
Citation: Biswas, P.; Bibi, S.; Yousafi,

Q.; Mehmood, A.; Saleem, S.; Ihsan,

A.; Dey, D.; Hasan Zilani, M.N.;

Hasan, M.N.; Saleem, R.; et al. Study

of MDM2 as Prognostic Biomarker in

Brain-LGG Cancer and Bioactive

Phytochemicals Inhibit the

p53-MDM2 Pathway: A

Computational Drug Development

Approach. Molecules 2023, 28, 2977.

https://doi.org/10.3390/molecules

28072977

Academic Editor: Marta Erminia

Alberto

Received: 26 December 2022

Revised: 2 March 2023

Accepted: 15 March 2023

Published: 27 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Study of MDM2 as Prognostic Biomarker in Brain-LGG Cancer
and Bioactive Phytochemicals Inhibit the p53-MDM2 Pathway:
A Computational Drug Development Approach
Partha Biswas 1,2,3 , Shabana Bibi 4,5,*, Qudsia Yousafi 6, Asim Mehmood 6, Shahzad Saleem 6, Awais Ihsan 6 ,
Dipta Dey 7 , Md. Nazmul Hasan Zilani 8 , Md. Nazmul Hasan 2 , Rasha Saleem 9, Aeshah A. Awaji 10,
Usama A. Fahmy 11,* and Mohamed M. Abdel-Daim 12,13

1 Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology,
Jashore University of Science and Technology, Jashore 7408, Bangladesh

2 Laboratory of Pharmaceutical Biotechnology and Bioinformatics, Department of Genetic Engineering and
Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh

3 ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh
4 Department of Biosciences, Shifa Tameer-e-Millat University, Islamabad 41000, Pakistan
5 Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University,

Kunming 650091, China
6 Department of Biosciences, Sahiwal Campus, COMSATS University Islamabad, Sahiwal 57000, Pakistan
7 Biochemistry and Molecular Biology Department, Life Science Faculty, Bangabandhu Sheikh Mujibur

Rahman Science and Technology University, Gopalgonj 8100, Bangladesh
8 Department of Pharmacy, Faculty of Biological Science and Technology, Jashore University of Science and

Technology, Jashore 7408, Bangladesh
9 Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University,

Al Bahah 65431, Saudi Arabia
10 Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk,

Tabuk 71491, Saudi Arabia
11 Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
12 Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231,

Jeddah 21442, Saudi Arabia
13 Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
* Correspondence: shabana.bibi.stmu@gmail.com (S.B.); uahmedkauedu.sa@kau.edu.sa (U.A.F.)

Abstract: An evaluation of the expression and predictive significance of the MDM2 gene in brain
lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several tran-
scriptome servers were used to measure the differential expression of the targeted MDM2 gene
and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive
Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients.
The protein–protein interaction networks between MDM2 gene and its co-expressed genes were
constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through
molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein–
ligand interactions were observed with key residues of the macromolecular target. A molecular
dynamics simulation of the novel bioactive compounds with the targeted protein was performed.
Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with
more highly stable results as compared to the control drug, and hence, concluded that phytochemicals
with bioactive potential might be alternative therapeutic options for the management of LGG patients.
Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a
predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction
results within the macromolecular target’s active site after utilizing in silico approaches. In vitro and
in vivo experiments are recommended to confirm these outcomes.

Keywords: p53 gene; MDM2 gene; onco-informatics; brain lower-grade glioma (LGG) cancer; predic-
tive biomarker
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1. Introduction

The protein 53 (p53) was first found in 1979 and is known as “Guardian of the Genome”
for controlling cell division and stopping tumor formation [1]. The P53 protein is a tran-
scription factor regulating the expression of a wide effective range of genes that play a
role in apoptosis, cell cycle regulation, differentiation, and DNA repair [2]. It also plays a
pivotal role in starting a cell protection program in the response to intracellular stresses.
Hence, p53 mediated diverse signal transduction networks engaged in the cell’s defense
against cancer. Notably, intrinsic and extrinsic stress signals affecting cellular homeo-
static mechanisms may activate the p53-directed pathway/s [3,4]. Conversely, p53 can
induce apoptosis, prime DNA repair, or a DNA replication mechanism by following in a
transcription-independent manner [5,6]. Actually, the expression of P53 is low in normal
conditions, whereas damage to the DNA of cells may elevate the expression pattern of
the P53 protein [7,8]. The p53 protein loses its ability through interacting with MDM2, a
negative regulator of p53 protein expression [9]. In higher eukaryotes, two closely related
proteins named MDM2 (also known as HDM2 for its human homolog) [10] and MDMX
(also known as MDM4) [11] closely monitor p53. MDM2 and MDMX primarily carry out
their carcinogenic activity by negatively regulating the p53 protein’s stability and activity
in a feedback loop, as they collaborate to inhibit p53’s transcriptional activity [10,12]. The
structure of MDM2 is like a hydrophobic groove that is made up of a loop and two helices.
The back of the groove is made up of two sheet structures. The structural part that links
with P53 sites is made up of the key residues: Leu54, Leu57, Gly58, Ile61, Met62, Tyr67,
Gln72, His73, Val75, Phe91, Val93, His96, Ile99, and Tyr100 [13–15]. The MDM2 gene is
found on chromosomes 3q15 and 12q14 and it has a total length of 491 amino acid residues,
and it is primarily regulating p53 stability through ubiquitination, which targets the tumor-
suppressor protein for unregulated proteasome degradation, whereas MDMX primarily
operates as a major p53 transcriptional antagonist independent of MDM2 in the absence
of its expression [16]. Simultaneous disruption of the p53-MDM2/MDMX linkages results
in prolonged and robust p53 activation, implying a possible anticancer approach [17–19].
Recently discovered is that MDM2 has been found to disrupt the function of p53 via block-
ing p53 transcriptional activity and p53 protein degradation; such inconsistent activity of
MDM2 for suppression of p53 expression is related to the higher progression of various
types of malignancies, especially brain cancer [20–22]. It is important to note that MDM2
overexpression is linked to poor survival, for breast cancer, hepatocellular carcinomas, and
brain lower-grade glioma’s patients [23–26]. To date, many drugs have been found on
the market, but most of them have fewer and more side effects. Further, plant-derived
compounds are safer and effectively work towards brain cancer.

There has been an excellent intention for discovering cancer therapeutics from bioac-
tive plant sources because anticancer drugs that are derived from plant sources are less
expensive than synthetic cancer therapeutics [27,28]. Medicinal plants have fewer toxic
effects on human health than synthetic products [29]. Several plant-derived substances, in-
cluding Vinblastine [30], Taxol [31], and Topotecan [32], etc., are used as cancer therapeutics
in clinical research. Because of recent advances in genomics and proteomics, determining
the target prospective phytocompounds has exhibited effective anticancer potential in
several clinical cancer research studies [33,34]. However, the discovery of new anticancer
drugs has become an urgent requirement in modern times because of raising the drug’s
resistance properties to cancer cells. In contrast, bioactive phytochemicals or plant-derived
compounds have significantly positive outcomes in several clinical trials [35]. Several
well-known phytochemicals have been discovered to possess anticancer characteristics in
colorectal, prostate, breast, and glioblastomas [36,37]. Phytochemicals possessed potential
anti-proliferative effects in cancer tissues via modulating several of the cancer’s cellular
signaling mechanisms [38–40].

In this current in silico study, firstly, we have conducted in-depth research to explore
the nature and clinical relationship of the p53 and MDM2 gene in the formation of brain
lower-grade glioma (LGG) cancer by using several cancer data sets and suggested that the
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MDM2 gene can be a prognostic biomarker for the early stage LGG cancer. Additionally, to
overcome the disease’s severity, we utilized the computational drug design methods, which
suggested some natural flavonoid-derived compounds which have potential anticancer
properties, and also checked its ADMET properties, because of the positive outcomes
from the ADMET results following the molecular docking with the MDM2 protein (PDB
ID-1RV1). Afterward, the best-selected phytochemicals were applied for post-docking
analysis and molecular dynamic simulation (MDS) study to evaluate their potential for
inhibiting the overexpression of MDM2 protein.

2. Results
2.1. MDM2 Gene Expression Analysis

First, the Oncomine, GENT2, and GEPIA2 databases were used to evaluate the pat-
terns of the differentially expressed MDM2 gene in distinct cancer types. MDM2 mRNA
expression patterns were identified to be significantly different in several malignancies
when they are compared with the standard (Figure 1A). There was a total of 12 Oncomine
brain cancer databases, and the statistical data on the MDM2 gene expression are provided
in “Supplementary Materials Table S1” in various Oncomine CRC subtypes. The MDM2
gene, according to the GEPIA2 database, was substantially elevated in brain and CNS
cancer compared to matched normal tissues (Figure 1).
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Figure 1. The expression profile of the MDM2 gene mRNA in a variety of cancer types. (A) The 
mRNA expression of MDM2 in various malignancies from the Oncomine database, with red cells 
Figure 1. The expression profile of the MDM2 gene mRNA in a variety of cancer types. (A) The
mRNA expression of MDM2 in various malignancies from the Oncomine database, with red cells
denoting datasets with strong mRNA upregulation and blue cells denoting datasets with notable
mRNA downregulation. (B) Analysis of MDM2 gene pan-cancer expression profiles from the TIMER
database in dot plot where each dot represents different sampling expression. The expression of
mRNA in different cancer types is measured in transcripts per million (TPM).
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Moreover, the MDM2 gene was found to be considerably elevated in various cancers,
including invasive bladder cancer, kidney cancer, leukemia, lymphoma, and sarcoma
(Figure 1B). However, the MDM2 gene was suppressed in several types of cancer, including
cervical, colorectal, and stomach (Figure 1B). In addition to this, the results obtained from
the Oncomine and GEPIA2 databases were validated by comparing them to those obtained
from the GENT2 database. It also displayed a boxplot of the MDM2 gene expression profile
in 72 different connected normal and cancer tissues, which demonstrated that this gene
was increased in numerous types of cancer, including brain cancer, and that this was true
for numerous types of cancer. Furthermore, the mRNA expression of the MDM2 gene in
brain tissues was compared to normal samples using different clinicopathological limits
from the UALCAN and GEPIA2 databases. According to the UALCAN database, the
amount of mRNA produced by the MDM2 gene was shown to be significantly higher in
TCGA brain cancer samples. Several clinicopathological parameters, including sample
type, cancer stage, ethnicity, gender, body mass index, age, histopathologic subtype, and
TP53 mutation status were found to correlate highly with MDM2 gene overexpression in
“TCGA” brain tissues, as measured by mRNA expression. The data are depicted in Figure 2
and Supplementary Materials Table S2.
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Figure 2. Using the UALCAN database, we analyzed the prognostic significance of the MDM2 gene
in TCGA LGG, comparing cancerous and normal stages depending on several characteristics. (A) The
expression of MDM2 in LGG varies depending on the patient’s race. (B) The expression of MDM2 in
LGG is dependent on the gender of the patient. (C) The expression of MDM2 in LGG is dependent
on the patient’s age. (D) The expression of MDM2 in LGG depends on the tumor grade. (E) The
expression of MDM2 gene in LGG cancer based on histological subtypes. (F) The expression of
MDM2 in LGG based on the TP53 gene mutation status.

Likewise, MDM2 gene overexpression was investigated in several clinical phases of
brain cancer (Figure 3B). Thirdly, the UALCAN database was utilized to assess the MDM2
gene promoter methylation level in brain cancer, where the methylation status is exhibited
as a beta value scale. Promoter DNA that has been methylated is shown by a beta value that
ranges from 0 (that means completely unmethylated) to 1 (that means highly methylated).
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Figure 3. MDM2 gene expression profile by tissue in LGG derived from the GEPIA2 database, where
T denotes the tumor tissue and N is depicted for the normal tissue. (A) MDM2 gene expression
in LGG, depicted as a box plot with the red box representing tumor samples and the black box
representing normal samples. (B) GEPIA2 database was also used to compare the transcription
pattern of MDM2 in brain lower-grade glioma (LGG) patients with their respective normal samples.

The rate of promoter methylation in MDM2 gene was greater in brain cancer com-
pared to the standard tissues based on sample type, different cancers stages, ethnic back-
ground, sex, weight, age, histopathologic subtypes, and TP53 mutation status. The level of
methylation of MDM2’s promoter in LGG was determined and exhibited in Figure 4 and
Supplementary Table S3.

Molecules 2023, 28, x FOR PEER REVIEW 6 of 30 
 

 

 
Figure 4. The UALCAN database was used to determine the promoter methylation status of the 
MDM2 gene for LGG cancer depending on multiple variables. (A) The extent to which MDM2’s 
promoter is methylated in LGG is determined by the patient’s race. (B) The extent to which MDM2’s 
promoter is methylated in LGG is determined by the patient’s gender. (C) MDM2 promoter meth-
ylation levels in LGG are determined by the patient’s age. (D) MDM2 promoter methylation level 
in LGG as a function of TP53 mutant status. The beta value, according to UALCAN, shows the de-
gree of DNA methylation, ranging from 0 (that means completely unmethylated) to 1 (that means 
completely methylated). The bold p-value shows the statistical significance. 

2.2. Genetic Mutations and Copy Number Alterations (CNAs) Analysis of MDM2 Genomic 
Sequences Correlated with Brain Cancer Development 

We collected different genetic alteration data utilizing the cBioPortal server in order 
to investigate the significance of the MDM2 gene in the progression of LGG Cancer. To 
begin, we queried this database for changes in MDM2 expression using 5408 samples from 
5208 LGG cancer patients across 9 studies (Table 1). 

  

Figure 4. Cont.



Molecules 2023, 28, 2977 6 of 31

Molecules 2023, 28, x FOR PEER REVIEW 6 of 30 
 

 

 
Figure 4. The UALCAN database was used to determine the promoter methylation status of the 
MDM2 gene for LGG cancer depending on multiple variables. (A) The extent to which MDM2’s 
promoter is methylated in LGG is determined by the patient’s race. (B) The extent to which MDM2’s 
promoter is methylated in LGG is determined by the patient’s gender. (C) MDM2 promoter meth-
ylation levels in LGG are determined by the patient’s age. (D) MDM2 promoter methylation level 
in LGG as a function of TP53 mutant status. The beta value, according to UALCAN, shows the de-
gree of DNA methylation, ranging from 0 (that means completely unmethylated) to 1 (that means 
completely methylated). The bold p-value shows the statistical significance. 

2.2. Genetic Mutations and Copy Number Alterations (CNAs) Analysis of MDM2 Genomic 
Sequences Correlated with Brain Cancer Development 

We collected different genetic alteration data utilizing the cBioPortal server in order 
to investigate the significance of the MDM2 gene in the progression of LGG Cancer. To 
begin, we queried this database for changes in MDM2 expression using 5408 samples from 
5208 LGG cancer patients across 9 studies (Table 1). 

  

Figure 4. The UALCAN database was used to determine the promoter methylation status of the
MDM2 gene for LGG cancer depending on multiple variables. (A) The extent to which MDM2’s
promoter is methylated in LGG is determined by the patient’s race. (B) The extent to which MDM2’s
promoter is methylated in LGG is determined by the patient’s gender. (C) MDM2 promoter methyla-
tion levels in LGG are determined by the patient’s age. (D) MDM2 promoter methylation level in
LGG as a function of TP53 mutant status. The beta value, according to UALCAN, shows the degree of
DNA methylation, ranging from 0 (that means completely unmethylated) to 1 (that means completely
methylated). The bold p-value shows the statistical significance.

2.2. Genetic Mutations and Copy Number Alterations (CNAs) Analysis of MDM2 Genomic
Sequences Correlated with Brain Cancer Development

We collected different genetic alteration data utilizing the cBioPortal server in order to
investigate the significance of the MDM2 gene in the progression of LGG Cancer. To begin,
we queried this database for changes in MDM2 expression using 5408 samples from 5208
LGG cancer patients across 9 studies (Table 1).

These 28 mutations were shown in a lollipop plot, with 24 representing missense
and null truncating (Figure 5A). Following that, the genetic alteration appearance of the
MDM2 gene was examined utilizing data from several brain cancer studies. Based on
our research findings, it was observed that the rate of MDM2 change varied considerably
among various LGG investigations. Among these investigations, MDM2 was primarily
changed in glioblastoma, with the highest incidence of modification at 11.90%. LGG studies,
on the other hand, also had the lowest rate of change (Figure 5B). Finally, a distinctive
transcriptional analysis was performed between the expression of MDM2 mRNA and
probable CNAs. The amount of MDM2 mRNA expression was found in this investigation,
and the expression was the most overexpressed CNA on the RNA seq V2 RSEM scale.

Shallow deletion, on the contrary, was the most reported change based on expression
frequency (Figure 5C). Thus, it was clear that different genetic changes in MDM2 resulted
in LGG formation.
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Table 1. Inheritance changes in MDM2 gene configurations linked to brain cancer growth progres-
sion in lower-grade gliomas (LGGs) are described. In total, 28 mutations were found, 6 of which
were duplicated.

Cancer Study Sample Size Protein Change Mutation Type Sample ID

Brain Lower-Grade Glioma
(TCGA Firehose Legacy) 530 S304P Missense TCGA-FG-8185-01

Brain Lower-Grade Glioma
(TCGA PanCancer Atlas) 514

S304P Missense TCGA-FG-8185-01

V207E Missense TCGA-KT-A7W1-01

Glioma (MSK, Nature 2019) 91

N334K Missense Patient-19-CSF

N334K Missense Patient-19-T

A351V Missense Patient-34-CSF-VP

Glioma
(MSKCC, Clin Cancer Res 2019) 1004

I195V Missense P-0010402-T01-IM5

S235N Missense P-0003900-T01-IM5

R332G Missense P-0008166-T01-IM5

G462E Missense P-0000500-T01-IM3

E210K Missense P-0003900-T01-IM5

E263K Missense P-0003900-T01-IM5

G183D Missense P-0004400-T01-IM5

V207A Missense P-0013506-T01-IM5

G449d Missense TRF047202

I208T Missense P-0019164-T01-IM6

Merged Cohort of LGG and GBM
(TCGA, Cell 2016) 1102

S304P Missense TCGA-FG-8185-01

V207E Missense TCGA-KT-A7W1-01

Glioblastoma (TCGA, Cell 2013) 543
V94M Missense TCGA-06-0155-01

X229_splice Splice TCGA-12-0618-01

Glioblastoma (TCGA, Nature 2008) 206 Y287H Missense TCGA-02-0085-01

Glioblastoma Multiforme
(TCGA, Firehose Legacy) 604

V94M Missense TCGA-06-0155-01

X229_splice Splice TCGA-12-0618-01

Glioblastoma Multiforme
(TCGA, PanCancer Atlas) 592

D86Y Missense TCGA-06-2566-01

S127F Missense TCGA-06-5416-01

I303M Missense TCGA-19-5956-01

MDM2 CACNA1C Fusion TCGA-06-A7TK-01

CTDSP2-MDM2 Fusion TCGA-06-5856-06
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Figure 5. Representation of the genetic alterations in MDM2 protein sequences because of LGG
progression enhancement. (A) A lollipop plot was used to identify 28 mutation variants in the MDM2
protein sequence. (B) In a bar diagram, two types of MDM2 modification frequencies were presented
across distinct LGG research. (C) MDM2 expression levels were examined in relation to several
classifications of genetic changes using graphical plots based on the RNA seq V2 relative standard
deviation of the mean scale (RNA seq V2 RSEM).

2.3. The Analysis of Prognostic Value and Survival Assay of MDM2 Gene

Multiple online resources, namely, GEPIA, Onco-Lnc, GENT2, and UALCAN databases,
were used to evaluate the expression of MDM2 gene and the outcomes of clinical prognosis
of the patients with LGG greater details. The GEPIA database provides survival graphs for
disease-free survival and overall survival. The 50 percent median value, 95 percent interval
of confidence at the same time GEPIA server applied for the determination of a hazard ratio
to create the survival charts. In the database, MDM2 lower expression was also associated
with a higher OS and DFS (Figure 6A–D). Both the lower and upper percentiles were set
to 25 in order to create an updated plot as Kaplan–Meier by evaluating a broad range of
LGG disease research through the Onco-Lnc server. The OS data were then matched from
the UALCAN server, where analysis of the gene expression was performed, along with
utilizing the LGG patient’s survival statistics. Onco-Lnc explored 127 cancer samples with
high and low expression of MDM2 gene.
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UALCAN tool investigated the 128 LGG cancer patient samples and identified the
higher expression level, as well as 383 samples with lower expression, in order to determine
which samples were more prevalent. According to the Onco-Lnc and UALCAN databases’
graphs, patients with low MDM2 expression had a better prognosis (Figure 6E,F). Kaplan–
Meier curve was generated using subgroups and a median cutoff value from the GENT2
database, where colon tissues were classified according to molecular subtype, Dukes stage,
AJCC stage, and tissue histology. Low and high MDM2 expression levels had similar
survival rates (Figure 7). Overexpression of the MDM2 gene was found to be related to a
lower prognosis for patients with brain lower-grade glioma (LGG). Consequently, it can be
determined that MDM2 is a tumor prognostic gene for LGG after studying its prognostic
value and survival time.
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Figure 7. Prognostic significance of the MDM2 gene in human brain lower-grade glioma (LGG)
cancer as determined by the GENT2 server. (A) Overall survival for the disease stage was determined
by dividing KM plots by the median cutoff. (B) Overall survival for the disease stage was determined
by dividing the KM plots by the median cutoff. (C) Overall survival grade in KM plots was divided
by subgroups. (D) Survival (overall) for grades KM plots separated via median value. (E) Survival
(overall) for histology is determined for adding KM plots by the median cutoff.

2.4. Study of Correlated Genes, and PIP Network

Two web-based databases, GEPIA and UA2CAN, were utilized to find genes associ-
ated with MDM2 for LGG. The Pearson correlation co-efficient (CC) value > 0.47 is regarded
as quite a significant value. YEATS4 is found to have the most positive connection with
MDM2 in LGG. To create an interaction network, twenty related genes were retrieved
from both websites. The network was investigated using the Gene MANIA online tool.
Twenty (TCAP, CDKN2A, PIAS2, MTBP, TP53, CCNG1, GLIS2, TP538P1, APEX1, RPL11,
IGF1R, PHOSPHO1, PJA1, AKAP5, MDM4, EPB41L1, DLG1, USP15, RPL5, DLG4) associ-
ated comparable genes, as well as MDM2, were used to construct an interaction network
(Supplementary Materials Figure S1).

A PPI (preparing interaction pathway) network demonstrated 3.03% co-localization
and 8.01% co-expression, which were constructed by an automatically selected weighting
mechanism. The gene cBioPortal database and MANIA server were utilized for the eval-
uation of the PPI network of the MDM2 gene to express its link with strongly correlated
genres (Figure 8). Various variables, including co-localization, co-expression, pathway,
shared protein domains, physical relationship, genetic interaction, and anticipation were
used to establish an automatically generated weighting mechanism for the network of
twenty (TCAP, CDKN2A, PIAS2, MTBP, TP53, CCNG1, GLIS2, TP538P1, APEX1, RPL11,
IGF1R, PHOSPHO1, PJA1, AKAP5, MDM4, EPB41L1, DLG1, USP15, RPL5, DLG4) genes
connected to MDM2. The interaction network demonstrated 77.64% physical interaction,
8.01% co-expression, 5.37% predicted, 3.63% co-localization, 2.8% genetic interaction, 1.88%
pathway, and 0.60% associated protein domains (Supplementary Materials Figure S2).
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Figure 8. The interaction pathway of MDM2 with its correlated genes which are significantly
associated with the progression of brain lower-grade glioma (LGG) cancer. The pathway has been
depicted from cBioportal server after securing their cordial permission.

2.5. ADMET Profiling

The analysis and optimization of the pharmacokinetic features of the chosen thera-
peutic agents were performed using Swiss ADME and pKCSM web-based programs. The
flavonoid derivatives Taxifolin, (-)-Epicatechin, and Galangin have molecular weights of
304.25, 290.27, and 270.24 gm/mol, respectively. All the substances had the same bioavail-
ability score (0.55), no AMES toxicity, and the lowest Lipinski rule violations (0). When
compared to the reference medications, the molecules have the smallest topological polar
surface area. It should also be mentioned that the chemicals had no hepatotoxic effects.
While the value range between 0.300–0.450 in humans was identified as the maximum
tolerated dose (log mg/kg/day), acute oral rat toxicity (LD50) for the flavonoid compounds
was found to be between the ranges of 2.100–2.500. In addition, the total clearance (ToC)
ranged from −0.050 to 0.300 (log mL/min/kg), and the projected octanol/water partition
coefficient (Log P) fell between 0.50 and 2.00 for all substances. The permeable value of
the blood-brain barrier (BBB) is −0.70 to −1.00; additionally, Table 2 precisely exhibits
hydrogen bond donor/s, hydrogen bond acceptor/s, rotatable bond/s, and so forth.
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Table 2. ADMET properties of flavonoid compounds.

Compds MW (g/mol) HBA HBD Num rot. ToPoSA (Å2) Log P B.S. LD50 BBB HpT AT MToD ToC

Temozolomide (control) 194.15 5 1 1 108.17 −0.92 0.55 2.178 −1.142 yes yes 1.226 0.153
Taxifolin 304.25 7 5 1 127.45 0.63 0.55 2.261 −0.725 no no 0.345 −0.078

(-)-Epicatechin 290.27 6 5 1 110.38 0.85 0.55 2.428 −1.00 no no 0.438 0.183
Galangin 270.24 5 3 1 90.90 1.99 0.55 2.450 −0.748 no no 0.333 0.256

Molecular weight (MW); hydrogen bond acceptor (HBA); hydrogen bond donor (HBD); number of rotatable bonds (Num. rot.); topological polar surface area (ToPoSA); predicted
octanol/water partition coefficient (Log P); bioavailability score (B.S.); oral rat acute toxicity (LD50); blood brain barrier (BBB); hepatotoxicity (HpT); AMES toxicity (AT); maximum
tolerated dose for human (MToD); total clearance (ToC).
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2.6. Active Site Identification and Generation of Receptor Grid

After analyzing the MDM2 protein structure (PDB ID: 1RV1), five predicted active sites
(ASs) were found (AS1, AS2, AS3, AS4, and AS5) along with the analysis of protein’s crystal
and co-crystal structures. A hydrogen-bonding acceptor map, a hydrogen-bonding donor
map, a hydrophobic map, and a hydrophilic map are displayed in each and every predictive
AS. As a result, an oxygen atom will also accept the hydrogen bond from the receiver if it is
located in a metal binding zone, and it will also be associated with a metal center. Polar
hydrogen on amide nitrogen was produced in the donor region [41]. Site Score examines the
ligand-binding prime of a site and correctly classifies prospective binding sites to remove
those likely to be un-relevant to the pharmaceuticals and determines the drug-ability of a
binding site through the D-score [42]. By combining Site Score and D-Score, we identified
five potential binding sites. The most promising of the binding sites for MDM2 residues
is designated as AS1, which can be predictive. Glide is looking for the advantageous
relationships between ligand and the receptor molecules (Grid-based Ligand Docking with
Energetics). The shape and features of the receptor are shown on a grid by several field
sets that gradually yield increasingly accurate ligand measurements [43]. For molecular
docking experiments, the AS1 grid was generated using a receptor grid generating program
(scaling factor of 1.0 and partial charge cut of 0.25) from all the predicted structure.

2.7. Interpretation of Molecular Docking

Selected flavonoid phytochemicals that interact with the MDM2 protein were identi-
fied by a molecular docking method carried out utilizing the Maestro package platform.
Between the macromolecules and ligands, the Maestro application generated the highest
possible docking score. As a control ligand, Temozolomide (control) and Imidazoline (the
native ligand of 1RV1) were included in this study, and it acquired −6.5 Kcal/mol and
−2.5 Kcal/mol binding affinity, respectively. The aromatic ligand Taxifolin performed
the best fitting score of −10.0 Kcal/mol, and the other potential bioactive phytochemi-
cals, such as (-)-Epicatechin, and Galangin exhibited the best docking value of −8.8 and
−7.4 Kcal/mol, comparatively, which are represented in Table 3.

Table 3. Tabulated in docking score, molecular interactions among selected phytochemicals with the
targeted receptor.

Compounds Docking Score
(Kcal/mol)

Amino Acid Participation in Bonding Interaction

Interaction of Hydrogen Bond Interaction of Hydrophobic Bond

Temozolomide
(Reference Drug) −5.0 Gln59 (3.04 Å) Phe55, Phe55, Lys51, Gly58

Imidazoline
(The native ligand of 1RV1) −2.5 Leu54, Phe55, Gly59

Taxifolin −10.0 Gln59 (2.81 Å), Gln59 (3.01 Å) Lys51, Phe55, Gly58, Lys51, Phe55, Gln59
(-)-Epicatechin −8.8 Lys51 (2.89 Å) Leu54, Phe55, Gln59, Phe55, Leu54, Lys51

Galangin −7.4 Lys51, Phe55, Gln59, Phe55, Lys51, Leu54

2.8. Visualization of Post-Docking Protein-Ligands Interactions

Observations of the molecular interaction among the selected ligands and the tar-
geted protein were accomplished using the Ligplot+ Version 2.2 and BIOVIA Discovery
Studio Visualizer tool. All the docked complexes have been performed in Ligplot+ Ver-
sion 2.2, and the interactions (mainly hydrophobic, and non-covalent) were calculated in
Figures 9 and 10. The “MDM2-Temozolomide (control drug)” complex was fitted by only
a single hydrogen bond (with Gln59 (3.04 Å), and four hydrophobic bonds with the Phe55,
Phe55, Lys51, Gly58). Additionally, the “MDM2-Taxifolin” complex was stood by two
hydrogen bonds (Gln59 (2.81 Å), Gln59 (3.01 Å)), and six hydrophobic bonds (Lys51, Phe55,
Gly58, Lys51, Phe55, Gln59), whereas one hydrogen bond (Lys51 (2.89 Å) and six hydropho-
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bic bonds (Leu54, Phe55, Gln59, Phe55, Leu54, Lys51) were exhibited by (-)-Epicatechin
against the MDM2 receptor. Galangin stabilized six hydrophobic bonds (Lys51, Phe55,
Gln59, Phe55, Lys51, Leu54).
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Figure 9. Representing the predictive active site (AS) of MDM2 protein retrieved from Site Map
application of Maestro package, Schrödinger Software, where the ball and sticky shape with different
colors possessed these predictive active sites with the receptor atom (signified by the interactive
amino acid residue numbers of the MDM2 protein).
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Figure 10. The interaction of all the ligand compounds with MDM2 protein was exhibited. The
left-sided figures illustrate the 3D complex, while the right-sided figures illustrate the 2D complex of
the protein–ligand interaction. Here, (A,B) represented the 3D and 2D interaction of control drug
Temozolomide (PubChem CID-5394) with MDM2 protein, whereas (C,D)-compound Taxifolin (Pub-
Chem CID-439533), (E,F)-compound (-)-Epicatechin (PubChem CID-72276), and (G,H)-compound
Galangin (PubChem CID-5281616) were depicted comparatively in interaction with the MDM2
protein complex.
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2.9. Molecular Dynamics Simulation (MDS) Analysis

Molecular dynamic simulation (MDS) is the process where stability, rigidity, bond
interaction and folding of the protein molecule is analyzed in an artificial normal physio-
logical condition. An amount of 100 ns MDS was conducted, and steady characteristics of
the protein–ligand complexes, including control, were analyzed. It has been performed
based on trajectories such as RMSD, RMSF, Rg, amount of hydrogen bond, and MM-PBSA.

2.9.1. RMSD Analysis

The root-mean-square deviation, or RMSD, is a metric that reflects the mean value
which is altered by the dispersion of atoms from a certain configuration relative to a
reference frame and is used to determine whether or not the simulation has reached equi-
librium [44]. During the 100 ns simulation time, the fluctuation of the mean values was
analyzed, and less fluctuation indicates the better conformational stability of the complex.
Higher fluctuation denotes poor strength in the artificial environment (Figure 11A). The
compound CID-439533 showed more fluctuation than other compounds after the 60 ns
period, whereas the control drug displayed fluctuation slightly at the beginning. The
remaining two compounds, such as CID-72276 and CID-5281616, exhibited as much over-
lapping in fluctuation throughout the 100 ns time. All the complexes showed better mean
values, which were within the 0.5–1.2 Å.

2.9.2. RMSF Study

The root mean square fluctuation (RMSF) indicates the steady characteristics of the
macromolecule and provides some information about the internal folding changes of the
macromolecule along with its chain [45]. The RMSF values of the selected phytochemicals
such as CID-72276 (orange), CID-439533 (green), CID-5281616 (blue), and control (grey)
have been calculated, as shown in Figure 11B. More fluctuations were found between 45
to 75 amino acid residues, and at 70 amino acid residues, it provided the highest peak of
control than other phytochemicals. All the compounds, along with the control, displayed
moderate fluctuation between 0.5 Å to 2.8 Å. After 75 amino acid residues, almost all the
compounds showed overlapping in their fluctuations with some divergence. Compounds
such as CID-439533 (green) and CID-5281616 (blue) displayed more fluctuation than CID-
72276 (orange).

2.9.3. Hydrogen Bond Analysis

Hydrogen bond took part in binding the ligand molecule with the targeted receptor
and indicates the possibility of drug-likeness and metabolic properties [45]. The interaction
of hydrogen bonds with ligands enhances the stability of the complex. All the complexes
of this research showed a more stable condition of the hydrogen bond interaction for the
100 ns period mentioned in Figure 11C. Therefore, a more stable hydrogen bond interaction
of the complexes indicates rigidity and proper metabolism and absorption in the body.
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Figure 11. (A) The graph showed the RMSD data of all protein–ligand complexes at 100 ns duration
of the simulation. (B) Diagrammatic illustration of RMSF values of five complexes. (C) The graph
shows the number of hydrogen bond interactions. (D) The diagram showed the SASA values of all
complex structures (protein-ligand) at 100 ns. (E) The graph shows the Rg values of protein–ligand
complexes. (F) The chart depicted the importance of MMPBSA of all the protein–ligand complexes at
a 100 ns simulation period. All MDS evaluations of the control drug were displayed by ash colour,
whereas the compounds CID-439533, CID-72276, and CID-5281616 were shown in green, orange, and
blue, respectively.

2.9.4. Analysis of SASA Value

The solvent accessible surface area, also known as the SASA, is an additional trajectory
of MD simulation that displays the quantities of changes in protein surface area when
subjected to extreme circumstances [46]. Initially, overlapping SASA values were found for
10 ns time after, then they showed some fluctuations (Figure 11D). The compounds such
as CID-439533 (blue) and CID-72276 (orange) displayed lower SASA values to determine
the more compactness of the targeted protein surface, and these values are steady. On the
other hand, control and CID-5281616 (green) displayed the standard value compared to the
selected protein–ligand complex.

2.9.5. Study of Rg

The radius of gyration or Rg of the protein–ligand complexes was measured to find
out how they moved and how stiff they were [47]. A graphical demonstration was found
of Rg values from the following (Figure 11E). Almost all the phytochemicals were found
to be more stable and showed the same rigidity with few fluctuations of the protein–
ligand complex. In contrast, the control drug displayed moderate fluctuation, and more
fluctuation stayed between 25–45 ns, comparatively to other selected ligand compounds.
The compound CID-439533 showed more rigidity among all compounds.

2.9.6. Analysis of MM-PBSA Value

From the interpretation of molecular mechanics, Poisson-Boltzmann Surface Area
(MM-PBSA) found the free energy in studying protein–ligand complexes. Here, all the
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selected natural bioactive compounds possessed the control drug’s potential binding
free energy value (Figure 11F). Here, the ligands Taxifolin (PubChem CID-439533) and
Galangin (PubChem CID-5281616) possessed a higher MMGBSA value than the control
drug Temozolomide (PubChem CID-5394).

3. Discussion

Several research studies have recently reported that abnormal amplification of the
MDM2 gene in neuroblastoma and glioblastoma causes the protein degradation of the
p53 gene that initiates the high progression of tumor tissue in brain cancer [48]. This
study compared MDM2 gene mRNA expression patterns in different types of cancer
samples, particularly in LGG cancer samples, with their comparable normal samples,
which were overexpressed in the brain tissue and CNS cancers [49]. In addition, the
expression is downregulated in the following cancers including gastric cancer, kidney
cancer, bladder cancer, leukemia, sarcoma colorectal cancer, lymphoma, and many more
(Figure 1). Moreover, based on a variety of clinicopathological criteria, MDM2 was found
to be considerably elevated in LGG when compared to normal samples (Figures 2 and 3).
In this way, there is a significant relationship between higher MDM2 expression and the
potential for the formation of tumor metastasis. Numerous studies have also established
the MDM2 gene’s efficacy as a prognostic biomarker in a variety of cancer types, including
human lung carcinomas, cervical carcinogenesis, bladder cancer, neck cancer, and ovarian
cancer, as well as glioblastoma [50,51]. As a result, it is proposed that the unregulated
expression of the MDM2 gene relates to the development of LGG. MDM2 has recently
gained attention as an effective therapeutic target due to its clear correlation to cell cycle
control and cancer. Consequently, all bioinformatics approaches were carried out in this
study using many powerful publicly accessible datasets, revealing that MDM2 may be
an effective prognostic biomarker for brain lower-grade glioma cancer treatment. The
phosphorylation or methylation of MDM2 in the promoter region may be responsible
for the different roles in several types of human cancer. To investigate this, we have
analyzed the amount of methylation of the MDM2 gene promoter in LGG using a variety of
clinicopathological variables (Figure 4). The frequency of promoter methylation fluctuates
drastically between LGG phases, and the level of methylation was effectively higher in
tumor samples than in normal ones.

On top of that, 13 cancer studies were used to assess the mutations and CNAs in the
MDM2 protein sequence to determine whether the gene has functional relevance in LGG
development. Overall, 28 alterations were discovered, with 24 being missense mutations
(Figure 5). Additionally, some studies proposed that finding genomic regions that undergo
frequent change could be a useful strategy for identifying oncogenes in human cancers [52].
It became clear because of this finding that MDM2 could play an important function in
the formation of LGG. The MDM2 gene’s prognostic significance for LGG was determined
using a KM plotter from following sites GENT2, GEPIA, UALCAN, Onco-Lnc, and survival
curve analysis revealed that decreased MDM2 expression was associated with a greater OS
and DFS (Figure 6).

In addition, there was a potent correlation between the reduced expression of the
MDM2 gene and a better prognosis across a wide variety of brain tissue subtypes, such as
molecular, AJCC, Dukes, grade, and histological subtypes (Figure 7). There must be a way
to figure out which gene is effectively responsible for the changes in the expression of and
chances of survival in a specific cancer; that gene could be a potential biomarker for earlier
cancer prognosis [53]. There is a relationship between the survival rate and the validation
of possible biomarkers [54]. It is hypothesized that the MDM2 gene could serve as a marker
and inhibiter of tumors for the reduced expression of human breast, prostate, and gastric
cancers [8,55]. Additionally, there is a positive link between MDM2 overexpression and a
poor prognosis for LGG cancer. Furthermore, the survival plots from multiple databases
demonstrated that MDM2 expression might play a role in LGG development and prognosis.
The Pearson correlation coefficient and co-expression coefficients were used to evaluate



Molecules 2023, 28, 2977 19 of 31

the activity of the MDM2 gene. In this study, the UALCAN and GEPIA databases were
examined in order to find the genes that were positively linked with MDM2 in LGG tissues.
The cBioPortal interaction network was constructed using 20 associated genes from the
website (Figure 8) and Gene MANIA, where Pearson CC > 0.47 was significant. Both
databases estimated that RP11-61102.3 and YEATS4 had the highest Pearson CC value with
the MDM2 gene, which was corroborated by both databases. The interaction indicated
77.64 percent co-expression, indicating that the connected genes are expressed at similar
levels in related conditions, and 3.63 percent co-localization, indicating that the correlated
genes are expressed in a similar tissue or cell as the other related genes (Supplementary
Figure S1). Gene MANIA was also used to evaluate another interaction network, and the
network was constructed using the “automatically selected weighting approach” that was
based on biologically processed data (Supplementary Figure S2) and, hence, 20 genes that
interacted with each other were linked to a variety of cancers. MTBP has the possible
prognostic characteristics of LGG [56]. CDKN2A has the potential to be the main target for
the treatment of a number of human malignancies [57]. Moreover, TP53 and MDM4 have
strong prognostic characteristics for the progression of brain cancer [58,59].

The in silico drug design approach has been becoming increasingly popular in recent
times because of its proven potential to accelerate the discovery of safe and effective new
medications [60–62]. This is accomplished through the evaluation of the outcomes of phar-
macophore screening, molecular docking, analysis of post-docking interaction, molecular
dynamic simulation (MDS), and prediction of noble and effective drug compounds against
a higher range of diseases in a computer-simulated environment [63–65]. In silico drug
design can be used to speed up the development of quality drugs by evaluating the out-
comes of these processes [14,49]. Three of the four phytochemicals used in this study were
effectively chosen to be lead compounds, while the fourth was used as a controlled drug
for the purposes of this investigation. Along with conducting “fact checks” and providing
secondary complementary judgments on high-performance assays, ADMET profiling is a
cost-effective technique for significantly reducing the costs of drug development [66–68].
These four phytochemicals’ pharmacokinetic features were determined with the help of
online servers from the pkCSM pharmacokinetics and Swiss ADME organizations, as indi-
cated in (Table 2) [69–71]. As part of the study’s pharmacokinetic components, Lipinski’s
five-rule pharmacophore properties (molecular weight, rotational bond count, logP value,
hydrogen bond donors and acceptors, and degree of infringement) were evaluated for
all selected ligands using Lipinski’s five-rule approach (violation level) [72–74]. All the
selected natural bioactive phytochemicals possessed better human intestinal absorption,
better BBB value, AMES toxicity, no carcinogenicity, and no hepatotoxicity for both the
human and mice research model, except for the selected control compound for our research
study [75–77].

Molecular docking is a technique for predicting the interactions between molecules
under conditions with the most stringent compositional confirmation and the lowest
binding affinity conceivable [78,79]. Using the Maestro application, which employs site-
specific super molecular docking to assign a potential binding score, the drug candidates
with the most significant and stable binding score were identified. Three natural bioactive
compounds and a placebo were chosen for a molecular docking investigation with the
p53-MDM2 protein (PDB ID: 1RV1). The control medicine, Temozolomide (PubChem
CID 5394), was reported to have a docking affinity of −5.0 Kcal/mol. Among the natural
bioactive compounds that were chosen, Taxifolin had the highest binding affinity of −10.0.
This is the case when Galangin was −7.4 and (-)-Epicatechin was −8.8, as represented by
Table 3. In the subsequent stage, Ligplot+ (Version 2.2), an excellent investigational tool that
typically runs via the Java interface, was used to analyze the 2D protein–ligand interaction
visualization. In addition, the docked receptor–ligand interactions were visualized using
the Development Studio Visualizer tool v19.1.0.18287 (BIOVIA), a sophisticated visualizer
tool for drug discovery (Figures 9 and 10).
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Molecular dynamic simulation (MDS) can help in the development of noble medica-
tions and performance data by providing insight into biomolecular interactions and the
interface between the arrangement and activity of proteins [45,80], which was also con-
ducted in our study using the YASARA software package. The simulation tool’s trajectory
has also been used to flawlessly examine the root mean square deviation (RMSD), root
mean square fluctuation (RMSF), the radius of gyration (Rg), the number of hydrogen
bonds, and the surface area of the molecule that is accessible to solvent (SASA). It was
determined how reliable the p53-MDM2 protein structure was by measuring the RMSD
value of its protein backbone; a smaller number suggests more stable molecules. Our
findings demonstrated that the RMSD values of protein–ligand interactions are adequate,
with mean values of 2 (the lowest value for CAP is roughly 0.8, with maximum values of
3), indicating a more favorable docking location and no structural disruption between the
two molecules (Figure 11A). The RMSF provides a quantitative measure of average protein
fluctuations relative to some fixed point of reference, and RMSF graphs illustrate how these
fluctuations are indicative of changes at the residue level. The RMSF of the c-alpha atoms
can be seen illustrated in Figure 11B.

The total number of intermolecular hydrogen bonds developed between the macro-
molecules and their ligands was counted to determine the conformational stability, and
the protein-ligands (-)-Epicatechin and Taxifolin were found to generate the most of these
bonds, with strong conformational stability of 190 and 188, respectively. These protein-
ligands are more conformationally stable than the control compound (Figure 11C). Using
the simulation trajectories, the solvent-accessible surface area (SASA) of the protein-ligands
was also measured to find out how the size of the drug-like molecules changed along the
simulation trajectories [81]. Because of the structure’s instability, which places hydrophobic
amino acid residues in close proximity to the water molecule, one of the highest SASA val-
ues is attributable to this factor [82]. The SASA result from the MDS trajectory revealed that
Galangin exhibited the highest SASA values (6000 Å2); however, (-)-Epicatechin, Taxifolin,
and Temozolomide (control) also had greater SASA values than what Galangin exhibited
(Figure 11D).

In addition, Rg is a distance measurement between the protein’s center of mass and its
terminus, and so it indicates how great that distance is. Consequently, this metric evaluates
the compactness of the protein molecule and offers additional information regarding the
folding features of the protein [83]. Furthermore, slackpacking is denoted by a higher
Rg value, and compact packing is denoted by a lower Rg value (Kousar et al., 2020).
The Rg values are summarized in (Figure 11E), with (-)-Epicatechin having the highest
matching capacity (26.4) when compared to the reference or control ligand compound
(Temozolomide, 26.5). The ligand compounds, Taxifolin and Galangin, are also compact,
and numerical affinity values are reported in both cases (28.45). The weaker binding affinity
was determined in quercetin and genistein (26.2). The protein–ligand complexes’ binding
free energies were displayed by the Analysis of Molecular Mechanics Poisson-Boltzmann
Surface Area (MMPBSA). In this case, all of the natural bioactive compounds chosen
had more of the potential binding free energy value than the control drug compound
(Figure 11F).

There was insufficient clinical evidence to substantiate LGG treatment by targeting the
p53-MDM2 pathway loop in our current in silico analysis. This in silico study examined a
novel method of treating LGG and found that more wet lab and clinical tests are required to
confirm the efficacy of these drug-like compounds that target the MDM2 protein. Therefore,
after the evaluation of their anticancer potential both the in vitro and in vivo research
animals, these potentially bioactive phytochemicals may be exploited as an alternative
therapeutic option for the human brain lower-grade glioma (LGG) cancer treatment.
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4. Materials and Methods
4.1. MDM2 Gene Expression in Brain Cancer Research

Different types of online-based databases, namely, Oncomine (https://www.oncomine.
org/, acessed on 21 July 2022), UALCAN (http://ualcan.path.uab.edu/, accessed on 21
July 2022), GENT2 (http://gent2.appex.kr/gent2/, accessed on 21 July 2022), and GEPIA2
(http://gepia2.cancer-pku.cn/#index, accessed on 21 July 2022) have been used to evaluate
the mRNA transcription. They are all publicly available online interactive platform with
different malignance assessments compared to the control at different cancers. Among
all the datasets, Oncomine is currently the largest database of cancer microarray data of
oncogenes in the world, with information about mining phases containing 715 independent
datasets and 86.733 examples [84]. MDM2 gene expression was compared and related in
diseased and normal individuals where the p-value was 0.0001 and fold changes value was
2. On the UALCAN website, researchers looked at the expression of the targeted genes,
methylation analysis, pan-cancer viewpoint, survival, and correlation data of the MDM2
gene in brain cancer [85]. The levels of DNA methylation in the promoter region of the
MDM2 gene were also collected from the UALCAN data repository based on several criteria.
The GENT2 database of Gene Expression was used for collecting MDM2 gene expression
data across 72 pairs of tissues [86]. Using the Gene Expression Profiling Interactive Analysis
(GEPIA 2) database, the mRNA expression of the MDM2 gene, in addition to its expression
in cancer stages utilizing TCGA data in COAD, were explored further [87]. A gene-specific
comparative examination of several malignant development patterns using a standard
handling technique includes approximately 8587 normal and 9736 cancer samples.

4.2. Determination Copy Number Alterations and Mutation of MDM2 Gene

A multidisciplinary cancer genomic dataset such as “cBioPortal” (https://www.
cbioportal.org/, accessed on 24 July 2022) possesses 308 cancer research datasets in this
open-source research platform [88,89]. It analyzes the recurrence of mutations and other
genetic abnormalities using data from over 5000 tumor samples and atomic characterization
of cell lines and cancer tissues from various cancer investigations. We have also used this
database to investigate mutations and variations in copy numbers in brain cancer for the
MDM2 gene.

4.3. Survival Data Analysis

Numerous virtual screening tools, notably GENT2, GEPIA, OncoLnc, and UALCAN
were applied to identify the survival data of brain cancer patients according to alteration
of time change against the measurement of MDM2 gene. The survival condition of the
diverse cancer subtypes was accurately determined via the GENT2 online server, where the
result analysis comparison among 1146 samples and analyzed the 5 major subcategories,
including the histology, grade, Dukes stage, AJCC stage, and molecular subtype. GEPIA
(http://gepia.cancer-pku.cn/, accessed on 22 December 2021) is an online-based database
that evaluates overall survival (OS) and disease-free survival (DFS) statistics [90]. A logrank
test that is based on gene expression is utilized in order to evaluate the outcome when a
particular form of cancer is diagnosed [91]. Survival analysis was also performed using
the Onco-Lnc database (http://www.oncolnc.org/, accessed on 22 December 2021). It
examines the expression of 21 cancers’ mRNA, miRNA, and lncRNA to determine the
survival of 8647 patients [92]. In addition, the MDM2 gene’s survival was examined
using the UALCAN database. (http://ualcan.path.uab.edu/index.html, accessed on 22
December 2021). TCGA patient survival data were compared to Kaplan–Meier survival
data, and then OS graphs were created and supplied [85].

4.4. Analysis of Correlation and Interaction Networks

For understanding better gene expression, it is necessary to categorize the target gene’s
related genes. It was performed by searching associated genes with MDM2 gene on the
GEPIA and UALCAN databases. The GEPIA was used to identify the genes in TCGA

https://www.oncomine.org/
https://www.oncomine.org/
http://ualcan.path.uab.edu/
http://gent2.appex.kr/gent2/
http://gepia2.cancer-pku.cn/#index
https://www.cbioportal.org/
https://www.cbioportal.org/
http://gepia.cancer-pku.cn/
http://www.oncolnc.org/
http://ualcan.path.uab.edu/index.html
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LGG cancer that were comparable. The UALCAN database was used to find genes that
are positively linked with MDM2 in LGG cancer, and correlated or comparable genes were
entered into the GeneMANIA website to assess the correlation between the two individual
proteins. On both online sites, Pearson CC (correlation coefficients) > 0.47 was considered
significant, and correlated or analogous genes were placed into the Gene MANIA website
to evaluate the protein’s association. Gene MANIA (https://genemania.org/, accessed on
24 July 2022) is a web-based database that shows the connection between a set of genes and
the genes that are entered. Genetic and protein relationships, co-localization, co-expression,
pathway, and the similarity of protein domain are all included in the database [86]. The
Gene MANIA server was utilized to estimate the MDM2 gene’s protein–protein relationship
to express the gene’s link with the listed genes.

4.5. Compounds Library Preparation and ADMET Screening for Selection of the Lead Compounds

To identify the anti-brain cancer activity, we constructed the phytochemical library.
In our research study, we have selected 200 flavonoid compounds from diverse published
scientific research articles based on their anticancer properties. Following the chemical
properties analysis, 150 compounds have been chosen for future investigation. After that,
we performed ADMET analysis to predict the pharmacokinetic features of test ligands, such
as absorption, distribution, metabolism, excretion, and toxicity. To determine the ADME
parameters, all 200 ligands were evaluated using the Swiss ADME (http://www.swissadme.
ch/, accessed on 25 July 2022), which can be found here. Following this, toxicity profiling
was performed on 200 ligands, of which only three did not break the Lipinski rule of
violation. The web-based tool pkCSM (http://biosig.unimelb.edu.au/pkcsm/prediction,
accessed on 25 July 2022) was implemented to find out how toxic the possible ligands
were. It was decided to do additional computational investigations and analysis on three
compounds.

4.6. Retrieval and Preparation of Compounds

From the PubChem database (https://pubchem.ncbi.nlm.nih.gov/, accessed on 26
July 2022), a spatial data file (SDF) containing the tertiary structure of the selected potentially
bioactive aromatic compounds as well as the control drug were retrieved. Every ligand’s
structure was prepared using the LigPrep application of Schrödinger software (https:
//www.schrodinger.com/products/maestro, accessed on 26 July 2022). The minimization
process is carried out with the help of the OPLS3e force field and the Epik ionizer at a
standard pH range of 7.0 to (+/−) 2.0, with a maximum of 32 conformers for each structure
and an RMSD of 1.0.

4.7. Protein Retrieval and Preparation

The PDB format of the MDM2 protein structure (PDB ID: 1RV1) was retrieved from
the Protein Data Bank (https://www.rcsb.org/, accessed on 27 July 2022). The Protein
Preparation Wizard 12.5 of Maestro Application (Schrödinger 2020-3 Schrödinger, LLC,
New York, NY, USA, 2020) was used for the preparation of the protein after it had been
downloaded. The allocated bond orders, the chemical compound database (CCD), the
insertion of hydrogens, the formation of disulfide bonds, the formation of zero-order bonds
to metals, the completion of any missing side chains and loops utilizing Prime have been
selected. In addition to utilizing the fixed cap termini and removing waters beyond 5 from
heat groups, we also made use of Epik (Schrodinger Release version 2020-3), which was
employed to generate heat states with pH 7.0± 2.0. The H-bond was identified in PROPKA
at a pH level of 7.0, and the deterioration was capped at an RMSD of 0.30 by reducing the
coverage of heavy atoms with the help of the refine tab and the OPLS3e force field.

4.8. Active Site Prediction and Generation of Receptor Grid

An application known as SiteMap (Schrödinger Release 2021-2: SiteMap, Schrödinger,
LLC, New York, NY, USA, 2021) was used, which can effectively identify the potential
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binding sites on proteins for small-molecule ligands by site map generation along with the
evaluation of protein’s crystal and co-crystal structures. It pinpoints and ranks the sites
on a protein’s surface that are most suited to bind with an external ligand. The current
SiteMap facility in Maestro expands the original SiteMap facility that was previously
available (named hapmap) [41,93]. Site mapping works similarly to Goodford’s GRID
method, precisely in the original approach [94,95]. Three steps are involved in the SiteMap
evaluation; in the first, the locations are initially defined by a grid, and then the dots are
classified into subsets based on several parameters. In the second stage, grid mapping is
used to create files that can be used to visualize the maps. Finally, the value of properties
is determined, and locations are recorded in Maestro format. Every phase is completed
by executing an impact job. For the purposes of molecular docking research, the optimal
binding pocket was selected based on having a higher Site Score and DScore.

The Site Index is computed by doing a weighted average calculation on a number of
different features:

SiteScore = 0.0733 sqrt(n) + 0.6688 e − 0.20 p.

In this equation, n represents the number of site points, which is capped at 100, e is
the enclosure score, and p is the hydrophilic score, which is fixed at 1.0 in order to restrict
the impact of hydrophilicity in charged and strongly polar sites [93,96,97].

Dscore and SiteScore are both calculated based on the same properties, although
Dscore uses various coefficients and percentages:

DScore = 0.094 sqrt(n) + 0.60 e − 0.324 p.

There are no bounds on how high a hydrophilic score can be for Dscore. One of the
criteria that differentiates “easy” and “druggable” targets from “difficult” and “undrug-
gable” ones is this aspect of the target [93]. Different and even sometimes contradictory
requirements necessitate the employment of distinct functions to identify binding sites and
categorize drug consumption. It has been discovered that ligands with nanomolar and
even sub-nanomolar affinities have been found for the PTP1B phosphate pocket [98,99].
However, they share some similarities with pharmaceutical drugs in terms of charge config-
uration, as these compounds are more closely related to those found in natural phosphate
substrates and, hence, lack the drug-like properties typically associated with pharmaceuti-
cals [49,100]. Even though SiteMap should identify a site with such high ligand interaction,
the sitemap score should not consider it druggable.

4.9. Site Specific Super Molecular Docking

Maestro (Schrödinger Release 2021-2: Maestro, Schrödinger, LLC, New York, NY, USA,
2020-3.) was applied to XP program (extra precision) site-specific super molecular docking.
After the completion of XP (extra precision), molecular docking by Maestro Tool (https:
//www.schrodinger.com/products/maestro, accessed on 26 July 2022) of Schrödinger
Suite Software (https://www.schrodinger.com/, accessed on 26 July 2022), every protein–
ligand complex structure in PDB format was taken from the docked post-viewing file
for post-docking visualization, investigation of non-bond interactions, and evaluation of
hydrophobicity and bioactivity.

4.10. Post-Docking Protein-Ligands Interactions Visualization

In order to investigate the interaction among the proteins and ligands, we imple-
mented Ligplot+ version 2.2 to examine the polar and hydrophobic (non-bonding) inter-
actions between protein–ligand complexes. This visualizing tool worked well owing
to the java interface platform (Java SE Runtime Environment 8u271), which allowed
only the combined PDB files that were retrieved from the Maestro application after
molecular docking analysis [86,101]. The visualizer software Discovery Studio (http:
//media.accelrys.com/downloads/visualizer/45/DS45Client.exe, accessed on 26 July
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2022) 64-bit application was used to perform post-docking visualization on the complex
structures assessment. Additionally, the Discovery studio visualizer also evaluated the
polar and non-polar interactions [102,103].

4.11. Molecular Dynamics Simulation (MDS)

The protein–ligand complexes were evaluated using 100 ns MD simulations to de-
termine how consistently the chosen candidate compounds bind to the specified protein
active site (AS) [104,105]. In the YASARA dynamics software program (version 4.3.13),
molecular dynamics simulation research was conducted by using the AMBER14 force field.
The MDS operation was conducted in a high-configured computer (Intel corei9, Nvidia
RTX 3090 GPU, NVIDIA Corporation, Santa Clara, CA, USA) with windows operating
system (OS). The complexes were subjected to preliminary cleaning, optimization, and
hydrogen bond interaction management. Cubic simulation cells with periodic boundary
conditions were employed alongside the TIP3P solvation model [106]. The temperature
of the simulated system was 310 K, the pH was 7.4, and the salt concentration (NaCl)
was 0.9% by weight [107]. The initial step in the process of minimizing the amount of
energy used involved applying methods with the steepest gradient and an approach called
simulated annealing (5000 cycles). Through the use of particle mesh Ewald techniques,
long-range electrostatic interactions with a cutoff radius of 8 Å were computed [108,109].
The simulation systems were set up with a time step of 2.5 fs [107]. After each 100 ps of
simulation time, the trajectories were saved. In order to investigate the RMSD, RMSF, Rg,
SASA, and hydrogen bonding, the simulations trajectories were extended for 100 ns while
adhering to constant pressure and the Berendsen thermostat.

Based on this, the YASARA trajectories were used in the computation of the binding
free energy using the MM-PBSA methods. A higher positive energy value indicates a
higher grade of energy [110,111]. The equation that was applied for the computations in
order to determine the binding free energy was as follows:

Binding Energy = EpotRecept + EsolvRecept + EpotLigand + EsolvLigand − EpotComplex − EsolvComplex

All molecular dynamic simulation screenshots were generated using the premium
YASARA software. According to the trajectory performance, the RMSD, RMSF, protein-
ligand contacts (P-L), and the hydrogen bond interactions were conducted to measure
whether or not the complex structure of protein and ligand could be maintained over
time [112,113].

The RMSD in MD simulations is the average distance an atom moves in a given
time interval with respect to a fixed time point [45,114]. To begin, the root-mean-square
deviation (RMSD) of the protein’s structural atoms (C, backbone, side chain, and heavier
particles) is calculated. Next, the RMSD of the protein’s fit ligand atoms over all time points
is aligned and compared to the reference time point (in our study 100 ns). The RMSD of a
periodic MD simulation with period x can be found with the application of the following
equation (Equation (1)).

RMSDx =

√
1
N ∑N

i=1

(
r′i (tx)) − ri (tref ))

2 (1)

Here, N indicates the total number of atoms that were picked, tref stands for the
reference time, and r′ describes the location of the atoms that were chosen in system x after
the point of the reference system has been superimposed on it.

The RMSF has mostly been utilized for detecting and tracking local variations in
the conformational structure of protein complexes [115]. Calculating the RMSF of an MD
simulation of a protein with the given number of residues and using the continuity equation
(Equation (2)) is one possible way to do it.

RMSFi =

√
1
T ∑T

t=1 <
(
r′i (t)) − ri (tref ))

2 > (2)
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Here, T generally denotes the trajectory time over which the RMSF is calculated; tref is
the reference; r′ denotes the position of the selected atoms in residue i after transposing
on the reference frame, and angle bracket (< >) indicates the mean of the square distances
covered over the selected atoms in the residues.

5. Conclusions

In this study, the aim was to precisely check the elevated level of MDM2 gene in
LGG disease compared to the standard samples and based on a variety of clinicopatho-
logical properties. Consequently, several integrative bioinformatics web-based tools were
applied to publicly accessible datasets, revealing that MDM2 may be an effective prognostic
biomarker for this disease to determine the frequency of promoter methylation varies
dramatically across the various phases of LGG. The level of methylation was greater in
tumor samples compared to the normal or standard samples. The MDM2 gene’s prognostic
significance for LGG was determined using a KM plotter from multiple websites, including
the ULCAN, Onco-Lnc, GENT2, and GEPIA; therefore, the survival plots from multiple
databases demonstrated that MDM2 expression might play a role in LGG development
and prognosis. So, it is a major prognostic biomarker and acts as an alternative therapeutic
site for the control of the advanced level of brain cancer. Additionally, the virtual mediated
ADMET screening was used to identify 3 phytocompounds out of 50 that were predicted to
have the most drug-like features. According to the results of the molecular docking study,
these ligand molecules have the maximum binding affinity against the targeted receptor.
This result was comparable to that of the reference anti-brain cancer medicine, Temozolo-
mide. These pharmacological analogues, including Taxifolin, (-)-epicatechin, and Galangin,
maintained more persistent and compact connections with the residues in the active region
of MDM2 protein. The MD simulation was performed to confirm that these molecules have
the best activity toward the targeted receptor, and they showed more positive results. As a
result, they may be capable of overcoming the developing of LGG cancer. After all, these
flavonoid-based compounds have the potential to be used as alternative therapeutic agents
in LGG; nevertheless, additional study is necessary to verify that they do not possess any
harmful side effects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules28072977/s1, Supplementary Table S1: A comparison
of MDM2 transcriptional level between LGG tumor subtypes and regular individuals was made
using the Oncomine database. Supplementary Table S2: Comparative analysis between normal
and cancerous tissues utilizing UALCAN database to determine the expression pattern differences
between MDM2 and other genes in brain lower-grade glioma (LGG) cancer. p-value in bold denotes
statistically significant values. Supplementary Table S3: Based on several characteristics and a
comparative analysis between normal and different stages of cancer, the promoter methylation level
of MDM2 in brain lower-grade glioma (LGG) cancer was determined using the UALCAN database.
p-value in bold denotes statistically significant values. Supplementary Table S4: Positively correlated
genres of MDM2 gene of brain lower-grade glioma (LGG) cancer. Supplementary Figure S1: MDM2
and the positively linked genes of brain lower-grade glioma cancer (LGG) have a lot of interactions
with each other. Supplementary Figure S2: The correlation network of MDM2 with its effectively
interacted gene has been represented based on its physical and genetic interconnections, co-expression,
co-localization, interaction pathways, and estimated protein domains.
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