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Abstract— Reliably predicting video quality as perceived by
humans remains challenging and is of high practical relevance.
A significant research trend is to investigate visual saliency and its
implications for video quality assessment. Fundamental problems
regarding how to acquire reliable eye-tracking data for the pur-
pose of video quality research and how saliency should be incor-
porated in objective video quality metrics (VQMs) are largely
unsolved. In this paper, we propose a refined methodology for
reliably collecting eye-tracking data, which essentially eliminates
bias induced by each subject having to view multiple variations
of the same scene in a conventional experiment. We performed
a large-scale eye-tracking experiment that involved 160 human
observers and 160 video stimuli distorted with different distortion
types at various degradation levels. The measured saliency was
integrated into several best known VQMs in the literature.
With the assurance of the reliability of the saliency data, we
thoroughly assessed the capabilities of saliency in improving the
performance of VQMs, and devised a novel approach for optimal
use of saliency in VQMs. We also evaluated to what extent
the state-of-the-art computational saliency models can improve
VQMs in comparison to the improvement achieved by using
“ground truth” eye-tracking data. The eye-tracking database is
made publicly available to the research community.

Index Terms— Saliency, video quality assessment, eye-tracking,
quality metric, saliency model.

I. INTRODUCTION

T
HE last few decades have witnessed a phenomenal

growth in the use of digital videos in our everyday

lives. Video signals, however, are vulnerable to distortion

due to causes such as acquisition errors, data compression,

noisy transmission channels and the limitations in rendering

devices. The ultimate video content received or consumed by

the end user largely differs in perceived quality depending

on the application. The reduction in video quality may affect

viewers’ visual experiences or lead to interpretation mistakes

in video-based inspection tasks. Finding ways to effectively

control and improve video quality has become a focal concern

in both academia and industry [1].

Video quality metrics (VQMs), which represent computa-

tional models for automatic assessment of perceived video
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quality aspects, have emerged as an important tool for the

optimisation of modern imaging systems [2]. Video quality,

to some extent, may be approached as a summation of the

quality of individual frames in a video sequence [2], [3].

Therefore, models established for image quality may be

reused and extended towards video quality assessment. Taking

advantage of sophisticated modelling of image quality and by

incorporating the multi-dimensional (i.e., spatial and temporal)

structure of video signals, a variety of VQMs have been

devised and proven useful in predicting human judgements of

video quality [4]–[10]. Yet, notwithstanding the progress made

in the development of VQMs, being able to reliably predict the

way humans assess the overall video quality or some aspect of

it remains an academically rather challenging problem. This

is intrinsically due to the fact that our understanding of how

video signals and their distortions are perceived by the human

visual system (HVS) is still far from complete.

To further enhance the reliability of VQMs, a signifi-

cant research trend is to investigate the impact of visual

attention, which is considered as an essential component of

the HVS. Visual attention exists in the HVS as a pow-

erful mechanism that allows effectively selecting the most

relevant information from a visual scene [11], [12]. This

attentional selection is known to be controlled by two kinds

of mechanisms: stimulus-driven, bottom-up mechanism and

expectation-driven, top-down mechanism [11]–[13]. In the

field of machine vision, visual attention is mainly concerned

with the former attentional mechanism, and is often inter-

changeably referred to as saliency [14]–[16]. The empirical

foundation of saliency modelling lies in the eye movements

of human observers, intent on explicitly addressing fixations

during free-viewing of a visual stimulus [14], [17]. A com-

putational model of saliency generally outputs a topographic

map that represents conspicuousness of scene locations [18].

To incorporate saliency aspects in VQMs, the vast majority of

existing approaches have focused on simply using a specific

saliency model to weight the local distortions measured by

a specific VQM [19]–[27]. For example, in [21], a well-

established saliency model (i.e., SaliencyToolBox [28]) is

integrated into two popular VQMs (i.e., SSIM and MSE [29])

to improve their performance for the assessment of packet-

loss-impaired video. In such an approach, the evaluation of

the benefits of saliency (e.g., as the results reported in the

studies in [19]–[27]) may heavily depend on the reliability

of the saliency model used. Fundamental problems such as

how saliency plays a role in judging video quality and how to

integrate saliency into VQMs in a perceptually optimised way
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remain unsolved. To investigate these topics, eye-tracking data

that represent “ground truth” saliency in the particular context

of video quality are highly desirable.

II. RELATED WORK AND CONTRIBUTIONS

A. Related Work

Eye-tracking studies have been attempted to understand

saliency in relation to video quality assessment [30]–[33].

The study in [30] focuses on investigating the relative impact

of artifacts in the region of interest (ROI) and that in the

background region on the overall video quality. ROI was

determined by means of eye-tracking experiments. It shows

that the quality of the ROI is about ten times more important

for the overall quality judgement than the quality of the

background. A subjective experiment was conducted in [31]

to exam the impact of visual saliency on the annoyance of

packet loss distortion. Saliency was identified using free-

viewing eye-tracking data. The results show that distortions

in salient regions are perceived significantly more annoying

than that in the non-salient regions. In [32], eye-tracking

experiments were performed with the aim to understand

whether a quality scoring task can affect the deployment of

fixations. The study indicates that the scoring task given to the

subjects may have an impact on where they look in videos.

It also demonstrates that adding eye-tracking data collected

under a quality scoring task into VQMs does not significantly

improve their performance. The findings sufficiently support

the high relevance of saliency to VQMs and the importance

of collecting eye-tracking data under free-viewing conditions.

In general, psychophysical studies as mentioned above

strongly imply that visual saliency plays a vital role in judging

video quality. Due to the “ground truth” nature of eye-tracking,

modelling saliency in VQMs largely relies on the availability

of a dedicated and reliable eye-tracking database. However,

existing eye-tracking data relevant to video quality are limited

with respect to the number of human subjects, the number of

stimuli and the degree of stimulus variability. For example,

the eye-tracking experiments reported in [30]–[32] all made

use of a single type of distortion (i.e., H.264 compression

artifacts), which affects the validity of the results in terms

of generalisation. The other drawback to existing eye-tracking

data is that they are potentially biased due to the method-

ology used for data collection. More specifically, in their

eye-tracking experiments each observer had to view the same

scene repeated several times (with multiple types and/or levels

of distortion). In such a scenario, the viewers might be forced

to e.g. learn to look for the artifacts rather than observing

the stimuli naturally. As a consequence, the recorded fixations

might be more affected by the visual distortions rather than

the natural scenes. Such involvement of stimulus repetition

(i.e., repeated versions of the same scene) and its implications

for observers’ perception challenge the reliability of existing

eye-tracking data. This kind of bias is increasingly noticed

as a general challenge to subjective testing, where subjects

interact with the same stimuli repeatedly. Effort has been made

to refine traditional experimental methods, such as for scoring

video or speech quality [34]. It is worth investigating a refined

method for eye-tracking.

Due to the absence of sufficient eye-tracking data, studies

integrating saliency into VQMs in a perceptually meaningful

way are still very limited. A fundamental question remains

whether it is natural scene saliency (i.e., saliency derived from

the original, non-degraded content of a natural scene, and

referred to as NSS) or distorted scene saliency (i.e., saliency

derived from a visual scene distorted with artifacts, and

referred to as DSS) that should be included in VQMs. Due

to the lack of sound evidence to guide choice, researchers

often make an ad hoc decision by either generating saliency

from the reference videos (e.g., [20], [23], [35]) or from the

distorted videos (e.g., [21], [24], [32]). Such a rather random

selection of saliency (i.e., NSS or DSS) runs the risk of

compromising the effectiveness of the inclusion of saliency

in VQMs. Determining optimal use of saliency in VQMs is

worth further investigation.

B. Contributions of the Paper

1) Eye-tracking data for video quality research are already

available in the literature. However, they are either

strongly biased or limited by their scale to be able to pro-

duce statistically sound findings. We aim to build a large-

scale and reliable eye-tracking database. To this end,

we focus on refining traditional experimental method-

ologies and developing an alternative methodology for

reliably recording fixations of videos of varying quality.

The refined methodology is rigorously validated and can

be used as a generic framework for studying saliency in

video quality assessment. Moreover, we have made the

eye-tracking database publicly available [36] to facilitate

research on modelling saliency in VQMs.

2) On the basis of the “ground truth” eye-tracking data,

dedicated analysis is performed to better understand

human fixation behaviour. New findings are achieved

regarding the differences in fixation deployment when

viewing the original versus distorted scenes and when

viewing the static versus dynamic scene.

3) So far, there is no reliable, scientifically sound evidence

on whether it is NSS or DSS should be included in

VQMs. With both NSS and DSS reliably measured

in our eye-tracking experiments, we aim to clarify the

knowledge on the intrinsic added value of both types of

saliency in VQMs. We found that the benefit of adding

NSS to VQMs was marginal, but DSS could improve

the VQMs’ performance to a considerable extent.

4) To build a benchmark for saliency-based VQMs, the

“ground truth” DSS is then added to several best-

known VQMs in the literature. We aim to provide accu-

rate quantitative evidence, by means of an exhaustive

statistical evaluation, on to what extent saliency can

actually benefit VQMs depending on the distortion types

assessed and the VQMs used.

5) On the basis of DSS, we further investigate combining

local distortions and their corresponding saliency. Rather

than focusing on a VQM-specific integration approach,

we devise a generic approach for perceptually optimising

the use of saliency in VQMs.
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6) We also evaluate thoroughly to what extent state-of-

the-art saliency models can improve the performance

of VQMs compared to improvement achieved by using

eye-tracking data. Many saliency models are available

in the literature (see e.g., in [12]); but the general

applicability of these models in VQMs is not fully

justified. The results of the quantitative comparison serve

as a reference for pre-screening saliency models for the

particular application domain of video quality.

III. PROPOSED EXPERIMENTAL METHODOLOGY

A. Refined Experimental Design

Unlike previous studies which are potentially biased due

to the subjects experiencing massive stimulus repetition, our

proposed methodology includes dedicated control mechanisms

to eliminate such bias. In addition, our experiment contains a

large degree of stimulus variability in terms of video content,

distortion type as well as degradation level. This yields a large-

scale database, involving 160 human observers, 160 video

sequences, and 3200 eye-tracking trials.

1) Stimuli: The test stimuli were taken from the LIVE video

quality database [37]. The database is formed of 10 uncom-

pressed, high-quality source/reference videos with a wide

variety of content, and a set of 150 distorted videos

(i.e.,15 distorted videos per reference) of four different dis-

tortion types, namely MPEG-2 compression (i.e., referred to

as MPEG-2), H.264 compression (i.e., referred to as H.264),

simulated transmission of H.264 compressed bit streams

through error-prone IP networks (i.e., referred to as IP)

and through error-prone wireless networks (i.e., referred to

as Wireless). Per video, a difference mean opinion score

(i.e., DMOS) was generated from an extensive subjective

quality assessment study.

2) Protocol: A quality assessment database typically

involves deliberate stimulus repetition, where a reference video

exists simultaneously with a number of its distorted versions

of varying quality. In the literature, eye-tracking experiments

are commonly conducted using a “within-subjects” design, in

which the same group of subjects views all stimuli [31]–[33].

This methodology, however, potentially contaminates the

results due to carryover effects, which refers to any effect that

carries over from one experimental condition (i.e., viewing

a stimulus) to another (i.e., viewing another stimulus orig-

inated from the same reference) [38], [39]. In our exper-

iment, each reference video corresponds to 16 variations

(i.e., 15 distorted + 1 original), which makes data collec-

tion prone to undesirable effects such as fatigue, boredom

and learning from practice and experience, and consequently

increases the chances of skewing the experimental results.

To improve the reliability of data collection, we propose

to adopt an alternative methodology, namely “between-

subjects” [40], in which multiple groups of subjects are

randomly assigned to partitions of stimuli, each contains little

or no stimulus repetition.

3) Experimental Procedure: The test dataset was divided

into 8 partitions of 20 videos each, and only two repeated

versions of the same scene were allowed in each partition.

To further reduce the carryover effects, each session per

subject was divided into two sub-sessions with a “washout”

period in between; and by doing so, each subject viewed

10 videos (i.e., half partition) without stimulus repetition in

a separate session. Additional mechanisms were applied to

control the order in which participants per group perform their

tasks: (1) half of the participants viewed the first half of the

stimuli first, and half of the participants viewed the second

half first; (2) the stimuli in each sub-session were presented

to each subject in a random order. A dedicated control was also

added to deliberately include a mixture of all distortion types

and the full range of distortion levels in each sub-session.

A standard office environment as specified in [41] was

set up for the conduct of our experiment. The stimuli

were displayed on a 19-inch LCD monitor with a native

resolution of 1024×768 pixels. The viewing distance was

approximately 60cm. Eye movements were recorded using

an image-processing-based contact-free tracking system with

sufficient head movement compensation (SensoMotoric Instru-

ment (SMI) Red-m). The eye-tracking system featured a

sampling rate of 120Hz, a spatial resolution of 0.1 degree

and a gaze position accuracy of 0.5 degree. Before the start

of the actual experiment, each participant was provided with

instructions on the procedure (e.g., the task, the format of

stimuli and the timing) of the experiment. A training session

was conducted as a full-scale rehearsal in order to familiarise

the participant with the experiment. The video stimuli used

in the training session were different from those used in the

real experiment. Each full session per subject consisted of two

successive sub-sessions with a break of 60 minutes between

sub-sessions. Each individual sub-session was preceded by a

9-points calibration of the eye-tracking equipment. The partici-

pants were instructed to experience the videos in a natural way

(“view it as you normally would”). Each video was displayed

followed by a mid-gray screen lasting 3 seconds.

We recruited 160 participants from university students and

staff members, including 80 males and 80 females with their

ages ranging from 19 to 42. They were all inexperienced with

video quality assessment and eye-tracking. The subjects were

not tested for vision defects, and we considered their verbal

expression of the soundness of their own vision was sufficient.

The participants were first randomly divided into 8 groups

of equal size, each with 10 males and 10 females; and

the 8 groups of subjects were then randomly assigned to 8 par-

titions of stimuli. This gives a sample size of 20 subjects per

test stimulus.

4) Saliency Map: Saliency that represents stimulus-driven,

bottom-up visual attention is derived from free-viewing fix-

ations [42], [43]. Fixations were extracted using the SMI

BeGaze Software with minimum fixation duration threshold set

to 100ms. A fixation was defined by SMI’s Software using the

dispersal and duration based algorithm established in [44]. For

a given video sequence, a topographic saliency map per frame

is constructed by accumulating fixations over all subjects

(i.e., 20 in our experiment) and with each fixation location giv-

ing rise to a gray-scale patch that simulates the foveal vision of

the HVS [30], [32], [33]. The activity of the patch is modelled

as a Gaussian distribution, of which the width σ approximates
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Fig. 1. Illustration of saliency map for a frame taken from an original video and saliency map for the distorted version of the same frame, for two different
sample scenes in our experiment. (a) and (g) are original frames. (d) and (j) are distorted frames. (b), (e), (h) and (k) are saliency maps of (a), (d), (g) and
(j). (c), (f), (i) and (l) are corresponding heatmaps.

the size of the fovea (i.e., 2° of visual angle, 45 pixels width

in our experiment). The saliency map (SM) is calculated as:

SM(x, y) =

N
∑

i=1

exp[−
(xi − x)2 + (yi − y)2

σ 2
] (1)

where (xi , yi ) indicates the spatial coordinates of the i th

fixation, N is the total number of fixations. The inten-

sity of the resulting saliency map is linearly normalised to

the range [0, 1]. We follow conventional practice of rele-

vant studies [30]–[33]: when there is no experimental error

(e.g., participants failing to complete the entire trial or inter-

rupted data recording due to system failure), all recorded

eye-tracking data are deemed valid. Outlier detection may be

applied to the dataset. It should be noted that determining

whether or not an observation (e.g., fixation) is an outlier is

ultimately a subjective exercise [45], and rejection of outliers

may be acceptable e.g., when the distribution of measurement

error is confidently known [46]. Considering there is no rigid

definition of what constitutes an outlier [45], we decide to

retain all recorded fixations for further analysis. Fig. 1 illus-

trates two different sample scenes; and for each scene it shows

first the measured saliency map for a representative frame

taken from the reference video and then for the corresponding

frame from the distorted video (note that saliency maps for

the entire database can be accessed via [36]).

B. Validation: Proposed Reliability Testing

Eye-tracking data recorded for the purpose of visual qual-

ity research strongly differ in their reliability depending on

the choices made in the experimental methodology, such

as the sample size and the way of presenting stimuli to

observers [47], [48]. Therefore, to be able to draw upon
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Fig. 2. Illustration of the inter-observer agreement (IOA) value averaged
over all stimuli assigned to each subject group in our experiment. The error
bars indicate the 95% confidence interval.

eye-tracking data as a solid “ground-truth,” it is crucial

to rigorously validate the reliability of the collected data.

We propose and perform systematic reliability testing to assess

(1) whether the variances in the eye-tracking data obtained

from different subject groups are consistent; and (2) whether

the sample size is adequate.

1) Homogeneity of Variances Between Groups: Since a

between-subjects methodology is employed, it is important to

know whether the variances of eye-tracking data across all

subject groups are homogeneous. To be able to identify such

homogeneity, we measure the inter-observer agreement (IOA),

which refers to the degree of agreement in saliency among

observers viewing the same stimulus [49], [50]. In our imple-

mentation, IOA is quantified per frame by comparing the

saliency map generated from the fixations over all-except-

one observers to the saliency map built upon the fixations

of the excluded observer; and by repeating this operation

so that each observer serves as the excluded subject once.

The similarity between two saliency maps is measured by

the widely used area under the receiver operating charac-

teristic curve (AUC) [12]. Note that alternative similarity

measures to compare saliency maps do exist (e.g., Pearson

linear correlation coefficient (CC) and normalized scanpath

saliency (NSpS)), but since conclusions tend to be consistent

over these measures [12], [51], we decided to focus on AUC

only. The per-frame IOA is averaged over all frames of a video

to generate the per-video IOA: the larger the IOA value, the

smaller the variation in fixations among viewers, thus the more

reliable the eye-tracking data. Fig. 2 illustrates the per-video

IOA averaged over all video stimuli assigned to each subject

group in our experiment. It shows that the IOA remains very

similar across eight subject groups. A statistical significance

test (i.e., analysis of variance (ANOVA)) is performed and the

results (i.e., P>0.05 at 95% confidence level) show that there

is no statistically significant difference between groups. The

above evaluation indicates that a high degree of consistency

across groups is found in our eye-tracking data.

2) Data (Saliency) Saturation: To determine the sample size

for an eye-tracking experiment, researchers either follow the

rule of thumb (i.e., use of 5-15 participants [48]) or use “data

saturation” as a guiding principle to make sure a given/chosen

sample size is sufficient to cause a “saturated” saliency map.

Fig. 3. Illustration of the inter-k-observer agreement (IOA-k) value aver-
aged over all stimuli contained in our dataset. The error bars indicate the
95% confidence interval.

The latter means a saliency map reaches the point at which no

new information is observed. We evaluate whether the sample

size is adequate to reach such “saturated” saliency (i.e., a proxy

of sufficient degree of reliability) in our data. The validation

is again based on the principle of IOA, which is extended

to an inter-k-observer agreement measure (i.e., referred to as

IOA-k, and k = 2, 3, . . . , 20 in our case). More specifically,

for a given stimulus, IOA-k is calculated by randomly selecting

k observers among all. Fig. 3 illustrates the IOA-k value

averaged over all video stimuli in our entire dataset. It shows

that “saturation” occurs with 18 participants, although a rea-

sonably high degree of consistency in fixation patterns is

already reached with 15 participants. It demonstrates that our

chosen number of 20 observers (per subject group and thus per

stimulus) is fairly sufficient to yield stable/saturated saliency

maps.

C. Behaviour Analysis: Fixation Deployment

1) Original Versus Distorted Scenes: Fig. 1 visualises

typical correspondences and differences in saliency between

the reference and its distorted scene (i.e., NSS and DSS).

In general, there exist consistent patterns between NSS and

DSS maps, e.g., the highly salient regions tend to occur

around the same places. However, there are some observed

deviations, which are seemingly caused by the appearance of

distortion. The visible artifacts occurring at the top-right corner

in Fig. 1(d) seems to cause an obvious change in saliency

(e.g., see the difference between Fig. 1(b) and (e)). This may

be due to the distraction power of the localised artifacts is

so strong that it offsets the deployment of NSS. In Fig. 1(j),

some annoying artifacts happen to occur around the salient

object (i.e., the bee in the centre) in the scene, which only

leads to a slight deviation in saliency relative to its original

pattern (e.g., see the difference between Fig. 1(h) and (k)). It is

worthwhile to better understand how saliency deployment is

affected by the presence of visual distortion. Such knowledge

would provide a grounding for the perceptual integration

of saliency and VQMs. We further investigate the observed

tendencies in the changes of saliency induced by distortion.

More specifically, we evaluate the impact of both distortion

strength and distortion type on the deployment of saliency.
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TABLE I

NSS-DSS SIMILARITY (MEASURED BY AUC, NSpS AND CC) FOR

DIFFERENT LEVELS OF VISUAL QUALITY: EXCELLENT,
GOOD, FAIR AND POOR

TABLE II

NSS-DSS SIMILARITY (MEASURED BY AUC) FOR DIFFERENT

DISTORTION TYPES AND FOR DIFFERENT VIDEO SCENES

For each distorted frame in the dataset, we quantify the

difference between a DSS map and its corresponding NSS

map using three popular similarity measures: AUC, NSpS

and CC as mentioned in Section III-B. The use of these

measures is already described in more detail in [52], and their

general meaning in our context is as follows: when AUC>0.5

or NSpS>0, the higher the value of the measure the more

similar NSS and DSS are; when CC is close to -1 or 1, the

similarity between NSS and DSS is high, when CC is close

to 0, the similarity is low. Our evaluation is based on all

data points (i.e., all individual frames of 150 distorted video

stimuli) of NSS-DSS similarity calculated by AUC, NSpS and

CC. To investigate the effect of distortion strength on NSS-

DSS similarity, video stimuli are categorised into four levels

of visual quality by dividing the full range of DMOS into four

equal intervals. This reflects four levels of quality: “Excellent”,

“Good,” “Fair” and “Poor” as also studied in [37]. Table I

illustrates the NSS-DSS similarity averaged for four quality

levels. It tends to show that the degree of NSS-DSS similarity

decreases as the distortion strength increases. It reveals a

significant drop in NSS-DSS similarity at low visual quality,

which implies that the distraction power of strong distortions

may come into significantly impact the perception of the

natural scene.

The impact of distortion type on NSS-DSS similarity

(in terms of AUC; NSpS and CC exhibit the same trend of

changes and thus are not included in the table) is illustrated in

Table II, where video stimuli are categorised according to the

source of distortion (i.e., Wireless, IP, H.264 and MPEG-2) in

the LIVE database. We also further breakdown the grouping

into the per-scene level, resulting in four average AUC values

for each visual scene. It tends to show that IP distortion

produces a larger extent of saliency deviation between NSS

and DSS than other three distortion types. On average, com-

pared to Wireless, H.264 and MPEG-2, IP distortion yields a

smaller mean AUC with a larger standard deviation. This is

probably due to the difference in the perceptual characteristics

between distortion types. IP distortion usually appears as a

surprising “glitch” in a fairly large area in a scene [37], which

may cause considerable distraction during viewing the scene;

whereas Wireless, H.264 and MPEG-2 often generate less

surprising distortion, such as the uniformly distributed artifacts

throughout the entire scene or some localised artifacts in small

regions [37]. Table II also shows that NSS-DSS similarity

seems to be affected by scene content, e.g., a large AUC with

small standard deviation is consistently found for the scene

“sf” (i.e., the scene shown in Fig. 1(g) and (j)). This may be

explained by the fact that the scene contains a highly salient

object that dominates the distribution of fixations, and that

the contribution of distortion to the deployment of saliency is

relatively small.
2) Static Versus Dynamic Scenes: It should be noted in

Fig. 1 that the saliency map does not represent the saliency of

a certain frame when being viewed as an independent static

picture. The fixations per frame were actually collected when

observers viewing the context of motion picture, and therefore,

the per-frame saliency map contains both spatial and temporal

aspects of visual perception. We further explore human behav-

ioural responses to static and dynamic scenes; and investigate

saliency deployment under both contexts. To this end, we

conducted an eye-tracking experiment, where 20 subjects were

recruited to view freely some sample frames taken from our

video stimuli. We limited the study to the undistorted stimuli

only in order to avoid introducing an additional variable (i.e.,

distortion) to the experiment. Two representative frames were

extracted from each reference video, resulting in a total of

20 static stimuli. Each participant viewed each stimulus for

10 seconds with the same experimental setup as described in

Section III.

Fig. 4 illustrates the comparison of saliency collected for

the same frame when viewed as part of a video sequence and

as an independent static scene. It clearly shows the deviations

in saliency deployment: under the situation of viewing a static

scene, fixations tend to cluster around salient objects, such as

text and faces; however, when the same scene is placed in

the video context, fixations are more affected by dynamics of

the sequence, e.g. the movement of an object. To quantify

such difference, we calculate the AUC between the two

kinds of saliency for each stimulus pair. To make a rigorous

comparison, we also vary the duration used for generating

a saliency map for the “static” case, covering the intervals

of 0-50ms, 0-200ms, 0-500ms till 0-10s. Fig. 5 illustrates

the similarity in saliency between the “static” and “dynamic”

conditions. In general, it shows a noticeable difference (i.e.,

AUC is around 0.8) independent of the viewing time used for

the “static” case.

IV. THE INTEGRATION OF NSS VERSUS DSS

IN VQMS: A COMPARATIVE ANALYSIS

As described in Section II-A, it is still unclear whether

it is NSS or DSS that should be included in the design of
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Fig. 4. Illustration of the comparison of saliency for the same scene (a) or
(b) when being viewed as part of a video sequence (c) or (d) and as an static
picturee (e) or (f).

Fig. 5. Illustration of the fixation deployment similarity (measured by AUC)
between “static” and “dynamic” viewing conditions. Errorbars indicates 95%
confidence level.

saliency-based VQMs. It is important to understand whether

the observed difference between NSS and DSS (as detailed

in Section III-C) is sufficiently large to actually affect the

performance gain for VQMs. To this end, we simply add

both types of saliency to several well-established VQMs in the

literature, and compare the performance gain obtained when

including NSS versus DSS.

A. Evaluation Framework

1) VQMs: Eight widely recognised full-reference VQMs,

namely PSNR, SSIM, ViS3, STMAD, spatial MOVIE, tempo-

ral MOVIE, MOVIE and VSSIM are applied in our evaluation:

PSNR: The peak signal-to-noise ratio is based on the mean

squared error between the distorted video and its reference on

a pixel-by-pixel basis.

SSIM: The structural similarity index [29] measures per-

frame quality of a video based on the degradation in structural

information. The SSIM is first calculated frame-by-frame on

the luminance component of the video and then averaged over

all frames to achieve an overall quality prediction.

ViS3: The ViS3 algorithm [9] contains two stages: the first

stage measures the quality based on spatial distortion, and the

second stage measures the quality based on the dissimilarity

between spatiotemporal slice images. The overall video quality

prediction is a combination of the quality scores calculated at

two stages.

STMAD: The spatiotemporal MAD [8] extends the

image-based quality metric MAD by taking into account the

visual perception of motion artifacts. The motion artifacts

are measured on the time-based slices of the original and

distorted videos. The velocity of moving objects is taken into

consideration to adjust the locally measured degradations.

MOVIE: The motion-based video integrity evaluation

index [7] utilises a general, spatio-spectrally localized multi-

scale framework for evaluating dynamic video fidelity. It inte-

grates both spatial and temporal (and spatio-temporal) aspects

of distortion assessment, resulting in three different versions

of the MOVIE index, namely the spatial MOVIE (SMOVIE),

the temporal MOVIE (TMOVIE) and MOVIE.

VSSIM: The video SSIM [10] is an improved version of the

single-scale SSIM taking into account the motion perception

of the HVS.

The VQMs above range from the purely pixel-based VQMs

without characteristics of the HVS (i.e., PSNR) to VQMs that

contain rather complex HVS properties (i.e., VQMs under

test except for PSNR). Some VQMs operate on a frame-

by-frame, spatial-distortion-only basis (i.e., PSNR, SSIM,

SMOVIE), whereas other VQMs predict local, spatio-temporal

quality by taking into account several frames of the sequence

(i.e., ViS3, STMAD, TMOIVE, MOVIE, VSSIM). All VQMs

result in a quantitative per-frame distortion map (PFDM)

which represents a local quality degradation profile. Note that

other well-known VQMs that do not explicitly produce a

PFDM, such as VQM software tool [6], are not included in our

study. Integrating a (per-frame) saliency map into such kind

of VQMs is not straightforward and is, therefore, outside the

scope of this paper. Also, reduced-reference and no-reference

VQMs are not included, since they are still in the early stages

of development and remain limited in their sophistication,

which makes studying the added value of saliency in these

VQMs less meaningful.

2) Saliency-Based VQMs: Saliency map (SM), either NSS

or DSS, is integrated into a VQM via locally weighting

(i.e., by multiplying) the PFDM with the corresponding SM

per frame (of size M×N pixels), yielding a saliency weighted

PFDM (SW-PFDM):

SW − P F DM =
P F DM(x, y) ∗ SM(x, y)

M
∑

x=1

N
∑

y=1

SM(x, y)

(2)

where PFDM is measured by an VQM, SM is generated from

our eye-tracking data. Once the PFDM is upgraded to the

SW-PFDM, the remaining operations of the VQM proceed as

usual to produce an overall quality score. It should be noted

that PFDM and SM are simply combined in our implemen-

tation. This simple weighting has been conventionally used

in the literature [19]–[21], due to its nature of being para-

meter free and universally applicable. A more sophisticated
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TABLE III

COMPARISON OF PERFORMANCE (CC) FOR DIFFERENT VQMs AND THEIR CORRESPONDING SALIENCY-BASED VERSIONS. VALUES IN THE BRACKETS

REPRESENT THE PERFORMANCE GAIN (I.E., THE INCREASE IN CC (�CC)) OF A SALIENCY-BASED VQM OVER ITS ORIGINAL VERSION

TABLE IV

COMPARISON OF PERFORMANCE (SROCC) FOR DIFFERENT VQMs AND THEIR CORRESPONDING SALIENCY-BASED VERSIONS.
VALUES IN THE BRACKETS REPRESENT THE PERFORMANCE GAIN (I.E., THE INCREASE IN SROCC (�SROCC))

OF A SALIENCY-BASED VQM OVER ITS ORIGINAL VERSION

combination strategy may further improve the performance of

a specific VQM (see, e.g., [35]), but is often incompatible

with other VQMs. Using such VQM-specific weighting would

make the comparative study of VQMs impractical and less

meaningful. Since there does not exit a more sophisticated

and generic weighting strategy, we decide to use the simple

weighting to ensure a fair comparison between NSS and DSS.

3) Performance Evaluation Criteria: As prescribed by the

Video Quality Experts Group [53], the performance of a VQM

is quantified by the Pearson linear correlation coefficient (CC)

and the Spearman rank order correlation coefficient (SROCC)

between the quality predictions of the VQM and the DMOS

scores. Seemingly, the quality assessment community is accus-

tomed to fitting the predictions of a VQM to the DMOS

scores [53]. A nonlinear mapping may, e.g., account for a

possible saturation effect in the quality scores at high quality.

It usually yields higher correlations in absolute terms, while

generally keeping the relative differences between VQMs [54].

As also explained in [55], without a sophisticated nonlinear

fitting the correlations cannot mask a bad performance of the

VQM itself. To better visualise differences in performance, we

avoid any nonlinear fitting and directly calculate correlations

between the VQM’s predictions and the DMOS scores.

B. Comparison of NSS Versus DSS Applied in VQMs

Based on the “ground truth” NSS and DSS obtained from

our eye-tracking experiments, we set out to evaluate to what

extent adding both types of saliency is beneficial for the pre-

diction performance of VQMs. We compare the performance

gain that can be obtained when adding NSS versus DSS to

PSNR, SSIM, ViS3, STMAD, SMOVIE, TMOVIE, MOVIE

or VSSIM. To better visualise the comparison, we also include

the so-called random scene saliency (RSS), which provides a

baseline for the performance gain when adding saliency to

VQMs. RSS is generated for a video stimulus by randomly

selecting saliency from our collection of NSS and DSS.

Table III and IV summarise the performance of VQMs

in terms of CC and SROCC. Each entry represents the

Fig. 6. Comparison of performance gain for VQMs weighted with DSS,
NSS and RSS. The errorbars indicate 95% confidence level.

performance of a VQM (with or without saliency weighting)

on the entire LIVE video quality database (i.e., a total

of 150 data points/distorted video stimuli). In general, both

tables demonstrate that the performance of all VQMs is

consistently enhanced by including DSS. The gain in their per-

formance ranges from 0.011 to 0.044 in CC and 0.002 to 0.042

in SROCC. On the contrary, adding NSS or RSS does not

seem to be beneficial for VQMs. The performance gain is

either marginal (non-existent) or even negative, e.g., adding

NSS and RSS to SSIM corresponds to an increase of 0.004

and 0.003 in CC respectively; both NSS and RSS deteriorate

the performance of MOVIE (i.e., NSS causes a decrease of

0.005 in CC, and RSS decreases CC by 0.007). Fig. 6 plots

the overall performance gain (i.e., expressed by the increase

in CC (�CC)) that can be obtained by adding three types of

saliency to all VQMs. On average, incorporating DSS yields

a promising gain for VQMs (i.e., < �CC >= 0.024); and

VQMs do not actually profit from being extended with NSS

(i.e., < �CC >= 0.002) or RSS (i.e., < �CC >= −0.005).

To check such effects with a statistical analysis, a nonpara-

metric test (i.e., Wilcoxon signed rank test [56]) analogue

to a paired samples t-test (as �CC values are tested to be

not normally distributed) is performed once between DSS and

NSS and once between DSS and RSS. The test results show

that DSS weighted VQMs receive statistically significantly

higher performance gain than NSS or RSS weighted VQMs
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TABLE V

COMPARISON OF PERFORMANCE FOR VQMs WITH AND WITHOUT DSS WEIGHTING. (A) LINEAR CORRELATION

COEFFICIENT (CC); AND (B) SPEARMAN RANK ORDER CORRELATION COEFFICIENT (SROCC)

both with P<0.05 at 95% confidence level. Based on the

observed trend, we may conclude that modelling saliency in

VQMs should target DSS rather than NSS. The inadequate

performance gain obtained with NSS is possibly caused by

two reasons. One reason is that some VQMs are already

good at capturing NSS and, as a consequence, do not benefit

from the addition of NSS (i.e., saturation effect in saliency-

based optimization). The other reason might be that in some

demanding conditions, NSS map does not sufficiently reflect

the distraction power of artifacts occurring in some non-

salient region, and therefore weighting a VQM with NSS

might unhelpfully downplay the importance of distortion in

this region.

V. THE INTEGRATION OF DSS IN VQMS:

STATISTICS AND OPTIMIZATION

Granted that DSS rather than NSS is beneficial for VQMs,

we further evaluate to what extent the actual amount of

performance gain (when adding DSS to VQMs) changes for

different VQMs and distortion types. Knowing the trends of

such variation (i.e., building a benchmark) in performance gain

is of high practical relevance to the application of saliency

in VQMs.

A. Performance Gain and Statistical Significance

Table V shows the performance (in terms of CC and

SROCC) of individual VQMs (with and without DSS weight-

ing) when accessing different types of video distortion. Each

entry in the table represents the performance of a VQM

(with or without saliency weighting) on a subset of the LIVE

database (i.e., a total of 40 data points for Wireless, 30 data

points for IP, 40 data points for H.264 and 40 data points

for MPEG-2). In general, this table demonstrates that there is

indeed a gain in performance when adding DSS in VQMs. For

the vast majority of cases, the performance of a DSS weighted

VQM is higher than its original metric. However, the actual

amount of such improvement varies, e.g., the performance

TABLE VI

NORMALITY OF M-DMOS RESIDUALS. “1” REPRESENTS THE

NORMAL DISTRIBUTION AND “0” REPRESENTS THE

NON-NORMAL DISTRIBUTION

gain of DSS-SSIM over SSIM for Wireless is 0.096 in terms

of CC; whereas the difference in CC between DSS-TMOVIE

and TMOVIE is -0.033 (but not necessarily meaningless).

To verify whether the numerical difference in performance

between a DSS weighted VQM and the same VQM without

DSS is statistically significant, hypothesis testing is performed.

As suggested in [53], the test is based on the residuals between

DMOS and the outputs of a VQM (hereafter, referred to as

M-DMOS residuals). Before being able to run an appropriate

statistical significance test, we evaluate the assumption of

normality of the M-DMOS residuals. The results of the test for

normality are summarised in Table VI. As in all cases, paired

M-DMOS residuals (i.e., two sets of residuals are compared:

one is from the original VQM and one is from its DSS

weighted version) are both normal, a paired samples t-test

is performed (as used in [55]). The t-test results are given

in Table VII, and show that in most cases the difference in

performance between a VQM and its DSS weighted version is
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Fig. 7. Illustration of the appearance of artifacts at low quality IP distortion. (a) A sample frame distorted with IP. (b) Saliency map (i.e., DSS) of (a).

TABLE VII

T-TEST RESULTS OF THE M-DMOS RESIDUALS. “1” MEANS THAT THE

DIFFERENCE IN PERFORMANCE IS STATISTICALLY SIGNIFICANT.
“0” MEANS THAT THE DIFFERENCE IS NOT SIGNIFICANT

statistically significant. This implies that the addition of DSS

in VQMs consistently makes a meaningful impact on their

reliability of performance.

B. Variation in Performance Gain

To further comprehend the impact of the type of distortion

and the kind of VQM on the changes of the performance gain

achieved by adding DSS to VQMs, we re-arrange the entries

of Table V with a focus on the increase in performance of

an VQM when assessing a given distortion type. Table VIII

illustrates the performance gain (expressed by �CC) of a

DSS weighted VQM over its original metric when accessing

Wireless, IP, H.264 and MPEG-2. It shows that MPEG-2

(<�CC>= 0.030) benefit most from adding DSS for qual-

ity prediction, followed by Wireless (<�CC>= 0.027) and

H.264 (<�CC>= 0.026); whereas there is a negetive effect

for adding DSS to VQMs for assessing the quality of IP

(<�CC>= −0.012). In the case of a stimulus distorted with

IP, especially at low quality, severe artifacts are often spread

out over a large area of the scene as illustrated in Fig. 7.

In such a scenario, the DSS map measured by eye-tracking,

as shown in Fig. 7(b), may not be able to fully capture the

perceptible artifacts and their impact on the judgement of

video quality. As such, weighting a VQM with DSS may

downplay the significance of potential distortion. This may

explain the overall negative performance gain for IP, and tends

to suggest that an optimised integration of saliency in VQMs

may need to take this phenomenon into account.

TABLE VIII

PERFORMANCE GAIN (EXPRESSED BY THE INCREASE IN CC, I.E., �CC)
BETWEEN A VQM AND ITS DSS WEIGHTED VERSION WHEN

ASSESSING DIFFERENT DISTORTION TYPES

(I.E., DENOTED AS �VQM)

Table VIII also shows the performance gain

(expressed by �CC) of a DSS weighted VQM over its

original metric for individual VQM cases averaged over

all distortion types. It shows that adding DSS results in a

promising gain for all VQMs except for the case of TMOVIE.

It is worth noting that for VQMs that already achieve a high

prediction performance, such as ViS3 and STMAD, adding

DSS still produces a significant increase in their performance

(i.e., <�CC>= 0.011 for ViS3 and <�CC>= 0.009

for STMAD). In terms of the mean over all distortion

types, TMOIVE does not benefit from the addition of DSS

(i.e., �CC = 0). This may be attributed to the fact that

TMOVIE already contains sufficient saliency aspects in its

metric design, e.g., it incorporates the estimate of motion,

which is considered as a relevant cue in video saliency.

Adding (possibly duplicated) saliency may be counter-

productive in some cases as it may confuse the workings of

the original VQM with built-in saliency.

C. Optimization: Proposed Integration Strategy

Section IV has demonstrated the superiority of DSS over

NSS in improving VQMs. DSS, to some extent, reflects the

interactions between natural scene and distortion, and therefore

is observed to be more effective when adding a saliency term

to VQMs. However, it is known that the recorded fixations
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TABLE IX

COMPARISON OF PERFORMANCE (CC) FOR DIFFERENT VQMs AND THEIR CORRESPONDING SALIENCY-BASED VERSIONS, USING SIMPLE

APPROACH AND PROPOSED APPROACH. THE LAST COLUMN PRESENTS THE PERFORMANCE GAIN (I.E., THE INCREASE

IN CC (�CC)) OF A SALIENCY-BASED VQM OVER ITS ORIGINAL VERSION AVERAGED OVER ALL VQMs

may not fully represent the entire human attentional behav-

iour [12], [17]. For example, the so called covert attention

mechanisms, which refer to that of mentally focusing onto

one of several possible sensory stimuli (without necessarily

moving the eyes) [12], [17], may not be included in the DSS.

This means that DSS may not be able to completely capture the

attentional power of perceptible distortion, i.e., some artifacts

in the visual field may be perceived but covertly attended

(without any recorded fixations in the DSS). To address this

phenomenon, we propose a more sophisticated integration

strategy that better takes into account the attentional power

of distortion. In [57], this idea has been initially explored for

improving image quality prediction. We now extend it to a

spatiotemporal framework for video quality assessment.

1) Proposed Approach: We now consider how to use the

above concept to improve the formula expressed in (2). For

each per-frame distortion map (PFDM) computed by a VQM,

instead of using SM as a weighting factor, we now use two

components: the captured DSS (i.e., denoted as α) and the

uncaptured attentional power of distortion (i.e., denoted as β)

to produce a local weighting factor ω. Given a pixel location

(i, j), ω is defined as:

ωS(i, j) = f (α, βS) (3)

ωT (i, j) = f (α, βT ) (4)

where ωS (or ωT ) denotes the weighting factor for spatial

PFDM (or temporal) portion of the PFDM, βS (or βT ) denotes

the uncaptured attentional power of spatial (or temporal)

distortion. In this paper, β is modelled using an information

theory based approach. This approach treats HVS as an

optimal information extractor [58]; and β is considered to be

proportional to the perceived information of distortion.

Based on the principle in [59], the perceived information I

of a stimulus can be modelled as the number of bits transmitted

from this stimulus (with the stimulus power S) through the

visual channel of the HVS (with the noise power C); and can

be computed as:

I =
1

2
log(1 +

S

C
) (5)

If we simply consider the distortion as the input stimulus,

the perceived information of distortion can now be measured

by the above formula. In such a scenario, the component S
/

C

is analogous to the power of the locally measured distortion

using PFDM. Due to the fact that HVS is not sensitive to pixel-

level variations [60], the implementation of the algorithm is

thus performed on the basis of a local patch of 45×45 pixels

(about 2◦ visual angle in our experiment). Thus, (5) can be

further defined as:

IS,P =
1

2
log(1 + σ 2

s,p) (6)

IT ,P =
1

2
log(1 + σ 2

t,p) (7)

where σ 2
s,p (or σ 2

t,p) estimates the power of the local spatial

(or temporal) distortion within the patch P centred at a given

pixel (i, j) in the PFDM; and σs,p (or σt,p) denotes the

standard deviation of P .

Moreover, our algorithm is motivated by the significant

findings in [61] that each perceptible artifact suppresses each

other artifact’s effect especially for those with close proximity.

This so-called surround suppression effect (SSE) is used to

approximate the proportional relationship between β and I ,

where the effect of I is suppressed by its local neighbourhood.

Thus, β can be defined as:

βS,P =
IS,P

Ī S

(8)

βT ,P =
IT ,P

Ī T

(9)

where ĪS (or ĪT ) represents the averaged spatial (or temporal)

attentional power of distortion surrounding the local patch P .

In this paper, the vicinity is defined as the Moore neighbour-

hood of the local patch P (i.e., the set of eight patchesPk

(k = 1 to 8) of the same size which share a vertex or edge

with P).

Finally, we combine α and β using a simple multiplica-

tion operator, resulting in the spatial and temporal weighting

factors:

ωS(i, j) = αm
· βS

n (10)

ωT (i, j) = αx
· βT

y (11)

where m > 0, n > 0, x > 0 and y > 0 are parameters to

adjust the relative importance of different components. We set

m = n = x = y = 1 in our experiment for simplification.

Tuning the parameters may improve the algorithm; however it

goes beyond the merits of this paper. Once ω is achieved, we

use it to replace the term SM in (2). Noted that for VQMs that

only perform in the spatial channels (e.g., PSNR and SSIM),

only ωS is calculated.

2) Validation of the Approach: For each VQM, we compare

its DSS-weighted version using (2) (referred to as simple

approach) and that using the proposed approach. Table IX

shows the performance (i.e., in terms of CC, SROCC exhibits

the same trend of changes as CC and thus is not included here)

in each case. It shows that the proposed approach performs
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TABLE X

COMPARISON OF PERFORMANCE FOR VQMs WEIGHTED WITH MEASURED SALIENCY (DSS) AND MODELLED SALIENCY (BASED ON FIVE SALIENCY

MODELS, NAMELY SR, PQFT, GBVS, SDSR AND CA). TWO WEIGHTING APPROACHES ARE USED:
SIMPLE APPROACH (METH-1) AND PROPOSED APPROACH (METH-2)

consistently better in each comparison. A paired samples t-test

analysis (preceded by a test for the assumption of normality)

was further performed, selecting the integration approach as

the independent variable and the performance as the depen-

dent variable. The result shows that the proposed approach

statistically significantly outperforms the simple approach with

P<0.05 at 95% confidence level.

VI. EVALUATION OF MODELLED SALIENCY IN VQMS

We evaluate whether a saliency model, at least with the cur-

rent soundness of visual saliency modelling, can sufficiently

benefit VQMs in comparison to the gain yielded by DSS. Our

evaluation is carried out with five saliency models, namely

SR [62], PQFT [63], GBVS [64], SDSR [65] and CA [66].

Each saliency model is integrated in VQMs using both the

simple and proposed weighting methods.

These saliency models have been extensively studied in

the context of image quality assessment, and demonstrated

to be among the best performing saliency models in terms

of producing consistent performance gain for image quality

prediction [52]. It is, therefore, worth investigating the added

value of these saliency models in VQMs. Note that some

models, such as SR and CA are specifically designed for still

images; and models, such as GBVS, PQFT and SDSR account

for both spatial and temporal aspects in saliency modelling.

Table X shows the comparison of the performance

(i.e., expressed in terms of CC, SROCC exhibits the same trend

of changes as CC, and thus is not included here) of VQMs

using both the simple and proposed approaches. Fig. 8 further

illustrates the averaged performance gain (i.e., expressed in

terms of �CC) for both approaches. The performance that

can be achieved by adding DSS in VQMs is also included

as a reference. In terms of using the simple method, the table

tends to indicate that there does not exist a saliency model that

can consistently benefit all VQMs. The addition of a saliency

model may improve the performance of a specific VQM, while

running the risk of deteriorating other VQMs’ performance.

For example, adding SR to SSIM can boost its performance

by 0.08 in CC, but this saliency model significantly degrades

the performance of PSNR. Existing saliency models, on aver-

age, hardly improve the prediction performance of VQMs

(i.e., �CC is about 0.01), compared to the benefit of DSS

(i.e., �CC is around 0.025). Instead, when using the proposed

Fig. 8. Performance gain obtained by adding DSS versus saliency models to
VQMs using both simple and proposed integration approaches. The errorbars
indicate 95% confidence interval.

approach, firstly, saliency models can benefit VQMs in a more

consistent way. For example, almost all saliency-based VQMs

outperform their original metics. Secondly, on average, as

shown in Fig. 8 the performance again obtained by adding

saliency models (i.e., �CC is 0.051) is significantly increased,

but is still lower than the gain achieved by adding DSS. Fig. 8

suggests that compared to the gain of “ground truth” saliency,

modelling saliency in VQMs contains sufficient headroom for

further improvement.

VII. DISCUSSION

Our statistical evaluation provides general insight into the

benefits of saliency in VQMs. The approach (either simple

or proposed) used for combining saliency and an VQM

is universally applicable. This means that this combination

method can be applied to all kinds of VQMs that measure

distortions locally. One should realise though that tuning a

specific VQM with a specifically designed saliency weighting,

e.g., using saliency aspects to optimise the contrast sensitivity

function (CSF) contained in a VQM [35], may produce

superior improvement for that particular VQM. There is,

however, no guarantee that this specifically designed approach

can be easily implemented in other VQMs or improve their

performance. In terms of conducting a rigorous comparative

study, a generic saliency integration method is highly required.

Our empirical evidence shows that NSS is not suitable for

VQMs, and it is DSS that should be included in VQMs. This

conclusion was drawn by using the simple saliency integration

approach. One may wonder whether this conclusion holds

when the proposed integration approach is used. We repeated

the experiment as described in Section IV, using the proposed
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integration approach. Our experimental results show that the

proposed approach increases the benefits of NSS in absolute

terms, while maintaining the relative difference in the gain

between NSS and DSS. In addition, from a practical point

of view, it may be unrealistic to calculate saliency from the

reference video simply because the reference is not always

available in many real-world applications.

VIII. CONCLUSION

In this paper, we investigated saliency and its use in

objective video quality assessment. To obtain reliable “ground

truth” saliency for video quality research, we proposed a

refined experimental methodology and conducted a large-

scale eye-tracking experiment. In our experiment, a large

number of human observers freely looked to a diverse range

of video stimuli distorted with different types of distortion at

various levels of degradation. We applied dedicated control

mechanisms with the aim to overcome bias that potentially

exists in related studies.

Based on the “ground truth” data of saliency, we performed

an exhaustive statistical evaluation to assess the effects of

saliency on the reliability of VQMs. We found a tendency

that adding DSS rather than NSS to a VQM improved its

performance in predicting perceived video quality. Based on

this evidence, the added value of DSS in VQMs was further

assessed. This evaluation shows that there is a statistically

significant gain in the performance for all VQMs when adding

DSS. The extent of the performance gain, however, tends to

depend on the specific distortion type assessed and the VQM

under test. We also investigated integrating saliency in VQMs

in a perceptually more relevant way, and devised a generic

approach that can optimise the use of saliency in VQMs.

Finally, we applied several state-of-the-art computational

models of visual saliency in VQMs, and assessed their capa-

bilities in improving the VQM’s performance. Quantitative

results tend to show that compared to the improvement

achieved by using eye-tracking data, modelling saliency in the

context of video quality requires further investigation.
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