
INFORMATICA, 2021, Vol. 32, No. 3, 441–475 441
© 2021 Vilnius University
DOI: https://doi.org/10.15388/21-INFOR457

Study of Multi-Class Classification Algorithms’
Performance on Highly Imbalanced Network
Intrusion Datasets

Viktoras BULAVAS1,∗, Virginijus MARCINKEVIČIUS1,
Jacek RUMIŃSKI2

1 Institute of Data Science and Digital Technologies, Vilnius University, Akademijos str. 4,
LT-08663 Vilnius, Lithuania

2 Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
11/12 Gabriela Narutowicza, 80-233 Gdańsk, Poland

e-mail: viktoras.bulavas@itpc.vu.lt, virginijus.marcinkevicius@mif.vu.lt,
jacek.ruminski@pg.edu.pl

Received: March 2021; accepted: July 2021

Abstract. This paper is devoted to the problem of class imbalance in machine learning, focusing
on the intrusion detection of rare classes in computer networks. The problem of class imbalance
occurs when one class heavily outnumbers examples from the other classes. In this paper, we are
particularly interested in classifiers, as pattern recognition and anomaly detection could be solved as
a classification problem. As still a major part of data network traffic of any organization network is
benign, and malignant traffic is rare, researchers therefore have to deal with a class imbalance prob-
lem. Substantial research has been undertaken in order to identify these methods or data features
that allow to accurately identify these attacks. But the usual tactic to deal with the imbalance class
problem is to label all malignant traffic as one class and then solve the binary classification prob-
lem. In this paper, however, we choose not to group or to drop rare classes but instead investigate
what could be done in order to achieve good multi-class classification efficiency. Rare class records
were up-sampled using SMOTE method (Chawla et al., 2002) to a preset ratio targets. Experiments
with the 3 network traffic datasets, namely CIC-IDS2017, CSE-CIC-IDS2018 (Sharafaldin et al.,
2018) and LITNET-2020 (Damasevicius et al., 2020) were performed aiming to achieve reliable
recognition of rare malignant classes available in these datasets.

Popular machine learning algorithms were chosen for comparison of their readiness to support
rare class detection. Related algorithm hyper parameters were tuned within a wide range of values,
different data feature selection methods were used and tests were executed with and without over-
sampling to test the multiple class problem classification performance of rare classes.

Machine learning algorithms ranking based on Precision, Balanced Accuracy Score, Ḡ, and
prediction error Bias and Variance decomposition, show that decision tree ensembles (Adaboost,
Random Forest Trees and Gradient Boosting Classifier) performed best on the network intrusion
datasets used in this research.
Key words: network intrusion detection, multi-class classification, imbalanced learning, bias and
variance decomposition, SMOTE.
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1. Introduction

Detection of intrusions into networks, information systems or workstations, as well as de-
tection of malware and unauthorized activities of individuals, have emerged into a global
challenge. A part of cybernetic defence challenges is addressed by optimizing the intru-
sion detection systems (IDS). There are three methods of intrusion detection (Koch, 2011):
known pattern recognition (signature-based), anomaly based detection, and a hybrid of
the previous two. Anomaly based detection is currently mainly implemented as a sup-
port for zero-day network perimeter defence of big infrastructures and network operators,
while signature based intrusion prevention remains the main mode of defence for most
businesses and households. Pattern recognition or anomaly detection can be seen as clas-
sification problems. Classification problems refer to the problems in which the variable
to be predicted is categorical. In network traffic the benign data is most often represented
by a large number of examples, while malignant traffic appears extremely rarely or is an
absolute rarity. This is known as the class imbalance problem and is a known obstacle
to the induction of good classifiers by Machine Learning (ML) algorithms (Batista et al.,
2004).

He and Ma (2013) define imbalanced learning as the learning process for data repre-
sentation and information extraction with severe data distribution skews to develop effec-
tive decision boundaries to support the decision-making process. He and Ma (2013) in-
troduced informal conventions for imbalanced dataset classification. A dataset where the
most common class is less than twice as common as the rarest class would be marginally
unbalanced. A dataset with the imbalance ratio of about 10 : 1 would be modestly imbal-
anced, and a dataset with imbalance ratios above 1000 : 1 would be extremely unbalanced.
This sort of imbalance is found in medical record databases regarding rare diseases, or
production of electronic equipment, where non-faulty examples heavily outnumber faulty
examples. Cases when negative to positive ratios are close to or higher than 1 000 000 : 1
are called absolute rarity imbalance. This sort of imbalance is found in cyber security,
where all but a few network traffic flows are benign. However, standard ML algorithms
are still capable of inducing good classifiers for extremely imbalanced training sets. This
shows that class imbalance is not the only problem responsible for the decrease in per-
formance of learning algorithms. Batista et al. (2004) have demonstrated that a part of
the problem to have class separation is often an overlap of classes due to a lack of fea-
ture separation. Another reason could be a lack of attributes, specific to a certain decision
boundary. It is known that in cases where negative class has an internal structure (multi-
modal class), an overlap between negative and positive classes can be observed on a few
of the clusters within negative class.

This study reports results of the empirical research executed with selected supervised
machine learning classification algorithms in an attempt to compare their efficiency for in-
trusion detection and get improved results compared to other published studies. The study
consists of the following sections: Section 2, introduction of the data sources, Section 3,
a review of machine learning methods and model benchmark metrics used in this study,
Section 4, an overview of the experiment and pre-processing steps, Section 5, results and
conclusions.
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1.1. Contribution

The research question raised in this study is which supervised machine learning method
consistently provides the best multi-class classification results with large and highly im-
balanced network datasets. To answer this question we chose the CIC-IDS2017, CSE-
CIC-IDS2018 (Sharafaldin et al., 2018) and LITNET-2020 (Damasevicius et al., 2020)
datasets as they are recent realistic software-generated traffic network datasets and meet
the required criteria (Gharib et al., 2016) for a good network intrusion dataset. An an-
swer to this question is that based on rankings of performance metrics and bias-variance
decomposition the tree ensembles Adaboost, RandomForest Trees and Gradient Boosting
Classifier performed best on the network intrusion datasets used in this research.

The novelty of this research is in a proposed methodology (see Section 4) and appli-
cation of it for the recent and not yet in depth studied dataset LITNET-2020. A review
of the LITNET-2020 dataset compliance to the criteria raised by Gharib et al. (2016) is
first introduced in Section 2.2. A variant of random under-sampling (skewed ratio under-
sampling, proposed by authors and discussed in Section 3.1) is used to reduce imbalance
of classes in a nonlinear fashion. SMOTE up-sampling for numeric data and SMOTE-
NC for categorical data (see Section 3.2) is executed to increase representation of rare
classes. Further in this research, comparison of multi-class classification performance of
the CIC-IDS2017 and CIC-IDS2018 datasets with the LITNET-2020 dataset is discussed
in Section 5. Multi-class performance macro-averaged metrics are implemented in this
research. Balanced accuracy (Formula (2)) and geometric mean of recall (Formula (4))
for the LITNET-2020 dataset are implemented for the first time (see results in Tables 16
and 17). Multi-criteria scoring is cross-validated with an approach of testing through data
previously unseen for the models (see Section 4). For decision tree ensemble methods,
instead of the weak CART base classifiers, parameters Tree depth and alpha were Gird-
Searched and validated using the method of maximum cost path analysis (Breiman et al.,
1984), see Section 3.8. Additional ML model, Gradient Boosting Classifier, utilizing en-
semble of Classification and regression trees (CART), was introduced for benchmark in
this research via the use of XGBoost library (Chen and Guestrin, 2016) with GPU support
(see Section 3.5.6). In our methodology, due to the highly imbalanced nature of the used
data, cost sensitive method implementations were chosen. These choices lead to better re-
sults (see Table 20) compared to other reviewed studies. Furthermore, selection of models
with better generalization capabilities in this research is achieved through decomposition
of classification error into bias and variance (see results in Table 18).

2. Datasets Used

The following section presents a review of datasets considered for this research together
with arguments for the choice made.
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2.1. Datasets Considered for Analysis

There are many datasets that have been used by the researchers to evaluate the performance
of their proposed intrusion detection and intrusion prevention approaches. Far from being
complete, the list includes: DARPA 1998 (Lippmann et al., 1999) and 1999 traces by
Lincoln Laboratory, USA, KDD’99 (Hettich and Bay, 1999), CAIDA (The Cooperative
Association for Internet Data Analysis, 2010) datasets by University of California, USA,
the Internet Traffic Archive and LBNL traces by Lawrence Berkeley National Laboratory,
USA (Lawrence Berkeley National Laboratory, 2010), DEFCON by The Shmoo Group
(2011), ISCX IDS 2012 (Shiravi et al., 2012), CIDDS-001 (Coburg Intrusion Detection
Data Set) (Ring et al., 2017) and others. However, it has been widely acknowledged that
machine learning research in an intrusion detection area needs to include new attack types
and therefore researchers should consider more recent data sources.

In this research, three recent network data sets, compliant to the criteria described
further (see Section 2.2) suggested by their authors for intrusion detection research, are
explored. The datasets chosen are CIC-IDS2017, CSE-CIC-IDS2018 (Sharafaldin et al.,
2018) by the University of Brunswick, Canada, and LITNET-2020 (Damasevicius et al.,
2020). These datasets are of significant volume, contain anonymized real academic net-
work traffic and are suited for multiple purposes of machine learning. LITNET-2020 is a
new dataset that is given particular attention in this research, with discussion of compli-
ance to the dataset suitability as devised by Gharib et al. (2016).

2.2. Requirements for Cybersecurity Datasets

Criteria for building such datasets are discussed by Małowidzki et al. (2015), Buczak and
Guven (2016), Maciá-Fernández et al. (2018), Ring et al. (2019), Damasevicius et al.
(2020), and others.

Małowidzki et al. (2015) define the following features of a good dataset: it must contain
recent data, be realistic, contain all typical attacks met in the wild, be labelled, be correct
regarding operating cycles in enterprises (working hours), should be flow-based. Ring et
al. (2019) contend that a good dataset should be comparable with real traffic and therefore
have more normal than malicious traffic, since most of the traffic within a company is
normal and only a small part is malicious. Detailed framework and analysis of criteria for
such datasets is proposed by Canadian Institute for Cybersecurity (CIC) at the University
of New Brunswik. Gharib et al. (2016) have proposed the eleven dataset selection criteria.
These criteria are presented in Table 1. Following this publication of the criteria, CIC
created a list of new datasets,1 addressing issues of compliance to these criteria. Creation
of the CSE-CIC-IDS2018 followed with improvements, such as decreasing number of
duplicates and uncertainties. Thakkar and Lohiya (2020) in Sections 4.1 and 4.2, Tables 4
and 5, and Karatas et al. (2020) in Sections III.C (CIC-IDS21017) and III. D (CSE-CIC-
IDS2018) provide discussion and support to these claims.

1See https://www.unb.ca/cic/datasets/index.html.

https://www.unb.ca/cic/datasets/index.html
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Table 1
Dataset compliance criteria by Gharib et al. (2016).

No. Criteria

1. Complete network configuration
2. Complete traffic
3. Labelled dataset
4. Complete interaction
5. Complete record
6. Available protocols
7. Attack diversity
8. Anonymity
9. Heterogeneity

10. Feature set
11. Metadata

2.3. LITNET-2020 Compliance

The LITNET-2020 dataset was selected for the current study as complying to most of the
above mentioned requirements with some reservations regarding interaction complete-
ness, heterogeneity and feature set completeness criteria.

These eleven criteria as applied to LITNET-2020 are discussed below.

1. Complete network configuration: In order to investigate the real course of attacks, it
is necessary to test the real network configuration. All of the network flows in this
dataset are received or generated at the Network of Lithuanian academic institutions
LITNET.

2. Complete traffic: The dataset accumulates full packet flows from the source to the des-
tination, which can be a workstation computer, router or another specialized service
device.

3. Labelled dataset: The dataset is labelled into a single benign and 12 malignant classes.
The benign class is not separately labelled into sub-classes, however, it could be done
because the number of benign records is exceeding 36 million records and is close to
92% of the whole dataset.

4. Complete interaction: The correct interpretation of the data requires data from the en-
tire network interoperability process. LITNET-2020 dataset, however, is a pure net-
work traffic dataset with no correlated host memory or host log information.

5. Record completeness: The LITNET-2020 dataset is compliant with this requirement.
6. Various protocols: Records of 13 types of protocols for normal and 3 types of proto-

cols for malignant traffic are available in the LITNET-2020 dataset.
7. Diversity and novelty of attacks: The dataset includes attack flows that were detected

from 2019-03-06 first flow and 2020-01-31 last flow.
8. Anonymity: It is important that the simulated set contain data for which privacy is

not important. The LITNET-2020 data set contains no personally identifiable data.
9. Heterogeneity: Data from different sources, such as network streams, operating sys-

tem logs, or network equipment logs, memory images, must be available. LITNET-
2020 is not compliant with this requirement.



446 V. Bulavas et al.

Table 2
Dataset content split.

Record Type CIC-IDS2017 CSE-CIC-IDS2018 LITNET-2020

Benign 80.3% 83.1% 92.0%
Malignant 19.7% 16.9% 8.0%

Table 3
Dataset imbalance.

Imbalance category1 CIC-IDS2017 CSE-CIC-IDS2018 LITNET-2020

Modest <(10 : 1) 8.16% 0.00% 0.00%
High <(1000 : 1) 11.39% 16.85% 7.83%
Extreme >(1000 : 1) 0.15% 0.08% 0.20%
Total Malignant 19.7% 16.9% 8.0%
1Share of records in imbalance category.

10. Feature Set/Attribute Linkage: It is important for the research that data from different
types of sources for the same event be linked, for example, device memory view,
network traffic, and device logs. LITNET-2020 is not compliant with this requirement
as it contains no linked host sources.

11. Metadata and documentation: Information about attributes, how the traffic was gen-
erated or collected, network configuration, attackers and victims, machine operating
system versions and attack scenarios are required to do the research. LITNET-2020
is documented in Damasevicius et al. (2020).

2.4. Cybersecurity Dataset Imbalance Problem

In datasets selected for the research, the benign class takes from 80% up to 92% of total
records (see Table 2), and some small classes only have less than 0.001% (see Table 4).
The following Table 2 is a summary of the data set imbalance of benign versus malignant
records:

The following Table 3 presents the split of malignant classes and is a summary of
dataset imbalance shares in accordance with the taxonomy described by He and Ma
(2013):

The following Table 4 represents a summary of extremely imbalanced (>1000 : 1)
classes in the three selected datasets.

Various imbalance measures are discussed by Ortigosa-Hernández et al. (2017) in a
study, dedicated to such measures. In Karatas et al. (2020), section III.E, authors review
most practical to use imbalance ratios of several IDS datasets, including the CIC-IDS2017
and CSE-CIC-IDS2018.

Referring to Ortigosa-Hernández et al. (2017) and Karatas et al. (2020), the following
Formula (1) can be used for the calculation of the imbalance ratio:

Imbalance Ratio = ρ = max{Ci}
min{Ci} , (1)

where: Ci shows the data size in the class i.



Study of Classification Performance on Highly Imbalanced Network Intrusion Datasets 447

Table 4
Extremely rare classes in the datassets.

CIC-IDS2017 CIC-IDS2018 LITNET-2020
Class Share Class Share Class Share

Bot 0.0695% DoS-Slowloris 0.0677% W32.Blaster 0.0660%
Brute Force-Web 0.0532% LOIC-UDP1 0.0107% ICMP Flood 0.0638%
Brute Force-XSS 0.0230% Brute Force-Web 0.0038% HTTP Flood 0.0630%
Infiltration 0.0013% Brute Force-XSS 0.0014% Scan 0.0170%
SQL Injection 0.0007% SQL Injection 0.0005% Reaper Worm 0.0032%
Heartbleed 0.0004% Spam 0.0021%

Fragmentation 0.0013%
Total Extreme >(1 000 : 1) 0.15% 0.08% 0.20%
1DDOS attack.

For example, historical NSL-KDD has an imbalance ratio of 648, CIC-IDS2017 has
an imbalance ratio of 112 287 and CSE-CIC-IDS2018 has a slightly better imbalance ratio
of 53 887. LITNET-2020 has an imbalance ratio of 70 769.

While imbalance ratios are an important part of the discussion, the absolute rarity is
another concept introduced by He and Ma (2013) for the case when there is not enough
records to learn the class. If there is not enough information within the feature-scape,
determination of decision boundary cannot be made. There are no such classes in the
LITNET-2020 datasets, and the data was sufficient for learning to all the machine learning
algorithms used in our experiment. However, Infiltration, Heartbleed and Web Attack-
Aql Injection classes in the CIC-IDS2017 dataset exhibit behaviour of such an absolute
rarity and learning the decision boundaries for these classes is complicated and unspecific.
In CSE-CIC-IDS2018 dataset, even though Infiltration class records are abundant, high
overlap with benign class is observed.

2.5. CIC-IDS-2017

The CIC-IDS-2017 dataset (Sharafaldin et al., 2018) is made available by Canadian In-
stitute for Cyber Security Research at the University of New Brunswick2 and introduces
labelled data of 14 types of attacks including DDoS, Brute Force, XSS, SQL Injection, In-
filtration, and Botnet. The traffic was emulated in a test environment during a period from
July 3 to July 7, 2017. Network traffic features and related aggregates were extracted and
generated using the CICFlowMeter tool and made available in a form of 8 CSV files. The
CICFlowMeter is an open source tool3 provided by CIC at UNB that generates bidirec-
tional flows from pcap files, and extracts features from these flows, made available to the
research community by Draper-Gil et al. (2016) and further described by Lashkari et al.
(2017). The dataset contains a total of 2 830 743 records with flow data, synthetic features
and is labelled.

The following Table 5 is a summary of class representation of this dataset.

2More information at https://www.unb.ca/cic/datasets/ids-2017.html.
3More information at https://www.unb.ca/cic/research/applications.html.

https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/research/applications.html
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Table 5
Class representation in CIC-IDS2017 dataset.

Traffic class Record count Share (%)

BENIGN 2 273 097 80.3004%
DoS Hulk 231 073 8.1630%
PortScan 158 930 5.6144%
DDoS 128 027 4.5227%
DoS GoldenEye 10 293 0.3636%
FTP-Patator 7 938 0.2804%
SSH-Patator 5 897 0.2083%
DoS slowloris 5 796 0.2048%
DoS Slowhttptest 5 499 0.1943%
Bot 1 966 0.0695%
Web Attack-Brute Force 1 507 0.0532%
Web Attack-XSS 652 0.0230%
Infiltration 36 0.0013%
Web Attack-SQL Injection 21 0.0007%
Heartbleed 11 0.0004%

Dataset features, all measures of duration or related aggregates, further used for this
research belong to these categories:

• Fiat (Forward Inter Arrival Time mean, min, max, std): aggregates on the time between
two flows are sent in forward direction;

• Biat (Backward Inter Arrival Time mean, min, max, std): aggregates on the time be-
tween two flows are sent backwards;

• Flowiat (Flow Inter Arrival Time, mean, min, max, std): aggregates on the time between
two flows sent in either direction;

• Active (mean, min, max, std): aggregates on the amount of time a flow was active before
going idle;

• Idle (mean, min, max, std): aggregates on the amount of time a flow was idle before
becoming active;

• Flow Bytes/s: Flow bytes sent per second;
• Flow Packets/s: Flow packets sent per second;
• Duration: The duration of a flow.

2.6. CSE-CIC-IDS2018

The CSE-CIC-IDS2018 dataset (Sharafaldin et al., 2018) is made available by Canadian
Institute for Cyber Security Research at the University of New Brunswick.4 Data was em-
ulated in the CIC test environment within an environment of 50 attacking machines, 420
victim PC’s and 30 victim servers during the period from February 14 to March 2, 2018.
The dataset contains records from 14 distinct attacks, is labelled and presented together
with anonymised PCAP5 files. 80 network traffic features were extracted and calculated

4More information at https://www.unb.ca/cic/datasets/ids-2018.html.
5File format as abbreviated from Packet CAPture, traffic capture file format in use by networking tools.

https://www.unb.ca/cic/datasets/ids-2018.html
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Table 6
Class representation of CSE-CIC-IDS2018 dataset.

Traffic class Record count Share (%)

Benign 13 484 708 83.070%
HOIC1 686 012 4.226%
LOIC-HTTP1 576 191 3.550%
Hulk1 461 912 2.846%
Bot 286 191 1.76%
FTP-BruteForce 193 360 1.191%
SSH-Bruteforce 187 589 1.156%
Infilteration 161 934 0.998%
SlowHTTPTest1 139 890 0.862%
GoldenEye1 41 508 0.256%
Slowloris1 10 990 0.068%
LOIC-UDP1 1 730 0.011%
Brute Force-Web 611 0.004%
Brute Force-XSS 230 0.001%
SQL Injection 87 0.0005%
1Variants of DoS attacks.

using the CICFlowMeter tool. Ten CSV files are made available for machine learning,
containing 16 232 943 records. The representation of classes in IDS-2018 ranges from
approximately 1 : 20 to 1 : 100 000.

The following Table 6 presents a summary of class representation of this dataset.
Same dataset features as described in Section 2.5 are used further in this research for

selection of features.

2.7. LITNET-2020

LITNET-2020 is a new annotated network dataset for network intrusion detection, ob-
tained from the real life Lithuanian academic network LITNET traffic by researchers from
Kaunas Technology University (KTU). The environment of data collection, comparison
of the dataset with other recently published network-intrusion datasets and description
of attacks represented in the LITNET-2020 dataset is introduced by Damasevicius et al.
(2020). The dataset contains benign traffic of the academic network and 12 attack types
generated at KTU managed LITNET network from March 6, 2019 to January 31, 2020.
Network traffic was captured using the open source nfcapd binary format, anonymised
and processed into the CSV format, containing 39 603 674 time-stamped records. Nf-
sen, MeSequel, and Python script tools were used for extra feature generation and pre-
processing, with data fields in CSV format named after fields, generated by Nfdump.6 The
49 attributes that are specific to the NetFlow v9 protocol as defined in RFC 3954 (Claise,
2004) are used to form a dataset basis, further expanded with additional fields of time
and tcp flags (in symbolic format), which can be used to identify attacks. An additional

6For a definition of features used in Nfdump 1.6 see https://github.com/phaag/nfdump/blob/master/bin/
parse_csv.pl.

https://github.com/phaag/nfdump/blob/master/bin/parse_csv.pl
https://github.com/phaag/nfdump/blob/master/bin/parse_csv.pl
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Table 7
Class representation of LITNET-2020 dataset.

Traffic class Record label Record count1 Share, %

Benign none 36 423 860 91.9709%
SYN Flood tcp_syn_f 1 580 016 3.9896%
Code Red tcp_red_w 1 255 702 3.1707%
Smurf icmp_smf 118 958 0.3004%
UDP Flood udp_f 93 583 0.2363%
LAND DoS tcp_land 52 417 0.1324%
W32.Blaster tcp_w32_w 24 291 0.0613%
ICMP Flood icmp_f 23 256 0.0587%
HTTP Flood http_f 22 959 0.0580%
Port Scan tcp_udp_win_p 6 232 0.0157%
Reaper Worm udp_reaper_w 1 176 0.0030%
Spam botnet smtp_b 747 0.0019%
Fragmentation udp_0 477 0.0012%
1Record counts before removing timestamp and related record duplicates.

19 attack specific attributes are added. The representation of classes in LITNET-2020 is
imbalanced in a range from approximately 1 : 30 to 1 : 100 000.

The following Table 7 presents a summary of class representation of this dataset.

3. Methods

Multiple different types of methods were used in this research to improve performance of
ML methods. The methods employed could be grouped into pre-processing (see Sections
3.1–3.3) and machine learning methods (see Section 3.5). Data record sampling meth-
ods are discussed in detail in Section 3.1. Record over-sampling – in Section 3.2, feature
selection, scaling and frequency transformation undertaken and pre-processing activities
are discussed in Section 3.3. Machine learning methods (see Section 3.5), capable of cost
sensitive learning, were chosen for performance comparison in this paper.

For all models, their hyper-parameters were searched using the GridSearch method,
and later multiple performance measures (see Section 3.6) were used to evaluate and com-
pare ML algorithms.

3.1. Under-Sampling Methods

The benign class in our datasets constitutes up to 90% of total records. Fixed ratio ran-
dom under-sampling, utilizing uniform distribution for record selection, of benign and
over-represented malignant class records was implemented on data load for all datasets.
Under-sampling refers to the process of reducing the number of samples in a dataset.
Fixed ratio random under-sampling method aims to balance class distribution through the
random-uniform elimination of majority class examples. It is worth noting that random
under-sampling can discard potentially useful data that could be important for the machine
learning process. Under-sampling methods can be categorized into two groups: (i) fixed
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ratio under-sampling and (ii) cleaning under-sampling (Lemaitre et al., 2016). Fixed ratio
under-sampling is based on a statistically random selection, which targets the provided
absolute record numbers of a given class or a ratio, constituting a proportion of the total
number of labels. Cleaning under-sampling is based on either (i) clustering, (ii) the nearest
neighbour analysis, or (iii) classification accuracy (based on instance hardness threshold,
Smith et al., 2014).

Cleaning under-sampling approaches do not target a specific ratio, but rather clean
the feature space based on some empirical criteria (Lemaitre et al., 2016). According to
Lemaitre et al. (2016), these criteria are derived from the nearest neighbour rule, namely:
(i) condensed nearest neighbours (Hart, 1968), (ii) edited nearest neighbours (Wilson,
1972), (iii) one-sided selection (Kubat and Matwin, 1997), (iv) neighbourhood cleaning
rule (Laurikkala, 2001), and (v) Tomek links (Tomek, 1976).

Cleaning under-sampling methods such as Edited Nearest Neighbours, TomekLinks,
Condensed Nearest Neighbours were tested, however, due to the size of sub-sampled data
and the large computational overhead they require, these methods were not further ex-
plored. The fixed random under-sampling was implemented in two steps as follows:

1. Major class records were first randomly under-sampled to a target number of records,
such as to provide sufficient learning for all models. Target numbers were obtained
after analysis of learning curves. Sufficient learning is defined here as the objective to
have learning and testing curves to converge within a margin less than 1%, which for
all models in this experiment occurs after approximately 0.6 million records.

2. Numbers of benign and other highly imbalanced classes were further transformed with
a random under-sampling function from Imbalanced-learn library (Lemaitre et al.,
2016) using the number of records per class targets, calculated with the following em-
pirically chosen skewed ratio function N ∗ (1 − √

(s)/2) introduced in this research,
where N is a number of initial records within a named class, where s is a share of
records in that class. This proposed under-sampling method further on in this paper is
referred to as Skewed fixed ratio under-sampling. The effect of this function is such that
numbers of over-represented classes are decreased in a non linear manner, penalizing
the best represented classes, while leaving the rare classes almost intact, thus simplify-
ing, speeding up and decreasing the imbalance of the related learning of rare classes.

3.2. Over-Sampling Methods

In this paper, to balance minority classes, we investigate random and SMOTE (Synthetic
Minority Over-sampling Technique) (Chawla et al., 2002) over-sampling methods. Ran-
dom over-sampling is a base method that aims to balance class distribution through the
random replication of minority class examples. Unfortunately, this can increase the like-
lihood of classifier overfitting (Batista et al., 2004). Therefore, we removed all duplicates
in training data.

A more advanced method, capable of increasing minority class size without duplica-
tion, is SMOTE. SMOTE forms new minority class examples by linearly interpolating
between minority class examples that are close. Thus, the overfitting problem risk is mit-
igated as the decision boundaries of the classifier for the minority class are moved further
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away from the minority class space. SMOTE works in feature space, not in data space,
therefore, before the procedure to over-sample is executed, the first step is to select numeric
features to over-sample, as it is not necessary to over-sample in all dimensions. SMOTE
over-sampling is achieved by following these steps: a) take k nearest neighbours from mi-
nority class for some minority class vector in the feature space, b) randomly choose the
vector from those k neighbours, c) take a difference between the vector and its neighbour,
and multiply the difference vector by a random number which lies between 0, and 1, d)
repeat previous step until the target number of synthetic points is reached. After this, new
records can be added to the current data (see Chawla et al., 2002, for a complete algo-
rithm). SMOTE method can be combined with some under-sampling methods to remove
examples of all classes that tend to be misclassified. For example, in SMOTE with the
Edited Nearest Neighbours (ENN) algorithm (Batista et al., 2004), after SMOTE is used
to over-sample a number of records in defined minority classes, ENN is used to remove
samples from both classes such that any sample that is misclassified by its given number
of nearest neighbours is removed from the training set. Batista et al. (2004) have demon-
strated the best results on imbalanced datasets with minority classes containing under 100
records. However, due to the complexity of the edited neighbours procedures (Witten et
al., 2005) being O(nkl), where n is a number of samples, d – a number of dimensions
(features) and k – a number of nearest neighbours, this solution is resource intensive.

As our datasets have not only continuous but also nominal features, we used a modi-
fication of SMOTE – Synthetic Minority Over-sampling Technique-Nominal Continuous
(SMOTE-NC), from imbalanced-learn library (Lemaître et al., 2017) in the research. We
used a recommended number of neighbours equal to k = 5, and separated categorical and
numeric features before over-sampling.

3.3. Feature Selection Methods

Based on the ideas of research and practical implementation recommendations made by
Sharafaldin et al. (2018) and Shetye (2019), a selection of features was tested with 3
classes of methods: (a) filtering – correlation and related heat map analysis (b) univariate –
recursive feature elimination and (c) iterative – regularization methods. In this research,
features were selected with SelectKBest from Scikit-learn library (Pedregosa et al., 2011).
The SelectKBest method takes as a parameter a score function, such as χ2 or Anova F-
value, or information gain function and retains the first k features with the highest scores.

If the Anova F-value function is used, a test result is considered statistically significant
if it is unlikely to have occurred by chance, assuming the truth of the null hypothesis. If χ2

is used as a score function, SelectKBest will compute the χ2 statistic between each feature
of X and y (assumed to be class labels). A small value will mean the feature is indepen-
dent of y. A large value will mean the feature is non-randomly related to y, and so likely
to provide important information. Only k features will be retained. Mutual information
(information gain) between two random variables is a non-negative value, which mea-
sures the dependency between the variables. It is equal to zero if and only if two random
variables are independent, whereas higher values mean higher dependency. Mutual infor-
mation methods can capture any kind of statistical dependency, but being non-parametric
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(Ross, 2014), it requires more samples for accurate estimation and is computationally
more expensive, therefore, as a result of a better time performance in this research, Anova
F-value was selected.

Embedded methods penalize a feature based on a coefficient threshold. On each itera-
tion of the model training process those features which contribute the most to the training
for a particular iteration are selected.

Further on in this paper, two methods, the filtering and SelectKBest from Scikit-Learn
were used to select features.

When performing feature selection, SelectKBest is focusing on the largest classes,
therefore a possible improvement would be to do feature selection in a pipeline, by firstly
selecting the most important features for the rarest class and then adding features needed
for every class.

Generating additional synthetic features was not attempted in this research, as all cho-
sen datasets contain a significant number of such.

3.4. Cost-Sensitive Learning Methods

Cost-sensitive learning is a subfield of machine learning that takes the costs of prediction
errors (and potentially other costs) into account when training a machine learning model
(Brownlee, 2020).

If not configured, machine learning algorithms assume that all misclassification errors
made by a model are equal. In case of an intrusion detection problem, missing a positive
or minority class case is worse than incorrectly classifying an example from the negative
or majority class.

The simplest and most popular approach to implementing cost-sensitive learning is
to penalize the model less for training errors made on examples from the minority class
by adjusting weights. The decision tree algorithm can be modified to weight model error
by class weight when selecting splits. The Heuristic rule, also confirmed with intuition
from decision trees (Brownlee, 2020), is to invert the ratio of the class distribution in the
training dataset.

In this research, weights adjustment for decision trees was implemented using Scikit-
learn library model parameters class_weight, setting it to ‘balanced’, which does the
above mentioned inversion of class weights. Prior statistics were used for Quadratic dis-
criminant analysis model.

3.5. Choice of Machine Learning Methods

For a performance comparison of machine learning methods on network intrusion detec-
tion data with imbalanced classes, we selected the most popular machine learning algo-
rithms from surveys and review papers, related to intrusion detection (Buczak and Guven,
2016; Sharafaldin et al., 2018; Damasevicius et al., 2020).

3.5.1. Adaptive Boosting (Adaboost)
AdaBoost ensemble method was proposed by Yoav Freund and Robert Shapire for generat-
ing a strong classifier from a set of weak classifiers (Freund and Schapire, 1997). AdaBoost
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algorithm works by weighting instances in the dataset by how easy or difficult they are to
classify, and correspondingly prioritizes them in the construction of subsequent models.
A Default base classifier was used with Adaboost by authors of the CIC-IDS-2017 dataset
(Sharafaldin et al., 2018) obtaining the result on Precision and F1 of 0.77 whereas Recall
at 0.84. Yulianto et al. (2019) used SMOTE, Principal Component Analysis (PCA), and
Ensemble Feature Selection (EFS) to improve the performance of AdaBoost on the CIC-
IDS-2017 dataset achieving Accuracy, Precision, Recall, and F1 scores of 0.818, 0.818,
1.000, and 0.900, respectively.

3.5.2. Classification and Regression Tree (CART)
The Classification and Regression Tree method was proposed by Breiman et al. (1984),
and used to construct tree structured rules from training data. Tree split points are chosen
on a basis of cost function minimization.

The authors of the CIC-IDS-2017 dataset (Sharafaldin et al., 2018) obtained weighted
averages of Precision, Recall and F1 of 0.98 using ID3 (Iterative Dichotomiser 3), intro-
duced by Quinlan (1986).

In this research, CART, as implemented in Scikit-learn library, was also used to ob-
tain a base classifier and tree parameters for Adaboost, Gradient Boosting Classifier and
Random Forest Classifier. Tree depth and alpha were obtained using the method of max-
imum cost path analysis (Breiman et al., 1984), implemented in the Scikit-learn library
cost-complexity-pruning-path function, discussed in Section 3.8.

3.5.3. k-Nearest Neighbours (KNN)
The k-Nearest Neighbours method was proposed by Dudani (1976), as a method which
makes use of a neighbour weighting function for the purpose of assigning a class to an un-
classified sample. KNN was used by authors of the CIC-IDS-2017 dataset (Sharafaldin et
al., 2018) with obtained results for weighted averages of Precision, Recall and F1 of 0.96.
The KNN algorithm in Scikit-learn by default uses the Euclidean distance as a distance
metric for the k-NN algorithm. However, this is not appropriate when the domain presents
qualitative attributes or categorical features of a different domain. For those domains, the
distance for qualitative attributes is usually calculated using the overlap function, in which
the value 0 (if two examples have the same value for a given attribute) or the value 1 (if
these values differ) are assigned. In this research we have used the Manhattan dimension
with positive effect obtained in the experiments.

3.5.4. Quadratic Discriminant Analysis (QDA)
Quadratic discriminant analysis descends from discriminant analysis introduced by Fisher
(1954). Bayesian estimation for QDA was first proposed by Geisser (1964). Quadratic dis-
criminant analysis (QDA) models the likelihood of each class as a Gaussian distribution,
then uses the posterior distributions to estimate the class for a given test point (Friedman,
2001). The method is sensitive to the knowledge of priors. QDA was used by authors of
the CIC-IDS-2017 dataset (Sharafaldin et al., 2018) with obtained result for Precision,
Recall and F1 of 0.97, 0.88 and 0.92.
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3.5.5. Random Forest Trees (RFT)
The Random Forest Trees (RFT) classifier was proposed by Breiman (2001) as a combi-
nation of tree predictors minimizing overall generalization error of participating trees as
the number of trees in the forest becomes larger. Random forests are an alternative to Ad-
aboost by Freund and Schapire (1997) and are more robust with respect to noise. Random
Forests is an extension of bagged decision trees where only a random subset of features
are considered for each split.

The algorithm was used by the authors of the CIC-IDS-2017 dataset (Sharafaldin et
al., 2018), and also by Kurniabudi et al. (2020). Sharafaldin et al. (2018) obtained results
for the weighted averages of Precision, Recall and F1 of 0.98, 0.97, and 0.97. In a study by
Kurniabudi et al. (2020) the Random Forest algorithm has Accuracy, Precision and Recall
of respectively 0.998 using the 15–22 selected features. These metrics were estimated for
the benign and attack class.

3.5.6. Gradient Boosting Classifier (GBC)
In order to extend the scope of the research, Gradient Boosting Classifier (GBC), as pro-
posed by Friedman (2001) and Friedman (2002), was added as a natural member of clas-
sifier ensemble methods. GBC is a stochastic gradient boosting algorithm, where decision
trees are fitted on the negative gradient of the chosen loss function. The idea of gradient
boosting is to fit the base-learner not to re-weighted observations, as in AdaBoost, but
to the negative gradient vector of the loss function evaluated at the previous iteration.
XGBoost library (Chen and Guestrin, 2016), incarnation with GPU support of GBC, was
implemented in this research. The results of GBC of other authors are not known publicly.

3.5.7. Multiple Layer Perceptron
Multiple Layer Perceptron (MLP) has been proposed by Rosenblatt (1962) as an extension
to a linear perceptron model (Rosenblatt, 1957). It is a supervised learning artificial neural
network implementation, utilizing back-propagation for training, that can have multiple
layers and a chosen, non necessarily linear, activation function.

MLP was used in the study of Sharafaldin et al. (2018) with obtained results for
weighted averages of Precision, Recall and F1 of 0.77, 0.83, and 0.76.

3.6. Performance Measures

Standard performance metrics for classifiers are presented in Section 3.6.1, and Bias and
Variance decomposition metric (see Section 3.7) was used to evaluate ML algorithm ten-
dencies to overfit or underfit.

3.6.1. Confusion Matrix Based Metrics
Accuracy, Precision in equation (5), Recall in equation (3) and F1 in equation (6), are very
sensitive to the representation of classes in the source datasets (Sokolova and Lapalme,
2009). Results change if proportions of class samples change (Tharwat, 2018). In their
study Garcia et al. (2010) review most of the performance measures used for imbalanced
classes, introducing a new measure called Index of Balanced Accuracy (IBA) currently
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implemented and used in the classification report of Imbalanced-learn library (Lemaitre
et al., 2016) for calculating Geometric mean of recall Ḡ, equation (4) introduced by Kubat
and Matwin (1997). An experimental comparison of performance measures for classifi-
cation is presented by Ferri et al. (2009). Mosley (2013) reviews multi-class data perfor-
mance metrics such as Recall, Ḡ, Relative Classifier Information (RCI) (Wei et al., 2010),
Matthew’s Correlation Coefficient (MCC) (Matthews, 1975), Confusion Entropy (CEN)
(Jurman et al., 2012). It is important to note that Chicco and Jurman (2020) demonstrated
that MCC and CEN cannot be reliably used in case of an imbalance of data classes and
these will not be discussed in this paper. Mosley (2013) introduces a per-class Balanced
Accuracy (also known as Balanced accuracy score (BAS)), see equation (2) which is based
on recall and neglects the precision. However, Precision is very sensitive to attributions
of records from other classes, which was clearly observed during this research. In the case
of imbalance, it mainly indicates a false classification of major classes, therefore, it has
been chosen to be studied in this research.

Further on in this research, the Balanced accuracy score and Ḡ along with Preci-
sion were chosen as classification quality quantification metrics for comparison because:
(i) these metrics were previously used by other researchers to measure performance of
learning in imbalanced multi-class problems, while datasets used in this studyx have ex-
tremely imbalanced class distributions, (ii) these measures are available in popular and
open source software libraries like Scikit-learn and Imbalanced-learn, (iii) metrics have
simple and clear intuition for use in practical cyber-security applications, (iv) precision
also allows for comparison with other research. Macro score averages were calculated in
further experiment to give equal weight to each class, avoiding of scaling with respect to
number of instances per class.

Balanced accuracy score BAS in formula (2) is further defined as average of recall
values for K classes:

BAS = 1

K

K∑
i=1

Recalli , (2)

where:

Recalli = TPi

TPi + FNi

= cii∑k
j=1 cij

, (3)

where TP stands for True Positive, and FN stands for False Negative, i is a number of class
in question and k is the number of classes in the dataset. TPi is True Positive (correct
classified) for class i, and FNi are all false negative instances for the class i. cij is an
element of the confusion matrix in row i and column j .

Geometric mean Ḡ of sensitivity is defined as follows:

Ḡ = k

√√√√ k∏
i=1

Recalli , (4)

where k is a number of classes in a dataset.
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Precision for class i is defined as follows:

Precisioni = TPi

TPi + FPi

= cii∑k
j=1 cji

. (5)

Whereas F1 for class i is defined as follows:

F1i = 2
1

Precisioni
+ 1

Recalli

. (6)

In this research, we have used macro-weighted (i.e. unweighted mean) Ḡ, Precision
and F1, if it is not specified otherwise.

3.7. Bias and Variance Decomposition

The decomposition of the loss into bias and variance helps to improve understanding of
generalization capacities of compared learning algorithms, such as overfitting and un-
derfitting. Various methods of decomposition are reviewed in Domingos (2000). It has
been demonstrated that high variance correlates to overfitting, and high bias correlates to
underfitting. In practical terms, when comparing the performance of learning algorithms,
models with lower bias and variance over the same test data would be preferred. It is worth
noting that models with a higher degree of parameter freedom tend to demonstrate lower
bias and higher variance, and models with a low degree of freedom demonstrate high bias
and lower variance.

The loss function of a learning algorithm can be decomposed into three terms: a vari-
ance, a bias, and a noise term, which will be ignored further for simplicity (Raschka, 2018).
Loss function depends on the machine learning algorithm. For decision trees (CART ),
training proceeds through a greedy search, each step based on information gain. For the
random forest classifier, loss function is the Gini impurity. Cross-entropy is the default
loss function to use for multi-class classification problems with MLP.

The prediction bias is calculated as the difference between the expected prediction
accuracy of a model and the true prediction accuracy (equation (7)). In formal notation
the Bias of an estimator β̂ is the difference between its expected value E[β̂] and the true
value of a parameter β being estimated (Raschka, 2018):

Bias = E[β̂] − β. (7)

The variance (equation (8)) is a measure of the variability of model’s predictions if the
learning process is repeated multiple times with random fluctuations in the training set.

Variance = E
[(

β̂ − E[β̂])2]
. (8)

Variance is obtained by repeating prediction on a model trained on stratified shuffle-split
training data. The more sensitive the model-building process is towards fluctuations of the
training data, the higher the variance (Raschka, 2018).
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3.8. Tree Pruning

Finding the values where training and testing learning curves converge allows for cre-
ation of better generalizing decision trees, decrease of overfitting and underfitting. The
Tree depth (implemented in Scikit-learn library through parameter max_depth) and α (im-
plemented in Scikit-learn library through parameter ccp_alpha) were obtained using the
method of maximum cost path analysis (Breiman et al., 1984), implemented in Scikit-
learn library cost-complexity-pruning-path function and searching for a minimum of Bias
and Variance. In this algorithm the cost-complexity measure Rα(T ) of a given tree T is
defined in formula (9) as follows:

Rα(T ) = R(T ) + α|T̃ |, (9)

where |T̃ | is the number of terminal nodes in T , R(T ) is defined as the total mis-
classification cost of the terminal nodes for the complexity parameter α (�0). As α in-
creases, more descendent nodes are pruned.

3.9. Variance Inflation Factor

Many variables in the datasets CIC-IDS2017 and CSE-CIC-IDS2018 appear to be corre-
lated with each other, which increases bias while using Quadratic Discriminate Analysis.
A statistical measure known as VIF (Variance Inflation Factor) was proposed by Lin et al.
(2011) to support elimination of cross-correlation of features and is implemented in this
research from statsmodels library (Seabold and Perktold, 2010).

3.10. Other Methods

The number of estimators was obtained using the Scikit-learn’s GridSearch (LaValle et
al., 2004) method. See Sections 4.4–4.5 and Table 15 for implementation details in this
research.

4. Experiment Design

Our experiment contained pre-processing, described further in detail in Section 4.1 for the
CIC-IDS2017 dataset, Section 4.2 for the CSE-CIC-IDS2018 dataset and Section 4.3 for
the LITNET-2020 dataset. The datasets were cleaned and normalized. Quantile transfor-
mation from Scikit-learn library (Pedregosa et al., 2011) with QuantileTransformer using
a default of 1 000 quantiles has been implemented for the pre-processing of numeric (con-
tinuous time related) features of all datasets in order to transform original values to a more
uniform distribution.

Datasets were further under-sampled with random fixed ratio under-sampling and pro-
posed skewed fixed ratio under-sampling so that after splitting into testing and training,
sets would contain more than approximately 600 000 records each, which is sufficient for
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learning of all algorithms. This number has been estimated by performing learning curve
analysis.

Later on, the training subsets were over-sampled using SMOTE for CIC-IDS2017 and
CIC-IDS2018 datasets and SMOTE-NC for LITNET-2020. Features were selected us-
ing KBest (see Section 3.3) and VIF procedures (see Section 3.9). Training and hyper-
parameter search was performed using cross validation with CV = 20 on stratified shuffle
split samples of training datasets.

The final results of predictions were obtained using testing data, e.g. not seen to trained
models. In order to obtain a reliable result, predictions were run 30 times with a change
of random seed on each run.

Further on in the experiment, the best features were selected using the SelectKBest
procedure from Scikit-learn library (Pedregosa et al., 2011) and followed by Variance in-
flation factor analysis (Lin et al., 2011) with a target threshold value, to eliminate variables
with high collinearity.

Parameters for classification models were searched using GridSearch from the Scikit-
learn library.

4.1. CIC-IDS2017 Pre-Processing Steps

The following procedures were implemented to condition the dataset for better learning
of under-represented attack classes: a) removal of unused features and related record du-
plicates, b) random under-sampling of benign class records, such as to represent no more
than a number of records, providing sufficient learning for the worst performing model,
obtained after analysis of learning curves and c) over-sampling using SMOTE for the
training sub-sample of extremely rare records (see Table 4) up until the minimum number
of examples of classes with high imbalance.

Duplicate rows were removed (leaving the first one), see Table 8.
The following 8 features ‘Bwd PSH Flags’, ‘Bwd URG Flags’, ‘Fwd Avg Bytes/Bulk’,

‘Fwd Avg Packets/Bulk’, ‘Fwd Avg Bulk Rate’, ‘Bwd Avg Bytes/Bulk’, ‘Bwd Avg Pack-
ets/Bulk’, ‘Bwd Avg Bulk Rate’, containing no information (Std = 0) in all loaded files
and duplicate feature ‘Fwd Header Length.1’ (corr = 1) with ‘Fwd Header Length’ were
removed.

After dropping the duplicates, the 2 522 362 remaining records were investigated for
missing values and infinities.

As a result, 1 358 missing values containing records were removed with drop dupli-
cates. The remaining 353 rows with missing values were found to be split between ‘Be-
nign’ (350) and ‘DoS Hulk’ (3) classes and missing values were replaced with −1.

Further, 1 211 records with infinities in two features Flow ‘Bytes/s’ and ‘Flow Pack-
ets/s’ were found and replaced by maximums of values per class, see Table 9.

This processing step is made under an assumption that such a replacement for lost
values would be possible to implement after learning the values during the initial training
of a real life intrusion detection system.

Further numbers of records for Benign and second largest class Dos Hulk were trans-
formed with a skewed fixed ratio under-sampling. Remaining data is split into test and
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Table 8
Removal of duplicates in IDS2017 dataset.

Class Share of removed records (%), Resulting counts1 Resulting share (%)

Benign 7.770% 2 096 484 83.1159%
DoS Hulk 25.197% 172 849 6.8527%
PortScan 42.856% 90 819 3.6006%
DDoS 0.009% 128 016 5.0752%
DoS GoldenEye 0.068% 10 286 0.4078%
FTP-Patator 25.258% 5 933 0.2352%
SSH-Patator 45.413% 3 219 0.1276%
DoS slowloris 7.091% 5 385 0.2135%
DoS Slowhttptest 4.928% 5 228 0.2073%
Bot 0.661% 1 953 0.0774%
Web Attack – Brute Force 2.455% 1 470 0.0583%
Web Attack-XSS 0.000% 652 0.0258%
Infiltration 0.000% 36 0.0014%
Web Attack-Sql Injection 0.000% 21 0.0008%
Heartbleed 0.000% 11 0.0004%
Total 2 522 362
1Record counts after removing duplicate records.

Table 9
Replacing infinities in IDS2017 dataset.

Class Record count Flow Bytes/s Flow Packets/s

Benign 1 077 2.071e+09 4.0e+06
PortScan 125 8.00e+06 2.0e+06
Bot 5 1.20e+07 2.0e+06
FTP-Patator 2 1.40e+07 3.0e+06
DDoS 2 3.47e+08 2.0e+06
Total: 1211

train sub-samples. The training sub-set is then over-sampled with SMOTE (thus training
record count values of 4 999 and 2 999 in Table 10). This procedure keeps all extremely
imbalanced class records (Table 4) intact and adds new records for the training, resulting
in record counts for the training and testing samples presented in Table 10.

After this, the values of numeric columns were scaled to a range of [0; 1] with Scikit-
learn (Pedregosa et al., 2011) QuantileTransform. This transformation assigns each fea-
ture into a quantile individually and scales such that it is in the given range on the training
set, by default between zero and one.

Further in this research, the 40 best features were selected using the SelectKBest pro-
cedure from the Scikit-learn library (Pedregosa et al., 2011) and followed by Variance
inflation factor analysis with a target threshold value equal to 40, to eliminate variables
with high collinearity.

4.2. CIC-IDS2018 Pre-Processing Steps

The same pre-processing procedure from Section 4.1 was applied to dataset CIC-
IDS2018.
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Table 10
Resulting IDS2017 dataset training and/or validation sample representation.

Record label Training records Resulting share (%) Testing records Resulting share (%)

Benign 442 421 64.739% 442 421 67.508%
DoS Hulk 86 425 12.646% 86 424 13.187%
DDoS 64 008 9.366% 64 008 9.767%
PortScan 45 410 6.645% 4 5409 6.929%
DoS GoldenEye 5 143 0.753% 5 143 0.785%
FTP-Patator 4 999 0.731% 2 967 0.453%
DoS slowloris 4 999 0.731% 2 692 0.411%
DoS Slowhttptest 4 999 0.731% 2 614 0.399%
SSH-Patator 4 999 0.731% 1 610 0.246%
Bot 4 999 0.731% 976 0.149%
Web Attack-Brute Force 2 999 0.439% 735 0.112%
Web Attack-XSS 2 999 0.439% 326 0.050%
Infiltration 2 999 0.439% 18 0.003%
Web Attack-Sql Injection 2 999 0.439% 11 0.002%
Heartbleed 2 999 0.439% 6 0.001%
Total: 683 397 655 360

The timestamp column and related record duplicates were removed, as no time series
dependent machine learning methods were chosen in this research.

Afterwards, 8 features ‘Bwd URG Flags’, ‘Bwd Pkts/b Avg’, ‘Bwd PSH Flags’, ‘Bwd
Blk Rate Avg’, ‘Fwd Byts/b Avg’, ‘Fwd Pkts/b Avg’, ‘Fwd Blk Rate Avg’, ‘Bwd Byts/b Avg’
containing no information (eq. Std = 0) were removed.

The following sampling procedures were executed in order to achieve a better balance
between major classes and extremely rare classes:

1. the top two classes (‘Benign’ and ‘DDoS attacks-LOIC-HTTP’) were under-sampled
so as to represent no more than a number of records, providing sufficient learning for
the worst performing model, obtained after analysis of learning curves.

2. The remaining data was split into test and train sub-samples.
3. Training sub-set was then over-sampled with SMOTE (thus, value of 2 999). This pro-

cedure keeps all extremely imbalanced class records (Table 4) intact and adds new
records for the training, resulting in record counts for the training and testing samples
presented in Table 11.

It should be noted that 7 373 records with infinities in two features ‘Flow Bytes/s’ and
‘Flow Packets/s’ were found and replaced by maximums of values per class, see Table 12.

Presence of such values could indicate that related flows were not terminated on record-
ing.

After the data cleaning, the dataset was normalized with QuantileTransform. The 40
best features from SelectKBest were passed through the Variance Inflation Factor proce-
dure with a threshold of 40 which was selected to eliminate collinearity of features.
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Table 11
Resulting IDS2018 dataset training and validation sample representation.

Record label Training records Resulting share (%) Testing records Resulting share (%)

Benign 134 850 20.067% 134 849 20.576%
DDoS attacks-LOIC-HTTP 129 558 19.280% 129 558 19.769%
DDOS attack-HOIC 99 430 14.796% 99 431 15.172%
Infilteration 72 612 10.805% 72 613 11.080%
DoS attacks-Hulk 72 599 10.804% 72 600 11.078%
Bot 72 268 10.754% 72 267 11.027%
SSH-Bruteforce 47 024 6.998% 47 024 7.175%
DoS attacks-GoldenEye 20 703 3.081% 20 703 3.159%
DoS attacks-Slowloris 4 954 0.737% 4 954 0.756%
DDOS attack-LOIC-UDP 2 999 0.446% 865 0.132%
Brute Force-Web 2 999 0.446% 285 0.043%
Brute Force-XSS 2 999 0.446% 114 0.017%
SQL Injection 2 999 0.446% 43 0.007%
FTP-BruteForce 2 999 0.446% 27 0.004%
DoS attacks-SlowHTTPTest 2 999 0.446% 27 0.004%
Total: 671 992 655 360

Table 12
Replacing infinities in IDS2018 dataset.

Class Record count Flow Bytes/s Flow Packets/s

Benign 6 243 1.47e+09 4.0e+6
Infilteration 1 129 2.74e+08 3.0e+06
FTP-BruteForce 1 0.0e+00 2.0e+06
Total: 7 373

4.3. LITNET-2020 Dataset Pre-Processing

Due to the choice of supervised machine learning models and problem definition in this
study, the LITNET-2020 dataset timestamp feature was not used. Features related to the
source and destination address, such as source and destination issuing authorities, are
highly supportive in discovering not only the attacker but also the attack class, therefore,
in order to support generalization of training, they were eliminated.

After removing timestamp and address related features, related duplicate records were
also removed, see Table 13.

The resulting dataset is even more imbalanced. The target number of records of the
Benign and the Code Red type was set after learning curves that indicate the number of
records required by the worst performing model for sufficient learning. Sufficient learning
is defined here as the objective of getting the learning and testing curves to converge within
a margin of less than 1%, which for all models under experiment occurs after approxi-
mately 0.5 million records.The dataset was further split by half into testing and validation.

As a final step, a Synthetic Minority Over-sampling Technique for Nominal and Con-
tinuous features for datasets with categorical features, SMOTE-NC, introduced by Chawla
et al. (2002) was implemented, see Table 14.
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Table 13
Removal of timestamp related duplicates in LITNET-2020 dataset.

Traffic type Share of removed records (%) Resulting counts of records1 Resulting share (%)

Benign 33.1% 24 349 750 95.052%
SYN Flood 98.2% 28 873 0.113%
Code Red 13.5% 1 085 656 4.238%
Smurf 87.7% 14 642 0.057%
UDP Flood 1.3% 92 412 0.361%
LAND DoS 75.3% 12 926 0.050%
W32.Blaster 99.2% 200 0.001%
ICMP Flood 92.6% 1 723 0.007%
HTTP Flood 1.7% 22 578 0.088%
Scan 0.0% 6 232 0.024%
Reaper Worm 0.3% 1 173 0.005%
Spam 0.1% 746 0.003%
Fragmentation 15.9% 401 0.002%
1Record counts after removing timestamp and related record duplicates.

Table 14
LITNET-2020 dataset sample representation.

Record label Training records Resulting share (%) Testing records Resulting share (%)

Benign 349 470 51.277% 349 470 53.325%
Code Red 215 484 31.618% 215 485 32.880%
UDP Flood 45 858 6.729% 45 859 6.997%
SYN Flood 14 436 2.118% 14 437 2.203%
HTTP Flood 11 289 1.656% 11 289 1.723%
Smurf 9 999 1.467% 7 321 1.117%
Scan 9 999 1.467% 6 463 0.986%
LAND DoS 9 999 1.467% 3 116 0.475%
Spam 2 999 0.440% 710 0.108%
Reaper Worm 2 999 0.440% 587 0.090%
ICMP Flood 2 999 0.440% 373 0.057%
Fragmentation 2 999 0.440% 153 0.023%
W32.Blaster 2 999 0.440% 100 0.015%
Total: 681 529 655 363

After the data cleaning, the dataset was normalized with QuantileTransform. The 40
best features from SelectKBest were obtained and further checked for feature collinear-
ity. Collinear features were reduced using the Variance Inflation Factor procedure (see
Section 3.9) with a threshold value of 40.

4.4. Experiment Software Environment

All code for models was realized in the Python 3.7 environment on Anaconda 3 using
Scikit-learn7 and Imbalanced-learn8 libraries, except for the Gradient Boosting Classifier,

7https://scikit-learn.org/stable/.
8https://imbalanced-learn.org/stable.

https://scikit-learn.org/stable/
https://imbalanced-learn.org/stable
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which was implemented using the XGBoost library (Chen and Guestrin, 2016), utilizing
GPU.

Model parameters were searched with the GridSearch method. Tree depth and al-
pha were further validated using the method of maximum cost path analysis (Breiman
et al., 1984), implemented in Scikit-learn by the cost-complexity-pruning-path function
(see Section 3.8).

4.5. Parameter Values Selection

The following parameter ranges were selected for the grid search:

1. ADA: n_estimators: (range(10, 256, 5)), learning_rate: [0.001, 0.005, 0.01, 0.5, 1],
and base estimator – CART.

2. CART: criterion: (‘entropy’, ‘gini’), max_depth: range(4, 32), in_samples_leaf:
range(6, 10, 1), max_features: [0.5, 0.6, 0.8, 1.0, ‘auto’].

3. GBC: max_depth: range(4, 32, 1),
n_estimators: range(100, 256, 5), other parameters used from CART.

4. KNN: n_neighbors: range(3, 16, 1), algorithm: [‘ball_tree’, ‘auto’],
leaf_size: range(15, 35, 5)

5. MLP: hidden_layer_sizes: tuple (32 ... 256, 32 ... 256) (step = 1), alpha:
np.geomspace(1e−2, 2, 50, endpoint = True), activation: [‘identity’, ‘logistic’, ‘tanh’,
‘relu’], solver: [‘lbfgs’, ‘sgd’, ‘adam’], learning_rate: [‘constant’, ‘adaptive’], beta_1 :
np.linspace(0.85, 0.95, 11, endpoint = True), learning_rate_init: np.geomspace(2e−4,
6e−4, 5, endpoint = True), max_iter: [200, 300], early_stopping: [True, False].

6. QDA: reg_param: np.geomspace(1e−19, 1e−1, 50, endpoint = True). Value of tol
parameter only impacts threshold when warnings of variable collinearity should be
suppressed.

7. RFC: n_estimators: range(100, 350, 5), other parameters in the same ranges as CART.

The parameters used in this study are presented in the Table 15.

5. Results and Discussion

5.1. Results of the Conducted Experiments

Tables 16, 17 and 18 represent the results of ML methods rankings using a Standard
Ranking approach (Adomavicius and Kwon, 2011), where equal items get the same rank-
ing number, and a gap is left in between the smaller and bigger result, where the bigger
result means a worse result.

In Table 16, the results of scoring by Balanced Accuracy are in favour of trees or their
ensembles, Adaboost being the strongest, closely followed by Random Forest Classifier
and K-Nearest Neighbours.

Results of this research support notion that Balanced Accuracy metric (see Table 16)
should be used for measuring accuracy in case of highly and extremely imbalanced data
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Table 15
Model parameters used.

Dataset

Model CIC-IDS2017 CIC-IDS2018 LITNET-2020

Parameters

ADA base_estimator = DecisionTreeClassifier, learning_rate = 11, n_estimators = 120,
tree parameters as indicated for CART, next row

CART criterion = ‘entropy’,
min_samples_leaf = 7,
max_features = 0.5,
max_depth = 32,
ccp_alpha = 0.00001,
class_weight = ‘balanced’

criterion = ‘entropy’,
min_samples_leaf = 7,
max_features = 0.5,
max_depth = 32,
ccp_alpha = 0.00001,
class_weight = ‘balanced’

criterion = ‘entropy’,
min_samples_leaf = 7,
max_features = 0.5,
max_depth = 15,
ccp_alpha = 0.00001,
class_weight = ‘balanced’

GBC n_estimators = 120,
min_samples_leaf = 7,
max_features = 0.5,
max_depth = 15,
ccp_alpha = 0.00001,
tree_method = ‘gpu_hist’

n_estimators = 120,
min_samples_leaf = 7,
max_features = 0.5,
max_depth = 15,
ccp_alpha = 0.00001,
tree_method = ‘gpu_hist’

n_estimators = 120,
min_samples_leaf = 7,
max_features = 0.5,
max_depth = 15,
ccp_alpha = 0.00001,
tree_method = ‘gpu_hist’

KNN algorithm = ‘ball_tree’,
leaf_size = 301,
metric = ‘manhattan’
n_neighbors = 4,
weights = ‘distance’

algorithm = ‘ball_tree’,
leaf_size = 301,
metric = ‘manhattan’,
n_neighbors = 4,
weights = ‘uniform’1

algorithm = ‘ball_tree’,
leaf_size = 301,
metric = ‘minkowski’1,
n_neighbors = 4, p = 21,
weights = ‘uniform’1

MLP activation = ‘relu’1,
solver = ‘adam’1,
alpha = 0.01,
beta_1 = 0.91,
hidden_layer_sizes = (120,
60),
learning_rate = ‘constant’1,
learning_rate_init = 0.0011,
early_stopping = True1,
max_iter = 2001,
warm_start = False1

activation = ‘relu’1,
solver = ‘adam’1,
alpha = 0.067,
beta_1 = 0.86,
hidden_layer_sizes = (32, 46),
learning_rate = ‘adaptive’,
learning_rate_init = 0.00045,
early_stopping = False,
max_iter = 300,
warm_start = True

activation = ‘relu’1,
solver = ‘adam’1,
alpha = 0.01,
beta_1 = 0.91,
hidden_layer_sizes = (120,
60),
learning_rate = ‘adaptive’,
learning_rate_init = 0.0011,
early_stopping = True1,
max_iter = 2001,
warm_start = True

QDA priors = priors2,
reg_param = 2.1e-8,
tol = 0.1

priors = priors2,
reg_param = 2.3e-5,
tol = 0.1

priors = priors2,
reg_param = 0.002,
tol = 0.1

RFC criterion = ‘entropy’,
min_samples_leaf = 7,
max_features = 0.5,
max_depth = 15,
n_estimators = 120,
ccp_alpha = 0.01,
class_weight = ‘balanced’

criterion = ‘entropy’,
min_samples_leaf = 7,
max_features = 1.0,
max_depth = 15,
n_estimators = 120,
ccp_alpha = 0.01,
class_weight = ‘balanced’

criterion = ‘entropy’,
min_samples_leaf = 8,
max_features = 0.5,
max_depth = 15,
n_estimators = 156,
ccp_alpha = 0.00001,
class_weight = ‘balanced’

1Default Scikit-Learn values; 2Priors calculated equal to class shares.

sets. Error Rate for all models is below 0.1, while Balanced Accuracy manifests some in-
sufficient learning. Accuracy of Extremely rare (malicious) classes in this research is dom-
inated by majority (benign) class, representing over 80% of the whole data (see Tables 2
and 3) and therefore Error Rate is overly optimistic, under-representing the prediction
error of Extremely rare classes (see Table 4), important to this research.
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Table 16
Comparison of Model performance on 3 datasets using Balanced Accuracy Score (BAS) and Error Rate (ErR).

CIC-IDS2017 CIC-IDS2018 LITNET-2020 Rank by BAS
Model ErR BAS Rank ErR BAS Rank ErR BAS Rank Total Best

ADA1 0.001 0.995 1 0.060 0.887 4 0.003 0.996 1 5 1
CART 0.004 0.984 5 0.064 0.897 3 0.005 0.985 4 12 4
GBC 0.003 0.986 4 0.063 0.811 4 0.011 0.756 6 14 5
KNN 0.006 0.989 3 0.060 0.917 1 0.044 0.864 5 9 3
MLP 0.020 0.937 7 0.072 0.860 6 0.070 0.698 7 20 7
QDA 0.068 0.951 6 0.090 0.843 7 0.022 0.992 2 15 6
RFC 0.002 0.991 2 0.059 0.898 2 0.005 0.987 3 7 2
1Adaboost ensemble is made of CART estimators with the grid-searched hyper-parameters described in
Table 15.

Table 17
Model rankings by Precision (Pr) and G-mean (Ḡ).

CIC-IDS2017 CIC-IDS2018 LITNET-2020 Rank
Model Pr Ḡ Rank Pr Ḡ Rank Pr Ḡ Rank Total Best

ADA 0.928 0.919 1 0.991 0.990 1 0.970 0.994 1 3 1
CART 0.868 0.886 5 0.971 0.977 6 0.828 0.989 4 15 5
GBC 0.892 0.884 4 0.988 0.987 2 0.963 0.987 3 9 3
KNN 0.906 0.912 2 0.988 0.987 2 0.674 0.519 7 11 4
MLP 0.879 0.834 6 0.979 0.977 5 0.685 0.876 6 17 6
QDA 0.713 0.839 7 0.936 0.881 7 0.915 0.978 5 19 7
RFC 0.913 0.907 2 0.985 0.984 4 0.937 0.998 2 8 2

The ranking results in Table 17 were obtained based on the minimum of the sum of
rankings for Presicion and Ḡ. The results of scoring by Precision and Ḡ are in favour of
the same tree ensembles.

The rankings of bias and variance decomposition in Table 18 are obtained on a basis of
the minimum of the sum of bias and variance (equal to the model mean squared error, when
not accounted for the noise component). The bias and variance are calculated according
to formulas (7) and (8). To calculate bias, we have to estimate β and β̂. β is equal to true
class labels vector of test dataset. To estimate β̂, the bootstrap with replacement of training
dataset is taken 5 times, each time the model is trained and its prediction for each training
dataset is stored as a separate vector β̂ value. Then Bias2 is estimated as squared length
of the difference of average prediction vector (E[β̂]) and test dataset true label vector
(β) and divided by the number of test records. The variance (Var) is then calculated by
formula (8), e.g. it estimates the variance in β̂ calculated for each bootstrap sample with
replacement from the training dataset.

The QDA values that are much higher than average compared to other algorithm errors
from the same data in Table 18 are a characteristic property of models with low number of
hyper-parameters as noted in Brownlee (2020). Values obtained in this experiment could
be local optima, but authors were not able to find other parameter values that would result
in lower difference of values for this model between datasets. However, bias and variance
of this model was noticed to be sensitive to changes in a list of features selected before the
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Table 18
Model rankings using model bias and variance (Var) decomposition.

CIC-IDS2017 CIC-IDS2018 LITNET-2020 Rank1

Model Bias2 Var Rank Bias2 Var Rank Bias2 Var Rank Total Best

ADA 0.09 0.024 1 1.36 0.324 1 0.22 0.006 1 3 1
CART 0.15 0.109 6 1.80 0.966 5 0.26 0.049 4 15 4
GBC 0.08 0.025 1 1.96 0.201 2 0.22 0.041 3 6 2
KNN 0.14 0.050 4 2.26 0.984 6 1.08 0.335 7 17 5
MLP 0.16 0.051 5 2.77 0.477 7 0.54 0.231 5 17 5
QDA 0.56 0.018 7 19.23 0.985 8 1.12 0.003 6 21 8
RFC 0.11 0.034 3 1.90 0.279 3 0.25 0.006 2 8 3
1Ranking is performed on the sum of model loss variance and bias squared; 2Bias squared value.

parameter search process. The list of features chosen for model training is individual for
each dataset.

5.2. Discussion and Comparison of the Results

Comparison of results of research in different implementations for CIC-IDS2017 and
CSE-CIC-IDS2018 datasets is presented in Table 19. Performance metrics are not directly
comparable to our research (further in Table 19 – this research), as validation results in
our experiment were obtained using multiple class optimization and 50% of dataset as a
hold-out data, versus standard k-fold cross-validation, known to be prone to knowledge
leak. In our methodology, cost sensitive model implementations provided classification
for multiple class measures. However, for comparison, traditional measures suitable only
for balanced datasets are presented with other reviewed studies (see Table 19). It is impor-
tant to note that optimization in this experiment was done on Balanced Accuracy Score,
therefore, other measures are sub-optimal.

In Sharafaldin et al. (2018) authors had an objective to introduce the CIC-IDS-2017
dataset, and default parameter model results of machine learning are presented for purely
benchmark purposes of future research. Feature selection was performed using the random
forest regression feature selection algorithm. The results of Precision, Recall and F1 were
obtained in their studies in a form of weighted average of each evaluation metrics and
are represented in Table 19. Iterative Dichotomiser 3, decision tree learner with an early
stopping, as implemented in Weka (Witten and Frank, 2002), is used in their research. In
our research the results were obtained using macro average for the above mentioned and
other performed metrics. Macro averages of metrics are more sensitive to the imbalance
of classes.

In Sharafaldin et al. (2019) authors improve results on RFT through proposing super-
feature creation versus random feature regression algorithm for feature selection used in
previous research (Sharafaldin et al., 2018). In our research the feature selection was ob-
tained through fast Kbest procedure with Anova F-value optimization function, however,
algorithm has been chosen after testing three classes of feature selection methods.

In Yulianto et al. (2019) strategy, SMOTE is utilized with CIC-IDS-2017. However,
only benign and DDos class data of CIC-IDS-2017 dataset is taken, calculating binary
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Table 19
Related research results analysis.

Algorithm Dataset Precision Recall F1 Source1

ADA CIC-IDS-2017 0.77 0.84 0.77 (Sharafaldin et al., 2018)
ADA CSE-CIC-IDS2018 0.999 0.999 0.999 (Kanimozhi and Jacob, 2019a)
ADA CIC-IDS-2017 0.818 1.0 0.900 (Yulianto et al., 2019)
ADA CSE-CIC-IDS2018 0.997 0.997 0.997 (Karatas et al., 2020)
ADA CIC-IDS2017 0.999 0.999 0.999 This research
ADA CSE-CIC-IDS2018 0.999 0.999 0.999 This research
ADA LITNET-2020 0.997 0.996 0.997 This research
ID3 CIC-IDS-2017 0.98 0.98 0.98 (Sharafaldin et al., 2018)
DT CSE-CIC-IDS2018 0.997 0.997 0.997 (Karatas et al., 2020)
DT CSE-CIC-IDS2018 0.999 0.999 0.999 (Kilincer et al., 2021)
CART CIC-IDS2017 0.997 0.997 0.997 This research
CART CSE-CIC-IDS2018 0.997 0.998 0.998 This research
CART LITNET-2020 0.995 0.985 0.995 This research
GBC CSE-CIC-IDS2018 0.995 0.991 0.993 (Karatas et al., 2020)
GBC CIC-IDS2017 0.997 0.997 0.997 This research
GBC CSE-CIC-IDS2018 0.970 0.961 0.965 This research
GBC LITNET-2020 0.987 0.756 0.987 This research
KNN CIC-IDS-2017 0.96 0.96 0.96 (Sharafaldin et al., 2018)
KNN CSE-CIC-IDS2018 0.998 0.999 0.998 (Kanimozhi and Jacob, 2019a)
KNN CSE-CIC-IDS2018 0.993 0.985 0.979 (Karatas et al., 2020)
KNN CSE-CIC-IDS2018 0.958 0.958 0.955 (Kilincer et al., 2021)
KNN CIC-IDS2017 0.994 0.994 0.994 This research
KNN CSE-CIC-IDS2018 0.989 0.989 0.985 This research
KNN LITNET-2020 0.957 0.864 0.955 This research
MLP CIC-IDS-2017 0.77 0.83 0.76 (Sharafaldin et al., 2018)
MLP CSE-CIC-IDS2018 1.0 1.0 1.0 (Kanimozhi and Jacob, 2019a)
MLP CIC-IDS2017 0.981 0.980 0.980 This research
MLP CSE-CIC-IDS2018 0.960 0.959 0.958 This research
MLP LITNET-2020 0.933 0.698 0.929 This research
LSTM CSE-CIC-IDS2018 1.0 1.0 1.0 Dutta et al. (2020)
DNN CSE-CIC-IDS2018 1.0 1.0 1.0 Dutta et al. (2020)
QDA CIC-IDS-2017 0.97 0.88 0.92 (Sharafaldin et al., 2018)
LDA CSE-CIC-IDS2018 0.989 0.991 0.990 (Karatas et al., 2020)
QDA CIC-IDS2017 0.966 0.932 0.944 This research
QDA CSE-CIC-IDS2018 0.712 0.648 0.597 This research
QDA LITNET-2020 0.980 0.992 0.979 This research
RFC CIC-IDS-2017 0.98 0.97 0.97 (Sharafaldin et al., 2018)
RFC CIC-IDS-2017 0.999 0.999 0.999 (Sharafaldin et al., 2019)
RFC CSE-CIC-IDS2018 0.999 0.999 0.999 (Kanimozhi and Jacob, 2019a)
RFC CSE-CIC-IDS2018 0.993 0.992 0.993 (Karatas et al., 2020)
RFC CIC-IDS2017 0.998 0.998 0.998 This research
RFC CSE-CIC-IDS2018 0.991 0.993 0.992 This research
RFC LITNET-2020 0. 996 0.997 0.996 This research
1See explanatory notes related to cited work in Section 5.2.

classification problems, therefore, produces results that are incomparable to our research
results. Features in their research are also selected differently, first utilizing Primary Com-
ponents Analysis (PCA), then the Ensemble Feature Selection (EFS), using EFS Package
in R Studio and ensemble methods gbm, glm, lasso, ridge and treebag from the fscaret
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library. The AdaBoost classification with default weak decision tree classifiers was used
during the training. Meanwhile, in our research a choice was made to strengthen the base
classifier via pruning. The results of Precision, Recall and F1 obtained are represented in
Table 19.

Kanimozhi and Jacob (2019a, 2019b) classified the CSE-CIC-IDS2018 data set using
ADA, RF, kNN, SVM, NB and ANN (Artificial neural network) machine learning meth-
ods. For an ANN authors used MLP with two layers, lbfgs solver, grid searched alpha
parameter (for L2 regularization) and Hidden layer sizes. In their research, authors used
0–1 classification. Either “Benign” or “Malicious” labels were used for training, making
the results directly incomparable with our multi-class approach. Results of the accuracy,
precision, recall, F1 and AUC were obtained. The results of Precision, Recall and F1 are
represented in Table 19.

In the study Karatas et al. (2020) classified the CSE-CIC-IDS2018 dataset using KNN,
RFT, GBC, ADA, DT (Decision tree), and LDA (Linear discriminant analysis with sin-
gular value decomposition solver) algorithms. Parameters that were selected for all the
implemented algorithms are described in Karatas et al. (2020) Table 8. Number of classes
was determined to be six (one for non-attack type, and 5 for attack types), making the
results directly incomparable with our multi-class approach. Cross-validation with 80%/
20% split of training and test data was used. Results of the accuracy, precision, recall and
F1 were obtained. The results of Precision, Recall and F1 are represented in Table 19.

In their study Kilincer et al. (2021) classified the CSE-CIC-IDS2018 dataset using
KNN, DT, and SVM algorithms. Options of Matlab for KNN with KNN Fine algorithm,
DT with Fine tree and SVM Quadratic algorithm gave the best results in this research. Re-
sults on a limited amount of records (up to 1584 records per class, see Kilincer et al. (2021)
Table 3) were used in this research for CSE-CIC-IDS2018 dataset classes. Authors focus
on UNSW-NB15 dataset with no discussion on pre-processing for CSE-CIC-IDS2018,
parameter search or tree pruning or overfitting. Results of the accuracy, precision, recall,
F1 and g-mean were obtained. The results of Precision, Recall and F1 are represented in
Table 19.

In Dutta et al. (2020) authors used SMOTE and ENN to balance the LITNET-2020
dataset. Classes are reduced to two, normal and malignant, therefore, results are directly
incomparable with ours. The approach also differs in that authors reduce dimensional-
ity with Deep sparse autoencoder (Zhang et al., 2018), selecting 15 features. Then au-
thors stack LSTM with adam optimizer and DNN with four layers, back-propagation and
stochastic gradient descent as the optimizer and early stopping on Keras with TF back-
end and Scikit-learn. 5-fold validation was used in that research. Results of the precision,
recall, false positive rate, and MCC were obtained. The results of Precision, Recall and
F1 are represented in Table 19.

5.3. Known Limitations

Regarding the limitations of the approach taken in this research, it is important to note
that new categories of malicious traffic in reality are introduced daily. Therefore, models
tuned using this method will not detect zero day threats.
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Table 20
MLP model results for Precision (P r), and G-mean (Ḡ) on

LITNET-2020 dataset before and after SMOTE.

Class1 nP r sP r nḠ sḠ

Reaper Worm 0 0.778 0 0.972
Spam Botnet 0.631 0.912 0.766 0.988
W32.Blaster 0 0.285 0 0.969
1Selected example rare classes.

Another know limitation is that in absolute rarity case, or when data has not been
obtained and labelled sufficiently, models will predict with high Error rate. A possible
known solution to this problem is an anomaly detection for the unseen data.

Moreover, datasets CIC-IDS2017 and IDS-2018 lack some categorical flag data, which
is possible to obtain, like it has been demonstrated in LITNET-2020 case.

Even though LITNET-2020 lacks temporal features, introduced in CIC-IDS datasets,
this, however, can be resolved by running the CICFlowMeter on the original PCAP files.

Temporal average approach of flags does not help some classes like Infiltration, how-
ever, flag features could be added to CIC-IDS datasets in the future.

While SMOTE was helpful for some rare classes, the method did not help much where
sub-classes overlap due to lack of host data or feature latency.

Some features can be extracted and supplemented, which might be used in future
research, however, extraction requires high degree of previous network traffic logging,
whereas authors are aware that organizations lack resources to collect data on such a level
of detail.

5.4. Observations on Multi-Class Predictions

Details of comparison of each class and dataset before and after SMOTE up-sampling
is not represented here due to substantial amount of tables. However, it is important to
note that some rare classes in these datasets learn very well even with a small numbers of
records, which is confirmed by testing using dedicated unseen data. Some classes learn
significantly better after adding synthetic data, which is further supported with tests on
model performance and classification reports executed before (prefixed with n as nP r

and nḠ for no-SMOTE) and after enriching data using SMOTE procedure in Table 20
prefixed with s as sPr and sḠ.

As demonstrated in Table 20, random data under-sampling and SMOTE over-sampling
techniques are supportive in ensuring that extremely under-represented classes (see Ta-
ble 4) can learn with non-zero precision and Ḡ, or provide better results.

6. Conclusions

In this paper, we have studied three highly imbalanced network intrusion datasets and
proposed methodology steps (see Section 4), helping to achieve high classification results
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of rare classes which were validated through model error decomposition and 50% data
hold-out strategy. This methodology was checked using a novel, differently structured
dataset LITNET-2020, and comparison of the results to those obtained on the established
benchmark datasets CIC-IDS2017 and CSE-CIC-IDS2018.

A review of the LITNET-2020 dataset compliance to the criteria raised by Gharib et
al. (2016) is first introduced in Section 2.2. A variant of random under-sampling (skewed
ratio under-sampling, proposed by authors and discussed in Section 3.1), is used to re-
duce imbalance of classes in a nonlinear fashion, and SMOTE-NC up-sampling (see Sec-
tion 3.2) is executed to increase representation of under-represented classes. Further on in
this research, comparison of multi-class classification performance of the CIC-IDS2017
and CIC-IDS2018 datasets with the recent LITNET-2020 dataset is discussed in Section
5. As LITNET-2020 is constructed differently from the CIC-IDS datasets, a conclusion
can be made that the proposed method is resistant to dataset change. Performance metrics
– balanced accuracy (Formula (2)) and geometric mean of recall (Formula (4)), better
suited for multi-class classification used for the LITNET-2020 dataset, is another intro-
duced novelty (see results in Tables 16 and 17), not discussed by other authors using these
datasets. Multi-criteria scoring is cross-validated with an approach of testing through data
previously unseen for the models (see Section 4). Additional ML model, Gradient Boost-
ing Classifier, utilizing ensemble of classification and regression trees, was introduced for
benchmark in this research via the use of XGBoost library (Chen and Guestrin, 2016)
incarnation with GPU support (see Section 3.5.6). In our methodology, cost sensitive
model implementations have been used and have provided some better results (see Ta-
ble 19) compared to other reviewed studies. Furthermore, selection of models with better
generalization capabilities in this research has been achieved through decomposition of
classification error into bias and variance (see results in Table 18). Instead of the weak
CART base classifiers (see Section 3.8) parameters were GirdSearch’ed and parameters
Tree depth and alpha were validated using the method of maximum cost path analysis
(Breiman et al., 1984). Other models were tuned using Gridsearch and Balanced Accu-
racy Score was scored as an optimization goal.

Machine learning algorithm rankings based on Precision, Balanced Accuracy Score,
Ḡ, and Bias – Variance decomposition of Error, show that tree ensembles (Adaboost,
Random Forest Trees and Gradient Boosting Classifier) perform best on the compared
here network intrusion datasets, including the recent LITNET-2020.
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