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Abstract: We explore stochastic–fractional Drinfel’d–Sokolov–Wilson (SFDSW) equations for some
wave solutions such as the cross-kink rational wave solution, periodic cross-rational wave solution
and homoclinic breather wave solution. We also examine some M-shaped solutions such as the
M-shaped rational solution, M-shaped rational solution with one and two kink waves. We also
derive the M-shaped interaction with rogue and kink waves and the M-shaped interaction with
periodic and kink waves. This model is used in mathematical physics, surface physics, plasma
physics, population dynamics and applied sciences. Moreover, we also show our results graphically
in different dimensions. We obtain these solutions under some constraint conditions.

Keywords: breathers; periodic cross-kink; homoclinic breather; M-shaped solution; cross-kink ratio-
nal solution

MSC: 35R10; 35R11

1. Introduction

Numerous branches of nonlinear science including plasma physics, geochemistry,
solid-state physics, fluid mechanics [1–4], optical fibres, nuclear physics and chemical
physics have been studied through nonlinear evolution equations (NLEEs) [5–8]. The
travelling-wave solution for NLEEs executes a number of analytical and numerical techniques
to get an exact solution for these NLEEs [9–15]. Recently, a variety of external stimulations
including random disturbances have been involved in changing physical systems.

A stochastic differential equation (SDE) is a differential equation that has one or
more stochastic processes as its terms, with the solution being another stochastic process.
SDEs are used to simulate a variety of phenomena, including stock prices and physical
models subject to thermal fluctuating. Consequently, SDEs have emerged and gained
a lot of significance in modelling phenomena in atmospheric science, fluid mechanics,
oceanography, chemistry, physics and biology [16,17].

The fractional derivative models are used for the accurate modelling of those sys-
tems that require an accurate modelling of the damping. The advantages of fractional
derivatives are their flexibility and nonlocality. These derivatives can approximate real
data with a greater flexibility than classical derivatives because they are of fractional order.
Moreover, they consider nonlocality, which classical derivatives are unable to achieve. How-
ever, a number of significant phenomena such as anomalous diffusion, electrochemistry,
acoustics, image processing and electromagnetism are represented by fractional derivative.
Fractional models are more precise than integer models. In general, it is more challenging
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to obtain an exact solution of SDEs with fractional derivatives than classical ones. As a
result, we considered the following SFDSW equations given as [18]:

du + [β1vDω
x v]dt = ζudη, (1)

dv + [β2Dω
xxxv + β3uDω

x v + β4vDω
x u]dt = ζvdη, (2)

where u = u(x, t), v = v(x, t) and β j for j = 1, 2, 3, 4 are nonzero constant. η = η(t) is the
standard Brownian motion, ζ is noise strength, and Dω is a conformable derivative for
0 < ω < 1.

The remaining manuscript is arranged as follows: In Section 2, we explain the proper-
ties and definitions of standard Brownian motion and also discuss Hirota’s bilinear method.
In Section 3, we obtain the wave equation for the SFDSW equation. In Sections 4 and 5,
we introduce the solution for the cross-kink rational solution and periodic cross-rational
solution, respectively; we also examine the homoclinic breather in Section 6, M-shaped
rational wave solution in Section 7, M-shaped rational wave solution with one kink and two
kink waves in Sections 8 and 9, respectively. Moreover, we obtain the M-shaped rational
interaction with rogue and kink waves and the M-shaped rational interaction with periodic
and kink waves in Sections 10 and 11. In Section 12, we address results and discussion.
Section 13 presents the conclusion of the paper.

2. Preliminaries

Now, we discuss the properties and definitions of a conformable derivative and
standard Brownian motion. The definition of a conformable derivative is given as:

Definition 1 ([19]). The conformable derivative with order ω of Q : R+ → R is given as:

Dω
x Q(z) = lim

m→0

Q(z + mz1−ω)−Q(z)
m

.

Theorem 1 ([19]). Suppose that Q1, Q2 : R+ → R are ω differential functions,

Dω
x (Q1 o Q2)(z) = z1−ωQ′2(x)Q1(Q2(x)).

Some properties of the conformable derivative are given as:
1. Dω

z [n1Q1(z) + n2Q2(z)] = n1Dω
x Q1(z) + n2Dω

x Q2(z), n1, n2εR;
2. Dω

z [zm] = mzm−ω, mεR;
3. Dω

z Q(x) = z1−ω dQ
dx ;

4. Dω
z [K] = 0, K is constant.

Definition 2 ([20]). A stochastic system {η(t)}t≥0 is a standard Brownian motion if

1. η(0) = 0,
2. η(t), t ≥ 0, is a continuous function of t;
3. η(t1)− η(t2) is independent for t1 < t2;
4. With the variance t2 − t1 and mean 0, η(t2)− η(t1) has a normal distribution.

Lemma 1 ([20]). E(eγη(t)) = e
1
2 γ2t for γ ≥ 0.

Hirota’s Bilinear Method

Hirota invented a method in 1971 to obtain multisoliton solutions of integrable nonlin-
ear evolution equations. A particularly simple manifestation of multisoliton solutions was
desired, therefore the aim was to convert existing variables into new ones. Hirota’s method
was the quickest to provide results to find soliton solutions [21].
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The standard definition of Hirota’s bilinear operators was first introduced by Hirota as:

Dn
t Dm

x (α.β) = (
∂

∂t
− ∂

∂t′
)n(

∂

∂x
− ∂

∂x′
)mα(x, t)β(x′, t′) | x′ = x, t′ = t′.

This type of equations can typically be made bilinear by including a new dependent
variable, such as log f or f

g .

3. Wave Transformation for SFDSW

For SFDSW Equations (1) and (2), we use the following wave transformation to build
the wave equation [18]:

u(x, t) = U(ν)e(ζη(t)− 1
2 ζ2t), v(x, t) = V(ν)e(ζη(t)− 1

2 ζ2t), ν =
1
ω

xω + φt, (3)

where U and V are real functions. Inserting Equation (3) into Equations (1) and (2), we have

du = [φU′dt + ζUdη]e(ζη(t)− 1
2 ζ2t),

dv = [φV′dt + ζVdη]e(ζη(t)− 1
2 ζ2t),

Dω
x v = V′e(ζη(t)− 1

2 ζ2t),

Dω
x u = U′e(ζη(t)− 1

2 ζ2t),

Dω
xxxv = V′′′e(ζη(t)− 1

2 ζ2t). (4)

By using Equation (4) into Equations (1) and (2), we get

φU′ + β1VV′e(ζη(t)− 1
2 ζ2t) = 0, (5)

φV′ + β2V′′′ + β3UV′e(ζη(t)− 1
2 ζ2t) + β4VU′e(ζη(t)− 1

2 ζ2t) = 0, (6)

and we have

φU′ + β1VV′e−
1
2 ζ2tE(eζ η(t)) = 0, (7)

φV′ + β2V′′′ + [β3UV′ + β4VU′]e−
1
2 ζ2tE(eζη(t)) = 0. (8)

Using Lemma 1, we have

φU′ + β1VV′ = 0, (9)

φV′ + β2V′′′ + β3UV′ + β4VU′ = 0. (10)

Integrating Equation (9), we obtain

U = − β1

φ
V2 + C, (11)

where C is a constant. Inserting Equation (11) into Equation (10), and utilizing Equation (9),
we obtain

β2V′′′ − [
β1β3

2φ
+

β1β4

φ
]V2V′ + [φ + Cβ3]V′ = 0. (12)

Integrating Equation (12), we have the following wave equation

V′′ − h1V3 + h2V = 0, (13)
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where h1 = β1β3
6β2φ + β1β4

3β2φ and h2 = φ
β2

+ Cβ3
β2

. To find the bilinear form of Equation (13), we
substitute the following transformation for various solutions [22]:

V = 2(log f )ν, (14)

6β3Cφ f 2 f ′ + 6β2φ f 2 f (3) + 12β2φ f ′3 − 4β1β3 f ′3 − 8β1β4 f ′3 + 6φ2 f 2 f ′ − 18β2φ f f ′ f ′′. (15)

Now, we study the following wave solution by using Equation (15):

4. Cross-Kink Rational Wave Solution

We use the following ansatz for the cross-kink rational wave [23]:

f = e−G1 + r1eG1 + c2
1 + c2

2 + w5, (16)

c1 = w1ν + w2, c2 = w3ν + w4,

G1 = l1ν + l2.

Substitute Equation (16) into Equation (15). By equating the coefficients of x, te−3l1ν−3l2 ,
e−2l1ν−2l2 , e−l1ν−l2 , el1ν+l2 , e2l1ν+2l2 , e3l1ν+3l2 , e2(l1ν+l2)−l1ν−l2 , e2(l1ν+l2)+l1ν+l2 and
e2(l1ν+l2)−2l1ν−2l2 to zero, we have some values for the wave solution:

l1 = 0, w1 = −w3w4

w2
, (17)

w5 = −
β3Cw4

2 + β3Cw2
2w2

4 + w4
2φ− 3β2w2

2w2
3 + w2

2w2
4φ− 3β2w2

3w2
4

w2
2(β3C + φ)

.

Putting Equation (17) into Equation (16) and by using them Equation (14), we obtain

V =

2

(
2w3(νw3 + w4)−

2w3w4

(
w2−

νw3w4
w2

)
w2

)
Ξ + el2 r1 + e−l2 +

(
w2 − νw3w4

w2

)2
+ (νw3 + w4)2

. (18)

Putting Equation (18) into Equation (11) yields

U = −
4β1C

(
2w3(νw3 + w4)−

2w3w4

(
w2−

νw3w4
w2

)
w2

)2

φ

(
Ξ + el2 r1 + e−l2 +

(
w2 − νw3w4

w2

)2
+ (νw3 + w4)2

)2 . (19)

Inserting Equations (18) and (19) into Equation (3), we have

u(x, t) = −
4β1Ceζη(t)− ζ2t

2

(
2w3(∆)− 2w3w4(Θ)

w2

)2

φ
(

Ξ + el2 r1 + e−l2 + (Θ)2 +
(
w3
(
tφ + xω

ω

)
+ w4

)2
)2 , (20)

v(x, t) =
2eζη(t)− ζ2t

2

(
2w3(∆)− 2w3w4(Θ)

w2

)
Ξ + el2 r1 + e−l2 + (Θ)2 + (∆)2 , (21)

where ∆ = w3

(
tφ + xω

ω

)
+ w4, Θ = w2 −

w3w4

(
tφ+ xω

ω

)
w2

Ξ =

β3(−C)w4
2−β3Cw2

2w2
4−w4

2φ+3β2w2
2w2

3−w2
2w2

4φ+3β2w2
3w2

4
w2

2(β3C+φ)
.
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5. Periodic Cross-Rational Wave Solution

For periodic cross-rational waves, we utilize the given ansatz [24,25]:

f = c2
1 + c2

2 + r1 cos(G1) + r2 cosh(G2) + w5, (22)

a1 = w1ν + w2, a2 = w3ν + w4,

G1 = l1ν + l2, G2 = l3ν + l4.

Using Equation (22) into Equation (15) and zeroing the coefficients of x, t cos(l1ν + l2),
cos2(l1ν + l2), cosh(l3ν + l4), cos(l1ν + l2) cosh(l3ν + l4), cosh2(l3ν + l4), sin(l1ν + l2),
sin(l1ν + l2) cos(l1ν + l2), sin(l1ν + l2) cosh(l3ν + l4), sin(l1ν + l2) cos(l1ν + l2) cosh(l3ν +
l4), sin(l1ν + l2) cosh2(l3ν + l4), sinh(l3ν + l4), cos(l1ν + l2) sinh(l3ν + l4),
sinh(l3ν + l4) cosh(l3ν + l4), cos(l1ν + l2) sinh(l3ν + l4) cosh(l3ν + l4),
sinh(l3ν + l4) cosh2(l3ν + l4) and sinh3(l3ν + l4), we get some values for the periodic cross-
rational wave solution:

l3 =

√
− β3C + φ

β2
, w1 = −w3w4

w2
, (23)

Putting Equation (23) into Equation (22) and then inserting into Equation (14), we obtain

V =

2

(
r2

√
β3(−C)−φ

β2
sinh(ϕ)− l1r1 sin(l1ν + l2)−

2w3w4

(
w2−

νw3w4
w2

)
w2

+ 2w3(νw3 + w4)

)
r2 cosh(ϕ) + r1 cos(l1ν + l2) +

(
w2 − νw3w4

w2

)2
+ (νw3 + w4)2 + w5

. (24)

Inserting Equation (24) into Equation (11) yields

U = −
4β1C

(
r2

√
β3(−C)−φ

β2
sinh(ϕ)− l1r1 sin(l1ν + l2)−

2w3w4

(
w2−

νw3w4
w2

)
w2

+ 2w3(νw3 + w4)

)2

φ

(
r2 cosh(ϕ) + r1 cos(l1ν + l2) +

(
w2 − νw3w4

w2

)2
+ (νw3 + w4)2 + w5

)2 , (25)

where ϕ = ν
√

β3(−C)−φ
β2

+ l4.

Substituting Equations (24) and (25) into Equation (3), we get

u(x, t) = −
4β1Ceζη(t)− ζ2t

2

(
r2

√
β3(−C)−φ

β2
sinh(Θ1)− l1r1 sin(Θ2)− 2w3w4(Λ)

w2
+ 2w3(ψ)

)2

φ
(

r2 cosh(Θ1) + r1 cos(Θ2) + (Λ)2 + (ψ)2 + w5

)2 , (26)

v(x, t) =
2eζη(t)− ζ2t

2

(
r2

√
β3(−C)−φ

β2
sinh(Θ1)− l1r1 sin(Θ2)− 2w3w4(Λ)

w2
+ 2w3(ψ)

)
r2 cosh(Θ1) + r1 cos(Θ2) + (Λ)2 + (ψ)2 + w5

, (27)

where Θ1 =
√

β3(−C)−φ
β2

(
tφ + xω

ω

)
+ l4, Θ2 = l1

(
tφ + xω

ω

)
+ l2, Λ = w2 −

w3w4

(
tφ+ xω

ω

)
w2

and ψ = w3

(
tφ + xω

ω

)
+ w4.

6. Homoclinic Breather Wave Solution

For homoclinic breather pulses, we use the following ansatz [26,27]:

f = e−w(l1ν+l2) + r1el(w3ν+w4) + r2 cos(w1(l5ν + l6)). (28)
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Putting Equation (28) into Equation (15), and setting the coefficients of x, t, e−3w(l1ν+l2),
ew(l3ν+l4)−2w(l1ν+l2), e2w(l3ν+l4)−w(l1ν+l2), e3w(l3ν+l4), e−2w(l1ν+l2) cos(w1(l5ν + l6)),
cos(w1(l5ν + l6))ew(l3ν+l4)−w(l1ν+l2), e2w(l3ν+l4) cos(w1(l5ν + l6)), e−w(l1ν+l2)

cos2(w1(l5ν + l6)), 6ew(l3ν+l4) cos2(w1(l5ν + l6)), e−2w(l1ν+l2) sin(w1(l5ν + l6)),
sin(w1(l5ν + l6))ew(l3ν+l4)−w(l1ν+l2), e2w(l3ν+l4) sin(w1(l5ν + l6)),
e−w(l1ν+l2) sin(w1(l5ν + l6)) cos(w1(l5ν + l6)), ew(l3ν+l4) sin(w1(l5ν + l6)) cos(w1(l5ν + l6)),
e−2w(l1ν+l2) cos(w1(l5ν + l6)), cos(w1(l5ν + l6))ew(l3ν+l4)−w(l1ν+l2),
cos(w1(l5ν + l6))ew(l3ν+l4)−w(l1ν+l2), sin(w1(l5ν + l6)) cos2(w1(l5ν + l6)),
e−w(l1ν+l2) sin2(w1(l5ν + l6)) and ew(l3ν+l4) sin2(w1(l5ν + l6)) to zero, we obtain the fol-
lowing for the homoclinic breather wave solution:

l3 = 0, l1 =

√
− 4β3C+4φ

β2

w
, l5 =

√
− 2β3C+2φ

β2

w1
. (29)

Using Equation (29) into Equation (28) and then using into Equation (14), we have

V =

2

−√−4β3C−4φ
β2

e
−w

 ν

√
−4β3C−4φ

β2
w +l2


− r2

√
−2β3C−2φ

β2
sin

w1

 ν

√
−2β3C−2φ

β2
w1

+ l6




e
−w

 ν

√
−4β3C−4φ

β2
w +l2


+ r2 cos

w1

 ν

√
−2β3C−2φ

β2
w1

+ l6

+ r1el4w

. (30)

Inserting Equation (30) into Equation (11) yields

U = −

4β1C

−√−4β3C−4φ
β2

e
−w

 ν

√
−4β3C−4φ

β2
w +l2


− r2

√
−2β3C−2φ

β2
sin

w1

 ν

√
−2β3C−2φ

β2
w1

+ l6




2

φ

e
−w

 ν

√
−4β3C−4φ

β2
w +l2


+ r2 cos

w1

 ν

√
−2β3C−2φ

β2
w1

+ l6

+ r1el4w


2 . (31)

Inserting Equation (30) into Equation (31) and then into Equation (3), we get the
solution for Υ and Ψ,

u(x, t) = eζη(t)− ζ2t
2

−4β1C
(
−
√
−4β3C−4φ

β2
eλ − r2

√
−2β3C−2φ

β2
sin(Ω)

)2

φ
(
eλ + r2 cos(Ω) + r1el4w

)2

(tφ +
xω

ω

)
, (32)

v(x, t) =
2eζη(t)− ζ2t

2

(
−
√
−4β3C−4φ

β2
eλ − r2

√
−2β3C−2φ

β2
sin(Ω)

)
eλ + r2 cos(Ω) + r1el4w , (33)

where Ω = w1


√
−2β3C−2φ

β2

(
tφ+ xω

ω

)
w1

+ l6

 and λ = −w


√
−4β3C−4φ

β2

(
tφ+ xω

ω

)
w + l2

.



Mathematics 2023, 11, 1504 7 of 25

7. M-Shaped Rational Wave Solution

For the M-shaped rational wave solution, we use the following transformation [28]:

f = c2
1 + c2

2 + w5, (34)

c1 = w1ν + w2, c2 = w3ν + w4.

Using Equation (34) into Equation (15), we get the following values for the solution:

w1 = 0, w4 = 0, w5 = −
3β3Cw2

2φ + 3w2
2φ2 − 4β1β3w2

3 − 8β1β4w2
3 + 3β2w2

3φ

3(φ(β3C + φ))
. (35)

Using Equation (35) into Equation (34) and then inserting into Equation (14), we get

V =
4νw2

3

− 3β3Cw2
2φ+3w2

2φ2−4β1β3w2
3−8β1β4w2

3+3β2w2
3φ

3φ(β3C+φ)
+ w2

2 + ν2w2
3

. (36)

By using Equation (36) into Equation (11), we have

U = −
16β1Cν2w4

3

φ

(
− 3β3Cw2

2φ+3w2
2φ2−4β1β3w2

3−8β1β4w2
3+3β2w2

3φ

3φ(β3C+φ)
+ w2

2 + ν2w2
3

)2 . (37)

Substituting Equation (36) into Equation (37) and then into Equation (3), we have the
solution for Υ and Ψ,

u(x, t) = −
16β1Cw4

3eζη(t)− ζ2t
2

(
tφ + xω

ω

)2

φ

(
− 3β3Cw2

2φ+3w2
2φ2−4β1β3w2

3−8β1β4w2
3+3β2w2

3φ

3φ(β3C+φ)
+ w2

3
(
tφ + xω

ω

)2
+ w2

2

)2 , (38)

v(x, t) =
4w2

3eζη(t)− ζ2t
2

(
tφ + xω

ω

)
− 3β3Cw2

2φ+3w2
2φ2−4β1β3w2

3−8β1β4w2
3+3β2w2

3φ

3φ(β3C+φ)
+ w2

3
(
tφ + xω

ω

)2
+ w2

2

. (39)

8. M-Shaped Rational Wave Solution with One Kink Wave

For an M-shaped rational wave solution with one kink wave, we assume the following
f [29]:

f = c2
1 + c2

2 + r1eG1 + w5, (40)

c1 = w1ν + w2, c2 = w3ν + w4,

G1 = l1ν + l2.

Using Equation (40) into Equation (15) and setting the coefficients of x, t, e3l1ν+3l2 , e2l1ν+2l2

and el1ν+l2 to zero, we have some values for the wave solution:

w1 = 0, l1 =

√
− β3C + φ

β2
, w4 =

w3

√
− β3C+φ

β2
(4β1β3 + 8β1β4 − 9β2φ)

15(φ(β3C + φ))
. (41)
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Evaluating Equation (41) into Equation (40) and then putting the result into
Equation (14), we have

V =

2

r1

√
β3(−C)−φ

β2
e

ν

√
β3(−C)−φ

β2
+l2

+ 2w3

w3

√
β3(−C)−φ

β2
(4β1β3+8β1β4−9β2φ)

15φ(β3C+φ)
+ νw3


r1e

ν

√
β3(−C)−φ

β2
+l2

+

w3

√
β3(−C)−φ

β2
(4β1β3+8β1β4−9β2φ)

15φ(β3C+φ)
+ νw3

2

+ w2
2 + w5

. (42)

Substituting Equation (42) into Equation (11), we get

U = −

4β1C

r1

√
β3(−C)−φ

β2
e

ν

√
β3(−C)−φ

β2
+l2

+ 2w3

w3

√
β3(−C)−φ

β2
(4β1β3+8β1β4−9β2φ)

15φ(β3C+φ)
+ νw3

2

φ

r1e
ν

√
β3(−C)−φ

β2
+l2

+

w3

√
β3(−C)−φ

β2
(4β1β3+8β1β4−9β2φ)

15φ(β3C+φ)
+ νw3

2

+ w2
2 + w5


2 . (43)

Evaluating Equations (42) and (43) into Equation (3), we obtain the solutions given below

u(x, t) = −

4β1Ceζη(t)− ζ2t
2

r1

√
β3(−C)−φ

β2
e

√
β3(−C)−φ

β2

(
tφ+ xω

ω

)
+l2

+ 2w3(Π)

2

φ

r1e

√
β3(−C)−φ

β2
(tφ+ xω

ω )+l2
+ (Π)2 + w2

2 + w5

2 , (44)

v(x, t) =

2eζη(t)− ζ2t
2

r1

√
β3(−C)−φ

β2
e

√
β3(−C)−φ

β2

(
tφ+ xω

ω

)
+l2

+ 2w3(Π)


r1e

√
β3(−C)−φ

β2
(tφ+ xω

ω )+l2
+ (Π)2 + w2

2 + w5

, (45)

where Π =
w3

√
β3(−C)−φ

β2
(4β1β3+8β1β4−9β2φ)

15φ(β3C+φ)
+ w3

(
tφ + xω

ω

)
.

9. M-Shaped Rational Wave Solution with Two Kink Waves

For the M-shaped rational wave solution with two kink waves, we assume the follow-
ing ansatz [30]:

f = c2
1 + c2

2 + r1eG1 + r2eG2 + w5, (46)

c1 = w1ν + w2, c2 = w3ν + w4,

G1 = l1ν + l2, G2 = l3ν + l4.

Inserting Equation (46) into Equation (15) and setting the coefficients of
x, t, e3l1ν+3l2 , e2l1ν+2l2 , el1ν+l2 ,
e3l3ν+3l4 , e2l3ν+2l4 , el3ν+l4 , e2l1ν+2l2+l3ν+l4 , el1ν+l2+2l3ν+2l4 , el1ν+l2+l3ν+l4 to zero, we get some
values for the wave solution:

l3 = 0, w1 = 0, w5 = −
β3Cw2

2 + 3β3Cw2
4 + w2

2φ− 3β2w2
3 + 3w2

4φ

β3C + φ
. (47)
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Putting Equation (47) into Equation (46) and then inserting into Equation (14), we get

V =
2
(

l1r1el1ν+l2 + 2w3(νw3 + w4)
)

β3(−C)w2
2−3β3Cw2

4−w2
2φ+3β2w2

3−3w2
4φ

β3C+φ + r1el1ν+l2 + el4 r2 + w2
2 + (νw3 + w4)2

. (48)

Inserting Equation (48) into Equation (11) yields

U = −
4β1C

(
l1r1el1ν+l2 + 2w3(νw3 + w4)

)2

φ

(
β3(−C)w2

2−3β3Cw2
4−w2

2φ+3β2w2
3−3w2

4φ
β3C+φ + r1el1ν+l2 + el4 r2 + w2

2 + (νw3 + w4)2
)2 . (49)

Then, putting Equations (48) and (49) into Equation (3), we obtain

u(x, t) = −
4β1Ceζη(t)− ζ2t

2

(
l1r1el1

(
tφ+ xω

ω

)
+l2 + 2w3

(
w3

(
tφ + xω

ω

)
+ w4

))2

φ

(
β3(−C)w2

2−3β3Cw2
4−w2

2φ+3β2w2
3−3w2

4φ
β3C+φ + r1el1(tφ+ xω

ω )+l2 + el4 r2 +
(
w3
(
tφ + xω

ω

)
+ w4

)2
+ w2

2

)2 , (50)

v(x, t) =
2eζη(t)− ζ2t

2

(
l1r1el1

(
tφ+ xω

ω

)
+l2 + 2w3

(
w3

(
tφ + xω

ω

)
+ w4

))
β3(−C)w2

2−3β3Cw2
4−w2

2φ+3β2w2
3−3w2

4φ
β3C+φ + r1el1(tφ+ xω

ω )+l2 + el4 r2 +
(
w3
(
tφ + xω

ω

)
+ w4

)2
+ w2

2

. (51)

10. M-Shaped Interaction with Rogue and Kink Waves

For the M-shaped interaction with rogue and kink waves, we assume the following
f [29]:

f = c2
1 + c2

2 ++r1 cosh(G1) + r2eG2 + w5, (52)

c1 = w1ν + w2, c2 = w3ν + w4,

G1 = l1ν + l2, G2 = l3ν + l4.

By using Equation (52) into Equation (15) and setting the coefficients of x, t, e3l3ν+3l4 ,
e2l3ν+2l4 , el3ν+l4 , cosh(l1ν + l2), cosh(l1ν + l2), el3ν+l4 cosh(l1ν + l2), cosh2(l1ν + l2),
sinh(l1ν + l2), e2l3ν+2l4 sinh(l1ν + l2), el3ν+l4 sinh(l1ν + l2), sinh(l1ν + l2) cosh(l1ν + l2),
sinh(l1ν + l2) cosh2(l1ν + l2), el3ν+l4 sinh2(l1ν + l2), sinh2(l1ν + l2) and sinh3(l1ν + l2) to
zero, we are left with some values for the wave solution:

w1 = 0, l3 =

√
− β3C + φ

β2
, w4 =

w3(4β1β3 − 9β2φ)
√
− β3C+φ

β2

15(φ(β3C + φ))
. (53)

Putting Equation (53) into Equation (52) and then into Equation (14), we have the solution

V =

2

ξe
ν

√
β3(−C)−ν

β2
+l4

+ 2(χ)(∆ + w3) + l1r1 sinh(l1ν + l2)


r2e

ν

√
β3(−C)−ν

β2
+l4

+ (χ)2 + r1 cosh(l1ν + l2) + w2
2 + w5

, (54)
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U = −

4β1C

ξe
ν

√
β3(−C)−ν

β2
+l4

+ 2(χ)(∆ + w3) + l1r1 sinh(l1ν + l2)

2

φ

r2e
ν

√
β3(−C)−ν

β2
+l4

+ (χ)2 + r1 cosh(l1ν + l2) + w2
2 + w5

2 , (55)

where ξ = r2

√ β3(−C)−ν
β2

− ν

2β2

√
β3(−C)−ν

β2

, χ =
w3(4β1β3−9β2ν)

√
β3(−C)−ν

β2
15ν(β3C+ν)

+ νw3 and ∆ =

−
w3(4β1 β3−9β2ν)

√
β3(−C)−ν

β2

15ν2(β3C+ν)
− w3(4β1 β3−9β2ν)

30β2ν(β3C+ν)

√
β3(−C)−ν

β2

−
w3(4β1 β3−9β2ν)

√
β3(−C)−ν

β2

15ν(β3C+ν)2 −
3β2w3

√
β3(−C)−ν

β2

5ν(β3C+ν)
.

Evaluating Equations (54) and (55) into Equation (3), we obtain

u(x, t) = −

4β1Ceζη(t)− ζ2t
2

r2

√−β3C−tφ− xω
ω

β2
− tφ+ xω

ω

2β2

√
−β3C−tφ− xω

ω
β2

eλ + 2(Γ−Λ)($) + l1r1 sinh(θ)

2

φ
(

r2eλ + ($)2 + r1 cosh(θ) + w2
2 + w5

)2 , (56)

v(x, t) =

2eζη(t)− ζ2t
2

r2

√−β3C−tφ− xω
ω

β2
− tφ+ xω

ω

2β2

√
−β3C−tφ− xω

ω
β2

e(λ) + 2(Γ + Λ)($) + l1r1 sinh(θ)


r2e(λ) + ($)2 + r1 cosh(θ) + w2

2 + w5
, (57)

where $ =
w3

√
−β3C−tφ− xω

ω
β2

(
4β1β3−9β2

(
tφ+ xω

ω

))
15(tφ+ xω

ω )(β3C+tφ+ xω
ω )

+ w3

(
tφ + xω

ω

)
, θ = l1

(
tφ + xω

ω

)
+ l2,

Γ = −
w3

(
4β1β3−9β2

(
tφ+ xω

ω

))
30β2(tφ+ xω

ω )(β3C+tφ+ xω
ω )

√
−β3C−tφ− xω

ω
β2

−
w3

√
−β3C−tφ− xω

ω
β2

(
4β1β3−9β2

(
tφ+ xω

ω

))
15(tφ+ xω

ω )
2
(β3C+tφ+ xω

ω )
,

Λ = −
w3

√
−β3C−tφ− xω

ω
β2

(
4β1β3−9β2

(
tφ+ xω

ω

))
15(tφ+ xω

ω )(β3C+tφ+ xω
ω )

2 −
3β2w3

√
−β3C−tφ− xω

ω
β2

5(tφ+ xω
ω )(β3C+tφ+ xω

ω )
+ w3,

λ =
(

tφ + xω

ω

)√−β3C−tφ− xω
ω

β2
+ l4.

11. M-Shaped Interaction with Periodic and Kink Waves

For the M-shaped interaction with periodic and kink waves, we use the given transfor-
mation [31–33]:

f = c2
1 + c2

2 ++r1 cos(G1) + r2eG2 + w5, (58)

c1 = w1ν + w2, c2 = w3ν + w4,

G1 = l1ν + l2, G2 = l3ν + l4.

By using Equation (58) into Equation (15) and by comparing the coefficients of
x, t, e3l3ν+3l4 , e2l3ν+2l4 , el3ν+l4 , cos(l1ν + l2), el3ν+l4 cos(l1ν + l2), cos2(l1ν + l2),
el3ν+l4 cos2(l1ν+ l2), e2l3ν+2l4 sin(l1ν+ l2), sin(l1ν+ l2), el3ν+l4 sin(l1ν+ l2), el3ν+l4 sin(l1ν+
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l2) cos(l1ν + l2), sin(l1ν + l2) cos(l1ν + l2), sin(l1ν + l2) cos2(l1ν + l2) and sin3(l1ν + l2),
we get some values for the wave solution:

l3 = 0, w1 = −w3w4

w2
, (59)

w5 = −
β3Cw4

2 + β3Cw2
2w2

4 + w4
2φ− 3β2w2

2w2
3 + w2

2w2
4φ− 3β2w2

3w2
4

w2
2(β3C + φ)

.

After inserting Equation (59) into Equation (58) and then inserting into Equation (14),
we get

V =

2

(
− γ

w2
2(β3C+ν)2 +

−w4
2−w2

2w2
4

w2
2(β3C+ν)

− l1r1 sin(l1ν + l2)−
2w3w4

(
w2−

νw3w4
w2

)
w2

+ 2w3(νw3 + w4)

)
γ

w2
2(β3C+ν)

+ r1 cos(l1ν + l2) + el4 r2 +
(

w2 − νw3w4
w2

)2
+ (νw3 + w4)2

, (60)

U = −
4β1C

(
− γ

w2
2(β3C+ν)2 +

−w4
2−w2

2w2
4

w2
2(β3C+ν)

− l1r1 sin(l1ν + l2)−
2w3w4

(
w2−

νw3w4
w2

)
w2

+ 2w3(νw3 + w4)

)2

φ

(
γ

w2
2(β3C+ν)

+ r1 cos(l1ν + l2) + el4 r2 +
(

w2 − νw3w4
w2

)2
+ (νw3 + w4)2

)2 , (61)

where γ = β3(−C)w4
2 − β3Cw2

2w2
4 − νw4

2 + 3β2w2
2w2

3 − νw2
2w2

4 + 3β2w2
3w2

4.
By putting Equations (60) and (61), we have the following solutions

u(x, t) = −
4β1Ceζη(t)− ζ2t

2

(
− ς

w2
2(β3C+tφ+ xω

ω )
2 +

−w4
2−w2

2w2
4

w2
2(β3C+tφ+ xω

ω )
− l1r1 sin(v)− 2w3w4(ψ)

w2
+ 2w3(κ)

)2

φ

(
ς

w2
2(β3C+tφ+ xω

ω )
+ r1 cos(v) + el4 r2 + (ψ)2 + (κ)2

)2 , (62)

v(x, t) =

2eζη(t)− ζ2t
2

(
− ς

w2
2(β3C+tφ+ xω

ω )
2 +

−w4
2−w2

2w2
4

w2
2(β3C+tφ+ xω

ω )
− l1r1 sin(v)− 2w3w4(ψ)

w2
+ 2w3(κ)

)
ς

w2
2(β3C+tφ+ xω

ω )
+ r1 cos(v) + el4 r2 + (ψ)2 + (κ)2 , (63)

where ς = β3(−C)w4
2− β3Cw2

2w2
4−w4

2

(
tφ + xω

ω

)
−w2

2w2
4

(
tφ + xω

ω

)
+ 3β2w2

2w2
3 + 3β2w2

3w2
4,

v = l1
(

tφ + xω

ω

)
+ l2, ψ = w2 −

w3w4

(
tφ+ xω

ω

)
w2

and κ = w3

(
tφ + xω

ω

)
+ w4.

12. Results and Discussion

Some researchers worked on the governing model such as Askar et al., who used the
(G’/G)-expansion method to find exact solutions for the fractional–stochastic Drinfel’d–
Sokolov–Wilson equations [18]. Qin and Yan worked on the applications of the coupled
Drinfel’d–Sokolov–Wilson equation and also used an improved F-expansion method to
find exact doubly periodic solutions in terms of the rational formal Jacobi elliptic function
of nonlinear partial differential equations [34].

By selecting the appropriate values for the parameter, we were able to generate the
desired types of solution that indicated a wave discrepancy. In Figures 1–28, we presented
3D, 2D, contour plots, respectively. In Figure 1, the M and W shape waves appeared with
bright and dark faces. In Figure 2, we obtained a bright face and after some time, bright–
dark faces appeared; in Figures 3 and 4, we represented 2D and contour plots of this wave
solution by using the values β2 = 0.2, β3 = 3.5, ζ = 0, l2 = 0.03, Q = 5, r1 = 2.5, w2 = 5,
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w3 = 0.3, w4 = 0.9, ω = 0.1 and φ = 1.7. According to Equation (26) and Equation (27),
the periodic waves produced in Figures 5–8 varied in amplitude. In Figures 9–11, we can
see one stripe soliton propagating at different times. The MSR solution was shown in
Figures 12–16, where M-shaped waves appeared with bright–dark faces. In Figures 17a
and 18a, one kink wave appeared and after some time, that one kink wave changed into the
M-shaped wave shown in Figures 17b and 18b for Equation (44) and the remaining figures
for that solution showed the 2D and contour plots. The MSR solution with two kink waves
in Figures 19–21 with bright and dark faces was derived from Equations (50) and (51).
For Equations (56) and (57) and Equations (62) and (63), the M-shaped interactions with
RK and PK with some M-shaped dark and bright faces are shown in Figures 22–28.

(a) ω = 0.8 (b) ω = 0.5

(c) ω = 0.8 (d) ω = 0.5

(e) ω = 0.8 (f) ω = 0.5

Figure 1. Show the behaviour of u(x, t) in Equation (20), it is presented with β1 = 3.5, β2 = 0.2,
β3 = 1.5, ζ = 0, l2 = 0.3, Q = 2, r1 = 1.5, w2 = 2.5, w3 = 7.3, w4 = 1.9 and φ = 4.7. (a,b) shows 3D
graphs presenting bright and dark faces for ω = 0.8 and ω = 0.5 respectively, (c,d) show 2D graphs
for bright and dark faces for ω = 0.8 and ω = 0.5 respectively. (e,f) show contour graphs for bright
and dark faces for ω = 0.8 and ω = 0.5 respectively.
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(a) ω = 2.0 (b) ω = 5.0 (c) ω = 7.0

Figure 2. (a–c) show three-dimensional plots.

(a) ω = 2.0 (b) ω = 5.0 (c) ω = 7.0

Figure 3. (a–c) show two-dimensional plots .

(a) ω = 2.0 (b) ω = 5.0 (c) ω = 7.0

Figure 4. Graphical demonstration of the two-dimensional and three-dimensional representations and
contour of solution v(x, t) in Equation (21) with β2 = 0.2, β3 = 3.5, ζ = 0, l2 = 0.03, Q = 5, r1 = 2.5,
w2 = 5, w3 = 0.3, w4 = 0.9, and φ = 1.7. (a–c) show contour graphs.

(a) ω = 3 (b) , ω = 0.6

(c) , ω = 3 (d) , ω = 0.6

Figure 5. (a,b) show 3D plots and (c,d) show two-dimensional plots
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(a) ω = 3.0 (b) ω = 0.6

Figure 6. (a,b) show contour plots. The graphical behaviour of u(x, t) in Equation (26) is pre-
sented with β1 = 0.3, β2 = 0.2, β3 = 0.5, β4 = 0.4, ζ = 0, l1 = 0.3, l2 = 0.1, l4 = 4.5, l5 = −0.5,
Q = 1.2, r1 = 2.5, r2 = 3.2, w2 = 0.2, w3 = 3.1, w4 = 1.5, w5 = 5 and φ = 1.4.

(a) ω = 3.0 (b) ω = 0.6

(c) ω = 3.0 (d) ω = 0.6

Figure 7. (a,b) show three-dimensional plots and (c,d) show two-dimensional plots.
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(a) ω = 3.0 (b) ω = 0.6

Figure 8. Graphical demonstration of solution v(x, t) in Equation (27) presented with
β1 = 0.3, β2 = 0.2, β3 = 0.5, β4 = 0.04, ζ = 0, l1 = 0.1, l2 = 0.01, l4 = 4.4, l5 = 0.5, Q = 1.2,
r1 = 2.5, r2 = 3.2, w2 = 0.02, w3 = 3.1, w4 = 1.5, w5 = 5 and φ = 1.4. (a,b) show contour plots for var-
ious values of ω.

(a) ω = 2.0 (b) ω = 0.04

(c) ω = 2.0 (d) ω = 0.04

Figure 9. (a,b) show 3D plots and (c,d) show 2D plots.
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(a) ω = 2.0 (b) ω = 0.04

Figure 10. Dynamical behaviour of u(x, t) in Equation (32) presented with β1 = 1.2, β2 = 0.2,
β3 = 3.5, ζ = 0, l2 = 0.3, l4 = 4.2, l6 = 1.6, Q = 0.5, r1 = 1.5, r2 = 2.5, w = 3, w1 = 2.5, and φ = 1.3.
(a,b) show contour plots for various values of ω.

(a) ω = −0.04 (b) ω = 1.0 (c) ω = 0.04

(d) ω = −0.04 (e) ω = 1.0 (f) ω = 0.04

(g) ω = −0.04 (h) 1.0 (i) ω = 0.04

Figure 11. (a–c) show 3D graphs. Dynamical representation of solution v(x, t) in Equation (33) with
β2 = 0.2, β3 = 3.5, ζ = 0, l2 = 0.03, Q = 5, r1 = 2.5, w2 = 5, w3 = 0.3, w4 = 0.9, φ = 1.7. (d–f) show
2D plots and (g–i) represent contour graphs for various values of ω.
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(a) ω = 0.1 (b) ω = 0.6

Figure 12. (a,b) show 3D plots.

(a) ω = 0.1 (b) ω = 0.6

(c) ω = 0.1 (d) ω = 0.6

Figure 13. Dynamical behaviour of u(x, t) in Equation (38) presented with β1 = 0.3, β2 = 2.2,
β3 = 0.5, β4 = 5.4, ζ = 0, Q = 2, w2 = 1.1, w3 = 3.2 and φ = 1.4. (a,b) show 2D plots and (c,d) repre-
sent contour plots for different values of ω.

(a) ω = −1.5 (b) ω = 1.0 (c) ω = 1.5

Figure 14. (a–c) show 3D plots.
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(a) ω = −1.5 (b) ω = 1.0 (c) ω = 1.5

Figure 15. (a–c) show 2D plots.

(a) ω = −1.5 (b) ω = 1.0 (c) ω = 1.5

Figure 16. Behaviour of v(x, t) in Equation (39) presented with β1 = 1.3, β2 = 0.2, β3 = 1.5, β4 = 0.4,
ζ = 0, Q = 5.2, w2 = 0.1, w3 = 3 and φ = 1.4. (a–c) show contour graphs for various values of ω.

(a) ω = 0.8 (b) ω = 2.0

(c) ω = 0.8 (d) ω = 2.0

(e) ω = 0.8 (f) ω = 2.0

Figure 17. Dynamical demonstration of u(x, t) in Equation (44) presented with β1 = 1.3, β2 = 0.2,
β3 = 3.5, β4 = 0.4, ζ = 0, l2 = 0.1, l5 = 0.5, Q = 3.2, r1 = 2.5, w2 = 2, w3 = 3.5, w5 = 1.5, and φ = 5.4.
(a,b) show 3D graph of lump wave, (c,d) represent 2D graph and (e,f) show contour plot.
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(a) ω = 0.6 (b) ω = 1.5

(c) ω = 0.6 (d) ω = 1.5

(e) ω = 0.6 (f) ω = 1.5

Figure 18. Dynamical behaviour of v(x, t) in Equation (45) represented via β1 = 0.3, β2 = 0.2,
β3 = 0.5, β4 = 0.04, ζ = 0, l2 = 0.01, l5 = 0.5, Q = 1.2, r1 = 2.5, w2 = 0.02, w3 = 3.1, and φ = 1.4.
(a,b) show 3D graph of lump wave, (c,d) represent 2D graph and (e,f) show contour plot for different
values of ω.

(a) ω = 1.5 (b) ω = 3.5

(c) ω = 1.5 (d) ω = 3.5

Figure 19. (a,b) show 3D plots and (c,d) show 2D plots.
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(a) ω = 1.5 (b) ω = 3.5

Figure 20. Dynamical demonstration of u(x, t) in Equation (50) presented with β1 = 1.5, β2 = 0.2,
β3 = 0.5, ζ = 0, l1 = 1.1, l2 = 0.1, l4 = 0.5, Q = 1.2, r1 = 2.5, r2 = 0.12, w2 = 0.2, w3 = 0.03,
w4 = 3.1 and φ = 1.4. (a,b) show contour plots for different ω.

(a) ω = 0.09 (b) ω = 0.04

(c) ω = 0.09 (d) ω = 0.04

(e) ω = 0.09 (f) ω = 0.04

Figure 21. Graphical representation of solution v(x, t) in Equation (51) with β2 = 0.2, β3 = 0.5, ζ = 0,
l1 = 1.1, l2 = 0.01, l4 = 0.5, Q = 1.2, r1 = 2.5, r2 = 0.12, w2 = 0.02, w3 = 0.03, w4 = 3.1, and φ = 1.4.
(a,b) show 3D graph of lump wave, (c,d) represent 2D graph and (e,f) show contour plot.



Mathematics 2023, 11, 1504 21 of 25

(a) ω = 0.1 (b) ω = 0.8

(c) ω = 0.1 (d) ω = 0.8

(e) ω = 0.1 (f) ω = 0.8

Figure 22. Graphical demonstration of u(x, t) in Equation (56) presented with β1 = 0.3, β2 = 1.2,
β3 = 0.5, ζ = 0, l1 = −1.8, l2 = 0.05, l4 = 0.01, Q = 5.2, r1 = 2.5, r2 = 1.3, w2 = 0.1, w3 = 3,
w4 = 1.9, w5 = 1.2 and φ = 1.4. (a,b) show 3D graph, (c,d) represent 2D graph and (e,f) show
contour plot.

(a) ω = 0.1 (b) ω = 0.8

Figure 23. Cont.
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(c) ω = 0.1 (d) ω = 0.8

(e) ω = 0.1 (f) ω = 0.8

Figure 23. (a,b) show 3D graphs and (c,d) represent 2D graph. Dynamical presentation of solution
v(x, t) in Equation (57) with β1 = 0.3, β2 = 1.2, β3 = 0.5, ζ = 0, l1 = −1.8, l2 = 0.05, l4 = 0.01,
Q = 5.2, r1 = 2.5, r2 = 1.3, w2 = 0.1, w3 = 3, w4 = 1.9, w5 = 1.2 and φ = 1.4. (e,f) show contour plot.

(a) ω = 4.5 (b) ω = 2.5

Figure 24. (a,b) show 3D plots.

(a) ω = 4.5 (b) ω = 2.5

Figure 25. Cont.
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(c) ω = 4.5 (d) ω = 2.5

Figure 25. Graphical presentation of u(x, t) in Equation (62) presented with β1 = 0.5, β2 = 1.2,
β3 = 2.5, ζ = 0, l1 = 3, l2 = 0.1, l4 = 2, Q = 5, r1 = 1.5, r2 = 3.1, w2 = 1.1, w3 = 2.3, w4 = 0.9 and
φ = 1.2. (a,b) show 2D plot and (c,d) show contour graph.

(a) ω = 0.4 (b) ω = 0.1

Figure 26. (a,b) show 3D plots.

(a) ω = 0.4 (b) ω = 0.1

Figure 27. (a,b) show 2D plots.

(a) ω = 0.4 (b) 0.1

Figure 28. Dynamical presentation of solution v(x, t) in Equation (63) with β2 = 0.2, β3 = 3.5,
ζ = 0, l1 = 0.03, l2 = 0.01, l4 = 2, Q = 5, r1 = 4.5, r2 = 2.1, w2 = 0.1, w3 = 4.3, w4 = 1.9 and φ = 1.2.
(a,b) show contour plot.
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13. Conclusions

In this paper, we explored some wave solutions for stochastic–fractional Drinfel’d–
Sokolov–Wilson. These equations are used in applied sciences, plasma physics, population
dynamics, surface physics and mathematical physics. The obtained solutions were better
and more useful and efficient for understanding a variety of significant physical phenomena.
We acquired different types of solutions such as the periodic cross-rational wave solution,
cross-kink rational wave solution, homoclinic breather wave solution, M-shaped rational
wave solution, M-shaped rational wave solution with one kink wave, M-shaped rational
wave solution with two kink waves, M-shaped interaction with rogue and kink waves,
M-shaped interaction with periodic and kink waves. We also represented these wave
solutions graphically.
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