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Abstract—We present the outcomes of a recent large-scale
subjective study of Mobile Cloud Gaming Video Quality As-
sessment (MCG-VQA) on a diverse set of gaming videos. Rapid
advancements in cloud services, faster video encoding technolo-
gies, and increased access to high-speed, low-latency wireless
internet have all contributed to the exponential growth of the
Mobile Cloud Gaming industry. Consequently, the development
of methods to assess the quality of real-time video feeds to
end-users of cloud gaming platforms has become increasingly
important. However, due to the lack of a large-scale public
Mobile Cloud Gaming Video dataset containing a diverse set
of distorted videos with corresponding subjective scores, there
has been limited work on the development of MCG-VQA
models. Towards accelerating progress towards these goals, we
created a new dataset, named the LIVE-Meta Mobile Cloud
Gaming (LIVE-Meta-MCG) video quality database, composed
of 600 landscape and portrait gaming videos, on which we
collected 14,400 subjective quality ratings from an in-lab sub-
jective study. Additionally, to demonstrate the usefulness of
the new resource, we benchmarked multiple state-of-the-art
VQA algorithms on the database. The new database will be
made publicly available on our website: https://live.ece.utexas.
edu/research/LIVE-Meta-Mobile-Cloud-Gaming/index.html

Index Terms—Mobile Cloud Gaming, No-Reference Video
Quality Assessment, Cloud Gaming Video Quality Database.

I. INTRODUCTION

THE last decade has witnessed the growth of cloud gaming
services as an emergent technology in the digital gaming

industry, and many major technology companies such as Meta,
Google, Apple, NVIDIA and Microsoft have aggressively
invested in building cloud gaming infrastructure. According
to a survey by Allied Market Research [1], the cloud gaming
industry is projected to grow at a compounded annual growth
rate of 57.2% from 2021 to 2030. This astronomical growth
may be attributed to multiple factors. Cloud gaming services
are a cost-effective alternative to traditional physical gaming
consoles and PC (personal computer) based digital video
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games, a critical factor contributing to their rapid growth.
Cloud gaming subscribers are able to access large and diverse
libraries of games playable on any device anywhere without
downloading or installing them. Cloud gaming aims to pro-
vide high-quality gaming experiences to users by executing
complex game software on powerful cloud gaming servers,
and streaming the computed game scenes over the internet
in real-time, as depicted in Fig 1. Gamers use lightweight
software that can be executed on any device to view real-time
video game streams while interacting with the games. Cloud
gaming services also facilitate rapid video game development
processes by eliminating support requirements on multiple
user systems, leading to lower overall production costs. This
alleviates the need to upgrade consoles and PCs to maintain
the gaming experiences of the end-users, as newer and more
complex games are made available. Other notable factors
contributing to the growth of cloud gaming services include
the development of hardware-accelerated video compression
methods, access to inexpensive high-speed, lower latency
wireless internet services facilitated by the introduction of
global 5G services, and the availability of more efficient and
affordable cloud platform infrastructures like AWS, Google
Cloud, and Microsoft Azure. Another significant contributor
to the acceleration of the cloud gaming market since 2019 has
been COVID-19 induced restrictions and lockdowns. Indeed,
the amount of time spent playing video games increased by
more than 71% during the COVID-19 lockdown, as reported
in [1].

Recent trends suggest that smartphones have begun to
dominate the global cloud gaming industry, and this uptrend
is expected to continue. Mobile Cloud Gaming differs from
generic Cloud Gaming in various important ways. First, Mo-
bile Cloud Gaming services generally render video game
scenes at 720p resolution and 30 frames per second (fps)
to accommodate the current gamut of mobile devices, while
helping to stabilize delivery and ensuring smoother connec-
tions. By comparison, non-mobile Cloud Gaming applications,
which are typically played on PCs and televisions, are usually
rendered at 1080p/4K resolution and 30-120 fps. Second,
Mobile Gaming experiences support gameplay in both portrait
and landscape orientations on mobile devices, unlike PCs and
television games, which are only playable in landscape mode.
Third, Mobile Cloud Gaming services allow users to play
over the wireless internet, and must contend with variable
internet connections and transmission speeds, unlike cloud
gaming services played on PCs and televisions having stable,
high-bandwidth wired internet access. This raises significant
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Fig. 1. Exemplar Mobile Cloud Gaming system. Video games scenes are
rendered in the Cloud servers of service providers, then the gaming video
frames are sent over the Internet to end-users’ Mobile devices. The game
players’ interactions are sent back to the Cloud server over the same network.

technical challenges that must be met to deliver acceptable
levels of perceived game video quality.

In a cloud gaming setup, video artifacts can severely impair
the perceptual quality of delivered gaming videos. Because
of this, there is heightened interest in developing perceptual
Video Quality Assessment (VQA) models for gaming videos.
However, there have been limited advancements in this direc-
tion for two reasons. First, VQA algorithms that have been
trained on generic VQA databases generally do not perform
well on content-specific gaming videos, which exhibit different
appearances and statistical properties than naturalistic camera-
captured videos.

Second, building those models inevitably requires the con-
struction of psychometric VQA databases containing large
numbers of representative gaming videos that have been la-
beled with human-annotated scores. Unfortunately, there are
very few VQA databases dedicated to Cloud Gaming VQA re-
search, and none are public databases focused on MCG-VQA.
Towards advancing progress in this domain, we created a new
resource that we call the LIVE-Meta Mobile Cloud Gaming
(LIVE-Meta MCG) database, composed of 600 landscape and
portrait gaming videos, and targeted explicitly towards mobile
cloud gaming. The new database contains 600 videos drawn
from 30 source sequences obtained from 16 different games,
impaired by varying degrees of video compression and resizing
distortions. We then conducted a sizeable human subjective
study on these videos. To demonstrate the usefulness of the
new database, we also performed a rigorous evaluation of
current state-of-the-art VQA models on it, and compared their
performance.

The remaining parts of the paper are organized as follows.
Section II presents prior work relevant to our mobile cloud
gaming video quality. In Section III, we discuss the relevance
of the new mobile gaming VQA dataset and highlight the

novelty and significance of our work. Section IV explains
the data acquisition process and the design of the human
study protocol. Section V compares the performances of
various state-of-the-art (SOTA) No-Reference VQA models
on the LIVE-Meta Mobile Cloud Gaming (LIVE-Meta MCG)
database. Section VI studies the performances of popular Full
Reference VQA algorithms originally developed for natural
videos, from the perspective of their possibly being used as
proxy-MOS or pre-training targets in the development of deep-
learning based NR-VQA models for Mobile Cloud Gaming.
We conclude in Section VII by summarizing the paper and
discussing possible directions of future work.

II. RELATED WORK

Video Quality Assessment research over the last decade
has been elevated by the availability of large, comprehensive
databases containing videos labeled by subjective quality
scores obtained by conducting either laboratory or online
studies. Given the explosive growth of the digital gaming
industry over the last few years, there is an urgent need to
develop gaming-specific VQA algorithms that can be used
to monitor and control the quality of video gaming streams
transmitted throughout the global internet, towards ensuring
that millions of users will experience holistic, high-quality
gameplay. Consequently, VQA researchers have begun to
develop subjective VQA databases that are focused on gaming
videos, as tools for the development of Gaming VQA algo-
rithms. Early work has produced the GamingVideoSET [2] and
the Kingston University Gaming Video Dataset (KUGVD) [3].
However, these databases are quite limited in the number of
videos having associated subjective quality ratings and in the
variety of source content. Both databases [2], [3] were built on
only six source sequences, each used to create 15 resolution-
bitrate distortion pairs, yielding a total of only 90 videos rated
by human subjects. These data limitations are a bottleneck
to the development of reliable and flexible VQA models.
Towards bridging this gap, a more extensive Cloud Gaming
Video Dataset (CGVDS) dataset was introduced in [4]. This
dataset includes subjective quality ratings on more than 360
gaming videos obtained from 15 source sequences, collected
in a laboratory human study. However, all of the videos in
the CGVDS dataset were rendered in landscape mode; hence
training a VQA model on them could result in unreliable
performance on portrait gaming videos. The other two datasets
in the Gaming VQA domain are the Tencent Gaming Video
(TGV) dataset [5] and the LIVE-YT-Gaming dataset [6].
The TGV dataset contains 1293 landscape gaming videos
drawn from 150 source sequences. However, this dataset is
not available in the public domain. The LIVE-YT-Gaming
video dataset contains 600 original user-generated content
(UGC) gaming videos harvested from the internet. Since these
UGC videos were obtained by downloading after-the-fact user-
generated gameplay videos from a variety of websites, they
are not good candidates for training Cloud Gaming VQA
algorithms. Instead, it is desirable to be able to train MCG-
VQA models on multiple distorted versions of high-quality
source videos, so that they can be used to choose optimal
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TABLE I
A SUMMARY OF EXISTING GAMING VQA DATABASES AND THE NEW LIVE-META MOBILE CLOUD GAMING DATABASE

Database # Videos # Source
Sequences

Pristine Source
Sequences

# Ratings
per Video Public Resolution Distortion Type Duration Display Device Display Orientation Study Type

GamingVideoSET 90 6 Yes 25 Yes 480p, 720p,
1080p H.264 30 sec 24” Monitor Landscape Laboratory

KUGVD 90 6 Yes 17 Yes 480p, 720p,
1080p H.264 30 sec 55” Monitor Landscape Laboratory

CGVDS 360 +
anchor stimuli 15 Yes Unavailable Yes 480p, 720p,

1080p H.264 NVENC 30 sec 24” Monitor Landscape Laboratory

TGV 1293 150 No Unavailable No 480p, 720p,
1080p

H.264, H.265,
Tencent codec 5 sec Unknown

Mobile Device Landscape Laboratory

LIVE-YT
-Gaming 600 600 No 30 Yes 360p, 480p,

720p, 1080p UGC distortions 8-9 sec Multiple Devices Landscape Online

LIVE-Meta
Mobile Cloud Gaming 600 30 Yes 24 Yes 360p, 480p,

540p, 720p H.264 NVENC 20 sec Google Pixel 5 Landscape,
Portrait Laboratory

streaming settings for given network conditions, to deliver the
best possible viewing experiences to gaming end-users.

Other than the LIVE-YT-Gaming dataset, the source videos
in gaming databases are of very high pristine quality. They
have generally been played using powerful hardware de-
vices, under high-quality game settings and recorded with
professional-grade software. The source sequences are then
typically processed with resizing and video compression op-
erations to generate a corpus of the distorted videos. We sum-
marize the characteristics of existing gaming VQA databases
along with the new LIVE-Meta Mobile Cloud Gaming video
quality database in Table I.

Along with the development of Gaming Video Quality
databases, several methods have been proposed for Gaming
VQA tasks. NR-GVQM [7] trains an SVR model to evaluate
the quality of gaming content videos by extracting 9 frame-
level features, using VMAF [8] scores as proxy ground-truth
labels. In [9], the authors introduced “nofu”, a lightweight
model that uses only a center crop of each frame, to speed
up the computation of 12 frame-based features, followed by
model training and temporal pooling. Recent gaming VQA
models based on deep learning include NDNet-Gaming [10],
DEMI [11], and GAMIVAL [12]. Both NDNet-Gaming and
DEMI use Densenet-121 [13] deep learning backbones. Be-
cause of the limited amount of subjective scores available to
train deep-learning backbones, the Densenet-121 in NDNet-
Gaming is pre-trained on VMAF scores that serve as proxy
ground truth labels, then fine-tuned using MOS scores. A
temporal pooling algorithm is finally used to compute video
quality predictions. DEMI uses a CNN architecture similar
to NDNet-Gaming, while addressing artifacts that include
blockiness, blur, and jerkiness. GAMIVAL combines features
computed under distorted natural scene statistics model with
features computed by the pre-trained CNN backbone used in
NDNet-Gaming, to predict gaming video quality. The ITU-T
G.1072 [14] planning model determines gaming video quality
based on using objective (non-perceptual) video parameters
such as bitrate, framerate, encoding resolution, game complex-
ity, and network parameters.

III. RELEVANCE AND NOVELTY OF LIVE-META MOBILE
CLOUD GAMING DATABASE

The new psychometric data resource that we describe here
has multiple unique attributes that address most of the short-
comings of existing gaming databases.

First, it includes the largest number of unique source
sequences of any non-UGC public gaming VQA database.
While the LIVE-YT-Gaming dataset does contain more unique
contents, it is directed towards a different problem - VQA
of low-quality, user-generated, user-recorded gaming videos.
The TGV dataset [5] also has more source sequences, but
none of the data is publicly available, making it impossible
to independently verify the integrity and modeling value of
the videos. Moreover, the video durations are only 5 seconds,
heightening the possibility that the subjective quality ratings on
the gaming videos, which often contain much longer gameplay
scenes, might be less reliable, as explained in [15]. The
videos that comprise the LIVE-Meta MCG dataset include
a wide range of gameplay and game-lobby video shots. The
level of activity in the videos include low, medium, and high
motion scenes, a diversity not present in other public gaming
databases.

Second, the new data resource can be used to design reliable
and robust VQA algorithms, suitable for analyzing high-
quality gaming videos subjected to wide ranges and combina-
tions of resizing and compression distortions characteristic of
modern streaming workflows. A salient feature of the dataset
is that we include videos for all possible resolution-bitrate
pairs that are currently relevant to mobile cloud gaming. We
believe that VQA tools designed on this data will enable better
decision making when selecting streaming settings to deliver
perceptually optimized viewing experiences.

Third, not only does the corpus of videos that we assembled
target the mobile device scenario, we also conducted the
human study using a modern mobile device, unlike any other
gaming VQA resource.

Lastly, another unique and differentiating aspect of the new
LIVE-Meta MCG is that it includes gaming videos presented
in both portrait and landscape orientations. A summary of
unique attributes of the new dataset with comparisons against
existing gaming VQA datasets is given in Table I.

IV. DETAILS OF SUBJECTIVE STUDY

The LIVE-Meta MCG Database contains 600 video se-
quences generated from 30 high-quality (pristine) reference
source videos by compressing each video using 20 different
resolution-bitrate protocols. These videos served as the stimuli
that were quality-rated by the humans who participated in our
laboratory subjective experiments. Sample frames of landscape
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(a) Asphalt (b) Design Island (c) Dragon Mania Legends (d) Hungrydragon

(e) Mobile Legends Adventure (f) Mystery Manor (g) Plants vs Zombies (h) State of Survival

Fig. 2. Sample frames of landscape gaming videos in the LIVE-Meta Mobile Cloud Gaming Database.

(a) Bejewelled (b) Bowling Club (c) Dirtbike (d) PGA Golf Tour (e) Sonic (f) WWE

Fig. 3. Sample frames of portrait gaming videos in the LIVE-Meta Mobile Cloud Gaming Database.

and portrait mode gaming video contents in the database are
shown in Figs. 2 and 3, respectively.

A. Source Sequences

We collected 16 uncompressed, high-quality source game-
play videos from the Facebook Cloud Gaming servers. We
recorded the raw YUV 4 : 2 : 0 video game streams, which
were rendered at the cloud servers without any impairments,
i.e., before the cloud gaming application pipeline distorted the
video stream during gameplay sessions. All of the obtained
videos were of original 720p resolution and framerate 30
frames per second, in raw YUV 4 : 2 : 0 format, with their
audio components removed. Since, we included both portrait
and landscape games in the dataset, by 720p resolution we
mean that either the width or the height is 720 pixels, with
the other dimension being at least 1280 pixels and often larger.
The video contents include 16 different games encompassing
diverse contents. Section VIII-A details the games present in
the dataset along with their original resolutions as rendered by
the Cloud Game engine.

The original 16 reference videos we collected ranged from
58 seconds to 3 minutes which were clipped to lengths that
were practical for the human study. Deciding the clip durations
presents decisions that depend on several factors. For example,
using videos of varying lengths could lead to biases in the
subjective ratings provided by the human volunteers. Using

longer videos could limit the data diversity in human studies of
necessarily limited participant duration. Moreover, long videos
often exhibit distortion changes over time. While it would be
worthwhile to investigate time varying distortions of gaming
videos, that topic falls outside the scope of the current study,
being more appropriate for “Quality of Experience” (QoE)
studies similar to those presented in [16], [17], [18].

The goal of our study is to conduct a passive viewing test
that will enable us to annotate the video quality of gaming
videos. The results from the study [15] illustrated that no
significant differences were observed in video quality ratings
obtained on the viewing of interactive and passive games
that were of 90 seconds duration. However, passive tests
of duration 10 seconds yielded significantly higher quality
ratings on videos than longer passive tests, indicating that
time-varying QoE factors play little role in short-duration
tests. The ITU-T P.809 [19] standard recommends using 30-
second videos when conducting passive human evaluation of
gaming video quality. However, we conducted a trial study
involving 20 human participants, each of whom were shown
gaming videos of durations ranging from 5 to 35 seconds and
asked to provide subjective video quality ratings. The human
participants’ feedback led us to conclude that gaming videos of
durations no more than 15-20 seconds were needed in order to
comfortably provide subjective quality ratings. The feedback
received generally indicated that it was sometimes difficult
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(a) Contrast vs Brightness (b) Sharpness vs Colourfulness (c) Temporal Information vs Spatial Information

Fig. 4. Source content (blue ‘x’) distribution in paired feature space with corresponding convex hulls (red boundaries). Left column: Contrast x Brightness,
middle column: Sharpness x Colourfulness, right column: Temporal Information vs Spatial Information.

TABLE II
RESOLUTION AND BITRATES VALUES OF THE VIDEOS IN THE

LIVE-META MOBILE CLOUD GAMING DATABASE

Encoding Parameter Value
Resolution 360p, 480p, 540p, 720p

Bitrate 250kbps, 500kbps, 800kbps, 2mbps, 50mbps

to comfortably rate videos that were 10 seconds or shorter,
especially on those containing significant motion typical of
gaming videos. On the other hand, videos that were 25 seconds
or longer were reported to feel too lengthy, and that quality
could have been accurately assessed within the initial 15-20
seconds. Moreover, some participants observed the video qual-
ity to change over the course of the 25-35 seconds, making it
challenging to assign a single quality score. Since the focus of
the current study is not to study the time varying (QoE) effects
sometimes observed on longer duration videos, we selected
between one and three clips from each reference video, each
of 20 seconds duration, yielding a total of 30 video clips drawn
from the 16 reference videos, all of 720p resolution. We took
care that each clip did not include annoying disruptions of
otherwise interesting gameplay, and also that clips from the
same game presented different scenarios. By distorting the 30
video clips as described in Section IV-B, we obtained 600
videos.

To illustrate the diversity of the video contents in the
database, we calculated the following objective features:
Brightness, Contrast, Colorfulness [20], Sharpness, Spatial
Information and Temporal Information as recommended in
[21], [22] for all 600 videos in the database. We calculated the
first four objective features on each video frame, then averaged
them across all frames to obtain the final feature values. For
each frame, brightness and contrast were determined as the
mean and standard deviation of the pixel luminance values.
We calculated the sharpness of each frame by computing the
mean sobel gradient magnitudes at each frame coordinate. We
superimposed the convex hulls of the scatter plots of pairs
of these features, illustrating the broad feature coverage of
the videos in Fig. 4. In Fig. 12, we compare the coverage of
our proposed database against other existing Cloud Gaming
databases.

B. Mobile Cloud Gaming Pipeline

From each of the 30 reference sequences, 20 distorted video
sequences were generated using a combination of resizing and
compression distortion processes. Fig. 5 shows a simplified
model of the mobile cloud gaming pipeline. The encoding
settings we used are similar to those employed in the CGVDS
database [4]. We used the Constant Bit Rate (CBR) encoding
mode in the hardware accelerated NVIDIA NVENC H.264
encoder [23], with preset set to low latency and high quality.
The videos were spatially resized using FFMPEG’s default
bicubic interpolation.

We processed each of the 30 reference videos using all
20 possible combinations of resolutions and bitrates listed in
Table II. The bitrates range from 250 kbps to 50 mbps, and
the resolutions range from 360p to 720p. The reference videos
were first spatially resized to 360p, 480p, or 540p or they
were maintained at the original 720p resolution, followed by
encoding in CBR mode at different bitrates. The selected
combinations broadly emulate generic mobile cloud gaming
services and available wireless network bandwidths. Most
mobile cloud gaming service providers render games at 720p
resolution and then, depending on network conditions, either
downscale the games to resolutions 360p, 480p, or 540p, or
maintain the original resolution before encoding the videos
at constant bitrates. Based on our experiments, we generally
observed that 250 kbps was the lowest threshold of bandwidth
for which acceptable levels of video quality were observed for
most of the games in the dataset. We also encoded the videos
at higher bitrates typical of common encoding scenarios: 500
kbps, 800 kbps, and 2 mbps, in addition to 250 kbps. Our
choice of bitrates ensured that we observed a wide range of
perceptual qualities across these bitrates and contents.

Contemporary subjective video quality databases commonly
include reference videos. However, since Android mobile
devices cannot play lossless (QP=0 encoded) videos, we could
not directly incorporate true reference videos in the human
study. As an alternative, we encoded the videos at a very high
bitrate of 50 mbps to produce “visually lossless” alternatives to
uncompressed videos. We will refer to these videos as “proxy
reference videos.” We conducted a thorough visual inspection,
comparing each reference video to its proxy reference, and
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Fig. 5. High-level flow diagram of the mobile cloud gaming pipeline used in the creation of LIVE-Meta Mobile Cloud Gaming database.

concluded that the 50 mbps bitrate was sufficiently high to
preserve all visual information in the videos and prevent the
introduction of visible artifacts, particularly when taking into
account the maximum resolution of the videos was 720p. To
further support the conclusions obtained by visual inspection,
we also encoded the source videos using QP=0 and observed
that the average bit rate of those videos across all the contents
was less than that of the proxy reference videos (50 mbps).
This strengthens our earlier claim of preserving the visual
information in the proxy reference videos since more bits were
allocated in the encoding process than would be required for
lossless compression. We were also unable to include videos
with only resizing distortions (i.e., without video compression)
because of the same device limitation. However, following our
observation that the proxy reference videos were “visually
lossless” when encoded at a bitrate of 50 mbps, we used
the same bitrate to encode the videos with only resizing
distortions.

C. Subjective Testing Environment and Display

We conducted the large-scale human study in the Subjective
Study room in the Laboratory of Image and Video Engineering
at The University of Texas at Austin. A Google Pixel 5,
running on the Android 11 operating system, was used to
display all videos using a custom-built android application.
We chose the popular and affordable mid-tier Google Pixel 5
mobile phone as a reasonably representative device that Cloud
Gaming clients may often use. The device’s compatibility with
the Android operating system also provided us with great
flexibility when developing the interface application for the
subjective study. The Pixel 5’s high-quality OLED display is
renowned for its excellent color accuracy in the brightness
range of 60 - 80% of peak brightness [24], making it an
excellent choice.

The mobile device was interfaced with a wireless mouse
and keyboard to enable the subjects to easily record video
quality ratings. The Google Pixel 5 has a 6-inch OLED panel
with a 19.5 : 9 aspect ratio Full HD+ (2340×1080) resolution
and up to a 90Hz refresh rate. The adaptive brightness feature
of the mobile device was disabled, and the brightness was
set to 75% of the maximum to prevent fluctuations during
the study sessions. We utilized the mobile device’s ability to
automatically resize incoming video streams using its hard-

ware scaler during cloud gaming, by up-scaling the videos
displayed on the mobile device to fit the mobile screen during
playback to the subjects. The Android application was memory
and compute optimized to ensure smooth playback during the
human study.

We arranged the lighting and environment of the LIVE
Subjective Study room to simulate a living room. The room’s
glass windows were covered with black paper to prevent
volunteers from being distracted by any outside activities.
To achieve a similar level of illumination as one found in a
typical living room, we used two stand-up incandescent lamps,
and also placed two white LED studio lights behind where
the viewer was seated. We positioned all the lights so that
there were no reflections of the light sources from the display
screen visible to the subjects. The incident luminance on the
display screen was measured by a lux meter and found to be
approximately 200 Lux.

A sturdy smartphone mount similar to those found on car
dashboards was deployed to secure the mobile device onto
the subjects’ desktop. The mount is telescopic, with adjustable
viewing angles and heights of the mobile device. The study
participants sat comfortably in height-adjustable chairs and
were asked to adjust the viewing angle and the height of the
mount so they could observe the videos played on the mobile
device at approximately arm’s length, similar to the experience
of typical gameplay sessions.

We created a video playlist for each participant. After
each video was played, a continuous rating bar appeared
with a cursor initialized to the extreme left. With the mouse
connected wirelessly to the device, the volunteers could freely
move the cursor to finalize the quality ratings they gave.
There were five labels on the quality bar indicating Bad, Poor,
Fair, Good and Excellent to help guide the participants when
making their decisions. The subjects’ scores were sampled as
integers on [0, 100] based on the final position of the cursor,
where 0 indicated the worst quality and 100 the best. However,
numerical values were not shown to the volunteers. To confirm
the final score of each video, the volunteer pressed the NEXT
button below the rating bar, and the score was then stored in
a text file. The application then played the following video on
the playlist. Fig. 13 in the Appendix Section VIII demonstrates
the steps involved in the video quality rating process in the
Android application.
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TABLE III
ILLUSTRATION OF THE ROUND-ROBIN APPROACH USED TO ALLOCATE VIDEO GROUPS TO SUBJECT GROUPS. SESSIONS A, B REFER TO THE TWO

SESSIONS OF THE HUMAN STUDY FOR EVERY SUBJECT. GRID LOCATIONS MARKED AS X INDICATE THE VIDEO GROUP IN THE COLUMN WAS NOT RATED
BY THE SUBJECT GROUP IN THE ROW. EACH VIDEO GROUP CONTAINED 100 VIDEOS AND EACH SUBJECT GROUP HAS 12 SUBJECTS

GROUP Video Group : I Video Group : II Video Group : III Video Group : IV Video Group : V Video Group : VI
Subject Group : 1 Session A Session B X X X X
Subject Group : 2 X Session A Session B X X X
Subject Group : 3 Session B X Session A X X X
Subject Group : 4 X X X Session A Session B X
Subject Group : 5 X X X X Session A Session B
Subject Group : 6 X X X Session B X Session A

D. Subjective Testing Protocol

We followed a single-stimulus (SS) testing protocol in
the human study, as described in the ITU-R BT 500.13
recommendation [25]. As explained in Section IV-B, we could
not include the actual reference videos due to limitations of
the Mobile device, but we did include 50 mbps, and 720p
resolution encoded versions of each source video as reasonable
proxy reference videos.

As explained in Section IV-B, we generated the 600 pro-
cessed videos by combinations of resizing and compression
of the 30 reference videos. The reference (and hence the dis-
torted) videos include equal numbers of portrait and landscape
videos. We divided the 30 reference videos into six groups in
such a way that groups I, II, III were comprised only of portrait
videos while groups IV, V, VI comprised only of landscape
videos. In addition, we ensured that no two reference videos in
a video group came from the same game. Since we generated
20 distorted versions of each reference video, each video group
contained 5 ∗ 20 = 100 videos. We evenly split the 72 human
participants into six groups. Using a round-robin method, we
assigned two video groups to each subject group across two
sessions, A and B. The exact allocation of video groups for
each subject group can be found in Table III. As shown in the
Table III, since two subject groups rated each video group,
we obtained 2 ∗ 12 = 24 ratings per video. We designed the
study protocol as shown in Table III in a manner such that all
the subjects watched either portrait or landscape orientation in
both sessions, and never viewed both portrait and landscape
videos. We used this approach to eliminate biases caused by
any difference in subject preferences for one or the other
orientation by any subject.

For the human study, we developed a unique playlist for
each session. The order of the videos in the playlist was
randomized, with the constraint that videos generated from a
reference video were separated by at least one video generated
from another reference video. The randomized ordering of the
videos reduced the possibility of visual memory effects or any
bias caused by playing the videos in a particular order. Each
human study session involved rating 100 videos, and required
approximately 38− 40 minutes of each participant’s time.

E. Subject Screening and Training

Seventy-two human student volunteers were recruited from
various majors at The University of Texas at Austin to take part
in the study. The pool of subjects had little/no experience in

image and video quality assessment. Each subject participated
in two sessions separated by at least 24 hours to avoid fatigue.

At the beginning of a volunteer’s first session, we adminis-
tered the Snellen and Ishihara tests to validate each subject’s
vision. Two subjects were found to have a color deficiency,
while three volunteers had 20/30 visual acuity. These tests
were performed to ensure there was no abnormally high
percentage of deficient subjects. All subjects, regardless of
their vision deficiencies, were allowed to participate in the
study, following our standard goal of designing more realistic
psychometric video quality databases [26]. In Section IV-G,
we study impact of participants having imperfect vision on the
study, by analysing the individual bias and consistency scores
obtained using the maximum likelihood estimation algorithm
described in [27].

We explained the study objectives to each volunteer before
they engaged in the experiment. Volunteers were instructed
to rate the gaming videos only on quality, and not on the
appeal of the content, such as how boring or exciting the
game content was or how well or poorly the player had
performed on the recorded gaming video they were rating.
Additionally, we demonstrated how the setup could be used
to view and rate gaming videos. At the beginning of each test
session, volunteers were shown three versions of a same video,
which were of perceptually separated qualities to familiarize
themselves with the system and to experience the ranges of
video quality they would be rating. The scores subjects gave
the training videos were not included in the psychometric
database.

F. Post Study Questionnaire

The subjects were asked to fill out a questionnaire at the end
of each video quality rating session. The data were collected to
ensure the reliability of the subjective ratings collected during
the human study sessions. Within this sub-section, we present
a summary of answers to those questions and demographic
information about the subjects.

In Section IV-A, we deliberated on how to determine the
optimal duration of each video in our database. To reinforce
the result from our pre-study trial (that 20 seconds was
long enough to comfortably rate the perceptual quality of
each video), we asked every volunteer, as part of the post-
study questionnaire, whether the duration of the videos was
long enough. Out of the 144 sessions (72 subjects, with
2 sessions per subject) we conducted, in 97.9% (141/144)
of the sessions, the human subjects felt that the 20-second
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duration was adequate to subjectively judge the video quality.
Furthermore, we investigated observer bias and consistency
among the three volunteers who deemed the allocated 20
seconds to be inadequate to evaluate subjective video quality in
Section IV-G. Section VIII-E summarizes the answers given to
the questions regarding the difficulty of rating the videos, and
any uneasiness/dizziness induced during the rating process. It
also includes the demographic data of the human subjects.

G. Processing of Subjective Scores

To ensure the reliability of the subjective data acquisition
process, we first examined the inter-subject and intra-subject
consistency of the data using the raw video quality ratings
obtained from the human subjects. As explained earlier, we
divided the 72 subjects into 6 groups as shown in Table
III. We report the inter-subject consistency scores for each
group. In order to determine inter-subject consistency, we
randomly grouped the scores received for the videos rated by
each subject group into two equal but disjoint subgroups, and
computed the correlations of the mean opinion scores between
the two sub-groups. The random groupings were performed
over 100 trials and the medians of both the Spearman’s
Rank Order Correlation Coefficient (SROCC) and the Pearson
Linear Correlation Coefficient (PLCC) between the two sub-
groups were computed for each of the subject groups and are
listed in Table XIII in the Appendix Section VIII. Overall, the
average SROCC and PLCC for inter-subject consistency across
all subject groups was 0.912 and 0.929, respectively. Further-
more, we calculated intra-subject consistency measurements
which provide insight into the behavior of individual subjects
[28] on the videos they rated. To do this, we measured the
SROCC and PLCC between the individual opinion scores and
MOS calculated using all the subjects within each subject
group. This process was repeated for every human subject
within all the subject groups. The medians for each of the
subject groups for both SROCC and PLCC are listed in Table
XIII in the Appendix Section VIII. The average SROCC and
PLCC over all subject groups was respectively 0.848 and
0.860. These high correlation scores from the above analysis
indicate that we can assign a high degree of confidence to the
obtained opinion scores.

We employed the method described in [27] to compute the
final subjective quality scores on the videos using the raw
subjective scores acquired from the human participants. The
authors of [27] demonstrate that a maximum likelihood esti-
mate (MLE) method of computing MOS offers advantages to
traditional methods, by combining Z-score transformations and
subject rejections [25]. The MLE method is less susceptible to
subject corruption, provides tighter confidence intervals, better
handles missing data, and can provide information on test
subjects and video contents.

In [27], the raw opinion scores of the videos are modeled as
random variables {Xe,s}. Decompose every rating of a video

in the following way :

Xe,s = xe +Be,s +Ae,s, (1)

Be,s ∼ N (bs, v
2
s),

Ae,s ∼ N (0, a2c:c(e)=c),

where e = 1, 2, 3, ..., 600 refer to the indices of the videos in
the database and s = 1, 2, 3, ..., 72 refers to the unique human
participants. In the above model, xe represents the quality
of the video e as perceived by a hypothetical unbiased and
consistent viewer. Be,s are i.i.d gaussian variables representing
the human subject s parameterized by a bias (i.e., mean)
bs and inconsistency (i.e., variance) v2s . The human subject
bias and inconsistency are assumed to remain constant across
all the videos rated by the subject s. Ae,s are i.i.d gaussian
variables representing a particular video content parameterized
by the ambiguity (i.e., variance) a2c of the content c, and c =
1, 2, ...30 indexes the unique source sequences in the database.
All of the distorted versions of a reference video are presumed
to contain the same level of ambiguity, and the video content
ambiguity is assumed to be consistent across all users. In
this formulation, the parameters θ = ({xe}, {bs}, {vs}, {ac})
denote the variables of the model. To estimate the parameters
θ using MLE, the log likelihood function L is defined as :

L = logP ({xe,s}|θ) (2)

Using the data obtained from the psychometric study, we
derive a solution for θ̂ = argmaxθ L using the Belief
Propagation algorithm, as shown in [27].

Fig. 6 shows a visual representation of the estimated pa-
rameters describing the recovered scores, the subject bias, and
the inconsistency and content ambiguity. Fig. 6a shows the
recovered quality scores for the 600 videos in the database.
The video files are indexed by increasing bitrate values, and
further sorted by resolution within each bitrate group. The
order of the presented video content is consistent across all
resolutions and bitrates. According to our expectations, the
average predicted quality scores of videos generally increased
as bitrate was increased. Fig. 6a roughly identifies five clusters
of videos based on predicted quality scores corresponding
to the five bitrate values. Based on the parameter estimates
obtained, the lowest bias value bs = −20.21 was found for
subject #19, whereas the highest bias value bs = 15.43 was
found for subject #59, indicating subject #19’s quality scores
were, on average, on the low side, while those of subject #59
were, on average, on the high side, as compared to the other
human subjects. The median bias value obtained was 0.77.
Subject #65 exhibited the greatest variability vs = 23.33 when
assigning quality judgements as indicated by the inconsistency
estimates vs, while subject #19 exhibited the lowest level of
variability vs = 2.06e−51. The median of the inconsistency
estimates was 9.49. Fig. 6c shows the ambiguity in the 30
source videos. A source video from the State of Survival game
had the lowest ambiguity ac = 4.73, while a source video
from the Sonic game had the highest ambiguity ac = 9.99
among the 30 source videos. We denote the final opinion
scores recovered using the above parameters as MLE-MOS.

We analysed both observer bias and inconsistency among
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Fig. 6. The result of the MLE formulation to estimate final opinion scores and associated information about subjects and contents. Both the estimated
parameters and their 95% confidence intervals are shown.

individuals having imperfect vision. We first consider observer
bias. Earlier in this section, we reported that the minimum,
median, and maximum of observer bias values across all
subjects were −20.21, 0.77, and 15.43, respectively. The two
subjects, #32 and #49, having color deficiencies, had estimated
observer biases of 3.43 and 5.30, respectively, while the three
subjects, #29, #58, and #64, with 20/30 Snellen acuity had
estimated observer bias values of −11.59, 6.90, and −4.39,
respectively. Since these bias values were not extrema, it is
difficult to conclude that visual deficiencies had any impact on
the subjective ratings. The minimum, median, and maximum
subject inconsistencies across all subjects were estimated to be
2.06e−51, 9.49, and 23.33, respectively. The observer inconsis-
tencies for #32 and #49 were estimated to be 10.35 and 17.67,
respectively, while those for #29, #58, and #64 were estimated
to be 14.68, 15.78, and 20.06, respectively. Although some
inconsistency values were notably higher than the median, they
were not extrema across all the subjects. Thus, we could not
conclude that there was any induced observer inconsistency.
A more detailed study, with subjects equally sampled with
and without visual deficiencies, could better help reveal any
impacts of color deficiencies and of slightly reduced visual
acuity on video quality ratings. A similar analysis of observer
bias and consistency was conducted for subjects #2, #47 and
#60, who deemed the 20-second duration insufficient to rate

video quality in one of their sessions. The estimated observer
bias values for these subjects were 0.01, 3.96, and 11.96,
respectively, and their estimated observer inconsistency values
were 5.85, 8.80, and 8.16, respectively. Again, the observer
bias and inconsistency values for this group of individuals
were not the highest or lowest values among all the subjects
in our study. Hence, we could not make any significant
conclusions or derive any notable insights from the analysis.

MLE-MOS or MOS in general, is a reliable representation
of subjective video quality and is required for the develop-
ment and evaluation of No-Reference (NR) VQA algorithms,
because reference undistorted videos are not available. The
Difference MOS (DMOS) is more commonly used in the
development and evaluation of Full Reference (FR) VQA al-
gorithms because it allows the reduction of content-dependent
quality labels. As discussed earlier, we use the 50 mbps
encoded versions of the source videos at 720p resolution as
the proxy reference videos when calculating the DMOS scores.
The DMOS score of the ith video in the dataset is :

DMOS(i) = 100− (MOS(ref(i))−MOS(i)), (3)

where MOS(i) refers to the MLE-MOS of the ith distorted
video obtained using the MLE formulation, and ref(i) refers
to the proxy reference video generated from the same source
video sequence as the distorted video.
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Fig. 7. (a) MLE-MOS (b) DMOS for the LIVE-Meta Mobile Cloud Gaming
Database.

H. Analysis and Visualization of the Opinion Scores

Fig. 7a plots a histogram of the mean opinion scores
recovered using the maximum likelihood estimator. The MLE-
MOS of the videos in the database ranged from [8.558, 88.29].
The MLE-MOS distribution shown in Fig. 7a is slightly right-
skewed, typical of other VQA databases. Fig. 7b plots the
histogram of DMOS computed using equation 3. The DMOS
of the videos in our database ranged from [21.94, 104.04]. The
distribution of DMOS has a strong resemblance to that of
MLE-MOS, with the only difference being a slight shift to
the right.

Since our new dataset contains videos in both of the
common display orientations (portrait and landscape), we also
examined the statistics of the MLE-MOS on each of these two
video categories. While the average MLE-MOS rating on all
videos was 55.45, it dropped to 54.578 on the portrait videos,
and rose to 56.322 on the landscape video. Before reaching
any conclusions, we conducted a two-sample one-sided t-
test at the 95% confidence interval, to determine whether
the differences in the population means of the two video
categories were statistically significant. The outcome of the
test led us to conclude that the ratings on the two categories
of oriented videos were statistically equivalent. We also plotted
the average MLE-MOS scores as function of bitrate and
resolution after partitioning the videos by orientation category
in Fig. 8. Fig. 8a plots the average MLE-MOS for portrait

and landscape videos against bitrate. Although the curve
for landscape videos is slightly elevated above the one for
portrait videos across all bitrates, applying a two sample one-
sided t-tests at each bitrate concluded that the differences
between were statistically insignificant. We observed that the
average MLE-MOS increased monotonically against bitrate, as
expected. A similar analysis was done on the average MLE-
MOS of the portrait and landscape videos against resolution,
as shown in Fig. 8b. Again, the plot of average MLE-MOS
for landscape videos was higher than that of portrait videos
across all resolutions, with the separation decreasing with
increased resolution. Again, the differences were statistically
insignificant across all resolutions.
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Fig. 8. Comparison of the effect of Bitrate and Resolution on MLE-MOS for
Landscape and Portrait Videos.

The standard deviations of the estimated MLE-MOS were
in the range [2.023, 2.917] with an average of 2.435. The cor-
responding 95% confidence intervals of MLE-MOS estimates
were in the range [7.93, 11.433] with an average of 9.546. We
also separately computed the mean of 95% confidence inter-
vals of the MLE-MOS estimates for the portrait and landscape
videos. The 95% confidence intervals for the portrait videos
were found to fall in the range [8.421, 11.433] with an average
of 9.843, while the landscape videos confidence intervals were
in the range [7.93, 10.011] with an average of 9.25. We verified
that differences in the means of the 95% confidence intervals
of the MLE-MOS estimates between the portrait and landscape
videos were statistically significant, by conducting a two-
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sample one-sided t-test. We also observed that the six source
contents contributing to the highest magnitudes of the 95%
confidence interval in MLE-MOS estimates were all portrait
videos. Based on this evidence, it may be hypothesized that
landscape videos provide a more immersive experience than
portrait videos, thanks to the horizontal alignment of the eyes.
This may contribute to the tighter confidence intervals when
measuring video quality.
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Fig. 9. Rate distortion curves at fixed resolutions.

Fig. 9 plots rate-distortion curves for all four resolutions
of videos in the dataset. A plot of this type can supply clues
regarding the selection of optimal streaming video resolutions
as a function of bandwidth. We observed considerable overlap
among the rate-distortion curves around the middle of the
bitrate range (500 kbps to 2 mbps). Towards both lower and
higher bitrates, the amount of overlap reduced, with 360p
being the most preferred resolution at bandwidths of 500 kbps
or less, and 720p the preferred resolution at 2 mbps or higher.
We provide additional analysis of the mean opinion scores in
Section VIII-E of the Appendix.

V. BENCHMARKING OBJECTIVE NR-VQA ALGORITHMS

To demonstrate the usefulness of the new data resource,
we evaluated a number of publicly available No-Reference
(NR-VQA) algorithms on the LIVE-Meta MCG database. We
selected six well-known general-purpose NR-VQA models to
test : NIQE [29], BRISQUE [30], TLVQM [31], VIDEVAL
[32], RAPIQUE [33], and VSFA [34], as well as three NR-
VQA models that were specifically developed for gaming
video quality assessment tasks : NDNet-Gaming [10], GAME-
VQP [35] and GAMIVAL [12]. NIQE and BRISQUE are
frame-based, and operate by extracting quality-aware features
on each frame, then average pooling them to obtain qual-
ity feature representations. For the unsupervised, training-
free model NIQE, the predicted frame quality scores were
directly pooled, yielding the final video quality scores. For
the supervised methods (BRISQUE, TLVQM, VIDEVAL,
RAPIQUE, GAME-VQP and GAMIVAL), we used a support
vector regressor (SVR) with the radial basis function kernel to
learn mappings from the pooled quality-aware features to the
ground truth MLE-MOS. VSFA uses a Resnet-50 [36] deep
learning backbone to obtain quality-aware features, followed
by a single layer Artificial Neural Network (ANN) and Gated

Rectified Unit (GRU) [37] to map features to MLE-MOS. The
NDNet-Gaming model however, regressed the video quality
scores directly using a Densenet-121 [13] deep learning back-
bone. GAMIVAL modifies RAPIQUE’s natural scene statistics
model and replaces its Imagenet [38] pretrained Resnet-50
CNN feature extractor with the Densenet-121 backbone used
in NDNet-Gaming

We evaluated the performance of the objective NR-VQA al-
gorithms using the following metrics: Spearman’s Rank Order
Correlation Coefficient (SROCC), Kendall Rank Correlation
Coefficient (KRCC), Pearson’s Linear Correlation Coefficient
(PLCC), and Root Mean Square Error (RMSE). The metrics
SROCC and KRCC measure the monotonicity of the objective
model prediction with respect to human scores, while the
metrics PLCC and RMSE measure prediction accuracy. As
stated earlier for the PLCC and RMSE measures, the predicted
quality scores were passed through a logistic non-linearity
function [39] to further linearize the objective predictions and
to place them on the same scale as MLE-MOS :

f(x) = β2 +
β1 − β2

1 + exp (−x+ β3/ |β4|)
We tested the algorithms mentioned above on 1000 random
train-test splits using the four metrics. For each split, the train-
ing and validation set consisted of videos randomly selected
from 80% of the contents, while videos from the remaining
20% constituted the test set. We also ensured that the contents
of the training and validation sets were always mutually
disjoint. We separated the contents in the training, validation,
and test sets to ensure that the content of the videos would not
influence the performance of the NR-VQA algorithms. Other
than NIQE and NDNet-Gaming, all of the algorithms were
trained on one part of the dataset, then tested using the other,
using the aforementioned train-test dataset split. Since NIQE
is an unsupervised model, we evaluated its performance on all
1000 test sets, without any training. We also evaluated NDNet-
Gaming using the available pre-trained model on all of the
1000 tests sets, since training code was not available from
the authors. We applied five-fold cross-validation to the train-
ing and validation sets of BRISQUE, TLVQM, VIDEVAL,
RAPIQUE, GAME-VQP and GAMIVAL to find the optimal
parameters of the SVRs they were built on. When testing
VSFA, for each of the 1000 splits, the train and validation
videos were used to select the best performing ANN-GRU
model weights on the validation set.

A. Performance of NR-VQA Models

Table IV lists the performances of the aforementioned NR-
VQA algorithms on the LIVE-Meta Mobile Cloud Gaming
database. In addition, we used the 1000 SROCC and PLCC
scores produced by the NR VQA models to run one-sided t-
tests, using the 95% confidence level, to determine whether
one VQA algorithm was statistically superior to another. Each
entry in Table V consists of two symbols, where the first
symbol corresponds to the t-test done using the SROCC values,
and the second symbol corresponds to the t-test done using
the PLCC values. We found that NIQE performed poorly,
which is unsurprising since it was developed using natural
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TABLE IV
MEDIAN SROCC, KRCC, PLCC, AND RMSE ON THE LIVE-META MOBILE CLOUD GAMING DATABASE OF NR-VQA ALGORITHMS OVER 1000
TRAIN-TEST SPLITS (SUBJECTIVE MLE-MOS VS PREDICTED MLE-MOS). STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES. THE BEST

PERFORMING ALGORITHM IS BOLD-FACED

Metrics SROCC(↑) KRCC(↑) PLCC(↑) RMSE(↓)
NIQE -0.3900 (0.1816) -0.2795 (0.1366) 0.4581 (0.2165) 16.5475 (1.9996)

BRISQUE 0.7319 (0.1358) 0.5395 (0.1154) 0.7394 (0.1285) 12.5618 (2.5135)
TLVQM 0.6553 (0.1428) 0.4777 (0.1166) 0.6889 (0.1464) 13.5413 (2.6724)

VIDEVAL 0.7621 (0.1061) 0.5756 (0.0982) 0.7763 (0.1105) 11.7520 (2.2783)
RAPIQUE 0.8740 (0.0673) 0.6964 (0.0759) 0.9039 (0.0565) 8.0242 (1.6755)

GAME-VQP 0.8709 (0.0616) 0.6885 (0.0714) 0.8882 (0.0560) 8.5960 (1.7621)
NDNet-Gaming 0.8382 (0.1227) 0.6485 (0.1009) 0.8200 (0.1227) 10.5757 (3.0354)

VSFA 0.9143 (0.0435) 0.7484 (0.0572) 0.9264 (0.0380) 7.1316 (1.6082)
GAMIVAL 0.9441 (0.0281) 0.7964 (0.0474) 0.9524 (0.0290) 5.7683 (1.429)

TABLE V
RESULTS OF ONE-SIDED T-TEST PERFORMED USING THE 1000 (SROCC, PLCC) VALUES OF THE COMPARED NR-VQA ALGORITHMS COMPUTED ON

THE LIVE-META MCG DATABASE. EACH CELL CONTAINS 2 SYMBOLS: THE FIRST SYMBOL CORRESPONDS TO THE T-TEST DONE USING THE SROCC
VALUES, AND THE SECOND CORRESPONDS TO THE T-TEST DONE USING THE PLCC VALUES. WHEN A SYMBOL ‘1’ APPEARS, IT DENOTES THAT THE

ALGORITHM ON THE ROW WAS STATISTICALLY SUPERIOR TO THAT ON THE COLUMN, WHEREAS ‘0’ INDICATES THAT THE ALGORITHM ON THE COLUMN
WAS STATISTICALLY SUPERIOR. A ‘-’ SYMBOL INDICATES THAT THE COLUMN AND ROW ALGORITHMS PERFORMED EQUALLY WELL

ALGORITHM NIQE BRISQUE TLVQM VIDEVAL RAPIQUE GAME-VQP NDNet-Gaming VSFA GAMIVAL
NIQE (-,-) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

BRISQUE (1,1) (-,-) (1,1) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
TLVQM (1,1) (0,0) (-,-) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

VIDEVAL (1,1) (1,1) (1,1) (-,-) (0,0) (0,0) (0,0) (0,0) (0,0)
RAPIQUE (1,1) (1,1) (1,1) (1,1) (-,-) (-,1) (1,1) (0,0) (0,0)

GAME-VQP (1,1) (1,1) (1,1) (1,1) (-,0) (-,-) (1,1) (0,0) (0,0)
NDNet-Gaming (1,1) (1,1) (1,1) (1,1) (0,0) (0,0) (-,-) (0,0) (0,0)

VSFA (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (-,-) (0,0)
GAMIVAL (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (-,-)

TABLE VI
MEDIAN SROCC, KRCC, PLCC, AND RMSE OF THE COMPARED NR-VQA MODELS ON THE LIVE-META MOBILE CLOUD GAMING DATABASE, DIVIDED

BY DISPLAY ORIENTATIONS, OVER 400 TRAIN-TEST SPLITS. STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES. THE BEST PERFORMING
ALGORITHM IS BOLD-FACED

Landscape Videos Portrait Videos
Metrics RAPIQUE GAME-VQP VSFA GAMIVAL RAPIQUE GAME-VQP VSFA GAMIVAL

SROCC(↑) 0.876 (0.120) 0.885 (0.087) 0.927 (0.084) 0.955 (0.035) 0.851 (0.122) 0.850 (0.111) 0.903 (0.076) 0.900 (0.062)
KRCC(↑) 0.701 (0.117) 0.715 (0.093) 0.774 (0.090) 0.829 (0.056) 0.680 (0.124) 0.673 (0.109) 0.732 (0.087) 0.735 (0.083)
PLCC(↑) 0.919 (0.103) 0.912 (0.069) 0.946 (0.071) 0.969 (0.023) 0.882 (0.122) 0.876 (0.103) 0.916 (0.075) 0.912 (0.068)
RMSE(↓) 7.294 (2.811) 7.470 (2.630) 5.873 (2.226) 4.547 (1.525) 8.723 (2.632) 8.706 (2.504) 7.371 (2.822) 7.417 (2.576)

TABLE VII
COMPUTATION COMPLEXITY EXPRESSED IN TERMS OF TIME AND

FLOATING POINT OPERATIONS (FLOPS) ON 600 FRAMES OF A 360× 720
VIDEO UPSCALED TO 1080× 2160 FRAMES FROM THE LIVE-META

MCG DATABASE

ALGORITHM Platform Time
(seconds)

FLOPS
(×109)

NIQE MATLAB 728 1965
BRISQUE MATLAB 205 241
TLVQM MATLAB 588 283

VIDEVAL MATLAB 959 2334
RAPIQUE MATLAB 103 322

GAME-VQP MATLAB 2053 11627
NDNet-Gaming Python, Tensorflow 779 126704

VSFA Python, Pytorch 2385 229079

GAMIVAL Python, Tensorflow,
MATLAB 201 8683

images, while gaming videos are rendered synthetically and
have different statistical structures. However, the performance
of the same NIQE features improved when we extracted them
and used an SVR to regress from the features to the MLE-

MOS in the BRISQUE algorithm. The gap in performance
between NIQE and BRISQUE points to the differences in
the statistics of camera-captured videos of the real world
as compared to graphical rendered synthetic gaming video
scenes. However, BRISQUE was able to adapt to these
synthetic scene statistics. The performance of TLVQM was
average, probably because that model uses many hand-tuned
hyper-parameters that were selected to optimize the prediction
of video quality on general purpose content and do not
generalize well to gaming videos. A similar scenario occurs
with VIDEVAL. Although VIDEVAL had slightly boosted
performance relative to BRISQUE, its performance may be
limited since it uses 60 features selected from more than 700
to maximize performance on in-the-wild UGC videos. Models
that use deep learning like VSFA and NDNet-Gaming, and
others that use hybrids of deep-learning-based features and
handcrafted perceptual features, like RAPIQUE, GAME-VQP
and GAMIVAL exhibit considerably improved performance,
showing that they are able to capture the statistical structure of
synthetically generated gaming videos, suggesting their poten-
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tial as VQA algorithms targetting Cloud Gaming applications.
The NR-VQA algorithms GAME-VQP and RAPIQUE use
a combination of traditional NSS and deep-learning features
to considerably improve performance relative to BRISQUE,
VIDEVAL, and TLVQM on the LIVE-Meta MCG database.
The superior performance of the VSFA model over GAME-
VQP and RAPIQUE using only deep-learning features might
indicate a reduced relevance of NSS features in the context of
NR-VQA for cloud gaming. However, the GAMIVAL model,
which uses adaptations of traditional NSS features, similar
to the use of neural noise models in [40], along with deep-
learning features, produced superior performance on synthetic
gaming video content, suggesting the relevance of appropri-
ately modified NSS features for synthetic rendered content.
Fig. 10 shows boxplots of the SROCC values computed on
the predictions produced by each NR-VQA models, visually
illustrating the results reported in Table IV. The two top-
performing algorithms VSFA and GAMIVAL exhibit very low
variances of SROCC values, suggesting the reliability of these
algorithms across multiple train-test splits.

NIQE BRISQUE TLVQM VIDEVAL RAPIQUE GAME
VQP

NDNet
Gaming

VSFA GAMIVAL

NR-VQA Algorithms
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Fig. 10. Boxplots of SROCC distributions of the compared NR-VQA
algorithms.

B. Effects of Display Orientation on VQA Performance

The new LIVE-Meta MCG database contains both portrait
and landscape videos, allowing us to test the performances
of NR-VQA algorithms on different display orientations.
We tested the performance of the top-performing algorithms
RAPIQUE, GAME-VQP, VSFA, and GAMIVAL on videos
of both orientations over 400 train-test splits each. We may
conclude from the results shown in Table VI that the NR-VQA
algorithms performed slightly better when trained on land-
scape videos, than on portrait videos. Further, we performed
one-sided t-tests using the 400 SROCC and PLCC scores used
to report the results in Table VI. We were able to conclude
from the results of the tests that the performances of the
NR-VQA algorithms were statistically superior when trained
on landscape videos than on portrait videos. This could be
attributed to the tighter 95% confidence intervals of the MLE-
MOS estimates obtained on landscape videos as compared to
portrait videos, as discussed in Sec. IV-H. From Tables IV and
VI, one may observe that although overall GAMIVAL is the
best performing algorithm on the LIVE-Meta MCG database,

VSFA delivered slightly superior performance on the portrait
gaming videos.

C. Comparison of Computational Requirements and Runtime
This section analyzes the performance vs. complexity trade-

off of the NR-VQA algorithms studied in Section V-A. All of
the algorithms were run on a standalone computer equipped
with an Intel Xeon E5-2620 v4 CPU running at a maximum
frequency of 3 GHz. We used one of the videos from the
LIVE-Meta MCG database of 360x720 resolution, upscaled
it to the display resolution (1080x2160), and applied the
algorithms on it. We report the execution time and the floating-
point operations used by each algorithm in Table VII. The
algorithms VSFA and NDNet-Gaming were implemented in
Python, GAMIVAL was implemented partly in MATLAB
and partly in Python, while all the other algorithms were
implemented in MATLAB. During the evaluation of deep NR-
VQA algorithms, we ensured that the GPU was not used
for fair comparison against other algorithms implemented on
the CPU. From the results reported in Table VII, none of
the tested algorithms implemented in high level prototyping
languages like MATLAB/Python run in real-time in their
current implementations, however, they may be optimized for
specific hardware using low-level languages like C/C++ by ef-
fectively exploiting their parallel processing capabilities in an
application-specific setup. Based on the arguments presented
above, we plotted the performance versus complexity trade-
off (SROCC versus FLOPS) for each of the algorithms in
Fig. 11. Different orders of magnitude of FLOPS of the NR-
VQA algorithms are indicated by distinct colors. The figure
shows that the top four algorithms, RAPIQUE, GAME-VQP,
VSFA and GAMIVAL, are computationally complex in vary-
ing degrees, with RAPIQUE having the lowest computational
complexity and VSFA the highest. In addition to being the
top-performing algorithm, GAMIVAL is also computationally
efficient compared to VSFA and NDNet-Gaming, making it
a viable option when evaluating the video quality of Mobile
Cloud Gaming.
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Fig. 11. Comparison of Performance vs Computational Requirement of NR-
VQA Algorithms. FLOPs are shown in GigaFlops and shown in log scale.

VI. PERFORMANCE OF FR-VQA ALGORITHMS

In this section, we examine the performances of various
Full Reference (FR) VQA models originally developed for
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TABLE VIII
MEDIAN SROCC, KRCC, PLCC, AND RMSE OF FR-VQA ALGORITHMS ON THE LIVE-META MOBILE CLOUD GAMING DATABASE OVER 1000

TRAIN-TEST SPLITS (SUBJECTIVE DMOS VS PREDICTED DMOS). STANDARD DEVIATIONS ARE SHOWN IN PARENTHESES. THE BEST PERFORMING
ALGORITHM IS BOLD-FACED

Metrics SROCC(↑) KRCC(↑) PLCC(↑) RMSE(↓)
PSNR 0.7093 (0.0681) 0.5329 (0.0616) 0.7172 (0.0676) 13.1194 (1.2216)
SSIM 0.9235 (0.0301) 0.7647 (0.0435) 0.9332 (0.0313) 6.7599 (1.5737)

MS-SSIM 0.9069 (0.0360) 0.7396 (0.0495) 0.9115 (0.0357) 7.7878 (1.5813)
ST-RRED -0.8840 (0.0406) -0.7071 (0.0508) 0.9012 (0.1028) 8.2752 (2.1837)

SpEED-QA -0.9171 (0.0283) -0.7528 (0.0389) 0.9070 (0.3196) 8.0244 (4.3767)
ST-GREED 0.8573 (0.0556) 0.6642 (0.0667) 0.8776 (0.0514) 8.9718 (1.8265)

VMAF (v0.6.1) 0.9347 (0.0210) 0.7773 (0.0328) 0.9362 (0.0261) 6.6705 (1.3785)
Gaming VMAF 0.9410 (0.0407) 0.7913 (0.0544) 0.9428 (0.0420) 6.2562 (1.9643)

TABLE IX
RESULTS OF ONE-SIDED T-TEST PERFORMED USING THE 1000 (SROCC, PLCC) VALUES OF THE COMPARED FR-VQA ALGORITHMS COMPUTED ON

THE LIVE-META MCG DATABASE. EACH CELL CONTAINS 2 SYMBOLS: THE FIRST SYMBOL CORRESPONDS TO THE T-TEST DONE USING THE SROCC
VALUES, AND THE SECOND CORRESPONDS TO THE T-TEST DONE USING THE PLCC VALUES. WHEN A SYMBOL ‘1’ APPEARS, IT DENOTES THAT THE

ALGORITHM ON THE ROW WAS STATISTICALLY SUPERIOR TO THAT ON THE COLUMN, WHEREAS ‘0’ INDICATES THAT THE ALGORITHM ON THE COLUMN
WAS STATISTICALLY SUPERIOR. A ‘-’ SYMBOL INDICATES THAT THE COLUMN AND ROW ALGORITHMS PERFORMED EQUALLY WELL

ALGORITHM PSNR SSIM MS-SSIM ST-RRED SpEED-QA ST-GREED VMAF (v0.6.1) Gaming VMAF
PSNR (-,-) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)
SSIM (1,1) (-,-) (1,1) (1,1) (1,1) (1,1) (0,-) (0,0)

MS-SSIM (1,1) (0,0) (-,-) (1,1) (0,1) (1,1) (0,0) (0,0)
ST-RRED (1,1) (0,0) (0,0) (-,-) (0,0) (1,1) (0,0) (0,0)

SpEED-QA (1,1) (0,0) (1,0) (1,1) (-,-) (1,1) (0,0) (0,0)
ST-GREED (1,1) (0,0) (0,0) (0,0) (0,0) (-,-) (0,0) (0,0)

VMAF (v0.6.1) (1,1) (1,-) (1,1) (1,1) (1,1) (1,1) (-,-) (-,0)
Gaming VMAF (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (-,1) (-,-)

natural videos on our proposed database. Our goal is to assess
whether they can be utilized as suitable replacements for
mean-opinion scores, or serve as pre-training targets when
developing deep NR-VQA models for Mobile Cloud Gaming.
Deep learning-based algorithms proposed in [33], [34], [41],
[42], [43], [44] have been successfully used for generic No-
Reference Video Quality tasks. Most of these deep learning
backbones are pre-trained on one of the large natural image
and video classification databases like ImageNet, Imagenet-
22K [38], Kinetics-400 [45] or benefit from dedicated large
databases as in [34]. Developing dedicated deep learning-
based models similar to those that involve pre-training on
a classification database is complicated in niche VQA sub-
domains like Cloud Gaming, due to the absence of large-scale
classification datasets comprising rendered gaming content.
Furthermore, existing Cloud Gaming VQA databases are too
small to support the training of deep learning backbones. To
overcome these challenges, researchers working in the Cloud
Gaming VQA domain have frequently employed Full Refer-
ence VQA algorithms originally developed for generic VQA
tasks as substitutes for MOS scores when pre-training complex
deep networks for NR-VQA [7], [11], [10]. They achieve this
by selecting a popular VQA metric, like VMAF, using it to
predict the FR-VQA scores using a pristine gaming video and
a synthetically distorted version of the pristine video. The
low expense of producing synthetically distorted videos and
estimating proxy MOS scores in the form of FR-VQA outputs
makes it feasible to create large databases for pre-training
deep networks. Once a deep network backbone is pre-trained,
most authors [11], [10] fine-tune the pre-trained backbone with
a small amount of human-annotated data to achieve better

performance than traditional handcrafted feature-based models
on the Cloud Gaming NR-VQA task. It is worth noting that
using deep learning backbones pre-trained on natural images
and videos may not lead to optimal performance on Cloud
Gaming NR-VQA task. This is because the visual content
generated by computer graphics, as in Cloud Gaming videos,
typically has fewer details and is smoother than naturalistic
videos or images, which alters the bandpass statistics of Cloud
Gaming videos relative to those of naturalistic videos [12].

Cloud Gaming NR-VQA algorithms [7], [11], [10] usually
employ VMAF scores as their pre-training targets. Here, we
comprehensively compare the performances of seven FR-VQA
algorithms: PSNR, SSIM [46], MS-SSIM [47], ST-RRED [48],
SpEED-QA [49], ST-GREED [50], and VMAF on the LIVE-
Meta Mobile Cloud Gaming database to explore for their
suitabilities as Proxy-MOS or intermediate pre-training targets
for the development of NR-VQA models focused on Mobile
Cloud Gaming. We calculated the DMOS using equation (3)
and the proxy reference videos in our database were used
as reference videos when computing the FR-VQA scores. To
ensure consistency, we utilized the same 1000 train-test split
used for the NR-VQA algorithms in our evaluation of FR-
VQA algorithms.

PSNR, SSIM, and MS-SSIM are computed per-frame be-
tween the reference and distorted videos, then averaged across
all frames. The FR-VQA algorithms PSNR, SSIM, MS-SSIM,
ST-RRED, and SpEED-QA algorithms do not require training,
and therefore, were directly evaluated on the 1000 test sets.
ST-GREED features were obtained from the proxy reference
and distorted videos in the training and test sets. The features
from the training set and the corresponding DMOS were then
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used to train an SVR similar to the NR-VQA algorithms.
Once the SVR model was obtained, the features from the
test set and the corresponding DMOS scores were used to
obtain the performance of the overall algorithm. We also
present two versions of VMAF: VMAF (v0.6.1), the pre-
trained open source version widely used for generic VQA
tasks, and our version of VMAF which we call Gaming
VMAF, which uses the same features as VMAF (v0.6.1) but
with the SVR trained on the LIVE-Meta MCG database using
the same evaluation strategy as ST-GREED. Table VIII sum-
marizes the results obtained for all the FR-VQA algorithms.
It may be observed that the VMAF models outperformed
the other models, while the computationally less expensive
SSIM model also demonstrated competitive performance. Sim-
ilar to the evaluation of NR-VQA algorithms, we used the
1000 SROCC and PLCC scores produced by the FR VQA
models to run one-sided t-tests, using the 95% confidence
level to determine whether the performance of one FR-VQA
algorithm was statistically superior to another. Each entry in
Table IX consists of two symbols, corresponding to the t-
tests conducted using the SROCC and PLCC values. Based
on the results, we conclude that when comparing the two
VMAF models, the use of SROCC as a performance metric
did not show statistically significant differences. However,
using PLCC revealed statistically significant differences, with
Gaming VMAF exhibiting slightly better performance. It may
also be concluded that a statistically significant difference
exists between the performances of the Gaming VMAF and
SSIM models when evaluated using both performance metrics.

The high correlations obtained on the VMAF models sug-
gest that the VMAF models could be reasonably used as
proxy-MOS scores or as pre-training targets for MCG NR-
VQA models. By pre-training a deep learning model on
VMAF scores, a model could potentially learn to extract useful
“gaming quality-aware” features on a small human-annotated
database like ours, potentially improving performance on the
MCG NR-VQA task. However, it is important to note that
while pre-training can be beneficial, it may not always result
in improved performance. Therefore, it is crucial to exercise
caution when selecting a pre-training dataset, the synthetic
distortions applied, and the proxy FR-VQA algorithm to
ensure that pre-training boosts the performance of the target
MCG NR-VQA task. Furthermore, relying on pre-training
using a single FR-VQA model presents the potential danger of
NR-VQA models adopting the strengths and limitations of that
FR-VQA model, leading to reduced NR-VQA generalization.
One possible solution would be to convert the pre-training to
a Multi-Task Learning problem [51], using multiple FR-VQA
algorithms as different tasks. For example, in case of Mobile
Cloud Gaming, a combination of VMAF, SSIM and SpEED-
QA could be used as multiple tasks to pre-train the deep net-
work backbone. This approach could enable more generalized
“quality-aware” representations, which might further enhance
performance on the MCG NR-VQA task.

VII. CONCLUSION AND FUTURE WORK

In this work, we have introduced a new psychometric
database that we call the LIVE-Meta Mobile Cloud Gaming

(LIVE-Meta MCG) video quality database. It is our hope that
this resource helps advance the development of No Reference
VQA algorithms directed towards Mobile Cloud Gaming. The
new database will be made publicly available to the research
community at https://live.ece.utexas.edu/research/LIVE-Meta-
Mobile-Cloud-Gaming/index.html. We have also demonstrated
the usability of the database for comparing, benchmarking and
designing NR VQA algorithms. As a next step, algorithms
based on traditional natural scene statistics (NSS) models
and/or deep-learning methods could be developed to further
improve the accuracy of NR-VQA algorithms. In addition,
since cloud gaming applications require real-time video quality
prediction capability, it is also of utmost interest to develop
algorithms capable of running at least in real-time.

We also demonstrated that tighter 95% confidence intervals
were obtained on the MLE-MOS estimates of landscape videos
than those of portrait videos. A possible research direction
could be to explore this dichotomy in further detail. Fu-
ture work could also focus on development of “Quality of
Experience” (QoE) databases comprised of subjective QoE
responses to various designs dimensions such as changing
bitrates, content-adaptive encoding, network conditions and
video content which would further help in the development
of perceptually-optimized cloud video streaming strategies,
leading to improved mobile cloud gaming experiences.

VIII. APPENDIX

A. Gaming Video Contents in LIVE-META Mobile Cloud
Gaming Database

Table X lists the games present in the dataset along with
their original resolutions as rendered by the Cloud Game
engine. Fig. 12 compares the coverage of a number of
objective features, including contrast, brightness, sharpness,
colorfulness, spatial information, and temporal information of
the videos in our database against the same features computed
from other existing Cloud Gaming databases. The content
distribution in the paired feature space shows that the coverage
of our proposed database is significantly better than all the
other three existing cloud gaming databases.

B. Android Application

We used a custom developed Android Application to
conduct the in-lab subjective study for the development
of the LIVE-Meta MCG database. The code will be
made publicly available at https://github.com/avinabsaha/
LIVE-Meta-MCG-SubjectiveStudySetup. Fig. 13 demon-
strates the steps involved in the video quality rating process
in the Android application.

C. Additional Post Study Questionnaire & Demographics

As a part of the post-study questionnaire, we also asked the
human subjects about the distribution of videos, the difficulty
of rating the videos, and whether they experienced any sort of
dizziness or uneasiness while viewing and rating the videos.
In the end, in 74.3% (107/144) sessions, the subjects felt that
the distribution of quality was uniform with an equal number

https://live.ece.utexas.edu/research/LIVE-Meta-Mobile-Cloud-Gaming/index.html
https://live.ece.utexas.edu/research/LIVE-Meta-Mobile-Cloud-Gaming/index.html
https://github.com/avinabsaha/LIVE-Meta-MCG-SubjectiveStudySetup
https://github.com/avinabsaha/LIVE-Meta-MCG-SubjectiveStudySetup
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(a) GamingVideoSET : Contrast vs Brightness (b) GamingVideoSET : Sharpness vs Colourfulness (c) GamingVideoSET : TI vs SI

(d) KUGVD : Contrast vs Brightness (e) KUGVD : Sharpness vs Colourfulness (f) KUGVD : TI vs SI

(g) CGVDS : Contrast vs Brightness (h) CGVDS : Sharpness vs Colourfulness (i) CGVDS : TI vs SI

(j) LIVE-Meta MCG : Contrast vs Brightness (k) LIVE-Meta MCG : Sharpness vs Colourfulness (l) LIVE-Meta MCG : TI vs SI

Fig. 12. Source content (blue ‘x’) distribution in paired feature space with corresponding convex hulls (red boundaries). Left column: Contrast x Brightness,
middle column: Sharpness x Colourfulness, right column: Temporal Information (TI) vs Spatial Information (SI) across four Cloud Gaming Databases.
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(a) Game Video Playback (b) Initial State of Rating bar (c) Final State of the Rating bar

Fig. 13. Video Quality Rating process in our custom-developed Android Application. Left column: A game video playback of duration 20 seconds, Middle
Column: Initial state of the rating bar initialized to extreme left, Right Column: Exemplar final state of the rating bar when the user records their final score.

TABLE X
DETAILS OF GAMES PRESENT IN THE PROPOSED LIVE-META MOBILE

CLOUD GAMING (LIVE-META MCG) DATABASE

Cloud Games Original Resolution Display Orientation
Asphalt 1664 x 720 Landscape

Bejwelled 720 x 1280 Portrait
Bowling Club 720 x 1440 Portrait
Design Island 1664 x 720 Landscape

Dirt Bike 720 x 1440 Portrait
Dragon Mania Legends 1440 x 720 Landscape

Hungry Dragon 1512 x 720 Landscape
Mobile Legends Adventure 1440 x 720 Landscape

Monument Valley 2 720 x 1280 Portrait
Mystery Manor 1728 x 720 Landscape
PGA Golf Tour 720 x 1280 Portrait

Plants vs Zombies 1280 x 720 Landscape
Solitaire 1664 x 720 Landscape

Sonic 720 x 1280 Portrait
State of Survival 1664 x 720 Landscape

WWE 720 x 1440 Portrait

of good, intermediate and bad quality videos. In the other
sessions, the subjects felt that the majority of the videos were
either of very good or very bad quality, and few, if any of
the videos were of intermediate quality. On a scale from 0 to
100, we asked the subjects to rate the difficulty of judging the
perceptual quality of the video after each session, with 0 being
very difficult and 100 being reasonably easy to judge. All of
the subjects were able to provide subjective quality ratings
without much difficulty, as reflected by the mean and median
scores of difficulty, which were 72.1 and 77.5, respectively.
The human subjects reported that they felt slight dizziness
or uneasiness in approximately 11% of the sessions, however
the percentage of dizziness or uneasiness inducing videos was
much lower. More detailed results from the survey regarding
dizziness and uneasiness can be found in Table XI.

The demographic data of age and gender were collected
only at the end of the first session. The mean, median, and
standard deviation of the ages of the participants were found to
be 23.57, 23.0, and 3.04. We summarize the gender distribution
among the participants in Table XII.

D. Group-wise Inter-Subject and Intra-Subject Consistency

We report the inter-subject and intra-subject consistency
scores for each of the subject groups in Table XIII using the
methodology described in Section IV-G of the main paper.
Across subject groups, the SROCC scores for inter-subject
consistency ranged from 0.900 to 0.936 with an average of

TABLE XI
OPINIONS OF STUDY PARTICIPANTS REGARDING THE PERCENTAGE OF

GAMING VIDEOS THAT INDUCED DIZZINESS/UNEASINESS

% of Gaming
videos inducing

dizziness/
uneasiness

None <10% 10-20% 20-40% >40%

# of sessions 128
(88.89%)

6
(4.16%)

7
(4.86%)

3
(2.08%)

0
(0%)

TABLE XII
DEMOGRAPHICS OF HUMAN STUDY PARTICIPANTS BASED ON GENDER

Gender Male Female Others Prefer Not to Say
Count(%) 58(80.55%) 11(15.27%) 2(2.72%) 1(1.36%)

0.912, while PLCC scores ranged from 0.915 to 0.949 with
an average of 0.929. The SROCC scores for intra-subject
consistency ranged from 0.827 to 0.866 with an average of
0.848, while PLCC scores ranged from 0.844 to 0.870 with
an average of 0.860. These scores reflect the consistency of
our data acquisition process across all the subject groups.

E. Additional Analysis and Visualization of Opinion Scores

Fig. 14, examines the interplay of source video content and
bitrate and how these together affect MLE-MOS. To obtain
the plot, we separately calculated the average MLE-MOS
ratings of each of the 30 source sequences on a per-bitrate
basis across all available resolutions. Fig. 14 shows a clear
separations between the MLE-MOS curves of all the contents,
except at very high bitrates. Across contents, however, the
curves are commingled, which is a good illustration of the
difficulty of the VQA problem (it is not just about bitrate).
The variation of MLE-MOS for all contents was greatly
reduced at bitrates of 2 mbps or higher as compared to lower
bitrates. Clearly, as shown in prior studies, the effect of video

TABLE XIII
SUBJECT CONSISTENCY

Inter-Subject Consistency Intra-Subject Consistency
Subject Group SROCC PLCC SROCC PLCC

1 0.901 0.915 0.850 0.870
2 0.900 0.917 0.840 0.854
3 0.905 0.920 0.849 0.870
4 0.913 0.941 0.827 0.844
5 0.916 0.933 0.866 0.859
6 0.936 0.949 0.854 0.865
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Fig. 14. Variation of average MLE-MOS against content for five fixed bitrates.

0 5 10 15 20 25 30
Source Sequence

10

20

30

40

50

60

70

80

90

100

Av
er

ag
e 

M
LE

-M
OS

Average MLE-MOS variation with content
360p
480p
540p
720p

Fig. 15. Variation of average MLE-MOS against content for four fixed
resolutions.

compression induced distortions on perceptual video quality is
highly content-dependent because of perceptual masking and
similar processes.

Fig. 15 shows the effects of video source content on MLE-
MOS, across all bitrates for each of the fixed four resolutions.
Specifically, we plotted the average MLE-MOS scores of the
encoded videos over the five different bitrates associated with
each resolution in the database. As may be observed, there
was no strong separation between the MLE-MOS curves,
although the content did cause notable differences in the
reported video qualities. A salient takeaway from these two
analyses is that video compression has a heavier impact on
the visual perception of video quality than does resizing, at
least on gaming videos. This further suggests the efficacy of
resizing to achieve data efficiencies with little perceptual loss
in the context of mobile gaming video streaming.
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