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1 Introduction

Charm hadrons produced in hadronic and nuclear collisions are excellent probes to study
nuclear matter in extreme conditions. The differential cross-sections of c-quark production
in pp or pp collisions have been calculated based on perturbative quantum chromodynamics
(QCD) and collinear or kt factorisation [1-6]. These phenomenological models [7] are also
able to predict the differential cross-section of c-quark production including most of the
commonly assumed “cold nuclear matter” (CNM) effects in nuclear collisions, where CNM
effects related to the parton flux differences and other effects come into play. Since heavy
quarks are produced in hard scattering (with momentum transfer squared Q? > 2m.)
typically at a short time scale, they are ideal to examine hot nuclear matter, the so-called
“quark-gluon plasma” (QGP), by studying how they traverse this medium and interact
with it right after their formation.

These studies require a thorough understanding of the CNM effects, which can be
investigated in systems where the formation of QGP is not expected. In addition, a precise
quantification of CNM effects would significantly improve the understanding of charmonium
and open-charm production by confirming or discarding the possibility that the suppression
pattern in the production of quarkonium states, like J/2, at the SPS, RHIC and LHC is
due to QGP formation [7].

The study of CNM effects is best performed in collisions of protons with heavy nuclei
like lead, where the most relevant CNM effects, such as nuclear modification of the parton
densities [8, 9] and in-medium energy loss [10] in initial- and final-state radiation [11, 12],



are more evident. Phenomenologically, collinear parton distributions are often used to
describe the nuclear modification of the parton flux in the nucleus. The modification with
respect to the free nucleon depends on the parton fractional longitudinal momentum =z,
Q? and the atomic mass number of the nucleus A [13, 14]. In the low-z region, down to
x ~ 1075 —107%, which is accessible at LHC energies at forward rapidity, a possible onset of
gluon saturation may occur [15-19]. Its effect can be quantified by studying production of
DY mesons at low transverse momentum pr [20], ideally down to zero pr. The in-medium
energy loss occurs when the partons lose energy in the cold medium through both initial-
and final-state radiation.

CNM effects have been investigated in detail at the RHIC collider in dAu collisions [7,
21] at a nucleon-nucleon centre-of-mass energy of /sxy = 200GeV. Recently, CNM
effects were measured in pPb collisions at the LHC for quarkonium and heavy flavour
production [22-39]. The ALICE experiment studied D meson productions in pPb colli-
sions [25, 27, 31] at /sxy = 5TeV in the region —0.96 < y* < 0.04, where y* is the
rapidity of the D meson defined in the centre-of-mass system of the colliding nucleons.
Their results suggest that the suppression observed in PbPb collisions is due to hot nuclear
matter effects, i.e. QGP formation. Results on leptons from semileptonic heavy-flavour
decays at various rapidities are also available [40-42].

In this paper the measurement of the cross-section and of the nuclear modification
factors of “prompt” D° mesons, i.e. those directly produced in proton-lead collisions and
not coming from decays of b-hadrons, is presented. The measurement is performed at
VSN = 5 TeV with the LHCb [43] detector at the LHC. Depending on the direction of the
proton and 2°®Pb beams and due to the different energies per nucleon in the two beams, the
LHCDb detector covers two different acceptance regions in the nucleon-nucleon rest frame,

e 1.5 < y* < 4.0, denoted as “forward” beam configuration,

e —5.0 <y* < —2.5, denoted as “backward” beam configuration,

where the rapidity y* is defined with respect to the direction of the proton beam, The
measurement is performed in the range of DY transverse momentum pr < 10GeV/e, in
both backward and forward collisions.

2 Detector and data samples

The LHCb detector [43, 44] is a single-arm forward spectrometer covering the
pseudorapidity range 2 < 1 < 5, designed for the study of particles containing b or ¢
quarks. The detector includes a high-precision tracking system consisting of a silicon-strip
vertex detector surrounding the pp interaction region (VELO), a large-area silicon-strip
detector (TT) located upstream of a dipole magnet with a bending power of about 4 Tm,
and three stations of silicon-strip detectors and straw drift tubes (OT) placed downstream
of the magnet. The tracking system provides a measurement of momentum, p, of charged
particles with a relative uncertainty that varies from 0.5% at low momentum to 1.0% at
200 GeV/e. The minimum distance of a track to a primary vertex (PV), the impact pa-
rameter, is measured with a resolution of (15 + 29/pr) wm, where py is the component of



the momentum transverse to the beam, in GeV/c. Different types of charged hadrons are
distinguished using information from two ring-imaging Cherenkov detectors. Photons, elec-
trons and hadrons are identified by a calorimeter system consisting of scintillating-pad and
preshower detectors, an electromagnetic calorimeter and a hadronic calorimeter. Muons
are identified by a system composed of alternating layers of iron and multiwire proportional
chambers. The online event selection is performed by a trigger [45], which consists of a
hardware stage, based on information from the calorimeter and muon systems, followed by
a software stage, which applies a full event reconstruction.

The data sample used in this analysis consists of pPb collisions collected in early
2013 at /snn = 5 TeV, corresponding to integrated luminosities of (1.06 4= 0.02) nb~! and
(0.524:0.01) nb™! for the forward and backward colliding beam configurations, respectively.
The luminosity has been determined using the same method as in the LHCb measurement
of J/ib production in pPb collisions [46], with a precision of about 2%. The instantaneous
luminosity during the period of data taking was around 5x10%” cm™2 s™!, which led to an
event rate that was three orders of magnitude lower than in nominal LHCb pp operation.
Therefore, the hardware trigger simply rejected empty events, while the next level software
trigger accepted all events with at least one track in the VELO.

For the analyses presented below, simulated samples of pp collisions at 8 TeV are used
to determine geometrical acceptance and reconstruction efficiencies. Effects due to the dif-
ferent track multiplicity distributions in the pp and pPb collision data and the effects of the
asymmetric beam energies in pPb collisions are taken into account as described later. In the
simulation, pp collisions are generated using PYTHIA [47, 48] with a specific LHCb configu-
ration [49]. Decays of hadronic particles are described by EVTGEN [50], in which final-state
radiation is generated using PHOTOS [51]. The interaction of the generated particles with
the detector, and its response, are implemented using the GEANT4 toolkit [52-54].

3 Cross-section determination

The double-differential cross-section for prompt D° production in a given (pr, y*) kinematic
bin is defined as

d%o N(D° — K¥r%)

= 3.1
dprdy* L X gor X B(DY — KFrt) x Apr x Ay*’ (3.1)

where N(D® — K¥7%) is the number of prompt D° signal candidates reconstructed
through the D° — K¥7% decay channels,! e is the total DO detection efficiency, £ is
the integrated luminosity, B(D? — KFnt) = (3.94 + 0.04)% is the sum of the branch-
ing fractions of the decays D® — K~ and D° — K*7~ [55], Apr = 1 GeV/c is the bin
width of the D transverse momentum, and Ay* = 0.5 is the bin width of the D rapidity.
The rapidity y* is defined in the nucleon-nucleon centre-of-mass frame, where the positive
direction is that of the proton beam. Throughout the analysis, the measurements are for
the sum of D? and D° mesons. The measurement is performed in the D® kinematic re-

LCharge conjugation is implied throughout this document if not otherwise specified.
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Figure 1. The (left) M (K F7%) and (right) log;,(x% (D)) distributions and the fit result for the
inclusive D° mesons in the forward data sample in the kinematic range of 2 < pr < 3GeV/c and
2.5 <y* < 3.0.

gion defined by pr < 10 GeV/c and rapidities 1.5 < y* < 4.0 for the forward sample and
—5.0 < y* < —2.5 for the backward sample.

The total cross-section over a specific kinematic range is determined by integration of
the double-differential cross-section. The nuclear modification factor, R,py, is the ratio of
the D production cross-section in forward or backward collisions to that in pp at the same
nucleon-nucleon centre-of-mass energy /sNn

_ 1 doppy(pr,y*)/dprdy*
A &0y (pr, y*)/dprdy*

where A=208 is the atomic mass number of the lead nucleus. The forward-backward

Rypy(pr,y") (3.2)

production ratio, Rpg, is defined as

d?oppy (pr, +|y*]) /dprdy*
d2oppy(pr, —|y*]) /dprdy*’

Rpg(pr,y*) = (3.3)
where o,pp, and opy,), indicate the cross-sections in the forward and backward configurations
respectively, measured in a common rapidity range. The D° candidates are selected ac-
cording to the same requirements as used in the DY production cross-section measurements
in pp collisions at /s = 7TeV [56] and /s = 13TeV [57]. The kaon and pion tracks from
the D° candidate and the vertex they form are both required to be of good quality. The
requirements set on particle identification (PID) criteria are tighter than in pp collisions
to increase the signal-over-background ratio given the high detector occupancy observed
in pPb collisions.

The signal yield is determined from an extended unbinned maximum likelihood fit to
the distribution of the invariant mass M (K Tn*). The fraction of nonprompt D" mesons
originating from b-hadron decays, called D%-from-b in the following, is determined from
the logyo(x3p (D)) distribution, where x%(D°) is defined as the difference in vertex-fit x>
of a given PV computed with and without the D° meson candidate [56, 57]. On average,



S L T — T = 2000 E ' - 1 - 1 7 E
© Backward LHCb : 3 LHCb ]
3 4000 Backwar S 1800 Backward 2
v 3500 + Data = - ~+ Data E
= —Fit i3} 2<py<3GeVic 2 1600 2<p, <3 GeV/c — Fit =
e 3000 ---- Signal [ -40<yr <35 2 1400F -40<y*<-35 [ 4 - =
- g Background [ i S E ; E
<2500 : = 1200F 3
=t E Background 3

3 2000 g 1000f E
= 1500 © 800p E
g 600 - =
500 200 3
1800 1850 1900 0= 0 2 o4
M(K*1*) [MeV/c?] log (D)

Figure 2. The (left) M (K ¥7%) and (right) log;,(x% (D)) distributions and the fit result for the
inclusive D° mesons in the backward data sample in the kinematic range of 2 < pt < 3 GeV/c and
—4.0 <y* < =3.5.

prompt D° mesons have much smaller X%P(DO) values than D%-from-b. The fit is performed
in two steps. First, the invariant mass distributions are fitted to determine the D° meson
inclusive yield and the number of background candidates, then the log;o(x% (D)) fit is
performed for candidates with mass within £20 MeV/c? around the fitted value of the D°
mass. In the log;o(x% (D)) fit, the number of background candidates is constrained to
the value obtained from the invariant mass fit, scaled to the selected mass range.

The distribution of log;o(x?s (D°)) is shown in the right-hand plots of figures 1 and 2 for
the forward and backward samples, respectively. The signal shape in the M (KF7%) distri-
butions is described by a Crystal Ball (CB) function [58] plus a Gaussian. The mean is the
same for both functions, and the ratios of widths and tail parameters are fixed following sim-
ulation studies, as in previous LHCb analyses [56, 57]. The width, mean, and signal yields
are left free to vary. The background is described by a linear function. The candidates are
fitted in the range 1792-1942 MeV/c?. The invariant mass distributions in the inclusive for-
ward and backward samples are shown in the left-hand plots of figures 1 and 2 respectively.

The fits to the invariant mass and log;o(x% (D)) distributions are performed inde-
pendently in each bin of (pr,y*) of the D meson. The contribution of the D%from-b
component increases with transverse momentum up to 10%. The log;o(x3p (D)) shapes
for the prompt D° meson signal candidates are estimated using the simulation and modelled
with a modified Gaussian function

2
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where the values of €, pr, and pr are fixed to the values obtained in the simulation and p



Source Relative uncertainty (%)
Forward Backward
Correlated between bins
Invariant mass fits 0.0 — 5.0 0.0 — 5.0
logo(x3p (D)) fits 00— 50 0.0- 50
Tracking efficiency 3.0 5.0
PID efficiency 0.6 —17.0 0.6 — 30.0
Luminosity 1.9 2.1
B(DY — K¥7%) 1.0 1.0
Uncorrelated between bins
Simulation sample size 1.0 — 4.0 1.0 — 5.0
Statistical uncertainty 0.5 —-20.0 1.0-20.0

Table 1. Summary of systematic and statistical uncertainties on the cross-section. The ranges
indicate the variations between bins, with the uncertainty on average increasing with rapidity and
momentum.

and o are free parameters. The log;o(x% (D)) distribution for the D%-from-b component
is described by a Gaussian function, following previous analyses [56, 57]. The shape of the
combinatorial background is estimated using the distribution of candidates with mass in
the ranges 1797-1827 MeV/c? and 1907-1937 MeV/c?, i.e. between 40 and 70 MeV/c? away
from the observed D° meson mass.

The total efficiency €0 in eq. (3.1) includes the effects of geometrical acceptance and
the efficiencies of the trigger, of the reconstruction and of the PID criteria used in the anal-
ysis. The analysis uses a minimum activity trigger, whose efficiency for events containing a
DY meson is found to be 100%. The geometrical acceptance and reconstruction efficiencies
are estimated using pp simulated samples, validated with data. The difference between the
distributions of the track multiplicity in the pPb and pp collisions is accounted for by study-
ing the efficiency in bins of the track multiplicity, and weighting the efficiency according to
the multiplicity distributions seen in pPb and Pbp data. The related systematic uncertain-
ties are discussed in section 4. The PID efficiency is estimated using a calibration sample of
D? meson decays selected in data without PID requirements [44], and collected in the same
period as the pPb sample used for the analysis. The PID selection efficiency is calculated
by using the KF and n single-track efficiencies from calibration data, and averaging them
according to the kinematic distributions observed in the simulation in each D° (pr, y*) bin.

4 Systematic uncertainties

The systematic uncertainties affecting the cross-sections are listed in table 1. They are
evaluated separately for the backward and forward samples unless otherwise specified. The
systematic uncertainty associated to the determination of the signal yield has contributions



from the signal and background models. The uncertainty associated to the modelling of the
signal is studied by using alternative models of single or sum of two Gaussian functions to
fit the invariant mass in the forward and backward samples. A variation of the parameters
which are fixed in the default model, within the ranges indicated by the simulation, is also
explored. The largest difference between the nominal and the alternative fits is taken as
the uncertainty on the method, which results in a bin-dependent uncertainty, not exceeding
5%. The effect due to background modelling in the invariant mass fit is studied by using
an exponential as an alternative to the linear function. This uncertainty is found to be
negligible. For the fit to the log;(x% (D)) distribution, the p;, and pg parameters of the
prompt signal component are varied within the ranges studied in simulation. The distribu-
tion of combinatorial backgrounds is studied with candidates in different background mass
regions. The shape of the distribution for the D°-from-b component is fixed when studying
the variation of its fraction. The same procedure is followed to estimate the uncertainty
on the log;o(x% (D)) fits. The systematic uncertainty on the prompt signal yields, deter-
mined by the log;o(x% (D)) fit, depends on the kinematic bin and is estimated to be less
than 5% in all cases.

The systematic uncertainty associated with the tracking efficiency has the compo-
nents described in the following. The efficiency measurement is affected by the imperfect
modelling of the tracking efficiency by simulation, which is corrected using a data-driven
method [59], and the uncertainty of the correction is propagated into an uncertainty on the
DY yield. The limited sizes of the simulated samples affect the precision of the efficiency,
especially in the high multiplicity region. Another source of uncertainty is introduced by
the choice of variable representing the detector occupancy, used to weight the distributions.
The number of tracks and the number of hits in the VELO and in the TT and OT are
all considered separately. The largest difference between the efficiencies when weighted
by each of these variables and their average, which is the default, is taken as systematic
uncertainty. An additional uncertainty comes from the detector occupancy distribution
estimated in backward and forward data. The effects are summed in quadrature, yielding
a total uncertainty on the tracking efficiency of 3% and 5% for the forward and backward
collision sample respectively.

The limited size of the calibration sample, the binning scheme and the signal fit model
used to determine the m and K PID efficiency from the calibration sample, all contribute
to the systematic uncertainty. The first is evaluated by estimating new sets of efficiencies
through the variation of the m and K PID efficiencies in the calibration sample within the
statistical uncertainties, the second by using alternative binning schemes and the third by
varying the signal function used to determine the signal. The uncertainty is taken to be
the quadratic sum of the three components. The total PID systematic uncertainty ranges
between 1% and 30% depending on the kinematic region and the collision sample.

The relative uncertainty associated with the luminosity measurement is approximately
2% for both forward and backward samples. The relative uncertainty of the branching
fraction B(D® — KF7¥) is 1% [55]. The limited size of the simulation sample introduces
uncertainties on the efficiencies which are then propagated to the cross-section measure-
ments; this effect is negligible for the central rapidity region but increases in the regions
close to the boundaries of pr and y*, ranging between 1% and 5%.
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Figure 3. Double-differential cross-section dp(fgy* (mb/( GeV/c)) of prompt D° meson production

in pPb collisions in the (left) forward and (right) backward collision samples. The uncertainty is

the quadratic sum of the statistical and systematic components.

5 Results

5.1 Production cross-sections

The measured values of the double-differential cross-section of prompt D° mesons in proton-
lead collisions in the forward and backward regions as a function of pt and y* are given in
table 2 and shown in figure 3. The one-dimensional differential prompt D? meson cross-
sections as a function of pr or y* are reported in tables 3 and 4, and are displayed in
figure 4. The measurements are also shown as a function of pr integrated? over y* in the
common rapidity range 2.5 < |y*| < 4.0.

The integrated cross-sections of prompt D° meson production in pPb forward data in
the full and common fiducial regions are

Ttorwara (T < 10 GeV/e, 1.5 < y* < 4.0) = 230.6 + 0.5 + 13.0mb,
Ctorward (pT < 10GeV/e, 2.5 < y* < 4.0) = 119.1+ 0.3+ 5.6mb.

The integrated cross-sections of prompt D° meson production in Pbp backward data in
the two fiducial regions are

Thacward (pT < 10 GeV/e, 5.0 < y* < —2.5) = 252.7 + 1.0 & 20.0mb,
Obackward(PT < 10GeV/e, —4.0 < y* < —2.5) = 175.5+ 0.6 + 14.4mb,

where the first uncertainties are statistical and the second systematic.

The cross-sections as a function of pp and y*, shown in figure 4, are compared with
calculations (HELAC) [60-62] validated with results of heavy-flavour production cross-
section in pp collisions. The absolute scale for the calculation of the D° cross-section in the

2The integration over y* is performed up to |y*|=3.5 for pr > 6 GeV/c, neglecting the bin 3.5 < |y*| < 4.0
since it is not populated in the forward sample. This applies for the integrated cross-sections presented in
this subsection, in tables 3, 5 and 7 and in figures 4, 5, 8 and 9.
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Figure 4. Differential cross-section of prompt D° meson production in pPb collisions as a function
of (left) pr (d‘%) and (right) y* (Cf;*) in the forward and backward collision samples. The uncer-
tainty is the quadratic sum of the statistical and systematic components. The measurements are

compared with theoretical predictions including different nuclear parton distribution functions as

explained in the text.

HELAC approach is obtained by fitting experimental data. The nuclear effects are con-
sidered by using three different sets of nuclear parton distribution functions (nPDFs), the
leading-order EPS09 (EPS09LO) [63], the next-to-leading order EPS09 (EPS09NLO) [63]
and nCTEQ15 [64]. The free nucleon PDF CT10NLO [65] is also used as a reference for
the cross-section predictions in pp collisions. Within large theoretical uncertainties, the
HELAC calculations with all three sets of nPDFs can give descriptions consistent with
the LHCDb data, although a discrepancy is observed in the low pr region between the
measurements and the HELAC-nCTEQ15 predictions.

5.2 Nuclear modification factors

The value of the D® meson production cross-section in pp collisions at 5 TeV, needed for the
measurement of the nuclear modification factor R,pp, is taken from the LHCb measure-
ment [66]. The systematic uncertainty related to the branching fraction cancels entirely
between the measurements in pPb and pp data, and the systematic uncertainties associated
to the signal model, the tracking and PID efficiency largely cancel between the two mea-
surements, while the luminosity and statistical uncertainties are taken as uncorrelated. The
nuclear modification factor for prompt D° meson production is shown in figure 5 in bins of
pr and figure 6 in bins of y*. The nuclear modification factors are calculated as a function of
pr integrated over y* in the ranges described in figure 5 for both forward and backward sam-
ples. The values of R,py,, summarised in tables 5 and 6, show a slight increase as a function
of pr, suggesting that the suppression may decrease with increasing transverse momentum.
The measurements are compared with HELAC calculations using EPS09LO, EPSNLO
and nCTEQ15 nPDFs [60-62] as well as the Colour Glass Condensate (CGC) models
CGC1 [67] and CGC2 [68]. For the results in the backward configuration, all three nPDF's
predictions show reasonable agreement with each other and with LHCb data. In the
forward configuration, HELAC calculations using nCTEQ15 and EPS09LO nPDFs show
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Figure 5. Nuclear modification factor R,p}, as a function of pr for prompt D° meson production
in the (left) backward data and (right) forward data, integrated over the common rapidity range
2.5 < |y*| < 4.0 for pt < 6 GeV/c and over 2.5 < |y*| < 3.5 for 6 < pr < 10 GeV/c. The uncertainty
is the quadratic sum of the statistical and systematic components. The CGC predictions marked
as CGC1 [67] and CGC2 [68] are only available for the forward region.
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Figure 6. Nuclear modification factor R,pp, as a function of y* for prompt DY meson production,
integrated up to pr = 10GeV/c and compared to the J/i) measurement in the same kinematic
region and to the theoretical models discussed in the text. The uncertainty is the quadratic sum of
the statistical and systematic components.
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Forward (mb/( GeV/c))
pr[GeV/e 1.5 < y* < 4.0 2.5 <y* <4.0 25 <y* <35
[0, 1] 54.38 +£0.29 £0.36 £3.96 30.31 +0.22 +£0.22 £ 1.59 —
[1,2] 83.54 £0.30 £ 0.45 £5.01 43.92+0.22+0.28 £2.17 —
2, 3] 49.72+£0.16 £ 0.27 £ 2.45 25.11+£0.11 +£0.16 £ 1.11 —
3, 4] 22.914+0.094+0.14 £1.10 11.13+0.06 +0.08 £ 0.55 —
[4, 5] 10.43 £ 0.06 £0.08 = 0.54  4.924+0.04 £ 0.05 £ 0.32 —
[5, 6] 4.954+0.05+0.06 £0.35 2.21 +0.04 +0.04 £ 0.26 —
[6, 7] 2.37+£0.05£0.04 £ 0.21 — 0.88 £0.01 +0.01 £0.07
[7,8] 1.20 £ 0.02 £ 0.02 £ 0.09 — 0.45+0.01 +0.01 £0.06
[8,9] 0.67 £0.01 £ 0.01 £+ 0.06 — 0.24 £0.01 = 0.01 £0.04
[9,10] 0.39 £0.01 £0.01 £0.04 - 0.08 £ 0.00 +0.00 £ 0.01
Backward (mb/( GeV/c))
pr|[GeV/(] 5.0 <y* <—-25 —40<y*<—-25 35 <y*<-25
[0, 1] 65.83 £0.70 £ 0.40 £6.85 42.89+£0.35+0.31 £5.15 -
[1,2] 97.97 £0.68 = 0.52 £8.30 66.56 £ 0.36 + 0.43 £ 5.80 —
2, 3] 5243 +0.32+£0.29 £3.57 37.96 & 0.20 £+ 0.25 £ 2.56 —
3, 4] 21.21+0.144+0.13£1.45 16.23+0.10+0.11 £1.01 —
[4, 5] 8.62+0.09£0.06+0.62 6.78 £0.05+£ 0.05+ 0.41 —
5, 6] 3.61+0.08£0.04+0.33 2.924+0.03£0.03£0.18 —
[6,7] 1.57+0.03 £ 0.02 £ 0.12 — 1.124+0.02 £ 0.02 £ 0.07
[7,8] 0.81 £0.02 £ 0.01 £ 0.09 - 0.57 £ 0.01 £ 0.01 £ 0.04
[8,9] 0.41 £0.02 £ 0.01 £ 0.07 — 0.29 £0.01 +0.01 £ 0.02
[9,10] 0.22 £0.01 £ 0.01 £ 0.02 — 0.11 £0.01 £0.01 £0.01

do

Table 3. Measured differential cross-section 22 (mb/( GeV/c)) for prompt D° meson production

dpr

as a function of pr in pPb forward and backward data, respectively. The first uncertainty is
statistical, the second is the component of the systematic uncertainty that is uncorrelated between
bins and the third is the correlated component. The results in the last two columns are integrated
over the common rapidity range 2.5 < |y*| < 4.0 for pr < 6 GeV/c and over 2.5 < |y*| < 3.5 for
6 < pr < 10GeV/c.

better agreement with the data than the calculation with EPSOINLO. The measurement
is also consistent with the CGC models displayed. Calculations [69] using CTEQ6M [70]
nucleon PDF and EPS09NLO nPDF give results for R,py, that are similar to a combination
of CT10NLO and EPS09NLO.

The nuclear modification factors for prompt D° are also compared with those for
prompt J/ip [46] in figure 6 as a function of pr integrated over rapidity, and they are
found to be consistent. This is the first measurement of R,py in this kinematic range. The
ratios of the nuclear modification factors of J/) and 1(2S) mesons [22] to D° mesons as
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Forward (mb)
y* 0 < pr <10GeV/e

[1.5,2.0]  115.1940.53 & 0.91 + 9.99
2.0,2.5]  107.0540.29 £ 0.50 + 5.73
[2.5,3.0] 93.90 +0.27 + 0.38 + 4.14
[3.0,3.5] 80.76 £ 0.33 + 0.42 + 3.71
[3.5,4.0] 64.24 + 0.55 + 0.58 + 4.79

Backward (mb)
y* 0 < pr <10GeV/c
[ ] 126.35+0.78 +0.95 + 15.54
[ | 120.84 +£0.53 £0.53 = 8.89
[-4.0,—3.5] 104.93 +0.58 £0.47 £ 6.66
[ ]
[ ]

—4.5,-4.0 87.92+0.85+0.52£ 6.13
—5.0,—4.5 65.32 £ 1.57 £0.68 £ 7.07
Table 4. Differential cross-section C%* (mb) for prompt D° meson production as a function of |y*|

in pPb forward and backward data, respectively. The first uncertainty is statistical, the second is
the component of the systematic uncertainty that is uncorrelated between bins and the third is the
correlated component.

a function of rapidity are shown in figure 7 where a different suppression between the two
charmonium states can be observed. In figures 5 and 6 the measurements are also compared
with calculations in the CGC frameworks CGC1 [67] and CGC2 [68]. Both models include
the effect of the saturation of partons at small . The CGC models are found to be able
to describe the trend of prompt D° meson nuclear modifications as a function of pr and
of rapidity. The uncertainty band for CGC1 is much smaller than for CGC2 and for the
nuclear PDF calculations, since CGC1 only contains the variation of charm quark masses
and factorisation scale which largely cancel in this ratio of cross-sections. In the context of
pPb collisions, recent measurements have shown that long-range collective effects, which
have previously been observed in relatively large nucleus-nucleus collision systems, may
also be present in smaller collision systems at large charged particle multiplicities [71-74].
If these effects are due to the creation of a hydrodynamic system, momentum anisotropies
at the quark level can arise, which may modify the final distribution of observed heavy-
quark hadrons [75]. Since the measurements in this analysis do not consider a classification
in charged particle multiplicity, potential modifications in high-multiplicity events are
weakened as the presented observables are integrated over charged particle multiplicity.

5.3 Forward-backward ratio

In the forward-backward production ratio Rgg the common uncertainty between the for-
ward and backward measurements largely cancels. The uncertainties of branching fraction,
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pr[ GeV/(] Forward Backward
[0, 1] 0.62+£0.01 £0.03 0.87+£0.01 £0.09
[1,2]  0.64+0.01+0.03 0.97+0.01 +0.07
2, 3] 0.70£0.01 £0.03 1.06 £0.01 £0.07
3, 4] 0.724+0.01 £0.04 1.06 &£ 0.01 +0.06
[4, 5] 0.77£0.01 £0.05 1.06+0.01 £0.06
[5, 6] 0.774+0.024+0.08 1.01 +£0.02 4+ 0.06
6, 7] 0.82+0.02+0.06 1.05%0.03+0.06
[7,8] 0.78+0.03+0.09 0.99 4+ 0.04 4+ 0.06
8, 9] 0.79£0.054+0.12 0.92+0.05£0.07
[9, 10] 0.83 £0.07+0.09 1.10+0.10£0.09
[0, 10] 0.66 £0.00 £ 0.03 0.97 £0.01 £0.07

Table 5. Nuclear modification factor R,py, for prompt D° meson production in different pr ranges,
integrated over the common rapidity range 2.5 < |y*| < 4.0 for pr < 6 GeV/c and over 2.5 < |y*| <
3.5 for 6 < pr < 10 GeV/c for the forward (positive y*) and backward (negative y*) samples. The
first uncertainty is statistical and the second systematic.

y* Rypy,
[—4.5,—4.0] 1.31 +0.02 £ 0.06
[~4.0,-3.5] 1.05+0.01 £ 0.05
[-3.5,-3.0] 0.99 % 0.01 = 0.04
[—3.0,—2.5] 0.90+0.01+0.05

[2.0,2.5] 0.74 +£0.01 £ 0.04
2.5,3.0]  0.67 = 0.00 £ 0.03
3.0,3.5]  0.66 % 0.00 + 0.03
[3.5,4.0] 0.65+0.01 £0.03

Table 6. Nuclear modification factor Rppy, for prompt D° meson production in different y* ranges,
integrated up to pr = 10 GeV/c. The first uncertainty is statistical and the second systematic.

signal yield and tracking are considered fully correlated, while the PID uncertainty is con-
sidered 90% correlated since it is a mixture of statistical uncertainty (uncorrelated) and the
uncertainties due to the binning scheme and yield determination (correlated). All other
uncertainties are uncorrelated. The measured Rpp values are shown in figure 8, as a func-
tion of pr integrated over the range 2.5 < |y*| < 4.0, and as a function of y* integrated
up to pr = 10GeV/c. The Rpp values in different kinematic bins are also summarised in
table 7. Good agreement is found between measurements and theoretical predictions using
EPS09LO and nCTEQ15 nPDFs. The calculation using EPS0INLO nPDF also agrees
with the data within the theoretical uncertainties.
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pr[GeV/c] Rrg

(0,1  0.71£0.01+0.06
0.66 % 0.00 == 0.04
0.66 4 0.00 + 0.03
0.69 4 0.01 + 0.03
0.73 £ 0.01 % 0.04
0.76 4 0.02 = 0.08
0.79 4 0.02 + 0.05
0.79 4 0.03 = 0.09
0.86 = 0.04 & 0.12
[9,10]  0.7540.06 =+ 0.09
[0,10]  0.68 4 0.00 + 0.04

© N o o ®w N+
L X N5 e 9

ly*| Rpp
2.5,3.0]  0.74 % 0.01 £ 0.07
(3.0, 3.5] 0.67 4+ 0.00 + 0.03
3.5,4.0]  0.61 +0.01 =+ 0.03

Table 7. Forward-backward ratio Rpp for prompt D° meson production in different pt ranges,
integrated over the common rapidity range 2.5 < |y*| < 4.0 for pr < 6 GeV/c and over 2.5 < |y*| <
3.5 for 6 < pr < 10GeV/e, and in different y* ranges integrated up to pr = 10 GeV/c. The first
uncertainty is the statistical and the second is the systematic component.

In the common kinematic range pr < 10 GeV/¢, 2.5 < |y*| < 4.0, the forward-backward
ratio Rpp is 0.71 £ 0.01(stat) + 0.04(syst), indicating a significant asymmetry. The pre-
dictions for Rpp integrated over the same kinematic range are O.71f8:§i for the HELAC-
EPS09LO calculation, 0.81f8:(1)8 for the HELAC-EPS0O9NLO calculation and 0.69f8:8? for
the HELAC calculation using the nCTEQ15 nPDF set, which are all in good agreement
with the measured value. The forward-backward production ratio increases slightly with
increasing pr, and decreases strongly with increasing rapidity |y*|, a trend that becomes
significant when one considers the large correlation among the systematic uncertainties
discussed in section 4. This behaviour is consistent with the expectations from the QCD
calculations. The Rpp measurement of muons from heavy-flavour decays in a similar kine-

matic region reported by the ALICE experiment [42] shows a qualitatively similar trend.

In order to compare the production of open charm and charmonium, the ratio of Rpp
for prompt J/i) mesons divided by Rpp for prompt D° mesons is shown in figure 9. The
measurement shows that Rpp has the same size for prompt D° and prompt J/) mesons
within the uncertainties in the LHCb kinematic range.
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Figure 7. Ratio of nuclear modification factors R,pp of JAp and 4(2S) to D° mesons in bins
of rapidity integrated up to pr = 10GeV/c in the common rapidity range 2.5 < |y*| < 4.0. The
uncertainty is the quadratic sum of the statistical and systematic components.
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Figure 8. Forward-backward ratio Rgp for prompt D°
of pr integrated over the common rapidity range 2.5 <

1 2 3 4 5

meson production (left) as a function
ly*| < 4.0 for pr < 6 GeV/c and over

2.5 < |y*| < 3.5 for 6 < pr < 10 GeV/¢; (right) as a function of y* integrated up to pr = 10 GeV/ec.
The uncertainty is the quadratic sum of the statistical and systematic components.
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Figure 9. Relative forward-backward production ratio Rpp for prompt D° mesons over that for
prompt J/ip mesons (left) as a function of pr integrated over the common rapidity range 2.5 < |y*| <
4.0 for p < 6 GeV/c and over 2.5 < |y*| < 3.5 for 6 < pr < 10 GeV/¢; (right) as a function of y*
integrated up to pr = 10 GeV/c. The red inner bars in the uncertainty represent the statistical un-
certainty and the black outer bars the quadratic sum of the statistical and systematic components.

6 Conclusion

The prompt D° production cross-section has been measured with LHCb proton-lead colli-
sion data at \/syN = 5TeV. The measurement is performed in the range of DY transverse
momentum pr < 10 GeV/e, in both backward and forward collisions covering the ranges
1.5 < y* < 4.0 and —5.0 < y* < —2.5. This is the first measurement in this rapidity region
down to zero transverse momentum of the D° meson. Nuclear modification factors and
forward-backward production ratios are also measured in the same kinematic range. Both
observables are excellent probes to constrain the PDF uncertainties, which are currently
significantly larger than the uncertainties on the experimental results. A large asymmetry
in the forward-backward production is observed, which is consistent with the expectations
from nuclear parton distribution functions, and colour glass condensate calculations for
the forward rapidity part. The results are found to be consistent with the theoretical
predictions considered.
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