± 0.03 , (6.1)

where εB0
s→J/ψK∗0K∗0 and εB0

s→ψ(2S)φ are the efficiencies for B0
s→ J/ψK∗0K∗0 and

B0
s→ ψ(2S)φ decays, respectively, and the signal yields NB0

s→ψ(2S)φ and B0
s→ J/ψK∗0K∗0
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Figure 6. Distributions of the (top left) J/ψπ+π−K+K−, (top right) K+π− and (bottom left) K−π+

mass of selected B0
s→ J/ψK∗0K∗0 candidates shown as points with error bars. A fit, described in

the text, is overlaid.

Parameter B0
s→ J/ψK∗0K∗0

NB0
s→J/ψK∗0K∗0 5447± 125

mB0
s

[
MeV/c2]

5366.79± 0.06

Table 2. Signal yield, NB0
s→J/ψK∗0K∗0 , and mass of the B0

s meson, mB0
s
, from the fit described in

the text. The uncertainties are statistical only.

are taken from tables 1 and 2, respectively. The efficiency ratio is found to be 0.93± 0.01,
where the uncertainty is only that due to the size of the simulated samples. Systematic
uncertanties are discussed in section 9.

7 B0
s mass measurement

The precision on the B0
s mass value, reported in table 1, is improved by imposing a con-

straint on the reconstructed mass of the ψ(2S) state [54]. Applying this constraint improves
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s→ (ψ(2S)→ J/ψπ+π−) (φ→ K+K−) decays (points with error bars). A fit, described

in the text, is overlaid.

the B0
s mass resolution and significantly decreases systematic uncertainties on the mass

measurement, since the mass of the ψ(2S) meson is known with high precision [66].
The mass of the B0

s meson is determined from an unbinned extended maximum-likelihood
fit to the ψ(2S)K+K− mass distribution for a sample of B0

s→ J/ψK+K−π+π− decays
with mK+K− < 1.06GeV/c2 and with the J/ψπ+π− mass within a narrow region around
the known mass of the ψ(2S) meson, 3.679 < mJ/ψπ+π− < 3.694GeV/c2.

The ψ(2S)K+K− mass distribution is fitted with a two-component function comprising
a signal component modelled with the B0

s signal template and a background component
modelled with a second-order polynomial function. The ψ(2S)K+K− mass distribution
together with the fit results is shown in figure 7. The fit results are summarized in table 3.
Studies of simulated samples show that the selection requirements introduce a small bias
in the measured mass of long-lived heavy-flavour hadrons [67–69]. The corrected value for
the B0

s mass is found to be

mcorr
B0

s
= 5366.98± 0.07MeV/c2 , (7.1)

where the uncertainty is statistical only. Systematic uncertanties are discussed in section 9.

– 14 –



J
H
E
P
0
2
(
2
0
2
1
)
0
2
4

Parameter
NB0

s
4505± 69

mB0
s

[
MeV/c2]

5366.95± 0.07

Table 3. Signal yield, NB0
s
and mass of the B0

s meson, mB0
s
, from the fit described in the text to

the sample enriched in the B0
s→ ψ(2S)φ decays. The uncertainties are statistical only.

8 J/ψφ mass spectrum

The J/ψφ mass spectrum in B0
s→ J/ψπ+π−φ decays is studied using a sample of selected

B0
s→ J/ψπ+π−K+K− candidates with the K+K− mass in the range mK+K− < 1.06GeV/c2

and excluding the J/ψπ+π− mass regions around the narrow ψ(2S) and χc1(3872) states, i.e.
3.672<mJ/ψπ+π− < 3.700GeV/c2 and 3.864<mJ/ψπ+π− < 3.880GeV/c2. A two-dimensional
unbinned extended maximum-likelihood is performed to the J/ψπ+π−K+K− and K+K−

mass distributions. The fit function comprises a sum of four components:

1. a component corresponding to B0
s→ J/ψπ+π−φ decays, parameterised by the product

of the B0
s and φ signal templates described in section 4;

2. a component corresponding to B0
s→ J/ψπ+π−K+K− decays, parameterised by the

product of the B0
s signal template and the non-resonant K+K− function;

3. a component corresponding to random J/ψπ+π−φ combinations, parameterised by
the product of the φ signal template and the FB0

s
function;

4. a component describing random J/ψπ+π−K+K− combinations, parameterised by
the product of the phase-space function Φ2,5 (mK+K−) and the two-dimensional
non-factorisable bilinear function described in section 4.

The J/ψπ+π−K+K− and K+K− mass spectra together with the projections of the fit are
shown in figure 8. The sPlot technique is applied to obtain a background-subtracted
J/ψφ mass distribution of B0

s→ J/ψπ+π−φ decays. The resulting distribution is shown in
figure 9 (left). It shows a prominent structure at a mass around 4.74GeV/c2. No such struc-
ture is seen if the K+K− mass is restricted to the region of 1.06 < mK+K− < 1.15GeV/c2.
This structure cannot be explained by B0

s→ Xccφ decays via a narrow intermediate Xcc res-
onance since contributions from B0

s→ ψ(2S)φ and B0
s→ χc1(3872)φ decays are explicitly

vetoed. If no veto is applied, B0
s→ ψ(2S)φ decays would produce a broad structure in

the J/ψφ mass spectrum that peaks around 4.76GeV/c2 and has a width that is approxi-
mately twice that of the observed structure. Studies with simulated samples indicate that
after the veto is applied the remaining contributions from these decays are totally negli-
gible. No sizeable contributions from decays via other narrow charmonium states are ob-
served in the background-subtracted J/ψπ+π− mass spectrum. The background-subtracted
π+π− mass distribution of candidates in the mass range 4.68 < mJ/ψφ < 4.78GeV/c2

is found to have no structure. The background-subtracted φπ+π− mass spectrum of
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Figure 8. Distribution of the (left) J/ψπ+π−K+K− and (right) K+K− mass for selected
B0

s→ J/ψπ+π−φ candidates. A fit, described in the text, is overlaid.

the B0
s→ J/ψπ+π−φ decays is shown in figure 9 (right). The spectrum exhibits signif-

icant deviations from the phase-space distribution, indicating possible presence of ex-
cited φ states, referred to as φ∗ states hereafter. The decays B0

s→ J/ψφ∗ via interme-
diate φ(1680), φ(1850) or φ(2170) states [22] are studied using simulated samples. It is
found that the J/ψφ mass spectra from B0

s→ J/ψφ∗ decays exhibit no structure and for
the J/ψφ mass exceeding 4.4GeV/c2 can be described by a monotonically decreasing func-
tion. If the intervals used to reject the B0

s→ ψ(2S)φ and B0
s→ χc1(3872)φ decays are sig-

nificantly increased, in excess of 60MeV/c2, it is possible to generate two wide regions with
decreased yields around 4.65GeV/c2 and 4.82GeV/c2 in the J/ψφ mass spectrum. The po-
sitions and shapes of these dips depend on the assumed mass and width of the φ∗ state
and for certain choices of the φ∗ states, two dips in the monotonically decreased spectrum
could sculpt a bump. The complicated interference between several decay chains, including
different intermediate φ∗ states, could result in a distorted J/ψφ mass spectrum. In order
to ascertain if the structure at 4.74GeV/c2, seen in figure 9 (left), is resonant and not due to
interference an amplitude analysis, similar to that in refs. [2, 9, 11, 12] would be required.
Such an analysis is beyond the scope of this paper.

Under the assumption that this structure, referred to as X(4740) hereafter, has a
resonant nature, its mass and width are determined through an unbinned extended max-
imum-likelihood fit to the background-subtracted J/ψφ mass distribution in the range
4.45 < mJ/ψφ < 4.90GeV/c2. The fit function comprises two components:

1. a signal component, parameterised by the product of the squared absolute value of
a relativistic S-wave Breit-Wigner amplitude and a two-body phase-space distribution
from four-body B0

s→ J/ψπ+π−φ decays, Φ2,4
(
mJ/ψφ

)
;

2. a component, corresponding to B0
s→ J/ψπ+π−φ decays, parameterised by the prod-

uct of the Φ2,4
(
mJ/ψφ

)
function and a third-order polynomial function.
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X(4740) structure
NX(4740) 175± 39
mX(4740)

[
MeV/c2]

4740.6± 6.0
ΓX(4740) [MeV] 52.8± 15.1

Table 4. Signal yield NX(4740), mass mX(4740) and width ΓX(4740) of the X(4740) structure, ob-
tained from the fit to the background-subtracted J/ψφ mass distribution. The uncertainties are
statistical only.

The background-subtracted J/ψφ mass spectrum with superimposed results of the fit is
shown in figure 10 and the results are listed in table 4.

The statistical significance of the observed structure is estimated using Wilks’ theo-
rem [61] and found to be 5.5 standard deviations. The significance estimate is validated
using a large number of pseudoexperiments comprising no X(4740) signal component. The
mass and width of the X(4740) structure qualitatively agree with those of the χc0(4700)
state observed by the LHCb collaboration in an amplitude analysis of B+→ J/ψφK+ decays
of mχc0(4700) = 4704± 10 + 14

− 24 MeV/c2 and Γχc0(4700) = 120± 31 + 42
− 33 MeV [11, 12]. Interpret-

ing the observed structure as the χc0(4700) state and repeating the fit using the measure-
ments from refs. [11, 12] as Gaussian constraints, the resulting mass and width differ only
slightly from those listed in table 4. A p-value of the hypothesis that the X(4740) state
is the χc0(4700) state is estimated neglecting correlations for the systematic uncertainties,
discussed in section 9, and it corresponds to 6%. The measured mass is close to the value
expected for a cscc tetraquark with quantum numbers JPC = 2++ [70].
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9 Systematic uncertainties

Due to the similar decay topologies, systematic uncertainties largely cancel in the ratios R.
The remaining contributions to systematic uncertainties are summarized in table 5 and
discussed below.

The largest source of systematic uncertainty on the ratios arise from imperfect knowl-
edge of the shapes of signal and background components used in the fits. To estimate this
uncertainty, several alternative models for the signal, non-resonant signal and background
components are tested. For the B0

s signal shape and the detector resolution functions in
the Xcc signal templates, the bifurcated Student’s t-distribution is tested as an alternative
model. For the Breit-Wigner functions describing the φ and K∗0 signal shapes, the me-
son radii in the Blatt-Weisskopf barrier factors [71] are varied between 1.5 and 5GeV−1.
The mass and width of the K∗0 meson are varied within their uncertainties [22]. The degree
of the polynomials used in the non-resonant J/ψπ+π− and K+K− functions, the FB0

s
and

Pbkg functions and all other polynomial functions used in the fits are increased by one.
The largest systematic uncertainty for the ratio RK+K− is associated with the parameter-
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Source Rχc1(3872)φ
ψ(2S)φ RJ/ψK∗0K∗0

ψ(2S)φ RK+K−

Fit model 1.8 2.6 7.3
Efficiency corrections 0.3 0.1 0.3
Trigger efficiency 1.1 1.1 1.1
Data-simulation difference 2.0 2.0 2.0
Simulated sample size 1.0 0.9 1.3
Sum in quadrature 3.1 3.6 7.8

Table 5. Relative systematic uncertainties (in %) for the ratios of branching fractions. The sources
are described in the text.

isation of the fit component for the B0
s→ χc1(3872)K+K− decays, where the K+K− pair

does not originate from a φ meson. The explicit inclusion of a B0
s→ χc1(3872)f0(980) com-

ponent is considered, where the f0(980) state decays into a K+K− pair. The f0(980) line
shape is modelled by a Flatté function [72], with parameters taken from refs. [73, 74].
The systematic uncertainty on the ratio RJ/ψK∗0K∗0

ψ(2S)φ due to the fit range for K±π∓ masses
is studied by increasing this range to 0.63 < mK±π∓ < 1.25GeV/c2. For each alternative
model the ratio of event yields is remeasured, and the maximum deviation with respect to
the nominal model, 1.8%, 2.6% and 7.3% for the Rχc1(3872)φ

ψ(2S)φ , RJ/ψK∗0K∗0

ψ(2S)φ and RK+K− ratios,
respectively, is assigned as a systematic uncertainty.

An additional systematic uncertainty on the ratios arises due to differences between
data and simulation. In particular, there are differences in the reconstruction efficiency
of charged-particle tracks that do not cancel completely in the ratio due to the differ-
ent kinematic distributions of the final-state particles. The track-finding efficiencies ob-
tained from simulated samples are corrected using data-driven techniques [47]. The un-
certainties related to the efficiency correction factors, together with the uncertainty on
the hadron-identification efficiency due to the finite size of the calibration samples [31, 63],
are propagated to the ratios of the total efficiencies using pseudoexperiments and account
for 0.3%, 0.1% and 0.3% for the Rχc1(3872)φ

ψ(2S)φ , RJ/ψK∗0K∗0

ψ(2S)φ and RK+K− ratios, respectively.
A systematic uncertainty on the ratios related to the knowledge of the trigger efficien-

cies is estimated by comparing the ratios of trigger efficiencies in data and simulation for
large samples of B+→ J/ψK+ and B+→ ψ(2S)K+ decays [75] and is taken to be 1.1% for
all three ratios of branching fractions. Other data-simulation differences are investigated
by varying selection criteria in data. The resulting variations in the efficiency ratios do not
exceed 2%, which is taken as the corresponding systematic uncertainty. The final system-
atic uncertainty considered on the ratios of branching fractions is due to the knowledge
of the ratios of efficiencies in eqs. (4.2), (5.2) and (6.1) due to the finite size of the simu-
lated samples. It is determined to be 1.0%, 0.9% and 1.3% for the Rχc1(3872)φ

ψ(2S)φ , RJ/ψK∗0K∗0

ψ(2S)φ
and RK+K− ratios, respectively. No systematic uncertainty is included for the admix-
ture of the CP -odd and CP -even B0

s eigenstates in the decays, which is assumed to be
the same for all four involved channels [76]. In the extreme case that one decay is only
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Source σmB0
s

[
keV/c2]

Fit model 51
Momentum scale 122
Energy loss 15
Kaon mass 27
ψ(2S) mass 10
Sum in quadrature 133

Table 6. Systematic uncertainties on the B0
s mass measurement using the sample enriched in

the B0
s→ ψ(2S)φ decays. The sources are described in the text.

Source σmX(4740)

[
MeV/c2]

σΓX(4740) [MeV]

Fit model 2.8 8.4
ψ(2S), χc1(3872) veto 4.6 5.1
Interference 1.2 5.1
Sum in quadrature 5.5 11.1

Table 7. Systematic uncertainties for the measurements of the mass and width of the X(4740) struc-
ture. The sources are described in the text.

from the short-lifetime eigenstate and the other from the long-lifetime eigenstate, the cor-
responding ratio of branching fractions would change by 3.8%.

The systematic uncertainties on the B0
s mass measurement are summarised in table 6.

The most important source of systematic uncertainty is related to the momentum scale
calibration in data. This effect is evaluated by varying the scale within its known un-
certainty [30]. The resulting change in the mass of 122 keV/c2 is assigned as a system-
atic uncertainty. Other sources of uncertainty are related to energy loss corrections and
the imprecise knowledge of the K± and ψ(2S) meson masses [22]. The amount of material
traversed in the tracking system by a particle is known to 10% accuracy, which leads to
an uncertainty on the estimated energy loss of particles in the detector. This systematic
uncertainty is calculated in ref. [30] to be 15 keV/c2. The uncertainties on the known kaon
and ψ(2S) masses [22, 66] are propagated to the uncertainty in the B0

s mass using simulated
samples and are found to be 27 and 10 keV/c2, respectively. Using the ψ(2S) mass con-
straint significantly reduces the systematic uncertainties associated with the momentum
scale and energy loss correction. The B0

s→ J/ψK∗0K∗0 signal sample has a smaller sta-
tistical uncertainty, see table 2, however, the systematic uncertainties due to momentum
scaling and energy loss are twice as large, making this sample non-competitive for a precise
measurement of the B0

s mass.
Systematic uncertainties on the mass and width of the X(4740) structure are sum-

marised in table 7. The uncertainty related to the imperfect knowledge of the signal
and background shapes is estimated using alternative fit models. Relativistic P- and
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D-wave Breit-Wigner functions are used as alternative shapes for signal with the value
of the Blatt-Weisskopf barrier factor meson radius varied between 1.5 and 5GeV−1. A
model comprising a product of an S-wave Breit-Wigner function with a phase-space func-
tion that accounts for the proximity of the upper edge for the J/ψφ mass spectrum from
B0

s→ J/ψπ+π−φ decays is also used. For the background component, a convex monotoni-
cally decreasing third-order polynomial function and a product of the Φ2,4

(
mJ/ψφ

)
function

with a third-order polynomial function are tested as alternative models. The maximal devi-
ations with respect to the baseline model of 2.8MeV/c2 and 8.4MeV for the mass and width
of the X(4740) state, respectively, are taken as corresponding systematic uncertainties.
The contributions from B0

s→ ψ(2S)K+K− and B0
s→ χc1(3872)K+K− decays are explicitly

suppressed in the analysis by excluding the mass regions 3.672 < mJ/ψπ+π− < 3.700GeV/c2

and 3.864 < mJ/ψπ+π− < 3.880GeV/c2 around the known masses of the ψ(2S) and χc1(3872)
states [16, 22, 59, 66]. Repeating the analysis using wider exclusion ranges, causes changes
of 4.6MeV/c2 and 5.1MeV in the mass and width of the X(4740) structure, respectively.
These changes are taken as systematic uncertainties due to possible remaining contribu-
tions from B0

s→ ψ(2S)K+K− and B0
s→ χc1(3872)K+K− decays. Large interference effects

between the signal and coherent part of the background can also distort the visible shape
of the resonance. To probe the importance of this effect, the signal fit component FS
is modelled with a coherent sum of an S-wave Breit-Wigner amplitude A

(
mJ/ψφ

)
and a

coherent background

FS
(
mJ/ψφ

)
∝

∣∣∣A (
mJ/ψφ

)
+ b

(
mJ/ψφ

)
eiϕ

∣∣∣2 Φ2,4
(
mJ/ψφ

)
, (9.1)

where the positive linear polynomial b(mJ/ψφ) stands for the magnitude of the coherent
background amplitude and ϕ denotes the phase of the coherent background, chosen to
be independent of the J/ψφ mass. The deviations of the mass and width of the X(4740)
structure obtained from this fit are taken as systematic uncertainties related to neglecting
possible interference effects between the signal and the coherent part of the background.
The complicated interference pattern for the B0

s→ J/ψφ∗ decays via different φ∗ states
also can distort the J/ψφ mass spectrum. However, to quantify this effect a full ampli-
tude analysis, similar to refs. [2, 9, 11, 12] is needed, that is beyond the scope of this
paper, and no systematic uncertainty is assigned. Other sources of systematic uncertain-
ties on the mass and width of the X(4740) structure, namely the momentum scale and
the background-subtraction procedure are found to be negligible with respect to the lead-
ing systematic uncertainties related to the fit model. For each choice of the fit model,
the statistical significance of the observed X(4740) structure is calculated from data using
Wilks’ theorem [61]. The smallest significance found is 5.3 standard deviations, taken as
its significance including systematic uncertainties.

10 Summary

A study of B0
s→ J/ψπ+π−K+K− decays is made using pp collision data corresponding

to an integrated luminosity of 1, 2 and 6 fb−1, collected with the LHCb detector at cen-
tre-of-mass energies of 7, 8 and 13TeV, respectively. The ratios of the branching fractions
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via intermediate resonances, defined via eqs. (1.1), are measured to be

Rχc1(3872)φ
ψ(2S)φ = (2.42± 0.23± 0.07)× 10−2 ,

RK+K− = 1.57± 0.32± 0.12 ,

RJ/ψK∗0K∗0

ψ(2S)φ = 1.22± 0.03± 0.04 ,

where the first uncertainty is statistical and the second systematic. The ratio Rχc1(3872)φ
ψ(2S)φ

is consistent with but more precise than the value of (2.21± 0.29± 0.17)× 10−2 re-
cently reported by the CMS collaboration [21]. The decays B0

s→ J/ψK∗0K∗0 and
B0

s→ χc1(3872)K+K−, where the K+K− pair does not originate from a φ meson, are
observed for the first time. A full amplitude analysis, similar to refs. [64, 65], is
needed to resolve possible contributions from two-body decays via K+K− resonances, like
B0

s→ χc1(3872)f0(980) and B0
s→ χc1(3872)f ′2(1525), that in turn could be useful for a better

understanding of the nature of the χc1(3872) state.
A precise measurement of the B0

s mass is performed using a sample of selected
B0

s→ J/ψπ+π−K+K− candidates enriched in B0
s→ ψ(2S)φ decays. The mass of the B0

s
meson is determined to be

mB0
s

= 5366.98± 0.07± 0.13MeV/c2 ,

which is the most precise single measurement of this observable. This result is com-
bined with other precise measurements by the LHCb collaboration using B0

s→ J/ψφ [77],
B0

s→ J/ψφφ [23], B0
s→ χc2K+K− [78] and B0

s→ J/ψpp [79] decays. The combined mass
is calculated using the best linear unbiased estimator [80], accounting for correlations of
systematic uncertainties between the measurements. The LHCb average for the mass of
the B0

s meson is found to be

mLHCb
B0

s
= 5366.94± 0.08± 0.09MeV/c2 .

A structure with significance exceeding 5.3 standard deviations, denoted as X(4740),
is also seen in the J/ψφ mass spectrum of B0

s→ J/ψπ+π−
(
φ→ K+K−

)
decays. The mass

and width of the structure are determined to be

mX(4740) = 4741± 6 ± 6 MeV/c2 ,

ΓX(4740) = 53± 15± 11MeV .

A dedicated analysis using a larger data set is needed to resolve if this state is different
from the χc0(4700) state, observed in the B+→ J/ψφK+ decays [11, 12].
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