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Abstract: The author studied and demonstrated the various modeling aspects of long period fiber grating 
(LPFG) such as the core effective index, cladding effective index, coupling coefficient, coupled mode theory, 
and transmission spectrum of the LPFG using three-layer fiber geometry. Actually, there are two different 
techniques used for theoretical modeling of the long period fiber grating. The first technique was used by 
Vengsarkar et al who described the phenomenon of long-period fiber gratings, and the second technique was 
reported by Erdogan who revealed the inaccuracies and shortcomings of the original method, thereby 
providing an accurate and updated alternative. The main difference between these two different approaches 
lies in their fiber geometry. Venserkar et al used two-layer fiber geometry which is simple but employs weakly 
guided approximation, whereas Erdogan used three-layer fiber geometry which is complex but also the most 
accurate technique for theoretical study of the LPFG. The author further discussed about the behavior of the 
transmission spectrum by altering different grating parameters such as the grating length, ultraviolet (UV) 
induced-index change, and grating period to achieve the desired flexibility. The author simulated the various 
results with the help of MATLAB. 
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1. Introduction 

Long period fiber gratings are fiber optic devices 

with numerous applications in optical 

communications and sensing systems. Fiber gratings 

are prepared by creating a region of periodically 

varying refractive index inside the core region of an 

optical fiber by using various techniques such as 

ultraviolet (UV) irradiation, ion implantation, 

irradiation by femtosecond pulses in the infrared, 

irradiation by CO2 lasers, diffusion of dopants into 

the core, relaxation of mechanical stress and 

electrical discharges [1]. Fiber gratings are classified 

as the fiber Bragg grating (FBG) or long period fiber 

grating (LPFG) according to the grating period. An 

LPFG has a grating period in the range of 100 µm to 

1 mm while an FBG has a sub-micron period. The 

LPFG was firstly presented by Vengsarkar et al. [2] 

as a band rejection optical filter in 1995. The LPFG 

promotes the coupling between the propagating core 

mode (i.e. the LP01 or HE11 mode presenting in the 

core of the single mode fiber) and co-propagating 

cladding modes (with m = 1, 2, 3, 4,…) in the 

perturbed region as shown in Fig. 1. The light 

coupled to the cladding modes decays quickly due to 

scattering losses, thus leaving lossy bands in the 
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guided-core mode observed at the output end of the 

LPFG. Therefore, the transmission spectrum of the 

long period fiber grating has a series of attenuation 

bands at distinct peak resonant wavelengths, which 

satisfy the phase matching condition as [2]. 

res eff ,co eff,cl( )m mn n   Λ           (1) 

where λres is the resonant wavelength, neff,co is the 

effective refractive index of the core mode, eff,cl
mn  is 

the effective refractive index of the mth cladding 

mode, and Λ is the grating period. 

 
Fig. 1 Coupling of a fundamental guided mode to a cladding 

mode in the LPFG. 

In optical communications, LPFG devices have 

been used for numerous applications such as in 

band-rejection filters [2], temperature and strain 

sensors [3], and any type of refractive index sensors 

[4, 5]. These sensors possess a number of benefits 

over other conventional sensors. For example, they 

are light and small in diameter, they have the good 

sensitivity and good long-term stability, and they are 

free from corrosion attack [6] and also from 

electromagnetic interference [7] that seriously 

affects many other conventional sensors. For 

employing the LPFG as any type of sensors (such as 

the refractive index sensor, temperature sensor, and 

strain sensor), they respond to shifts in various peak 

resonant wavelengths corresponding to various 

attenuation bands in the transmission spectrum of 

the LPFG, for example in the case of the temperature 

sensor, different temperatures of an external medium 

will give corresponding shifts in various peak 

resonant wavelengths corresponding to various 

attenuation bands of the transmission spectrum with 

respect to the original spectrum of the LPFG [8]. 

This is also the basis of using the LPFG as any type 

of sensors. Also the LPFG is much superior to the 

FBG as the refractive index sensor because the FBG 

is intrinsically insensitive to the external 

(surrounding) refractive index, since the light 

coupling takes place only between well-bound core 

modes that are well screened from the influence of 

the surrounding medium by the cladding layer. In 

order to use the FBG as a refractive index sensor, 

the cladding region is etched, so that an external 

medium acts as the cladding region. But by doing so, 

the FBG sensor loses its mechanical strength. Also 

in the LPFG sensors, there are several cladding 

modes which satisfy the phase matching condition 

so its transmission spectrum has a series of 

attenuation bands contrary to only one attenuation 

band in the case of the FBG sensor. In the LPFG 

sensors, by checking the wavelength shift of each 

attenuation band due to the variation in the 

parameter which is to be sensed, the required 

sensitivity can be obtained. 

In the simplest term, the simulation procedure 

takes place as follows: firstly the propagation 

constants of the fundamental core and cladding 

modes are calculated to determine the effective 

refractive indices of the core and cladding modes, 

then the coupling coefficient is found for coupling 

between core mode and various cladding modes, and 

finally the complete transmission spectrum is 

obtained using the coupled mode theory. 

2. General discussion regarding two- 
layer fiber geometry and three-layer 
fiber geometry 

A review of the appropriate literature has shown 

that there are two different approaches existing for 

theoretical modeling of the LPFG. The first approach 

was proposed by Vengsarkar et al. [2] who described 

the new phenomenon of long period fiber gratings, 

and the second approach reported by Erdogan [9] 

revealed the inaccuracies and shortcomings of the 
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original method, thereby providing an updated and 

accurate method but resulting in the greater 

mathematical complexity. The key difference 

between these two approaches lies in their 

representations of the fiber geometry, which 

ultimately relied upon to derive discrete expressions 

for the dispersion relations, mode field profiles, and 

coupling coefficients. Whereas both methods 

employ the weakly guided approximation to find the 

effective refractive index of the fundamental core 

mode LP01, and the two approaches differ in terms 

of the way in which the cladding effective refractive 

indices are calculated [9]. 

In weakly guided approximation, the normalized 

core-cladding index difference (Δ) is very low [9]: 

co cl

co

1
n n

n



  .            (2) 

The above assumption allows the simpler 

solution of the characteristic equations, which 

approximates the exact solutions [10]. The results in 

linearly polarized (LP) “pseudo modes” because the 

waves constructed from these simplified solutions 

propagate at small angles to the fiber axis and are 

essentially polarized in a single direction. 

Vengsarkar et al. employed this approach and 

ignored the effect of the core at the cladding ambient 

interface, so that a simple two-layer waveguide 

model would serve when describing the fiber 

cladding and ambient medium [2]. Whereas Erdogan 

[9] made use of the three-layer fiber geometry 

having exact vector field representations for the 

calculation of cladding modes. In this method, the 

effect of the core is not ignored when calculating the 

cladding effective refractive indices. In this paper, 

only those  equations are discussed, which are 

helpful for theoretical modeling of the LPFG in the 

three-layer geometry to save the excessive 

mathematical complexity. 

3. Calculation of core effective refractive 
index 

The core effective refractive index is found from 

the LP mode dispersion relation in the form of an 

eigen value equation. In this approach, the inner 

cylinder is made up of core, and the outer cylinder is 

made up of the infinite and uniform cladding [2, 11], 

as shown in Fig. 2. 

1 co1 co co

0 co0 co co

( )( )
( )( )

K wJ u w
K wJ u u

 
  

 
         (3) 

where 0 co( )J u  and 1 co( )J u  are Bessel functions 

of the first kind of order zero and one, respectively, 

and 0 co( )K w  and 1 co( )K w  represent the modified 

Bessel functions of the second kind of order zero 

and one, respectively. 

 
Fig. 2 Cross sectional view of an optical fiber, when 

calculating the core mode (the cladding diameter is assumed to 
be infinity). 

cou  and cow  are normalized transverse wave 

numbers that can also be written in terms of the 

fiber’s V number. The relation between cou  and  

cow  is as follows: 
2 2 2
co cow u V  .            (4) 

Thus using the graphical approach, we can find 

the intersection point and corresponding value of uco 

as shown in Fig. 3. 
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Fig. 3 Calculation of the core mode. 
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2

co2
co co

co

( )
u

fn
a

  
   

 
         (5) 

co
effn

f


  

where b is the normalized effective index and is 

used later: 
2 2
eff cl
2 2
co cl

n n
b

n n





 

2
f




  

cl eff con n n   

where f is the free space propagation constant. 

Table 1 includes all the parameters used in 

various simulation procedures. 

Table 1 Parameters used in simulation 

Parameters Values used 

Core radius(aco) 4.65 μm 

Cladding radius(acl) 62.5 μm 

Core refractive index(nco) 1.465 

Cladding refractive index (ncl) 1.46 

External refractive index (next) 1 

Free space wavelength (λ) 1.310 µm 

4. Calculation of cladding effective 
refractive indices using two-layer fiber 
geometry and three-layer fiber geometry 

Calculation of various cladding modes using the 

two-layer fiber geometry is very similar to the 

procedure of determining the effective index of the 

core, so we will discuss this method first. Using the 

two-layer fiber geometry, we assume that the effect 

of the core is negligible at the cladding surrounding 

interface, so that a simple two-layer waveguide 

model will suffice when describing the fiber 

cladding and ambient medium. This approach is 

only possible when the presence of the core is 

ignored so that the fiber geometry once again 

comprises two concentric cylinders with a 

step-index profile as shown in Fig. 4. This time, the 

inner cylinder is a homogeneous solid consisting 

solely of the cladding material, whereas the outer 

cylinder is made up of the infinite but uniform 

medium surrounding the fiber. 

External medium 

ncl x

r 

next

y

acl 

 

Cladding 

 

Fig. 4 Cross sectional view of an optical fiber, when 
calculating various cladding modes, in which the core region is 
ignored so that the cladding region acts as the core region and 
the external surrounding region acts as the cladding region. 

Due to the large radius of the cladding acl, this 

model actually represents a simple multimode 

step-index fiber whose large-radius cladding region 

acts as the fiber core region, while the limitless 

external region acts as the cladding region [2, 11]. 

The rest of the technique of calculating cladding 

modes using the two-layer fiber geometry is very 

analogous to that of the calculation of the core 

mode. 

The dispersion relation is used once again [see 

(3)], but due to the larger fiber dimensions, the 

graphical representation now yields numerous points 

of the intersection, each corresponding to one of 

several normalized transverse wave numbers 

belonging to a specific cladding mode, as shown in 

Fig. 5. Thus the propagation constant corresponding 

to each cladding mode order m can be determined 

from [11]. Using the two-layer fiber geometry, we  
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Fig. 5 Calculation of various effective refractive indices of 
the cladding using the two-layer fiber geometry (also called the 
graphical solution method). 
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employ the weakly guided approximation that Δ is 

very small, so the inaccuracy of this method is 

corrected by employing the three-layer fiber 

geometry. In this method, the core-cladding 

interface is not ignored, and the required dispersion 

relation for various cladding modes is given as [9] 

0 0                  (6) 

where 

1 2 21 32 cl
2 2 cl cl cl

co cl cl2 2
0

32 21 32 cl 21 cl
2 2 2 cl 2 2

cl cl co co cl co co co

1 ( )
( ) ( ) ( )

( ) ( )
( )

v
v v v

v v
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u u s a
JK u p a Kq a Jr a

a a n u

u u u q a u r a
J K u p a

a n a n a n a n
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



          
    

           
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4
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 
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 

 (21) 

In all of above equations, 0 0 0/ 377Z      

is the free space electromagnetic impedance. N is 

defined as a Bessel function of the second kind or 

the Neumann function, and the azimuthal order of 

the cladding mode is set to 1v   in order for 

non-zero coupling to occur with the circularly 

symmetric core mode [9]. This approach directly 

provides cladding effective refractive indices by 

means of determining the intersection points in the 

graphical representation of the dispersion relation 

given in (6) and shown in Fig. 6. 
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Fig. 6 Calculation of various effective refractive indices of 
the cladding employing the three-layer fiber geometry. 

The cladding effective refractive indices of 

various cladding modes having different mode 

orders (m=1, 2, 3, 4,…) are obtained using both the 

two-layer fiber geometry and three-layer fiber 

geometry as shown in Table 2. From this table, we 

can estimate that as the cladding mode order 
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increases, there is an increase in deviation of results 

obtained by using the two-layer fiber geometry from 

the three-layer fiber geometry. Actually in order to 

use the LPFG as any type of highly sensitive sensors 

(such as the refractive index sensor, temperature 

sensor, and strain sensor), higher order cladding 

modes shows much higher sensitivity as compared 

to lower order cladding modes [1, 12]. So in order to 

achieve accurate results with the enhanced 

sensitivity for higher order cladding modes, the 

three-layer fiber geometry is best suited for studying 

the LPFG as any type of sensors. 

Table 2 Effective refractive Indices of various cladding 
modes obtained by using the two-layer fiber geometry and 
three-layer fiber geometry for a typical set of fiber parameters 
given in Table 1. 

Cladding mode 
order (m) 

Using two-layer fiber 
geometry 

Using three-layer 
fiber geometry 

1 1.459903 1.459903 

3 1.459716 1.459743 

5 1.459155 1.459515 

7 1.458295 1.458846 

9 1.457134 1.4588468 

5. Calculation of coupling coefficient 
between core mode and various 
co-propagating cladding modes in LPFG 

Fiber gratings are inscribed to form a periodic 

refractive index profile in the core of an optical fiber. 

This causes a perturbation in the effective mode 

index of the principal guiding mode, given as 

follows [13]: 

co co

2
( ) 1 ( ) 1 cosn z n z x z




           
  (22) 

where nco is the unperturbed core refractive index, Λ 

is the period of the grating, x is the fringe visibility 

of the index change, where 0 ≤ x ≤1, and ( )z  

is the slowly varying envelope of the grating. 

If rearranging (22), we have 

co co co

2
( ) ( ) 1 cosn z n n z x z




         
.  (23) 

This rearrangement tells us that the peak 
induced-index change at any z is given as 

co ( )[1 ]n z x   when 
2

cos z



 
 
 

 is equal to 1, and 

the minimum induced-index change at any z is given 

as co ( )[1 ]n z x   when 
2

cos z



 
 
 

 is equal to –1 

with co ( )n z  describing the profile of direct 
current (DC) induced-index change, averaged over 
the grating period. 

In this perturbed region, the core mode couples 

its power presenting in LP01 mode to various 

co-propagating (co-propagating means propagating 

in the same direction) cladding modes (HE1m). 

Erdogan [9] used exact field distributions in the 

LPFG modeling and thus coupling coefficient 

between the core mode LP01 (HE11), and various 

cladding modes HE1m are calculated using (24). In 

our analysis, the peak induced-index change is taken 

as 4

co ( ) 0.5 10n z   . 

The only unknown quantity in (24) is the 

normalization constant cl

1mE . We can calculate an 

expression for the normalization constant cl

1mE  once 

we determine the mode effective index by 

specifying that each mode carries a power of 1 W. 
1
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  (24) 

When the integral is set equal to 1 W, as in (25), 

the only unknown in the resulting equation is the 

desired normalization constant [9]. 
 2  

cl cl* cl* cl

 0  0

1
Re ( ) 1 .

2 r rP d rdr E H H E W


 


     (25) 

The integral along the radial direction can be 

divided into three portions. The first portion is the 

study of cladding modes vector components in the 

fiber core ( cor a ), and the cladding mode power in 

this region of operation is taken as P1. The second 

portion is the study of cladding modes vector 
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components in the fiber cladding region 

( co cla r a  ), and the cladding mode power in this 

region of operation is taken as P2. The third portion 

is the study of cladding modes vector components in 

the surrounding region ( clr a ), and the cladding 

mode power in this region of operation is taken as P3. 

The total power carried by the cladding modes is 
the sum of the powers carried in the core, the 
cladding, and the surrounding regions: 

1 2 3 1 WP P P P             (26) 

where P1, P2, and P3 can be calculated by means of 

the integral in (25) but with the limits along the 

radial direction replaced by those appropriate for the 

region of interest, and the results of these 

calculations are given as [9] 
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Adding (28), (30), and (32), we get 
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The total power is equal to 1 W as given in (26). 
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Once the coupling coefficients have been 

determined to describe the transfer of the optical 

power from the core mode to each of the possible 

cladding mode configurations, the LPFG’s 

transmission spectrum can be directly obtained. 

6. Transmission spectrum 

There are several different techniques employed 
for the calculation of the transmission spectrum such 
as the integral method, formula method, and transfer 

matrix method. The detailed comparison among the 
integral method, formula method, and transfer 
matrix method is given in [14]. In [14], the accuracy 
and complexity of each technique were computed. 

In our discussion, we have chosen the integral 
method as it gives the exact solution of the 
transmission spectrum but the computation is 

complex. Three main dips seen in this spectrum 
correspond to coupling to m=1, 3, 5 cladding modes. 
In this figure, we have not shown lower even 

cladding modes because coupling due to lower even 
cladding modes is very less as compared to lower 
odd cladding modes [9]. Now we will study the 

behavior of the transmission spectrum by altering 
different grating parameters such as the grating 
period, grating length, and induced-index change. 

The most unique feature of the long period fiber 

grating is the flexibility they offered for achieving 

the desired spectral characteristics which can be 

achieved by altering various grating parameters such 

as the grating period, grating length, and 

induced-index change. 

7. Study of the transmission spectrum 
behavior by altering the grating period 

The transmission spectrum of the LPFG shown 

in Fig. 7 has a period of 455 µm. When we choose 

higher values of the grating period as shown in Figs. 

8 and 9, we can see that the various resonant  

1.3 1.4 1.5 1.6 1.7 1.8
-5

-4

-3

-2

-1

0
x 10

-3

Wavelength(m)

Tr
an

sm
iss

io
n(

dB
)

 Transmission Spectrum

T
ra

ns
m

is
si

on
 (

dB
) 

1

2

4

3

5 1.4 1.5 1.6 1.7 1.81.3
Wavelength (m) 

103

0
Transmission spectrum 

 
Fig. 7 Transmission spectrum of the long period fiber grating: 

the locations of various attenuation bands are located at  
1.3780 µm, 1.4396 µm, and 1.6131 µm. 
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wavelengths correspond to various attenuation bands 

showing a red shift. 
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Fig. 8 Shifted transmission spectrum (grating period=    

470 µm). 
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Fig. 9 Shifted transmission spectrum (grating period=    

500 µm). 

It is shown that the higher value of the grating 

period results in a corresponding increase in the 

resonant wavelength, and also the lower value of the 

grating period results in the lower value of the 

resonant wavelength, which is also reflected in Fig. 

10. In other words, we can say that the grating 

period has a proportion relation with the resonant 

wavelength which is also realized from (1). 
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Fig. 10 Theoretical plots of resonant wavelength as a 

function of LPFG periodicity for lower odd cladding modes. 

8. Study of the transmission spectrum 
behavior by altering the grating length 

Now, we will discuss the behavior of the 

transmission spectrum by taking different values of 

grating lengths. The transmission spectrum shown in 

Fig. 7 has a grating length of 20 mm. When we 

choose the lower value of the grating length from  

20 mm to 10 mm as shown in Fig. 11, the locations of 

various attenuation bands remain unchanged but the 

powers coupled to various cladding modes decrease, 

and also the bandwidths (thicknesses) of various 

attenuation bands increase [15]. A shorter grating 

length causes wide (thick) loss bands and creates 

small resonant peaks. On the other hand, when we 

choose the higher value of the grating length 60 mm 

as shown in Fig. 12, the coupling to various cladding 

modes increases, and also the bandwidths of various 

attenuation bands decrease. A longer grating length 

causes narrower loss bands and creates deeper 

resonant peaks. Figure 13 illustrates the relationship 

between the coupling depth and grating length.    

In this figure, it is verified that when we increase  

the grating length, the coupling depth becomes 

deeper. 
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Fig. 11 Transmission spectrum (grating length=10 mm). 
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Fig. 12 Transmission spectrum (grating length=60 mm). 
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Fig. 13 Coupling depth as a function of the grating length for 

lower odd cladding modes. 

9. Study of the transmission spectrum 
behavior by altering UV induced-index 
change 

The LPFG is usually formed in the 
photosensitive single-mode fiber by the illumination 
of the core material with UV light. A long period 
fiber grating, which has restricted exposure of 
UV irradiation, has limited induced-index 
change, which results in a low coupling 
coefficient, which further results in low 
resonant peaks as shown in Figs. 7 and 14. 
Whereas, a long period fiber grating, which has 
prolonged exposure of UV-irradiation, has large 
induced-index change results in a large coupling 
coefficient, which further results in with deeper 
resonant peaks as shown in Fig. 15. 
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Fig. 14 Transmission spectrum (induced-index change = 

0.5×10–4). 
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Fig. 15 Transmission spectrum (induced-index change = 
4×10–4). 

Figure 16 shows the relationship between the 

coupling depth and induced-index change. From this 

graph, it is proved that the weaker grating has lower 

resonant peaks and the stronger grating has deeper 

resonant peaks. 
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Fig. 16 Relationship between the coupling depth and 

induced-index change. 

10. Conclusions 

In this paper, the shortcomings of modeling 

employing the two-layer fiber geometry and 

theoretically modeled long period fiber grating using 

the three-layer fiber geometry are discussed. Using 

higher order cladding modes are an effective means 

of improving the sensitivity of the LPFG-based 

sensor. But there is a deviation of results obtained by 

using the two-layer fiber geometry from the 

three-layer fiber geometry as the cladding mode 

number increases due to weakly guided 

approximation in the two-layer fiber geometry, so 

the three-layer fiber geometry is the most updated 

and accurate method for theoretical modeling of the 

LPFG but results in the great mathematical 

complexity as compared to modeling using the 

two-layer fiber geometry. The influences of various 

physical parameters such as the grating period, 

grating length, and induced-index change on the 

transmission spectrum of the LPFG are also 

discussed. Choosing the appropriate grating period 

is helpful in attaining the desired resonant 

wavelength corresponding to desired attenuation 

bands. We can also modify the bandwidths and 

depths of various attenuation bands by choosing the 

appropriate grating length and UV induced-index 
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change. The effects of these parameters are very 

important because they are helpful in achieving the 

desired spectral characteristics for their efficient 

uses in any kind of sensor applications. 
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