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Abstract: In this paper, the reliability and thus the suitability of optical fibre strain sensors for surface 

strain measurement in concrete structures was investigated. Two different configurations of optical strain 

sensors were used each having different mountings making them suitable for different uses in various 

structures. Due to the very limited time available to install the sensors and take result, commercially 

packaged sensors were used.  In the tests carried out each sensor was mounted onto a concrete beam 

which was then subjected to a range of known and calibrated loadings. The performance of the optical 

strain sensors thus evaluated was compared with the results of conventional techniques. This comparison 

allows for selecting the best performing combination of sensor/mounting, i.e. long-gauge sensor with 

mounts bolted to threaded rods glued into the concrete for use in future work in a field test where a 

limited time window was available for installation, testing and post-test demounting.

Keyword: Fiber Optical Sensor, Strain Sensor, Fiber Bragg grating

1. INTRODUCTION

The use of Fiber Optic Sensors (FOSs) has represented a major opportunity for structural 

health monitoring, especially of civil engineering structures and in particular bridges. Their 

relatively small size, ease of use and potential to be multiplexed over the long lengths that 

represent many bridges make wider tests of their suitability for specific applications very 

important.  Over the last 15 years, research groups around the world have instrumented 

various types of bridges – steel [1], concrete [2] and composite [3] – with various degrees of 

success. Thus these studies have demonstrated the potential for FOS to give civil engineers 

access to a wide range of useful information – for example to monitor strain in real time and 

on the impact of cracking and thus to assess better the health of the structure. 

The prime focus has been on strain measurement, which is, for civil engineers, a key 

parameter of interest. Various optical techniques have been developed for this purpose where 

the most common are based on Fabry-Perot cavity-based sensors, Fiber Bragg gratings (FBG) 

or Brillouin scattering [4].  The majority of the attention has been devoted to the use of FBGs 

due to the unique properties among FOS to encode the information in the wavelength domain, 

which is less noise-sensitive, despite fully distributed measurements not being possible and 

the constraint on the wavelength spacing of the gratings themselves.  In practical applications, 

these constraints can be overcome.

Considerable work has been done in this area by the authors using conventional techniques 

[5]-[6] and optical fiber sensors [7].  However often monitoring is performed by groups of 

engineers where expertise is not sufficiently shared between the sensor developers and the 

sensor users and so the opportunities for innovation in the design and application of the 

sensors are not taken – a problem that is addressed in the work herein.
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FOS sensors for strain measurement have been discussed in the literature and are available 

from commercial sources in a range of gauge lengths and with a variety of mountings. Both 

gauge length and mounting are important parameters when used on concrete structures 

primarily due to the inhomogeneous nature of concrete itself. A poor choice of sensor may 

lead to an error in the measurement and thus an inappropriate assessment of the soundness of 

the bridge. Sensors of the type described can be embedded in the structure or mounted on the 

surface where the latter case is more readily suited to retrofitting and thus is key to the 

concrete structure assessment in the present work. Embedded sensors are more suitable for 

new constructions as they can be readily installed during the building phase of a structure. 

However, most of the concrete infrastructure in developed countries has been built in the last 

fifty years; therefore effective surface mounting must be made a practical possibility for the 

installation of sensors in situations of the type to be described in this work. 

In order to measure the actual strain experienced by a bridge, several important factors have 

to be carefully considered. The first is how to attach the sensor to the surface as the quality of 

the measurement depends on optimizing the degree of strain transfer from the structure to the 

sensors. The second is the gauge length of the sensor – e.g. the sensor gauge length is too 

short, the measurement made can be influenced by local surface strain and thus not be fully 

representative. On the other hand, if the gauge length is too long, different thermal effects on 

both ends of the sensor may alter the measurements. Finally, ensuring that the system is able 

to monitor up to the maximum desired or achieved strain level that is experienced is also 

important.

Strain transfer from a structure to an embedded optical fibre sensor has been studied both 

numerically and experimentally [8]-[9]. However, few systematic investigations involving 

comparative studies have been done on strain transfer for surface mounting of optical fiber 

sensors. One of the earliest reported [10] focuses on the strain transfer in the case of a bare 

fiber surrounded by a host material and a similar attachment method of the fiber to FRP 

laminates has been considered in [11]. Zhou et al [12] and Lin et al [13] have looked at the 

strain transfer for different packaged sensors bonded to an aluminium specimen. In work by 

Grabovac et al [14], the authors present an experimental study of different techniques for the 

attachment of a bare fiber in order to deploy a FOS network to monitor a large scale structure.

This paper presents the experimental evaluation of several different packaged FBG-based 

sensors in laboratory tests undertaken in advance of field tests.  In light of the very short time 

‘window’ when a major arterial route bridge (on which cracks had been observed) could be 

closed and sensors installed and measurements made commercially packaged sensors were 

used to ensure the reliability of the mounting of the sensors.  Thus the aim was to select an 

appropriate and optimally performing sensor which could be installed rapidly and used 

immediately on the selected concrete bridge. To do so, it was decided that bare fiber sensors 

were not appropriate: it would be difficult to prepare all the surfaces properly and consistently 

and fix the sensors using adhesive in the time available for the tests.  Thus it was decided to 

evaluate the possibility of the use of two different commercially packaged sensors of different 

gauge lengths and hence, evaluate several different mounting techniques for different (but 

known) loading levels of a concrete test beam in the laboratory which would be representative 

of the surfaces and conditions in the actual bridge. The outputs from the different FOS mounts 

used were compared with those from conventional electrical resistance strain gauges and 

demountable mechanical strain gauges. Thus in the second section of this paper, the different 

strain sensors used in this work are introduced and their main characteristics are measured. 
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The third part of the paper is dedicated to discussing and evaluating the test set-up. Finally, in 

the last section the experimental results are revealed and thus conclusions on the suitability of 

each type of sensor and mounting techniques are drawn for application subsequently on the 

target bridge.

2. STRAIN SENSORS

2.1. Fiber Bragg Grating Strain Sensors

Before detailing the optical strain sensors used in this work, a brief review of the operation of 

Fiber Bragg Gratings (FBG) is provided. An in-fiber FBG is a periodic modulation of the 

refractive index of the core of a photosensitive fiber where the modulation of the refractive 

index is induced by UV light from a laser source and different techniques exist to fabricate 

FBG [15]. The periodic modulation acts as a filter reflecting one wavelength, the Bragg 

wavelength, which is expressed by the following formula [15]:

 eB n2 (1)

where ne is the effective refractive index and  is the period of the grating.

A variation of the period of the grating or the effective refractive index (caused in this case by 

strain (and temperature) change) induces a shift of the Bragg wavelength. It is known that 

temperature variations induce a change of refractive index and grating period, while 

longitudinal strain mainly induces a change in . The temperature or strain induced 

wavelength shift can be modeled by the following equation:

TSS Tstrain   (2)

where Sstrain and ST are the strain and temperature sensitivities, respectively. and T are the 

strain and temperature variations respectively.

Eq. (2) highlights the temperature dependence of strain measurement, which is a well 

researched problem for FBG based strain sensors. In order to have a meaningful 

determination of the actual strain, it is necessary to have an accurate value of the temperature 

in the vicinity of the FBG. An overview of techniques researched for temperature 

compensation of FBG strain sensors can be found in the literature e.g. the work of Majumder 

et al [16].

Thus in this work, to prepare for the field tests which would follow, five commercially 

available fiber optic strain sensors were mounted on a specially fabricated reinforced concrete 

beam. All the packaged sensors have been fabricated by and purchased from MicronOptics
TM

. 

Two different types of fiber optic sensors are used specified by the manufacturer as optical 

strain gauges and optical strain sensors. Their geometrical and optical characteristics are 

summarized in Table I. 

Different mounting techniques are used to evaluate the strain transfer capability and the 

sensors’ robustness under both light and heavy loading and thus to evaluate their practicality 

for field installation.  Thus several points on the mounting can be made:

- Optical strain gauge with temperature compensation (os3600), termed OSG1, used 

mounts that each had a lug glued into a drilled hole (approximately 25 mm deep) in 

the concrete (as shown in Fig 1(a)); A second FBG is included in the same packaging. 
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This FBG is only sensitive to temperature, therefore it can used to estimate the

temperature and compensate the temperature dependence of the FBG measuring 

strain..

- Optical strain gauge with temperature compensation (os3600), termed OSG2, used 

mounts that were screwed into 25 mm deep fixings in the concrete (Fig 1(b)). After 

preliminary tests, these mounts were modified by replacing the screws and fixings 

with threaded rods glued using cyanoacrylate adhesive into the holes to which the 

mountings were firmly bolted. As for OSG1, a second FBG is included in the same 

packaging to perform temperature compensation.

- Optical strain sensor (os3120), termed OSA, glued onto the beam using cyanoacrylate 

adhesive (Fig 1(c)). No temperature compensation was provided;

- Optical strain sensor (os3120), termed OSB, was glued on the beam. The 

cyanoacrylate adhesive was applied to the sensor and left to set for 5 minutes before 

fixing the sensor onto the beam. No temperature compensation was provided;

- Optical strain sensor (os3120), termed OSC, glued to two large metallic plates using 

cyanoacrylate adhesive, which had previously been glued onto the beam using epoxy 

resin (Fig 1(d)).  No temperature compensation was provided.

As described above, the five optical strain sensors are mounted differently. Gluing these 

sensors onto the beam requires physical pressure on the sensor until the glue cures. The time 

needed for this depends on the glue used and can vary from some minutes to tens of minutes. 

For Sensor OSA, ten minutes was necessary to guarantee a high level of strain transfer. 

Letting the glue applied onto the packaging of the sensor to partially set before fixing the 

sensor onto the beam could facilitate the installation of sensors during field work should this 

approach be chosen. Sensor OSB was mounted onto the beam using this approach.

Following preliminary tests with Sensors OSA and OSB, metallic plates have been glued to 

the beam before Sensor OSC was glued to this plate. Designed in order to increase the contact 

surface between the sensor and the beam, this technique makes Sensor OSC a compromise 

between average strain measurement (as can be expected with the optical strain gauges) and 

local strain as measured with the optical sensors. Furthermore, increasing the surface of 

contact should improve the robustness of the sensor and limit potential debonding.

For an out of laboratory (in the field) use of Sensors OSA, OSB and OSC, the lack of 

temperature compensation could be an issue due to the significant response of the wavelength 

change of the grating (the primary sensing mechanism) to temperature which could mask a 

small change in the strain. A solution where the temperature of the system is not sufficiently 

stable is that a temperature sensor in the vicinity of the three strain sensors could be used in 

order to remove any temperature effect on the FBGs and thus allow the actual strain to be 

evaluated.  Fortunately, due to the controlled environment of the laboratory, such temperature 

compensation is not required for the tests presented in this paper. During these tests, the 

temperature both around and inside the beam was carefully monitored and a variation of less 

than half a degree has been measured – this could be construed at worst as an error in the 

strain measurement of a maximum of ±3 strain.

As can be seen from Table I, the (non-strained) Bragg wavelength for each sensor is separated 

by at least 5 nm and as the strain sensitivity of each sensor is between 1.2 and 1.4 pm/strain, 

five nm separation allows a maximum strain of ±3500 strain before any ambiguity is 

observed, which is more than sufficient for this work. Even during heavy loading, the strain 
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measured is not expected to reach 1000 strain and thus a five nanometer separation is 

sufficient to guarantee no overlap of the outputs of the FBGs used.

The monitoring of the wavelength changes from the five different FBG sensors is performed 

using a MicronOptics sm125 interrogator box allowing the recording of each Bragg 

wavelength, from which the strain values were obtained.

2.2. Electrical Resistance Strain Gauges

Electrical strain gauges were used so that comparative measurements from a non-optical 

source could be obtained and a strain gauged reinforcement bar was included in the test beam 

to provide detailed measurements of the longitudinal reinforcement strains.  This bar was 

specially fabricated and had a diameter of 16 mm and contained 81 electrical resistance strain 

gauges (ersgs) spaced at 15 mm over the central 1200 mm length of the bar.  The gauges were 

installed in a central longitudinal duct having a cross-section of 4×4 mm (as shown in Fig. 2).  

Using bars of this type avoids degradation of the bond around the surface of the bar and thus 

permits monitoring of very detailed data pertaining to reinforcement strain and bond stress 

distributions to be obtained.  Bars of this type have been used in a number of previous 

investigations and full details of their specialist manufacture by the authors can be found

elsewhere [17]-[18].  The ersgs had a gauge length of 3 mm and an upper strain limit of 3%.  

A three wire system was used for the gauge wiring and the data logger used provided double 

constant current energization to each gauge in turn.

2.3. Demountable Mechanical Strain Gauge

To provide a third independent measurement, surface strains on the concrete were measured 

using a demountable, mechanical strain gauge (a “Demec” gauge) in conjunction with a 

grillage of steel studs glued to the surface of the concrete.  The studs were set at 200 mm at 

three levels over the central meter of the test beam, the level of most interest being that which 

coincided with the main tension reinforcement.  It was known that this approach would only 

measure average strains over each 200 mm gauge length but this was deemed to be a useful 

independent back-up to the other measuring techniques being used.

3. EXPERIMENTAL SET-UP

Several key aspects of the components of the system evaluated in this work are described 

below.

3.1. Concrete beam

The reinforced concrete beam specially fabricated for this work as shown in Fig. 3 was 5200 

mm long overall (4870 mm between simple supports), 250 mm deep and 300 mm wide.  The 

main tension (bottom) reinforcement was provided from three 16 mm diameter high yield 

reinforcing bars (the centre one of which was the internally strain gauged bar) and the top 

reinforcement comprised two 12 mm diameter high yield bars. Cover to the centre of both the 

top and bottom reinforcements was 30 mm.  Links (stirrups) were provided in the beam 

between the supports and the load points to obviate the effects of any shear cracking but were 

omitted between the loads points as this was a shear-free zone in which providing links might 

actually lead to unwanted crack propagation.  

3.2. Loading system

The beam was loaded in four point bending (Fig. 3) which provided a constant moment zone 

of 2500 mm. Manually pumped hydraulic jacks were used and the loads applied were 

measured using load cells incorporated in the loading system.  The various different fiber 
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optic sensors, the Demec points and the ersgs were all positioned within the constant moment 

zone and at the same level in the beam (Fig. 4), thus permitting direct comparisons between 

all the various measurement techniques.  A full set of readings was taken from all the sensors 

at each load stage during the tests.

3.3. Test programme undertaken 

The experimental programme was developed by the civil engineering members of the team to 

be representative of what was to happen in the subsequent field tests and thus which would 

allow a full evaluation of the sensors.  It comprised a series of (three) different load cycles 

associated with three different cracking regimes of the beam and therefore likely involving 

three different strain levels. The first corresponds to a light loading to induce micro-cracking 

while the second is an even lighter loading to remain in the non cracked zone. Finally the last 

loading is a heavy loading to a full cracking pattern of the beam as the beam could be ‘tested 

to destruction’ at this stage. The following gives more details on each loading.

- Test 1 - Loading to 5 kN: Due to the nature of the beam used during these tests, a load 

of 5 kN lead to the appearance of a number of micro-cracks. The beam was loaded 

incrementally to 5 kN and then unloaded in a similar way, incrementally. The strain is 

recorded using Demec and ersgs at loads of 1.8 kN, 3.5 kN and 5 kN (on the loading 

cycle) and 4 kN, 2 kN and 0 (on the unloading cycle) as can be seen from Fig 5a. 

Following this loading/unloading sequence, it was seen as possible to draw some 

preliminary conclusions on the reliability of the fiber optical strain sensors to measure low 

level of strain and to detect the appearance of micro-cracking

- Test 2 - Loading to 4 kN: The beam was then loaded directly to 4 kN and then 

unloaded (as can be seen from the scheme outlined in Fig 5a). As 4 kN is below the 

micro-cracking threshold of the beam, therefore no change in the strain should appear, 

compared to measurement sequence undertaken for a load of 4 kN during load cycle 1. 

The outcome of this test gives an indication of the repeatability of the measurement.

- Test 3 - Loading to 20 kN: The beam is loaded incrementally to a much higher level of 

load, to 20kN (and then unloaded incrementally). The strain was recorded using ersgs at 

loads of 5 kN, 10 kN, 15 kN and 20 kN (loading) and 15 kN, 10 kN, 5 kN and 0 

(unloading) as shown in Fig 5b. Such a load causes a full pattern of flexural cracks to be 

developed and, at 20 kN, the reinforcement was close to the onset of yield. This load cycle 

investigates the performance of the sensors on a cracked section and thus provides a good 

indicator of their robustness, and especially focusing on one of the key parameters of this 

test, the quality of each mounting technique used.

Unlike Demec and ersgs, the fiber optic strain sensors are continuously monitored, thus 

giving a value of the strain at each load as the measurement system allows for this. 

4. EXPERIMENTAL RESULTS AND ANALYSIS

4.1 Test 1 and Test 2

Fig. 6 summarizes the variation of the strains recorded for the five sensors indicated, as a 

function of time. A comparison of these results with the loading variations shows that all the 

sensors are able to capture the strain induced by the load, or at least a significant fraction of 

the induced strain as explained below.



Page 7 of 30

A
cc

ep
te

d 
M

an
us

cr
ip

t

It is clear from Fig. 6 that sensors OSA and OSB are detecting lower strain than is seen at the 

three other optical sensors. The highest value of strain is picked up by OSC. The difference in 

values between sensors OSA, OSB and OSC may be explained by the small difference in the 

surfaces of the beam and thus of the contact of the sensors with different parts of the beam 

itself. OSA and OSB have similar surfaces but slightly different types of bonding are used –

however and the measured values are comparable. Due to the use of the metallic plates (see 

Fig. 1), sensor OSC is mounted with an enhanced contact surface with the beam and its output 

thus should be more sensitive to strain changes. The optical strain gauges gave values in the 

same region where the differences in the measured strain are likely due to the position of the 

sensors and the differences in the local strain experienced there. In Section 4.3 below, these 

results are compared with those from the ersgs
1
 in the rebar in order to reach conclusions 

regarding the optimum performance of the optical sensors.

After unloading the beam, all sensors presented residual strain. As sensors OSA and OSB had 

been installed during a previous test two months earlier, it can be considered that they are 

‘settled’ (in terms of their installation) and therefore the residual strain is due to a 

modification of the beam itself. It has been previously established [19] that a 5 kN load is 

sufficient to induce micro-cracking in the beam. Since these cracks do not fully close on 

unloading residual strains are developed in both the concrete and the reinforcement, 

exacerbated by some creep in the concrete.

During the second test (Test 2), the beam is loaded to 4 kN. The strain measured by the five 

optical sensors can be seen from Fig. 6, shown over the time period 69 to 76 minutes. These 

results show that for the two optical strain gauges, OSA and OSB, the strain measured is 

comparable to the strain measured when the beam was unloaded to 4 kN. However, for OSC 

the reloading induced a marginally lower amount of strain, with the difference being lower by 

5 This is not a significant change and could have a number of causes, including 

measurement noise or a small variation of the condition of the beam around this sensor. 

However, the results are consistent with expectation, taking into account that a load of 4 kN 

does not induce further micro-cracking of the beam, i.e. after removing the load, the strain 

distribution along the beam is identical to the original distribution prior to the 4kN loading.

During Tests 1 and 2, the five optical sensors behaved consistently and in a way expected 

from the specification. They have shown that they are able to detect the cracking that appears 

when the beam is loaded to 5 kN and the reloading of the beam shows that the five sensors 

give a repeatable reading. Thus for use up to loading of 5 kN, the use of such sensors does not 

present any major challenges in tests of this type, besides recognizing the source of the small 

differences in the readings obtained from the following pairs of sensors: OSA/OSB, 

OSG1/OSG2 and additionally from OSC. Further comment is made on this issue in Section 

4.3.

4.2. Loading up to 20 kN

The conditions for the test and the set-up used are identical to Tests 1 and 2, with the 

maximum load being increased as indicated. Results were recorded and Figs. 7(a) and (b) 

respectively show the variation of strain measured by the optical strain gauges and optical 

strain sensors respectively. Figure 7a demonstrates that the two optical strain gauges are able 

to measure strain levels induced by a load of up to 20 kN. However, as the test progresses, 

when the load is increased above 10 kN, the two sensors show different readings and OSG2 

                                                
1

Due to the length of the optical strain gauges, the Demec cannot be used to compare the value of strain.
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outputs a higher strain than OSG1. These sensors are located on opposite extremes of the 

constant strain zone (Fig. 4); and thus they would be expected to measure comparable strain 

as the loading is symmetrical. As the strain is identical on both sides of the constant moment 

zone of the beam, the cause of this difference in the reading is attributed to the mounting of 

the two OSGs and it would appear that one of the mounting techniques is not able to transfer 

the strain at the high loading level. The comparison with the output from the ersgs (as 

discussed in Section 4.3) provides further information on which mounting is more suitable for 

high load measurement.

For such higher levels of load, the beam becomes cracked and a full-cracking pattern can be 

seen of Fig. 4. The effect of cracking on the strain is clearly picked up by the two optical 

strain gauges. Figure 7(a) shows the strain measured when the load is progressively removed 

and as expected, the descending loading steps correspond to those for the ascending level of 

loading. However, the strain measured is very different than the strain measured when the 

load is increased. When the beam has been unloaded, the strain difference for OSG2 is around 

280  which is consistent with the elasticity of the concrete being reduced by the heavy 

loading.

Unlike the situation for the OSG, the three devices, OSA, OSB and OSC cannot be relied 

upon to monitor the highest load, whatever the mounting technique used. As can be seen from 

Fig 7b, each of the three devices OSA, OSB and OSC failed under some of the applied 

loading conditions used. Both OSA and OSB failed when the load was larger than 5 kN, OSB 

failing slightly at a slightly lower value than OSA. OSC started failing when the load was 

raised above 10 kN. In terms of strain value, OSB fails at 90 , OSA at 100  and OSC was 

able to measure up to 250 .

These results can be explained by recognizing the partial debonding of the optical strain 

sensors. When the load increases, the strain measured by the optical sensors also increases 

until the load is too large and the bonding of the sensor to the beam is not able to transfer the 

strain properly. This explanation is supported by the fact that OSB, which had been glued to 

the beam after the epoxy has been let to set for 5 minutes, was the first to fail. This technique, 

whilst easing the manual work required does not create a bond for the sensor which is as 

strong to the concrete. On the other hand, OSC, which has a larger area of contact, can sustain 

a larger load before debonding was experienced.

In summary of the above, during this test the optical strain gauges have been able to pick up 

the change of strain for a load up to 20 kN without any signs of debonding. The strain 

measured by OSG2 when the load was removed also highlights the ability of this sensor to 

detect the effect of the beam cracking under the applied load. However, the three optical strain 

sensors OSA, OSB and OSC have failed for different levels of strain. Of these OSC, which 

has the larger surface  contact area, was able to withstand a strain up to 250 in the tests 

carried out. However, all optical strain sensors (OSA, OSB and OSC) were not able to follow 

the deloading cycle, which is strongly indicative of debonding.

4.3. Sensor performance – comparison

By comparing the performance of the optical strain sensors during the three tests, it is possible 

to draw preliminary conclusions on their suitability to measure strain under different load 

conditions and on the ability of different mounting techniques to transfer strain up to 20 kN.  

These are key features for the field tests planned to follow these laboratory investigations. 

However, as they output different levels of strain for the same applied load, a comparison of 
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their performances with the outputs of the ersgs and, when possible, the Demec is valuable to

allow the maximum information on which type of optical sensor and which bonding 

technique give the best result to be drawn. Figures 8 to 11 present the comparison of all the 

sensors for the different loading cycles. Figure 8 corresponds to Test 1 and Fig 9 to Test 2. 

The ascending loading in Test 3 and the descending loading in Test 3 correspond to Figs 10 

and 11 respectively.

From Fig 8, it is clear that, for any constant load, the strain measured by the electrical 

resistance strain gauges varies significantly along the beam.  This is due to the post cracking 

loss of strain compatibility between the reinforcement and the concrete leading to strain 

gradients being developed in the former adjacent to crack positions.  However, it is possible 

then to use an average ersgs reading to create an effective cross-comparison with the outputs 

of the five optical sensors. The measurements of strain from both OSG1 and OSG2 are in 

good agreement with that from the ersgs, taking into account that the optical strain gauges are 

measuring an average strain over their greater length – this shows that OSA and OSB are 

differing in their measurement of the strain by 20 to 30 .  The result from OSC shows that 

by comparison to the outputs of the ergs, it is overestimating the measured strain by about 20 

. The optical strain sensors OSA, OSB and OSC, due to their compact size, are measuring 

local strain at the surface of beam, which can be influenced by many of the smaller scale 

parameters of the concrete. However, even for a light load, as in the test under consideration, 

a significant difference appears when compared to the strain monitored inside the 

reinforcement bar and this must be considered. Before any cracks develop, there is good strain 

compatibility between the steel and concrete but post cracking this is lost, hence the 

discrepancies between surface and rod strains at many locations along the beam. This is 

evident in 0 and lower strain values in fig 8.

The Demec reading obtained again is not totally consistent with the outputs from either the 

ersgs or the optical sensors, as would be expected given the different measurement 

environment. In the vicinity of sensor OSC, the agreement between the Demec measurement 

and that from the ersgs is very good, while still being significantly different from that from 

the two other locations. 

The conclusions that may be drawn from Fig 9 are comparable to those obtained from Test 1  

(fig. 8). The outputs from the optical strain gauges are found to be in good agreement with 

those from the ersgs while OSA and OSB appeared to ‘under-read’ the strain, while the output 

from OSC would suggest the opposite and ‘over-read’ it. When the load was 4 kN, OSA 

(resp. OSB) measured a strain of 38  (resp 40 ), compared to an average strain of 69 
(resp 64 ) for the ersgs. OSC measured a strain of 97  instead of 74  for the 

ersgs.Demec reading agrees with the ersgs for the vicinity of both OSB and OSC. It is 

interesting to note that when the Demec results are averaged over between 480 mm and 680 

mm, the agreement with the averaged strains from the strain gauged bar is remarkably good 

(71  compared with 74 ). This correlation gave confidence in using the ersgs reading as 

effective comparison values to allow the outputs of the fiber optic sensors to be accurately 

assessed.

The result of Test 3 involving the heavy loading, is presented in Figs 10 and 11. Due to the 

large deformation of the beam and the large strain induced, the Demec readings were not 

reliable and the focus has been on both the outputs from the ersgs and the optical sensors. 

Before failing, the results from the OSC strain measurement agrees well with the ersgs 

readings (272  measured by OSC compared to 287  measured by the esrg), as can be seen 
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in Fig 10. For a loading up to 10 kN, both OSG1 and OSG2 are in good agreement with the 

results from the ersgs. The readings from the esrgs located across OSG1 vary between 240 

and 415 , when OSG1 reading is 306 . For OSG2, the esrg readings vary from 171 to 340 

, when OSG2 reading is 295 . For loading levels of between 10 kN and 20 kN, the 

reading from OSG1 underestimates the strain compared to the measurement from the esrgs, 

while the output from OSG2 is still in good agreement (about 1% difference between 911 
measured by OSG2 and an average 921  measured by esrgs). Finally, when the load is 

removed (as shown in Fig 11), the sensor OSG1 underestimates the strain by up to 

300compared to the ersgs.  This anomalous result can be explained by the mounting 

technique not being able to withstand the high level of strain whilst the output from OSG2 

maintains good agreement with the electrical strain gauges.  The esrgs measured a residual 

strain of 343  when OSG2 measured a strain of 303 .
From the comparison between the different sensors installed on the beam under different 

loading conditions, it can be concluded that the optical strain gauges (OSG1 and OSG2) show 

better performance compared to the optical strain sensors (OSA, OSB and OSC), with OSG2 

being the most reliable installed sensor. Key differences arise from the fact that the OSG 

family, due to their longer gauge length, are measuring average strain, while the OSA,B,C 

family are measuring local strain. It has been demonstrated that it is possible to improve the 

performances of the OSA,B,C family by increasing the surface of the sensor in contact with 

the beam as OSC is able to measure strain up to 250 . The strain is slightly overestimated 

for light load but it is in acceptable agreement (less than 10% difference) with the ersgs for 

the heavier load.

For the optical strain sensors (OSA,B,C family), it is necessary to allow the epoxy to cure 

fully while the sensor is on the beam as demonstrated by the slightly degraded performances 

of OSB compared to OSA. However, the gauge length is the deciding criterion to improve the 

bounding of the OS sensor.  For the optical strain gauges, there are critical mounting issues 

and mounts bolted to threaded rods glued into the concrete give a far better performance than 

any other sensors or mounting techniques.

5. PRELIMINARY RESULTS ON VASAI CREEK BRIDGE

Fieldwork was performed on Vasai Creek Bridge, a 28 span prestressed concrete post-

tensioned box girder railway bridge located just north of Mumbai in India. The bridge was 

constructed in the mid 1980’s with all spans (length 28.5m) simply supported. The bridge 

actually consists of two parallel and adjacent lines of concrete boxes each of which support a 

single line of railway. Sensors were mounted inside the western (uptide) end span at the 

southern end of the bridge. The insert of Fig 12 shows the layout of the sensors at mid-span of 

the end box. Pairs of optical strain gages were positioned in the center of the soffit (underside 

of roof) and at the bottom of each web (side walls) of the box (Fig. 12). Sensors were placed 

in line to provide redundancy. An ersg of gauge length 120 mm was placed next to each OSG 

in order to have reliable comparison.

The OSGs were clamped to the surface using the grouted stud technique selected after the lab 

tests. The ersg’s were bonded directly to the concrete after surface preparation.

The six OSGs used were connected to a MicronOptics sm130 interrogator box recording data 

at 200Hz rate.

Fig 12 shows the strain measured by the six OSGs when a suburban train passed on the 

bridge. It can be noted that sensor F does not give consistent results and was ignored. The 

reasons can be due to damage to the sensor or a problem of fixing. Due to the redundancy, 

this is not a problem as sensor G gives consistent measurements. The five OSGs exhibit a 

similar pattern: four peaks with the first peak being the strongest. This is due to the suburban 
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train design. Each train is a multiple unit, which crosses the bridge at around 80-100kmph. 

The largest peak is due to the dynamic effect of the first bogie providing additional excitation 

to the structure.

Finally, Fig 13 compares the strain measured for OSG-C and the ersg located in its vicinity. 

The OSGs were unaffected by noise from the overhead electrical power supply to the trains, 

from the signal circuits or from the interference generated by tractions motors. As a 

consequence, the data obtained required very little post-processing. This is in marked contrast 

to the ersg’s which picked up considerable noise from all these sources. It can be seen that 

both sensors measure the same pattern of strain variations and that the ersg strain is slightly 

larger than the one measured by OSG (about 4 ).

6. CONCLUSION

In this paper, a study of the reliability of different fiber optic sensing devices and different 

mounting techniques to measure strain in a concrete structure by surface mounting has been 

investigated in a full laboratory investigation. Two long-gauge optical fiber sensors and three 

short gauges sensors have been used. Using a series of load cycles in order to subject the 

concrete beam to different levels of strain combined with the use of established strain 

measurement techniques, electrical resistance strain gauges and Demec, the performance 

characteristics of each sensor/mounting technique combination has been critically evaluated. 

It is demonstrated from this work that the long-gauge optical fiber sensors measures more 

reliably the strain of the concrete. This result is valid for all level of strain recorded during 

these tests. Further, the work has shown that the most reliable mounting technique is to use 

mounts bolted to threaded rods glued into the concrete.  The work has also shown that the 

system can be set up, used and evaluated in the sort of narrow time window available when 

commercial operations are involved.

The short-gauge optical strain sensor performance is limited by two factors: a limitation of 

strain transfer at high strain and the measurement of local surface strain. However, the paper 

demonstrates that it is possible to reduce both effects and to improve the performance of this 

type of sensor by increasing the surface of contact between the sensor package and the beam.

Further work would be needed in order to optimize the size of the package to guarantee the 

best strain transfer and the highest robustness of the bounding.

The conclusion of the work that the longer gauge devices, mounted securely, give the best 

performance has meant their selection for a series of field tests on a bridge made available for 

a limited period by Indian Railways and preliminary results of that set of tests are presented in 

this paper. A more detailed study will be reported in due course in the literature. 
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Figure captions

Figure 1. Type and mounting of the five optical fibre strain sensors: (a) OSG1 bolted in, (b) OSG2 

screwed with screws glued inside the beam, (c) OSA glued onto the surface of the beam using epoxy glue 

(mounting of OSB is similar to OSA) and (d) OSC glued onto larger metallic plates.

Figure 2. Schematic of the machined bar with ersgs inside the central duct.

Figure 3. Schematic views of the concrete beam. (a) Side view with the location of the loading system 

indicated by arrows and the position of the ersg’s highlighted in yellow. (b) the cross section with the 

machined bar highlighted in yellow.

Figure 4. Instrumented beam: the positions of the five fibre optical sensors and the DEMEC are

highlighted. All the sensors are located in the constant moment zone of the beam.

Figure 5. Loading cycle for (a) tests 1 and 2 and (b) test 3.

Figure 6. Measured strain using the optical strain sensors for test 1 and test 2.

Figure 7. Measured strain using (a) the optical strain gauges and (b) the optical strain sensors for test 3.

Figure 8. Comparison between ersgs, optical sensors and DEMEC for test 1. Brown = 0kN; Green = 

3.5kN; Red = 5kN; Blue = 0kN (unloading)

Figure 9. Comparison between ersgs, optical sensors and DEMEC for test 2. Blue = 0kN; Green = 4kN; 

Red = 0kN (unloading)

Figure 10. Comparison between ersgs, optical sensors and DEMEC for the loading of test 3. Brown = 5kN; 

Green = 10kN; Red = 15kN; Blue = 20kN (unloading)

Figure 11. Comparison between ersgs, optical sensors and DEMEC for the unloading of test 3. Blue = 

20kN; Red = 15kN; Green = 10kN; Brown = 5kN; Black = 0kN

Figure 122. Example of strain measured by the six OSGs when a suburban train passed on the Vasai 

Creek Bridge. Insert: location of the six OSGs inside the end box.

Figure 133. Comparison of OSG-C and the ersg located in its vicinity.
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Figure 1
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Figure 5
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Figure 6
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Figure 7
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Figure 10
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Figure 12
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Figure 13
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Table I. Characteristics of the fiber optic sensors (strain FBG).

Name OSG1 OSG2 OSA OSB OSC

Initial wavelength 

@22°C (nm)
1556.4 1546.3 1527 1535.2 1563

Gauge length (mm) 250 22

Temperature 

sensitivity (pm/°C)
10 8.3

Strain sensitivity 

(pm/)
1.2 1.4

Temperature 

compensation
Y N
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Highlights

 Long gauge length fiber opt ic sensors can measure higher st rain

 Short -gauge length fiber opt ic sensors underead st rain values

 Best  fibre opt ic st rain sensor at tachment  on concrete surface

 Validat ion of opt ical sensor system for field test  applicat ion


