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Abstract: Heavy-fuel aviation piston engines (HF-APEs) are widely used in general aviation and
unmanned aerial vehicle (UAV) due to their safety and fuel economy. This paper describes a
numerical and experimental study of scavenging and combustion processes on a 2-Stroke Direct
Injected HF-APEs for light aircraft, with its cylinder specifically designed as cross scavenging. A
3-Dimentional transient model of in-cylinder flow and combustion process is established by the Forte
platform, and the engine test system is set up. By comparing the simulation results to the experimental
results, it showed that multi-ports cross scavenging can generate unbalanced aerodynamic torque in
the cylinder. In the compression process, the swirl ratio (SR) gradually increases, and the peak SR
reaches 15. Moreover, approximately 25% of exhaust residual gas in the cylinder is conducive to the
fuel atomization and evaporation process in a high-altitude environment. When the injection timing
is between −8 ◦CA and −16 ◦CA, the engine has the optimal power and economy performance at
different altitudes. Finally, when the injection advance angle moves forward by 4 ◦CA, the maximum
pressure increases by 2 MPa, with the rising rate decreasing gradually. The results have important
significance for the development of the combustion system of small 2-Stroke Direct Injected HF-APEs.

Keywords: cross scavenging; combustion characteristics; small two-stroke aviation piston engines;
direct injection; evaporation characteristic

1. Introduction

As is well known, aviation piston engines (APEs) are developing toward high power
density [1]. Compared with four-stroke engines, the high-speed two-stroke engine for light
aircraft has higher specific power per weight and displacement volume, as well as better
thermal efficiency [2]. In recent years hybrid power systems are gradually developed in
general aviation due to their excellent power performance and economic performance [3].
However, the series-parallel hybrid system is not suitable for small UAVs because it requires
transmission systems [4,5]. In addition, the current controller cannot fulfill all the tasks
faultlessly in the energy management process [6]. Therefore, small internal combustion
(IC) engines are still the main powerplants of model airplanes [7]. The design parameters
of the combustion chamber and the operating conditions of APEs have a direct impact
on combustion and emission characteristics [8]. It can be predicted that HF-APEs will
gradually replace the existing aviation gasoline engines and become the main power
system of general aviation aircraft, as well as long-endurance UAVs in the future [9]. For an
aircraft diesel engine, the priorities for optimization are reliability and performance [10,11].
Due to the small displacement and high-speed reciprocating motion of the cylinder, the
fuel-air mixing, combustion space, and time are greatly limited during direct injection in
the cylinder, and combustion organization is difficult [12]. Excessive fuel accumulation
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on the surface of the combustion chamber due to the contradiction between the fuel spray
penetration distance and the combustion chamber diameter, increased smoke emissions at
high loads [13]. Therefore, the analysis of scavenging and combustion processes of heavy
fuel direct injection small APEs is the key to improving the comprehensive performance of
the engine [14].

It was found that the DI combustion system yields several advantages: better take-off
performance (higher power output), lower fuel consumption at cruise conditions, improved
altitude performance, and reduced cooling requirements [15]. Carlos J. used the heat release
analysis method to investigate the factor, which influences pilot-injection combustion [16].
Busch S et al. from Sandia National Laboratories, compared the combustion performance
of three different types of pistons, which showed that the stepped-lip piston led to higher
thermal efficiency [17]. Yang et al. analyzed the interactions between sprays and sprays
with swirls using Flame Image Velocimetry (FIV), which showed that swirls could enhance
the mixing [18]. Le M K et al. investigated the flame-moving process in a small heavy
fuel engine by optical method, which showed that the spray hit the combustion chamber
wall soon after the start of injection and a part of them would rebound while others
would expand along the combustion chamber wall [19]. Pradeep M. summarized several
conclusions and analyzed the trend of development in a small naturally aspirated CRDI
diesel engine [20]. Based on the particle sampling method of thermophoresis, Zhang Y L
et al. found that half of the combustion flame propagated against the swirl, while the other
half developed in the same direction due to the influence of the swirl in the small-bore
diesel engine [21]. Francesco B et al. proposed a method in which the fuel is injected
into the combustion chamber intermittently, which leads to the fresh air being less diluted
by the residual gas and the combustion efficiency increasing [22]. Xue M established the
simulation model of in-cylinder combustion of piston aviation and verified by experiments,
which state that the combustion center of gravity will increase by increasing the ignition
advance angle [23]. Pan Z J et al. analyzed the impact of combustion chamber diameter and
depth on emissions, which showed that properly reducing combustion chamber diameter
and diameter-depth ratio can reduce emissions [24].

Zhou Y et al. analyzed the trends of cutting-edge technologies and the theory of gas
exchange [25,26]. James W. G. compared different scavenging systems for 2-stroke engines,
which showed that the opposed-piston has the best scavenging effect and the highest
thermal efficiency, because the structure can achieve maximum thermal expansion and
minimum heat loss [27]. In order to increase the engine braking power during take-off and
reduce the engine fuel consumption under cruise conditions, Carlucci A P et al. analyzed
the characteristics of a two-stroke uniflow diesel engine and compared the simulations
to the test data [28]. In order to improve combustion efficiency, Hu CM et al. proposed
the application of the AADI system in spark-ignition piston aero-engine [29]. Xu Z et al.
predicted the high altitude performance of Poppet-valves 2-Stroke (PV2S) aircraft diesel
engine, and the results showed that the high altitude power loss of the PV2S engine was
more serious than the traditional two-stroke engine [30,31]. Chen Y L et al. used different
swirl ratio tests to study the effect of intake swirl on engine combustion performance, the
results showed that the best fuel/air mixture and combustion performance were obtained
in the direct injection diesel engine without intake swirl [32]. Pavel B et al. proposed a
method to analyze the correlation between the residual gas fraction in the exhaust port
and the residual gas fraction in the cylinder using the scavenging curve [33]. Despite
a large number of experimental investigations that have been implemented to explore
the small two-stroke engine performance, there is no systematic treatment of combustion
characteristics and altitude characteristics with a small two-stroke engine.

Yusuf A.A. et al. studied the effects of spark timing and alternative fuels on engine
performance, combustion, and tailpipe emissions [34]. Shirvani S. et al. have conducted
extensive research. He examined the effects of a number of nozzles, injection pressure,
fuel line angle, and the start of injection (SOI) in two-stroke engines. Results revealed
that advancing the start of injection by two crank angle degrees (CAD) can reduce soot
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emissions by 16%, and with the strategy of pre-injection, NOx is reduced by 37% [35].
Mitianiec W. studied the combustion behavior with different piston positions and asym-
metric scavenging timing. They reported that earlier opening of exhaust ports can decrease
CO emission because of a lower combustion temperature [36]. Chang C. and Wei M.X.’s
experiments on two-stroke APEs studied the impact of the mixture concentration on the
cylinder pressure, cylinder temperature, and engine power, the results show that a rich
mixture with early Injection advance angle has a better effect on the knock suppression [37].
Zhenfeng Z. et al. through CFD to analyze aviation kerosene combustion characteristics,
and reported that a worse equivalence ratio led to knocking combustion [38].

Therefore, to orderly organize the airflow and accelerate spray and air mixing in
the cylinder of the two-stroke heavy fuel direct injection engine [39]. A detailed study
into the performance of the small two-stroke HF-APEs is presented in this article, which
incorporates experimental and computational fluid dynamics (CFD) analysis to explore the
optimization direction of scavenging and combustion systems for small heavy fuel direct
injection engines.

2. Experimental
2.1. Engine Description

A small 2-stroke APEs adopts a cross-flow scavenging system, which has three intake
ports, and one exhaust port. The combustion system is configured with a direct-injection
and bowl-shaped combustion chamber. The actual engine is illustrated in Figure 1. The
type and geometric parameters of the engine are shown in Table 1.
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Figure 1. Configuration of the actual engine.

Table 1. The type and geometric parameters of engine.

Parameter Value

Engine Type Opposed Cylinder 2 Stroke
Displaced volume 400cc
Scavenging type Cross Scavenging
Number of Ports 3 inlet + 1 exhaust

Bore × Stroke 65.5 mm × 60 mm
Air Metering Turbocharger

Combustion System Direct Inject
Combustion Chamber Shape Bowl-shape

Compression ratio 16
Fuel Metering Mechanical Injection (in-line pump)
Rated speed 2400 rpm

Scavenging Ports area 771.65 mm2

Exhaust port area 640.18 mm2

Scavenge port open/close after top dead center (ATDC) 120–240 ◦CA
Exhaust port open/close ATDC 107–253 ◦CA

nozzle × hole diameter 4 × 0.18 mm
Fuel spray angle 150 degrees
Spray cone angle 15 degrees
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2.2. Experimental Set Up

The schematic diagram of the experimental system is shown in Figure 2, which
includes the flow system, a cylinder pressure sensor, and a dynamometer test system.
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Figure 2. Schematic diagram of the experimental system.

The Roots blower simulation intake supercharging system, with a variable-frequency
drive to adjust the volumetric flow into the air bottle. Firstly, the working fluid flows into
an air bottle, which keeps intake pressure constant by a spill valve at the head. Setting up
the air volumetric flow rate is 16 L/s and the error is within ±5%. Then, the air from air
bottle to the air box, enters two cylinders through intake ports symmetrically. The engine
and measuring modules are assembled as shown in Figure 3. The airflow meter and air
pressure meter can measure the mass of air entering the engine at a constant speed [40].
The cylinder pressure sensor collects, analyzes, and stores the cylinder pressure signal
in the combustion process of the engine in real-time. The phase sensor can measure the
start of injection and the end of the injection. In this paper, the rate of injection profile of
nozzles was measured by the momentum flux method [41]. Figure 4 shows a test bench for
measuring fuel injection speed. A pressure sensor is installed at a certain distance from the
nozzle outlet to measure the impact force of the spray. The change of velocity before and
after the impact of liquid drops in the direction perpendicular to the sensor surface is equal
to the impact velocity of liquid drops.
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Detailed parameters are shown in Table 2.

Table 2. Equipment parameters.

Measure Name Measuring Range

Inlet pressure Kistler 4007BA20F 0–0.5 MPa
Outlet pressure SYG313 0–0.5 MPa

Inlet flow GHR-01HDN502N 0.5–452 kg/h
Inlet temperature PT100 −50 ◦C–200 ◦C

Outlet temperature K-Type Thermocouple 0–900 ◦C
Data acquisition NI-PXIE-1078 250 MB/s
Dynamometer ACD-30C 30 kW

Cylinder pressure OP052A 0–300 bar
Injection phase sensor 4065A 0–1000 bar

The shape of the scavenging ports and the exhaust port is rectangular, whose lower
boundary is just flush with the piston at the bottom dead center (BDC).

3. CFD Simulation
3.1. Mesh and Initial Boundary Condition Settings

Ansys Forte is used in the simulation [42]. Import a complete 3-D geometric model
to simulate the working process of a small two-stroke heavy fuel direct injection engine
for grid generation, and use the grid generation tool provided by Forte for pre-processing,
while adjusting the grid size near the airport. The tetrahedron grid is used for the cal-
culation of the intake and exhaust port area, and the hexahedron grid is used for the
calculation of the intake and exhaust ports and cylinder volume, which is dynamic grid.
The three-dimensional transient calculation mode is selected. A single cylinder is taken
for calculation because the working conditions of the two cylinders are the same. RNG
k-ε Turbulence model and standard wall function are adopted, and the calculation step is
1 ◦CA crankshaft angle.

The global mesh size is specified as 2 mm, the mesh preview of the combustion
chamber is shown in Figure 5. A total of 329,023 meshes are generated.
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The simulated inlet and outlet adopt pressure boundary conditions and keep the
pressure constant. To simulate the coupling relationship with the supercharger. The inlet is
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set to the theoretical pressure behind the compressor, and the outlet is set to the theoretical
pressure in front of the turbine. The relevant boundary and initial conditions for calculation
are shown in Table 3.

Table 3. Calculation boundary and initial conditions.

Boundary and Initial Conditions Value

Air Composition air (N2,O2)
Intake pressure 0.2 MPa

Exhaust pressure 0.12 MPa
Intake temperature 298 K

Cylinder head temperature 400 K
Cylinder wall temperature 400 K

Piston top temperature 450 K
turbulent kinetic energy 10,000/(cm2/sec2)

The fuel injection system is configured with a 4-hole solid-cone mechanical injector.
As a common application in CFD simulations, the most commonly used is the quasi-steady
spray cone angle [43]. The spray cone angle is set to 15 degrees, the included angle between
fuel jets is set to 150◦ and the temperature of spray droplets in the nozzle chamber is about
400 K. These settings are consistent with the physical object absolutely. Assuming a constant
discharge coefficient is 0.7 based on the momentum measurement method. The injection
strategy adopts single pulse injection and the droplet size distribution is set to Uniform Size.
The Kelvin-Helmholyz/Rayleigh-Taylor (KH/RT) model is adopted for atomization and
droplet breakup, which can improve the temperature dependence of the fuel penetration
and predict a better distribution of droplet size [44,45]. In this study, we set the model
constants in Appendix A. Adjust the liquid penetration by decreasing the RT constant, the
parent parcel breaks up to form new droplets with different KH constants. Using a discrete
multi-component (DMC) fuel-vaporization model to represent the vaporization of spray
droplets, DMC is formulated to track each component of the fuel regardless of the direction
of the process [46,47]. The Adaptive Collision Mesh Model is used in modeling droplet
collision and coalescence [48]. The gas entrainment constant in the gas phase jet model is
set to 0.5.

3.2. Validation of the Model

In order to verify the accuracy of the simulation model generated in Forte, this work
compared the simulation results to the test data, the results are shown in Figure 6. Results
show that the maximum error of cylinder pressure calculated by simulation and measured
by the test is about 3%, the combustion phase is basically consistent, therefore, considering
the simulation model is reliable and accurate.
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According to Table 4 working conditions, the characteristics of fuel atomization and
evaporation, combustion, and scavenging processes of small two-stroke heavy fuel direct
injection engines were analyzed based on the simulation model.

Table 4. Simulation Conditions.

Parameters Value

Engine speed(rpm) 2400
Injected mass(mg) 9

Injected timing(◦CA) −8ATDC

3.3. Fuel Atomization and Evaporation Process

As reported in Figure 7, the swirl velocity in the combustion chamber gradually
increases with the piston compression process. The peak swirl ratio (SR) reaches 15, which
is of great significance for accelerating the mixing of fuel and air, accelerating the heat
transfer of air to fuel droplets, and shortening the ignition delay period. It can be seen from
Figure 8, the fuel spray will deflect along the direction of the swirl due to the influence
of the swirl. After the fuel hits the wall of the combustion chamber, it continues to move
along the wall of the combustion chamber in the direction of the swirl.
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Figure 9 shows the change of the spray mass in the cylinder with the crankshaft angle.
It can be seen from the figures that, fuel injection starts at −8 ◦CA and spray mass reaches
the maximum at −2 ◦CA. Then, the fuel vapor content starts to decrease, and evaporation
and combustion occur at the same time.
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3.4. Combustion Process

The combustion phases are identified from the heat release. Identified combustion
parameters are presented: The combustion phase is determined by the total heat release,
and the main combustion parameters are as follows: Start of injection (SOI), start of
combustion (SOC) which indicate a total heat release of 5%, end of injection (EOI), and end
of combustion (EOC) which indicate total heat release 95% [49].

As shown in Figure 10, at −8 ◦CA, the gas temperature in the cylinder is about 800 K.
At −4 ◦CA, there is an area lower than the compression temperature in the temperature
field due to the heat absorption of fuel spray gasification. At TDC, there is an obvious
combustion reaction in the sprays area, and the combustion area rotates in the direction of
the swirl. The temperature in the center of the combustion chamber is 400 K lower than in
other areas, which is of great significance for protecting the nozzle.
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It can be seen from Figure 11, at −4 ◦CA, the fuel has reached the area with the
strongest swirl in the combustion chamber, and the atomization effect is enhanced. The
temperature in the cylinder has increased, and the fuel evaporation rate and heat release
rate both accelerated. At the EOI (−2 ◦CA), the mass of fuel vapor in the cylinder reaches
the maximum value of 5.5 mg. In the early stage, the fuel in the cylinder evaporates and
absorbs heat. After the fuel is injected into the cylinder, most of the fuel is in an oxygen-
deficient environment, so the combustion rate is relatively slow. As the temperature in
the cylinder increases, the heat release rate increases, and the fuel evaporation rate is less
than the rate of vapor consumption, the content of fuel vapor in the cylinder decreases
rapidly. At 2 ◦CA, the content of combustible steam in the cylinder continues to decrease,
so the chemical heat reaction rate decreases. It can be seen from Figure 12 that, at 8 ◦CA,
the separate flame areas in the cylinder diffuse and converge, igniting the CO generated at
the high-temperature oxygen-rich boundary (flame front), and the chemical reaction rate
slightly increases, then the chemical reaction rate gradually decreases until a combustion
cycle is completed.
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The scavenging process directly affects the exhaust gas residual (EGR) coefficient in
the cylinder. Excessive internal EGR can accelerate the evaporation rate of fuel droplets, but
the reduction of fresh charge will reduce the combustion speed, reduce fuel consumption
and reduce maximum power.

In this study, Cross scavenging is adopted. Figure 13 shows the change of CO2 mass
fraction in the cylinder with a crankshaft angle during scavenging. It can be seen from
Figure 14 that between 110 ◦CA and 120 ◦CA, the engine exhausts freely, and about 50% of
the exhaust gas in the cylinder is discharged. At 130 ◦CA, the scavenging port opened while
the pressure in the cylinder is greater than the pressure of charge. The high-temperature gas
in the cylinder flows back into the scavenging port, and the cylinder is still in the process of
free exhaust. At 150 ◦CA, the scavenging port pressure has been higher than the cylinder
pressure. At 170 ◦CA, there is no CO2 in the scavenging port, and the CO2 mass fraction
near the exhaust port decreases, which indicates that the fresh air has gradually diluted
the gas in the cylinder. At 250 ◦CA, the scavenging port is closed before the exhaust port
and the fresh charge in the cylinder decreases. After the exhaust port is closed, the EGR
coefficient is about 25% [50].
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4. Results and Discussion
4.1. Combustion Characteristics at Different Altitudes

Figure 15 shows the change of maximum combustion pressure with altitude at
2400 rpm. It can be seen that with the increase of altitude, the maximum pressure in
the cylinder decreases, and the engine’s power capacity gradually decreases. At 5000 m
above sea level, the engine’s power capacity has decreased by about 40%. This is because
the intake air mass flow decreases with the increase in altitude, resulting in a decrease in
the cumulative heat release from combustion.
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Figure 16 shows the change of NOx with altitude. NOx emission increases with the
increase in altitude. NOx generation of HF-APEs is determined by combustion temperature,
oxygen concentration, and high temperature duration in the cylinder. Higher altitude will
also reduce the oxygen content in the cylinder, which will inhibit the generation of NOx.
Therefore, the main factor for the increase in NOx emission is the increase in average
combustion temperature, that is, the average combustion temperature under the same load
increases with the increase in altitude.
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4.2. Combustion Characteristics at Different Injection Timing

It can be seen from Figure 17 that the maximum brake pressure in the cylinder increases
significantly with the increase of injection advance angle, that is, the injection advance
angle moves forward by 4 ◦CA, the maximum pressure increases by 2 MPa, and the rising
rate decreases gradually. In addition, the phase of the maximum pressure moves forward
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with the increase of injection advance angle. When the injection advance angle moves
forward by 4 ◦CA, the phase of the maximum pressure moves forward by 0.5 ◦CA. Analysis
shows that the fuel injection quantity is fixed, and the increase of the injection advance
angle will lead to the increase of the mass of the fuel-air mixture formed during the ignition
delay period, which will promote the premixed combustion process in the cylinder. Thus,
the combustion pressure in the cylinder rises rapidly, and the maximum brake pressure in
the cylinder increase. It can be seen from the area enclosed by the pressure curve that the
power performance of the engine has been improved.
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Table 5 summarizes the characteristic parameters of the in-cylinder combustion process
at different injection advance angles. It can be seen that when the injection advance angle
moves forward from −8 ◦CA to −16 ◦CA, the combustion center (CA50) moves forward,
which has a greater impact on the maximum brake pressure in the cylinder. When the
injection advance angle is moved forward, the combustion center is almost unchanged.
When the injection advance angle is greater than 16 ◦CA before the TDC, the combustion
center is almost unchanged.

Table 5. Combustion Process Parameters with Different Injection Timing.

Injection Timing (◦CA) −8 −12 −16 −20 −24

Start of Combustion (◦CA) −3.9 −6 −7.9 −9.9 −9.9
ignition delay (◦CA) 4.1 6 8.1 10.1 14.1

End of Combustion (◦CA) 22.1 18.1 18 16.2 16.1
Combustion duration (◦CA) 26 24.1 25.9 26.1 26.0

CA50 (◦CA) 8.05 4.0 2.0 2.0 2.1

Therefore, adjusting the injection advance angle can change the combustion law of
the APEs, which is conducive to the power recovery of the APEs in the high-altitude
environment. However, with the increase of injection advance angle, the rate of pressure
rise in the cylinder will also increase, making the moving parts of the piston engine subject
to strong mechanical impact load, and even reducing the reliability and service life of
the APEs.

4.3. Combustion Characteristics at Different Operating Conditions

It can be seen from Figure 18, there are some differences in fuel injection mass flow
rate at different speeds, however, when the speed exceeds 1800 rpm, the rising section of
the fuel injection mass flow rate basically coincides. This trend is the same with different
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engine loads. In this study, the maximum fuel injection mass flow rate of the engine is
27.5 g/s.
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Figure 18. Injection Rate figure for each of the conditions.

It can be seen from Figure 19 that the heat release rate of combustion in the cylinder
decreases with the increase in engine speed, and the combustion duration is prolonged.
When the engine speed increased from 1200 rpm to 2400 rpm, the combustion duration
extended by 57%. The maximum temperature in the cylinder decreases with the increase of
engine speed. It is mainly due to the decrease of the mass of the fuel-air mixture formed
during the ignition delay, the decrease of the proportion of fuel-air premixed in the whole
process, and the gradual increase of diffusion combustion with the increase of engine speed.
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Figure 19. Variation of heat release rate with rotating speed.

It can be seen from Figure 20, the rising range of fuel mass flow rate basically coincides
with different engine loads. The combustion heat release rate in the cylinder increases with
the increase of engine load. When the engine load is increased from 25% to 100%, the HRR
is increased by about four times. According to the analysis, with the increase of load, the
mass of the fuel-air mixture formed during the ignition delay period increases, which leads
to the proportion of premixed combustion in the whole combustion process increasing, and
the diffusion combustion gradually weakening.
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5. Conclusions

The two-stroke HF-APEs have the characteristics of high power density and simple
structure, which makes them widely used in motorboats, unmanned aerial vehicles, and
other fields. In this study, the scavenging and combustion processes of the engine at
2400 rpm, 298 K intake air temperature, and −8 ◦CA injection advance angle were adopted.
The calculation results of different altitudes, different injection advance angles, and different
operating conditions are analyzed, and the following conclusions are obtained.

(1) the multi-ports cross-flow scavenging scheme can generate unbalanced aerodynamic
torque in the cylinder, and with the piston moving upward, a high intake swirl ratio
will be generated in the combustion chamber, and the peak swirl ratio (SR) reaches 15.

(2) The small two-stroke heavy fuel direct injection engine mainly uses diffusion combus-
tion, and the swirl intensity has an important influence on the in-cylinder atomization
and combustion process of the small two-stroke heavy fuel engine. When the engine
speed increased from 1200 rpm to 2400 rpm, the combustion duration extended by
57%. Moreover, when the engine load is increased from 25% to 100%, the HRR is
increased by about four times.

(3) The internal EGR of small two-stroke APEs increases the intake air temperature,
accelerates the fuel atomization and evaporation process, and has a positive impact
on shortening the ignition delay period and improving the combustion speed.

(4) At different altitudes, the combustion center can be adjusted by adjusting the injection
advance angle to ensure the power and economy of the engine. When the injection
advance angle moves forward by 4 ◦CA, the maximum pressure increases by 2 MPa,
and the rising rate decreased gradually.

At present work, the influence of injection strategy and combustion chamber shape on
the combustion and scavenging process is not studied. Obviously, the combustion time
and space of small HF-APEs are greatly limited. The current research does not consider
the changes in flow field intensity and scavenging efficiency caused by altitude changes.
In future work, we should pay attention to the design of the combustion chamber shape,
and improve the matching of the fuel injection system and combustion system. A control
strategy suitable for small HF-APEs should be studied, which can flexibly adjust the
injection timing and match the external environment. It is of great significance to optimize
the performance of small HF-APEs.
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Appendix A

Table A1. KH/RT Setting in Forte [39].

KH Model Constants

Size Constant of KH Breakup 1.0
Time Constant of KH Breakup 40.0

Critical Mass Fraction for New Droplet Generation 0.03
RT Model Constants

Size Constant of RT Breakup 0.15
Time Constant of RT Breakup 1.0

RT Distance Constant 1.9
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