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Indium oxide (InO3z) has been used widely for ultra-sensitive
toxic gas (such as N®and NH?) detectors, transparent conduc-
tors? solar cells, and optoelectronic devides.is anticipated that
low-dimensional 1503 may exhibit some unique properties, includ-
ing novel optical behaviors® Although various types of Oz,
including 2D (i.e., thin films}® and 1D (i.e., nanowire%)!!
structures, have been extensively prepared and investigated, few
reports were concentrated on,@ quantum dots (0D)?13
Synthesis and study of high-quality and monodispersgdn
nanocrystals (NCs) as 0D quantum-confined materials are still
essential and significant. In this communication, we report our
synthesis of single-crystal, quasi-monodispers®mMCs, as well
as the optical observation from these NCs.

All of the chemicals were used as received from Aldrich without
further purification. In a typical experiment, 0.40 mmol of indium
acetate (99.99%), 0.55 mL of oleylamine (70%), and 0.60 mL of
oleic acid (90%) were combined with 7.0 mL of hexadecane
(>99%) in a three-neck flask equipped with a condenser. The
system was vacuumed at room temperature and at’Clfor a
while, respectively, to form a clear light-green solution. At 110
°C, 1.45 mmol of trimethylaminéN-oxide (TMNO, 98%) was
subsequently introduced into this vigorously stirred hot mixture
under an argon stream. The temperature of this system was then
increased to 120C, where it remained fol h under agitation and
argon protection. The color of the solution gradually turned light-
yellow. The temperature was further increased to 20@t a rate
of 10 °C/min for an additional 35 min reflux. The mixture was
clear-brown during the first 5 min at 29TC, and subsequently
changed to a yellow turbid slurry during the following 25 min, T
and finally turned clear again. These colloids were cooled to room oy oyt L ’
temperature by quickly removing the heating source, and then gigyre 1. (a) Bright field TEM image of 11.5 nm k®s NCs (monolayer
isolated by adding a sufficient amount of ethanol and separating assembly); (b) HRTEM of a single 13.5 nm,®; NC; (c) TEM image of
with centrifugation. The yielded precipitate was redispersed in @ 3D superlattice of 20.0 nm 4@3 NCs.
hexane followed by centrifugation to remove the very small amount parameter which affects the morphology and size @OyNCs.
of insoluble a_ggregates. 'I_'he_ morphology a_nd phase structure WEreThe lower the reaction temperature, the smaller the NCs produced.
evaluated using tra_nsmlssmn electron microscope (TEM) (JEOL Moreover, these small NCs generally associate with irregular shape
2010) a_nd an X-ray d_n‘fractometer (X.RD) (Ph'“ps_ X-pert Sys“*”?)’ and broad size distribution. A typical TEM image in low magnifica-
respectively. We realized that the ratio of oleic acid and oleylamine tion is shown in Figure 1a, exhibiting quasi-monodisperse and

was a key factor to form bDs .NCS' Oleic a_cid withou@ oleylgming hexagonally packed #®; NCs with an average diameter of 11.5
and TMNO would not result in any NCs; if TMNO with oleic acid nm. It can be further seen that a short-range, hexagonal order of

\r/]vedre |qéroduc¢elg flnto the rezpﬂon wr:thout olleylfamln;,RoSIy |n|d|um. In,O3 NCs can be self-assembled in an area as large as a few square
);1 roxi ev;l]guh orm accforl 'n? to.t N rgiu s OI our id ag(;\_,{ﬂsNe(s), micrometers (Figure S1 in the Supporting Information). The high-
whereas a high content of oleylamine without oleic acid an resolution TEM image in Figure 1b reveals the fringes from the

V;I]OUIC:] m_?I':Aethe NCs rapidly gerW arlld ag_gfe_gate- we a}lso (;t;gl_lzed continuous lattice structure of a typical crystallite, indicating that
.tt att s termi a((i:ttiatstrr:ot on B{.a S? € oxi ltzmg.agentt.hna.\ |t|?tn, tthese In0; NCs possess high crystallinity.
It was determined that the reaction temperature 1S another important ¢ g generally believed that for a primarily formed single-phase

IDepartment of Chemistry. crystal with ultra-small size, the surface must be a polyhedron
§SgﬂpRa'r'tmem of Physics containing high-index crystallography plaftsvhich have a
TChangchun Institute of Applied Chemistry. tendency to grow along direction(s) where the facet(s) possess low
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out on a Perkin-Elmer LS 55 luminescence spectrometer). In our
3 samples, no additional emission peak was observed, and the results
s from TEM and XRD do support Cao’s explanation. On the other
%‘ hand, the maximum absorption peaks afdnsynthesized via this
§ . /\ method show up at305 nm (Figure S6), which exhibits a certain
- 5 = phenomena of blue shift in comparison with the bulkQg (about
Lhwﬁ_ﬂﬂr’w 330 nm)?0-21 |n addition, previous repoft$?? indicate that weak
50 =50 e 150 quantum-confinement-effects may still be detected even if the size
Wavelength (nm) of In;03 NCs is slightly larger than the Bohr radius. On the basis
Figure 2. Photoluminescence spectra 0@ in various sizes: (a) 20.0 of these results, it is suggested that the appearance of UV emission
nm; (b) 13.5 nm; and (c) 11.5 nm. from the InO; NCs synthesized in this work is partially due to

weak quantum-confinement-effects.

In summary, we have successfully synthesized quasi-monodis-
perse 1n0O3 NCs with high crystallinity in a high-temperature
organic solution. The average size of NCs can be tuned using a
dynamic injection technique. TEM and XRD investigations indicate
that each NC is a single crystal. The optical determination implies
that the PL behavior of theseJ®; NCs is different from that of
the bulk, probably due to the combination of weak quantum-
confinement-effects and the nature of high crystallinity in NCs.

surface energy. To provide enough primary clusters for keeping a
constant rate of the crystal growth to produce larger NCs, we
adopted a dynamic injection techniqt?é® which has been
employed previously and is favorable for continuous growth of NCs.
For instance, a portion of the above-mentioned reaction mixture
being heated at 128C for 1 h (referred to as “precursor”) could
be stored at room temperature, reinjected into the same mixture
after a reflux at 290°C for 40 min, and maintained at the same
temperature for an additional 30 min. Such processing would tune
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by slowly evaporating the alcohol-containifigolvent is presented g also thank Poncho De Leon for his help in polishing the context.
in Figure 1c. To explore the size distribution, thregOnsamples
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