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The Suzuki-Trotter formula has been used to get the mth approximant to the classical representation 
of the partition function of the one-dimensional N-spin 5=+ quantum spin systems. The equivalent 
two-dimensional (NX2m) Ising model with four-spin interactions has been studied in detail by using the 
numerically exact transfer-matrix method for T;;;;O.05 and m~8. The convergence properties have been 
examined in two different representations; checkerboard decomposition (CBD) and real-space 
decomposition (RSD). The spin correlation functions in RSD converge much faster than those in CBD. 
The limiting m --+ 00 behavior has been estimated from the extrapolation formula of the form: E( m) = E( 00 ) 

+a/m2
• The limiting values of the energy derived from the nearest-neighbor correlation agree with: the 

correct values excellently. 

§ 1. Introduction 

In 1976 Suzuki!) demonstrated that the mth approximant to the classical 
representation of the partition function of the quantum system described by the 
Hamiltonian 

k 

..9C=2:Al (1·I) 
1=1 

is represented by 

k 

Zm=Tr[IIexp( -,BAdm)]m, 
1=1 

(1·2) 

on the basis of the generalized Trotter formula. 2
) He then proved that ad-dimensional 

quantum system can be mapped onto a (d + I)-dimensional classical Ising system with 
four-spin interactions. Besides its intrinsic interest, formula (1· 2) is very appealing from 
the viewpoint of numerical studies on quantum statistical mechanics, because it is possible 
to calculate the thermodynamic properties with the knowledge of only eigenvalues and 
eigenstates of each Al without diagonalizing the full Hamiltonian ..9C. Since the 
pioneering work of Suzuki et al.,3) several quantum systems have been studied by 
performing Monte Carlo simulations on the equivalent classical systems.4

),5) 

There is no unique classical representation for a given quantum Hamiltonian. 
Therefore it is necessary to study the convergence properties of different representations 
by means of exact calculations before one proceeds to Monte Carlo simulations on more 
complicated quantum systems. The aim of the present article is to point out that the 
numerically exact transfer-matrix method6

),7) provides a very promising means for such 
calculations. The convergence properties are examined in two different representations; 
checkerboard decompositon (CBD) and real-space decomposition (RSD). It is shown 
that the spin correlation functions in RSD converge much faster than those in CBD. 

The present article reports the result applied to the one-dimensional (ID)5 = t 
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320 H. Betsuyaku 

quantum spin system described by the Hamiltonian: 

(1·3a) 

N-l 

=~ Vi 
i=l ' 

(l·3b) 

where S/ is the spin operator on site i and N is the number of spins. We confine 
ourselves to the following three cases: (1) the ferromagnetic isotropic Heisenberg model 

ix=iy=iz=i; (1·4 ) 

(2) the antiferromagnetic isotropic Heisenberg model 

(1·5) 

and (3) the X Y model 

iz=O. (1·6) 

Over the years various results have been obtained for those models with the use of a wide 
variety of methods, both exact and approximate. The energy, specific heat, and 
susceptibility of the 1D ferromagnetic and antiferromagnetic Heisenberg models were 
estimated by Bonner and Fisher.8

) They used numerical method to diagonalize the full 
Hamiltonian for finite-size rings and chains, and extrapolated these results to the infinite 
systems. The present approach which diagonalizes only the local Hamiltonian At gives 
a very useful extrapolation scheme complementary to their finite-size extrapolation; the 
results extrapolated from finite Trotter size of m for effectively infinite chains are as exact 
as those extrapolated from finite-size rings and chains. The 1D XY model was solved 
analytically by Lieb et al.9

) and by Katsura,t°) independently. The preliminary result 
applied to this model has been reported earlier;ll) the limiting value of the energy obtained 
by the present method agrees with the exact solution except at extremely low 
temperatures. 

The CBD representation is reviewed in §2 which gives the starting formulation of the 
numerically exact transfer-matrix method. In §3 the procedure for computation is given 
in detail. In §4 the results for energy and specific heat calculated in CBD are presented 
in conjunction with certain exact and/ or accurate numerical results. The results are also 
compared with Monte Carlo simulations. The RSD representation is reviewed in §5 and 
a proof is giyen for the equivalence of the thermodynamic properties in CBD and RSD. In 
§6 the results for the energy derived from the spin correlation functions are presented and 
the limiting m~OO behavior is examined. Summary and conclusions are given in §7. 

§ 2. The CBD representation 

The simplest classical representation is the checkerboard decomposition (CBD) 
introduced by Barma and Shastry.12) It decomposes the Hamiltonian into two parts: 

(2·1) 

where A(B) is the set of odd (even) integers. Substituting this into Eq. (1·2) and 
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Study of One-Dimensional Quantum Spin Systems 321 

inserting 2m complete set of eigenstates of the Ising part of!JC, the classical representation 
of the partition function Z m CBO is given by 

ZmCBO = ~ <aIle-PA1/mla2><a2Ie-PAz,mla3>"'<a2mle-PAz,mlaI>, (2·2) 
ala2···a2m 

where the states lar> are obtained by prescribing the eigenstates of S/ for all i. Thus 

(2·3) 

where r is a label along the new Trotter direction, and each ar runs over 2N states. Each 
of Al and A2 is the sum of commuting terms in this decomposition, which makes the 
calculation of the partition function much easier. Equation (2·2) is then rewritten as 

(2·4) 

where 

(2·5) 

with A'(B') being the set of odd (even) r. The matrix 6 =exp( -/3Vdm) has eight 
nonzero elements, and these are, in a self-evident notation, as follows: I

),I2) 

< I I 1611 I > = <,j. ,j. 161,j. ,j. > = eKZcoshK_ , 

< I ,j.1611 ,j. >=<,j. 1161,j. I >=e-KzcoshK+, 

< I ,j.161,j. I>=<,j. 11611 ,j. >=e-KzsinhK+, 

< I 1161,j. ,j. >=<,j. ,j.1611 I >=eKzsinhK_, (2·6) 

where 

3.4 5 6 7 
1--

Fig. 1. Graphical representation of the checkerboard 
decomposition (CBD) in which the equivalent 
classical lattice is represented by a checkerboard 
lattice (Ref. 12)); i labels sites on the originallD 
lattice and r is a label along the Trotter 
direction. An Ising spin SiT is assigned to each 
site (i, r). Only spins on the edges of a shaded 
square interact with each other. Periodic 
boundary conditions are imposed along the 
Trotter direction. 

Kz= (/3/ 2m)]z, 

K±= (/3/ 2m)(jx±]y). (2·7) 

ZmCBO can be interpreted as the partition 
function of an Ising model with a 
checkerboard-like lattice structure; the 2D 
square lattice is defined in which rows are 
labeled by rO;:;;; r;:;;;2m) and columns by 
i (1;:;;; i ;:;;; N) as shown in Fig. 1. Periodic 
boundary conditions are required in the 
Trotter direction because of the trace 
operation. Free chain is assumed in the 
present study. 

The above representation of ZmCBO offers 
a very powerful starting formula for 
numerical studies on quantum statistical 
mechanics. It is commonly believedI3

) that 
Monte Carlo simulation is the only means 
suitable for such calculations. In practice, 
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322 H Betsuyaku 

Monte Carlo simulations have already been performed on several quantum systems.3
)-5) 

§ 3. The transfer-matrix method 

The partition function of the 2D Ising model with the structure shown in Fig. 1 can 
be computed by using the numerically exact transfer-matrix method.6

).7) The slightly 
modified algorithm is as follows: Since we have periodic boundaries along the Trotter 
direction Si2m+l = Sil, the computation is recursively done one column after one along the 
original chain direction. We retain all 22m states of the first column {Sir} in the storage 
of the computer. Then we compute the first interaction exp[ - /3&(1, 1)] between the first 
and second columns with adding four states of 521 and 522. Since we have taken into 
account all interactions of 511 and 512 because of free chain, we now perform the trace 
over 511 and 512 keeping terms for all states of {Slr(r",d, 521, 522. Then the second 
interaction exp[-/3J{(l, 3)] is considered, and the trace over 513 and 5 14 is performed. 
The remaining interactions are treated in the same --way. After completion of the 
interactions between the first and second columns the trace over all {Sir} is completed and 
all 22m states of the second column {S2r} are retained instead. We may now compute the 
interactions between the second and third columns and step by step take the trace over the 
second column {S2r}. The same procedure is carried out one column after one. Finally 
the trace is taken over the last column {SNr}. In this way we can obtain ZmCBD 

numerically for arbitrary temperature T, from which the free energy is given by 

(3·1) 

Only limitation of the present method.is the storage requirement for the factor 22m which 
prevents us from studying m larger than m=10, while there is much less difficulty to go 
to larger N. 

We use the dimensionless units for the free energy 1= - F/ NkB T and the exchange 
interaction constant K=l/kBT. In these units we obtain: (1) the internal energy per spin 

E!J= -ai/oK; (3·2) 

and (2) the specific heat per spin 

(3·3) 

The temperature dependences of E and C are obtained with good accuracy by computing 
the free energy for a set of neighboring temperatures and taking the derivatives 
numerically. In the following the temperature T will be defined in units of l/kB, the 
internal energy per spin E in units of l, and the specific heat per spin C in units of kB • 

lt should be noted that the case m=l in the above calculation is eqUivalent to the 
pair-product approximation of the Heisenberg model which has been solved exactly by 
Suzuki. l4

) 

§ 4. Energy and specific heat calculated in CBD 

The free energy FCBD(N, m) was computed for several values of Nand m as a 
function of T; N=17, 33, 65,129,257 and m=l, 2,4,5,6,7,8 for T~O.05. For fixed value 
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Study of One-Dimensional Quantum Spin Systems 323 

of m the free energy per spin showed no substantial difference between N =65 and 129. 
Therefore we expect that the system with N ~ 129 is large enough to be treated eventually 
as N = 00 except at extremely low temperatures. The calculated energy and specific heat 
are presented in conjunction with certain exact and/or very accurate numerical results: 
(1) the exact solution of Katsura10

) for the XY model; (2) the accurate numerical results 
of Bonner and FisherS) for the ferromagnetic and anti ferromagnetic Heisenberg models; 
and (3) the "experimental data" obtained by means of Monte Carlo simulations by Cullen 
and Landau.4

) The m=l calculation is also presented because it is equivalent to the 
pair-product approximation.14

) 

(1) Ferromagnetic Heisenberg model 

Figure 2 shows the results for the energy. The lighter lines are the calculations of m 
= 2, 4, 8 with fixed values of N = 129. The dashed line is the m = 1 calculation. The bold 
solid line is the calculation of Bonner and Fisher.S) Results of the Monte Carlo 
calculation of Cullen and Landau4

) are also included in Fig. 2. Both results are in a very 
remarkable agreement, and show a clear progression toward the Bonner and Fisher value 
at most temperatures as m increases. We note that the low-temperature results benefit 
from the coincidence that the quantum system and all the classical approximations have 
the same ground-state energy. Nevertheless, at very low temperatures the quantum 
effects are poorly r~produced even when m=8. The specific-heat results are shown in 
Fig. 3 which display a nice progression toward the extrapolated Bonner and Fisher curve. 
They agree fairly well with the Monte Carlo results, although the latter results have the 
statistics deteriorated as m increases. 

(2) Antijerromagnetic Heisenberg model 

In Fig. 4 are shown the results for the energy, which show a good agreement with the 

0 0.5 1.0 

lD H MaDEL CBD 

-0.4 

E 
2 

4 

-0.5 • 8 

Fig. 2. Temperature dependence of the energy in the 
ID ferr9magnetic Heisenberg model in CBD. 
The lighter lines are the calculations of m=2, 4, 
8. The dashed line is the m = 1 calculation. 
The bold solid line is the calculation of Bonner 
and Fisher (Ref. 8)). Data points are the Monte 
Carlo results of Cullen and Landau (Ref. 4)). 

0.2 
lD H MaDEL CBD l:> m 2 

C 
0 4 

;--...".:.- . 8 
~~ 

0.1 ~ 

0 
0 1.0 T 2.0 

Fig. 3. Specific·heat results for the ID ferromagnetic 
Heisenberg model. The lighter lines are the 
calculations of m=2, 4, 8. The bold solid line is 
the calculation of Bonner and Fisher (Ref. 8)). 
Data points are the Monte Carlo results of Cullen 
and Landau (Ref. 4)). 
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324 H. Betsuyaku 

o 

lD AH MODEL 
-0.5 

-1.0 

E 

-1.5 

1.0 

" m 
o 

T 

2 

4 

• 8 

2.0 

Fig. 4. Temperature dependence of the energy in the 
ID antiferromagnetic Heisenberg model in CBD. 
The lighter lines are the calculations of m=2, 4, 
8. The dashed line is the m = 1 calculation. 
The bold solid line is the calculation of Bonner 
and Fisher (Ref. 8)). Data points are the Monte 
Carlo results of Cullen and Landau (Ref. 4)). 

2.0 

lD AH MODEL CBD 

1.5 

c 

Fig. 5. Specific·heat results for the ID anti· 
ferromagnetic Heisenberg model. The lighter 
lines are the calculations of m=2, 4, 8. The bold 
solid line is the calculation of Bonner and Fisher 
(Ref. 8)). Data points are the Monte Carlo 
results of Cullen and Landau (Ref. 4)). 

Monte Carlo results. Both the results show a steady progression toward the Bonner and 
Fisher value (solid line) with increasing m. The convergence is rapid and the actual 
estimate is quite good for temperatures T >0.30. However, the large difference between 
the ground-state energy of the quantum system and that of the different classical 
approximations emphasizes the failure to reproduce the strong quantum effects at 
extremely low temperatures. 

The specific-heat results are displayed in Fig. 5. The progression toward the Bonner 
and Fisher results (solid line) is quite systematic and for m=8 we can see the peak in 
approximately the correct position. As expected from the energy results, the low
temperature results for the specific heat are poor. 

(3) XY model 

The results for the energy and specific heat are presented in Figs. 6 and 7, and are / 
shown in conjunction with the exact solution of Katsura 10) and with the Monte Carlo 
results. 4

) The general trends observed in the results are very similar to those seen already 
in the anti ferromagnetic Heisenberg model. 

(4) Discussion 0/ the results 

The transfer-matrix method was successfully applied to the calculation of the 
classical systems equivalent to the ID quantum Heisenberg and XY models through the 
Suzuki-Trotter transformation. The classical representation used was the checkerboard 
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0 1.0 2.0 

-0.2 
1D XY MaDEL 

-0.6 
6 m 2 

0 4 
E • 8 

-1.0 

Fig. 6. Temperature dependence of the energy in the 
1D XY model in CBD. The lighter lines are the 
calculations of m = 2, 4, 8. The dashed line is the 
m = 1 calculation. The bold solid line is the 
exact calculation of Katsura (Ref. 10)). Data 
points are the Monte Carlo results of Cullen and 
Landau (Ref. 4)). 

2.0 

1D XY MaDEL CBD 

1.5 

C b. m 2 

1.0 

0.5 

Fig. 7. Specific-heat results for the 1D XY model. 
The lighter lines are the calculations of m=2, 4, 
8. The bold solid line is the exact calculation of 
Katsura (Ref. 10)). Data points are the Monte 
Carlo results of Cullen and Landau (Ref. 4)). 

decomposition (CBD). The energy and specific heat were calculated for a range of the 
Trotter size from 1 to 8 and over a temperature range from T=O.05 to about T=2.0. 
The calculated results showed a remarkable agreement with the Monte Carlo results of 
Cullen and Landau4) at every stage of m at all temperatures; the specific-heat results of the 
latter method have rather poor statistics as m increases while the results of the former are 
numerically' exact. This agreement might be self-evident since both the methods are 
based on the same classical representation of the free energy. 

Good agreement was obtained with the known values of energy and specific heat for 
moderate value of m so long as the temperature was not too low. Convergence to the 
correct values as a function of m was quite rapid except in the very-low-temperature 
region. However, at very low temperatures the convergence of the CBD representation 
was so poor that the strong quantum efiects were not reproduced up to the Trotter size of 
m=8. The pair-product approximation,14) which is equivalent to the m=l calculation, 
was found not to be a good approximation at low temperatures where quantum effects are 
important.4) 

To overcome this difficulty it is required to select some other classical representations 
and/or physical quantities which show a rapid convergence. One of the candidates is the 
RSD representation, the convergence properties of which will be examined in the 
following sections. 
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326; H. Betsuyaku 

§ 5_ The RSD representation 

Another classical representati~n is the real-space decomposition (RSD) introduced by 
SuzukL I

) It regards the Hamiltonian as a sum of local two-site parts Vi as given by Eq. 
(1-3b). Substituting Eq. (1-3b) into Eq. (1-2) and inserting m complete set, the classical 
representation of the partition function ZmRSD is given by 

N-I 

ZmRsD=Tr[ IT exp( -.BV;/m)]m 
i=l 

(5'la) 

Introducing another m complete set as intermediate states and relabeling r sequentially, 
Eq. (5-1b) is rewritten as . 

(5-2) 

where 

(5-3) 

The matrix elements (5'3) have the same form as Eq. (2-6). ZmRSD can be interpreted as 
the partition function of the 2D Ising model with four spin interactions as shown in Fig. 
8. It has been proved mathematically that ZmCBD transforms into ZmRSD in the case of free 
chain.13

) This transformation is easily seen by comparing Figs. 1 and 8. If we relabel r 

indices in ZmRSD one column after one as 

for i=l and r+ i -2~ r for i~3, 

and use the periodic boundary conditions along the Trotter direction, we find that ZmRSD 

transforms into ZmCBD. Thus both decompositions give the same results for the 
thermodynamic properties. 

6~~~ 

5 

L 
c... 

3 

2 

2 3.4 5 6 7 
/-

Fig. 8. Graphical representation of the real-space 
decomposition (RSD) in which the equivalent 
classical lattice is represented by a skewed 
checkerboard lattice (Ref. 1)). Each shaded 
portion indicates a four spin interaction. 
Periodic boundary conditions are imposed along 
the Trotter direction. 

Fig. 9. The interrelation between the correlation 
functions in CBD and RSD, <SiaS/>CBD and 
<S,aS/>RSD, respectively. In the 2D lattice for 
CBD, <S,aS/>CBD are defined along the horizontal 
line while <S,aS/>RSD are defined along the 
diagorial line. 
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Study of One-Dimensional Quantum Spin Systems 327 

However, the correlation functions <s;aSf>(a=x, y, z) are not invariant for the 
transformation mentioned above and therefore the rate of convergence is expected to 
depend largely on the choice of the decomposition. Figure 9 shows the interrelation 
between <SiaSf>CBO and <SiaS/>RSO. It should be noted that the CBD destroys the 
elementary property that the ith spin is to the left of the (i + 1)th spin. l3

) 

§ 6. Energy derived from the spin correlation functions 

Correlation functions between the center spin at site 0 and spin at site j as displayed 
in Fig. 9 were calculated numerically exactly by the transfer-matrix method. The 
algorithm of computation was very similar to the method reported earlier/> but slightly 
modified to calculate the correlations between the center spin specified and any other spins 
in the 2D lattice. Susceptibilities were obtained from the correlations. Results for the 
decay behavior of correlations and susceptibilities will be reported in a forthcoming 
article. The nearest-neighbor correlation is related with the internal energy: 

(6·1) 

(1) XY model 

E CBO and E Rso, the energies in RSD and CBD defined by Eq. (6·1), were calculated. 
Results for E RSO are shown in Fig. 10. The lighter lines are the calculations of m=2, 4, 
8 for N=257, and the dashed lines are for N=129. Each calculated energy showed a 
sudden rise at a temperature Tr on the low-temperature side; Tr decreases as m and N 
increase. It was found by examining the decay of correlations that an ordering is 
established below Tr owing to the finiteness of the system. The results for N = 129 and 
257 gave the same numerical results above T r . Therefore, it. may be regarded that the 
system with N;;:;; 129 is large enough to be treated eventually as N = 00. The m = 8 

-0.8 

Fig. 10. Temperature dependence of E Rso
, the 

energy derived from the nearest· neighbor 
correlation in RSD, for the ID XY model. The 
lighter solid lines are the calculations of m=2, 4, 
8 for N = 257, and the dashed lines are for N 
= 129. The bold solid line is the exact 
calculation of Katsura (Ref. 10)). 

o 
-0.4 

-0.6 

E 

-0.8 

lD XY MaDEL CBD 

'" m 2 
o 

• 
4 

8 

Fig. 1l. Temperature dependence of E CBO for the ID 
XY model. The lighter lines are the 
calculations of m=2, 4, 8, and the dashed line is 
the m->= estimation. The bold solid line is the 
exact calculation of Katsura (Ref. 10)). Data 
points are the Monte Carlo results of Cullen and 
Landau (Ref. 4)). 
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-0.5 

E 
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Table I. Energies extrapolated from finite·m calculations. Eexact is the exact 
value of Katsura (Ref. 10)). 

T Eexact E RSD E CBD 

0.0 -0.63662 - -

0.1 -0.63398 -0.63433 -0.67708 
0.15 -0.63060 -0.63077 -0.64405 
0.2 -0.62570 -0.62577 -0.63076 
0.25 -0.61906 -0.61909 -0.62127 
0.3 -0.61049 -0.61050 -'0.61159 
0.4 -0.58768 -0.58767 -0.58821 
0.5 -0.55897 -0.55896 -0.55918 

5 4 

~ ~ 
-------0- -------------0- __ 0.4 

-0.6~~~~-~-~~--~-~~~_~_~ __ -_-_~O-__ -_-__ -_-_----o---
0.2 

calculation is very close to the exact 
calculation of Katsura (bold solid line) all 
over the temperature range studied; Tr 
<0.05 for N=129 and 257.*) Results for 
E CBD are shown in Fig. 11. It was found 
that E CBD coincides with that derived from ----0. ___ _ 

:::f L-_l_D-'---XY---'-M_OD_
E
...J..

L
_-LQ.._--l...-----1_-O-----l 

o 0.02 0.04 m-2 0.06 

Fig. 12. Energies versus (1/m)2 for the 1D XY 
model at several temperatures: ECBD(squares) 
and ERSD(circ1es). 

the free energy F CBD
• By comparing E RSD 

with E CBD at every stage of m, it is clearly 
seen that E RSD converges much faster than 
E CBD

• 

In Fig. 12 the energies E RSD and E CBD 

are plotted versus (l/m)2. It is evident 
that the same limiting energy is 
approached linearly with (l/m)2 but the 
convergence rate of CBD is much slower at 
low temperatures than RSD; at T= 0.2 
E CBD deviates markedly from the linear 

include higher order corrections. 
relation with (1/ m)2 suggesting the need to 

A relation of the form: 

E(m)=E(oo)+a/m2 (6-2) 

holds quite accurately for RSD; the same relation holds for CBD but less accurately at low 
temperatures because of slow convergence. The limiting energies are tabulated in Table 
I; these values are extrapolated from m=5, 6, 7, 8 for RSD, and from m=6, 7, 8 for CBD 
at low temperatures. The limiting energy in CBD is included in Fig. 11 (dashed line). 
The agreement with the exact value is very excellent for RSD, which indicates that the 
strong quantum effects at very low temperatures are well reproduced by E RSD

• However, 
the agreement is somewhat worse for CBD. This poor convergence of the correlation 
functions in CBD arises from the fact that this type of decomposition destroys the 

*) The values of Tr presented in Fig. 10 are different from those presented in Fig. 5 of Ref. 11). This is 
because that the XZ model was used in the preliminary work and the energy was obtained from <SOzSIZ) by 
assuming the rotational symmetry; <SoxS1X)=<SOzSIZ). In the present work the XY model was used and the 
energy was obtained directly from <SOxSIX) and <SoYS1Y). Both models gave the same numerical values above 
Tr although the values of Tr were dependent on the model. 
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Study of One-Dimensional Quantum Spin Systems 329 

elementary property that the ith spin is to the left of the (i + 1)th spin. 13
) 

The extrapolation formula (6·2) is seen to be complementary to the finite-chain 
extrapolation of Bonner and Fisher;8) the properties of infinite chain can be estimated from 
those of finite chains by using a relation of the form: 

E(N)=E(oo)+/3/N 2
• (6·3) 

Their numerical method is to diagonalize the full Hamiltonian for finite chains, which 
corresponds to m=oo. This complementarity reflects the fact that the matrix elements 
(2·6) are symmetrical with respect to i and r. Recently Suzuki15

) has proved rigorously 
that the convergence rate of the classical representations is proportional to (l/m)2. 

The specific heat was obtained by differentiating E RSD numerically with respect to T. 
The results are shown in Fig. 13. As 
expected from the energy results, they 

C 1 D XY MODEL RSD show a rapid convergence· to the exact 

0.4 

0.2 

0'-------1.------'----_--'-__ ---1 

o 1.0 T 2.0 

Fig. 13. Results for specific heat derived from E RSD 

for the ID XY model. The lighter lines are the 
calculations of m=2, 4, 8. The bold solid line is 
the exact calculation of Katsura (Ref. 10)). 

o 
~--~--~~--~~--~ 

1D H MODEL RSD 

-0.4 

E 

m-2------v 

Fig. 14. Temperature dependence of E RSD for the ID 
ferromagnetic Heisenberg model. The lighter 
lines are the calculations of m = 2, 4, 8. The bold 
solid line is the calculation of Bonner and Fisher 
(Ref. 8)). 

solution of Katsura (solid line). The 
limiting value extrapolated by use of Eq. 
(6·2) agrees with the exact solution. 

(2) Heisenberg models 

The results for the energy and specific 
heat of the ferromagnetic and 
anti ferromagnetic Heisenberg models are 
presented in Figs. 14 ~ 17. They are 
shown in conjunction with the Bonner and 
Fisher value (solid line). The general 
trends observed in the results are very 
similar to those seen already in the XY 
model. The limiting values agree with 
the Bonner and Fisher results precisely in 

0.2 
1D H MODEL RSD 

C 

0.1 

1.0 T 
Fig. 15. Results for specific heat derived from E RSD 

for the ID ferromagnetic Heisenberg model. 
The lighter lines are the calculations of m = 2, 4, 

8. The bold solid line is the calculation of 
Bonner and Fisher (Ref. 8)). 
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lD AH MODEL RSD 

-0.8 m~8 4 

j j 

E 

-1. 0 

-1.2 

Fig. 16. Temperature dependence of E RSD for the ID 
antiferromagnetic Heisenberg modeL The 
lighter solid lines are the calculations of m=2, 4, 
8 for N = 257, and the dashed lines are for N 
= 129. The bold solid line is the calculation of 
Bonner and Fisher (Ref. 8)). 

these cases. 

(3) Discussion of the results 

0.6 

lD AH MODEL RSD 
C 

0.4 

0.2 

Fig. 17. Results for specific heat derived from E RSD 

for the ID antiferromagnetic Heisenberg modeL 
The lighter lines are the calculations of m=2, 4, 
8. The bold solid line is the calculation of 
Bonner and Fisher (Ref. 8)). 

The spin correlation functions of the ID Heisenberg and XY models were calculated 
by applying the transfer-matrix method to the equivalent classical systems in the RSD 
and CBD representations. The energy was defined in terms of the nearest-neighbor 
correlation; E RSD and E CBD

• E RSD was found to converge much faster than E CBD
, while E CBD 

agreed with the energy derived from the free energy. Convergence of E RSD as a function 
of m was quite rapid and showed the (1/m)2 dependence except extremely-Iow
temperature region. The m-HXJ behavior was estimated accurately. The limiting 
values were agreed with the correct values excellently. 

The rapid convergence of E RSD as well as the presence of the extrapolation scheme 
confirms the surmise of Suzuki et a1.3

) that satisfactory numerical estimates for 
thermodynamic quantities could be obtained for moderate value of m. 

§ 7. Summary and conclusions 

The transfer-matrix method has been used to study the 2D Ising models equivalent to 
the ID quantum spin systems through the Suzuki-Trotter transformation. Convergence 
properties have been examined in two different representations; checkerboard 
decomposition (CBD) and real-space decomposition (RSD). The rates of convergence of 
the thermodynamic quantities are the same in the both representations. Nevertheless, the 
spin correlation functions in RSD converge much faster than those in CBD. This is 
because the elementary property is destroyed in CBD that the ith spin is to the left of the 
(i + 1)th spin. The m-HXJ behavior can be estimated accurately from a new type of 
extrapolation scheme which is complementary to the finite-chain extrapolation of Bonner 
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and Fisher;8) the results extrapolated from finite Trotter size are as exact as those 
extrapolated from finite chains. 

In conclusion, the present study has realized the hope of Suzuki et al.3
) that good. 

numerical estimates could be obtained from the calculations with moderate value of m. 
The basic reason for the success has been the selection of the classical representation and 
thermodynamic quantity which show a rapid convergence in actual application of the 
Suzuki-Trotter formula. It is to be hoped that the information obtained from tl;:te present 
study provides meaningful guide for constructing a particular Monte Carlo algorithm to 
perform simulations on more complicated quantum systems. The present method can be 
applied with slight modifications to other 1D quantum system, such as fermion lattice 
model and Hubbard model. The results will appear in the near future. 
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