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Abstract 

A radiation hard n
+
-in-p micro-strip sensor for the use in the Upgrade of the strip tracker of the ATLAS experiment at the 

High Luminosity Large Hadron Collider (HL-LHC) has been developed by the “ATLAS ITk Strip Sensor collaboration” and 

produced by Hamamatsu Photonics.  

Surface properties of different types of end-cap and barrel miniature sensors of the latest sensor design ATLAS12 have been 

studied before and after irradiation. The tested barrel sensors vary in “punch-through protection” (PTP) structure, and the 

end-cap sensors, whose stereo-strips differ in fan geometry, in strip pitch and in edge strip ganging options. Sensors have 

been irradiated with proton fluences of up to 1×10
16 

neq/cm
2
, by reactor neutron fluence of 1×10

15 
neq/cm

2
 and by gamma rays 

from 
60

Co up to dose of 1 MGy. The main goal of the present study is to characterize the leakage current for micro-discharge 

breakdown voltage estimation, the inter-strip resistance and capacitance, the bias resistance and the effectiveness of PTP 

structures as a function of bias voltage and fluence. It has been verified that the ATLAS12 sensors have high breakdown 

voltage well above the operational voltage which implies that different geometries of sensors do not influence their stability. 

The inter-strip isolation is a strong function of irradiation fluence, however the sensor performance is acceptable in the 

expected range for HL-LHC. New gated PTP structure exhibits low PTP onset voltage and sharp cut-off of effective 

resistance even at the highest tested radiation fluence. The inter-strip capacitance complies with the technical specification 

required before irradiation and no radiation-induced degradation was observed. A summary of ATLAS12 sensors tests is 

presented including a comparison of results from different irradiation sites. The measured characteristics are compared with 

the previous prototype of the sensor design, ATLAS07. 

Keywords: HL-LHC, ATLAS ITk, micro-strip sensor, radiation resistance, surface properties, inter-strip capacitance, inter-

strip resistance, punch-through protection. 

 

Introduction 

The Phase-II upgrade of the Large Hadron Collider (LHC) to the higher luminosity (5×10
34 

cm
-2

s
-1

) machine, called the 

High Luminosity-LHC (HL-LHC) [1], will require replacement of the entire current ATLAS Inner Detector with a new all-

silicon tracker containing new type and design of silicon sensors. It will have pixel sensors at the inner radii surrounded by 

micro-strips. As currently planned, the micro-strip detector in the upgraded Inner Tracker (ITk) [2, 3] will consist of 2 barrel 

layers of “short” strips (length 23.8 mm), 2 barrel layers of “long” strips (length 47.8 mm) and seven end-cap discs on each 

side. The end-cap strips length varies from 15 mm to 60 mm depending on the radius. The strip length is chosen so as to 

maintain the average hit occupancy to be less than 1% at the expected maximum instantaneous luminosity. The maximum hit 

occupancy is limited by the bandwidth of the read-out system. 

Strip sensors in the ITk will be exposed to charged particles, neutrons and gammas. The predicted maximum fluence 

and ionizing dose [4] for the integrated luminosity of 3000 fb
-1

 in the strip barrels is 5.3×10
14 

1-MeV neutron equivalent 

(neq)/cm
2
 and 216 kGy for the short strips in the layer 1, and in the strip end-caps 8.1×10

14 
neq/cm

2
 and 288 kGy in the inner 

regions of the outermost disk at a distance of 300 cm from interaction point. The estimates stated above have no safety 

factors applied. Such a high fluence of particles and ionizing dose causes bulk and surface damage to the sensors. In this 
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study the miniature sensors were irradiated by protons, neutrons and gammas from 
60

Co source. Protons and neutrons 

displace silicon atoms via non-ionizing energy losses, which results in point and cluster defects in the bulk. In addition 

protons ionize both the Si bulk and the insulating layer (SiO2). The latter causes the accumulation of positive charges and 

traps in the SiO2 and at the Si-SiO2 interface that leads to deterioration of the sensor surface. The gamma irradiation is usually 

used to study the oxide/interface damage separately from the bulk damage. However, gamma rays from 
60

Co source are 

absorbed in the sensor mainly through Compton scattering and the scattered Compton electrons have high enough energy 

(hundreds of keV) to produce point defects in the Si bulk. The surface damage is expected to influence the breakdown 

voltage, the inter-electrode isolation and capacitance.  

The current ATLAS Semi-Conductor Tracker is based on single-sided type of micro-strip sensors made with p-strips 

implanted on n-type silicon bulk (p-in-n). n
+
-in-p type sensors, which are much more radiation hard [5, 6], are being 

considered for use in the HL-LHC trackers. This type of sensor has much faster response as it collects electrons instead of 

holes. It also has no radiation induced type inversion and therefore it always depletes from the segmented side that allows 

sensor operation in partially depleted mode. This is particularly useful after high radiation fluencies when the full depletion 

voltage becomes higher. However, n
+
-in-p strip sensors need additional strip isolation. 

A large area n
+
-in-p silicon sensor for the use in ITk has been developed by the ATLAS ITk Strip Sensor Collaboration 

[7, 8] and produced by Hamamatsu Photonics (HPK) [9] in a 6-inch (150 mm) wafer. Besides the large sensor 

(9.75 cm × 9.75 cm), the wafer also includes sets of miniature sensors, which are used for irradiation studies. The sensors 

were irradiated by different particles, energies and doses and were distributed for extensive test to many institutions of the 

collaboration for studies of sensor properties that have received up to double maximal fluence predicted in ITk. 

The samples for the surface irradiation study presented in this paper are the barrel and end-cap (EC) miniature strip 

sensors of the latest sensor design, called ATLAS12 [8] which was developed from ATLAS07 design [7]. The surface 

properties before and after ionizing radiation up to the proton fluence of 1×10
16

 neq/cm
2
, neutron fluence 1×10

15
 neq/cm

2 
and 

gamma dose of up to 1 MGy were evaluated. The tests include measurements of the inter-strip capacitance and resistance as a 

function of fluence, and the inter-strip resistance as a function of bias, temperature and annealing time. The effectiveness of 

different types of punch-through protection structures was tested with DC voltage scan method. 

Some of the surface studies with previous design ATLAS07 were reported in Ref. [10] to maximal fluence of 

1.5×10
13

 neq/cm
2
. The bulk damage of latest design ATLAS12 is presented in Ref. [11] for barrel and in Ref. [12] for end-cap 

sensors.  

1. Samples and irradiation 

The tested sensors of ATLAS12A, ATLAS12M and ATLAS07 layouts
1
 are fabricated in p-type, float zone wafers with 

<1 0 0> crystal orientation and thickness of 320 µm. For each layout, slightly different wafer resistivity was used, and 

therefore the full depletion voltage (VFD) differs. The VFD of non-irradiated sensors, estimated from capacitance-voltage 

measurements of strip miniature sensors, was typically 350-360 V for 12A, 225 V for 12M, and 200 V for 07.  

                                                           
1
 In ATLAS12A wafer layout the large-area main sensor is made of all “axial” strips where the strips are parallel to the sensor 

edge.  In ATLAS12M two segments of strips are “axial” and two are “stereo” strips where the strips are inclined to the 
sensor edge. More details about 12A and 12M wafer design are in [8].  
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The readout aluminum strips are capacitively coupled with n-strips biased through polysilicon resistors. The strip 

isolation is done with common p-implant (p-stop) with surface ion concentration of approximately 4×10
12

 cm
-2

. The tested 

sensors are ~1×1 cm
2
. The barrel sensors have 74.5 μm strip pitch with various “punch-through protection” (PTP) structure 

geometries examined. The end-cap sensors evaluated here have stereo-strips in fan geometry that differ in strip pitch (“large” 

and “small” pitches: 103.4 and 64.3 µm on average, respectively) and in edge strip biasing. Details of the design including 

strip isolation structure and the edge strips ganging are described in Ref. [8].  

The proton irradiations were performed at Karlsruhe Inst. Tech., Germany (KIT) [13] with 23 MeV, at Birmingham, 

UK [14] with 27 MeV and at CYRIC (Tohoku University, Japan) with 70 MeV protons. Samples were kept in a cooled box 

during irradiations and the box was scanned to cover the whole target area of sensors. The stage scan speed at the CYRIC 

irradiation was 20 mm/s, at KIT 115 mm/s and at the Birmingham 1 mm/s (2013 irradiation run) and 4 mm/s (2015 run). The 

scan time depends on the beam current and the area of the samples to be irradiated at the same run. The 10
15 

neq/cm
2
 fluence 

took 15 minutes at KIT at a beam current 1.7 μA, ~80 s in the Birmingham cyclotron at 1000 nA (2013 run), and 

~100 minutes at CYRIC at 400 nA (2015 run) and at 700 nA (2014 run). The measurement of the equivalent proton fluence 

has an error of approximately 20 %, taking the precision of the dosimetry and of the estimation of hardness factor into 

account. The irradiated samples were immediately stored in a refrigerator to prevent any post-irradiated annealing. The 

neutron irradiations were achieved at Ljubljana JSI TRIGA Reactor [15]. The accuracy of neutron fluence is 10%. The source 

of uncertainty is the precision of the dosimetry and errors in timing of irradiation. 
60

Co gamma irradiation was carried out at 

the Solid State Gamma-ray irradiation facility of the Brookhaven National Laboratory (BNL) [16] and at the Institute of 

Nuclear Fuels, Prague (UJP) [17]. The sensors were maintained at room temperature during gamma irradiation. The dose rate 

was 220 Gy/hour and 13.2 kGy/hour in BNL and UJP, respectively. The dose rate uncertainty is ~10% in both cases. 

2. Punch-through protection structures  

AC coupled strip sensors can be subjected to large voltages between the readout metal strips and the implant strips. 

These large voltages can be caused by charge accumulation in the bulk due to beam splash accidents. A dedicated punch-

through protection (PTP) structure, at the ends of the implant strips is used to keep the implant voltage low. The PTP 

structure creates a short-circuit in current path in parallel to the bias resistor at the voltages higher than the PTP onset voltage, 

thus avoiding the capacitor breakdown. The ATLAS12 miniature sensors have different types of PTP structures (A-F type) 

(Fig. 1) [8]. The E and F types are standard PTP structure with 20 and 70 µm gap between the bias ring and the end of the 

implant n
+
-strip. The B and C types are new, improved PTP structure with an extended polysilicon electrode of the bias ring 

over the PTP gap; so called the full-gate structures.  

3. Experimental methods and results 

About 200 miniature sensors of different types have been tested for surface studies before and after irradiations at 

silicon laboratories at the Academy of Sciences of the Czech Republic in Prague, University of California Santa Cruz, 

University of Tsukuba, University of Freiburg, Lancaster University and IFIC Valencia. The sensors were either bonded to 

PCB board and measured in temperature control box down to -50°C or in probe station with a cooled chuck where the contact 

was provided by micromanipulators (down to -30°C). Nitrogen environment ensured humidity below 5% at 20°C.  
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3.1 Leakage current  

The leakage current as a function of the bias voltage (IV) was measured for all types of the barrel and end-cap sensors 

in order to determine whether sensor stability is influenced or not by sensor geometry, wafer used and surface radiation 

damage. For all the tested non-irradiated sensors, the value of the leakage current at 600 V is less than 4.8 nA/cm
2 

at 20°C, 

which is well below the technical specification’s limit (< 2 µA/cm
2
) [18]. There were no observed onsets of micro-discharges 

in any of the sensors up to 1000 V.  

The left plot of Fig. 2 shows the current of the proton irradiated ATLAS12A, 12M and 07 barrel sensors. The right plot 

of Fig. 2 shows the current of the end-cap sensors irradiated by protons and gammas. Neutron irradiated barrel sensor is 

included for comparison. All sensors were measured after annealing them for 80 minutes at 60°C. Most of the proton 

irradiated sensors did not show micro-discharge breakdown below 1000 V. The wiggle at 250 - 350 V in low fluence samples 

(0.52 and 1×10
13

 neq/cm
2
) is probably due to surface generated current in the backside electrode - when the depletion had 

reached the backside [8]. The average current values at bias voltage 600 V and temperature -10°C are 30, 51 and 103 μA/cm
2
 

for the proton fluence 0.5, 1 and 2×10
15

 neq/cm
2
, respectively. The leakage current increase with fluence is consistent with 

bulk current increase. The values correspond to what one would expect from the estimate I(Φ,t,T) = α(t,T)VΦ, where α is the 

leakage current damage factor
2
, V is the active sensor volume and Φ is fluence in neq/cm

2
. Measured current value above 

fluence of 1×10
15

 neq/cm
2 

is lower than what is estimated using the sensor volume because sensors are not fully depleted at 

600 V. The full depletion voltage increases with increasing proton fluence except for a little variation at low fluence – the 

VFD decreases up to 1×10
14

 neq/cm
2
 due to initial acceptor removal process [21]. The VFD of ATLAS12 sensors is 350-450 V 

and 500-700 V for 3×10
14

 and 1×10
15

 neq/cm
2
, respectively. At fluences greater than 3×10

15
 neq/cm

2 
the VFD is above 1000 V.  

The total leakage current increases ~100 times after gamma irradiation, which is the result of the surface current 

increase due to surface damage. Unfortunately, the guard ring in the tested sensors does not have a probing pad and thus it is 

not possible to separate the leakage current of the active area inside of the bias ring from the current at the periphery. The 

micro-discharge breakdown at 900 V of sensors irradiated by 10 kGy gamma dose is attributed to surface damage [22]. It is 

well above the maximum operating voltage 600 V and it disappears after annealing and additional irradiation. Observation 

that the current is lower for the higher gamma dose is a subject of further studies. 

3.2 Inter-strip capacitance 

Important strip sensor surface characteristics which give us information about the effect of surface radiation damage are 

the inter-strip capacitance (Cint) and inter-strip resistance (Rint). The inter-strip capacitance contributes to the input 

capacitance of the readout electronics and is the main contributor to the detector noise. Therefore, it should be as low as 

possible. The capacitance is measured by LCR meter between a central metal strip and its nearest neighbors with other strips 

floating (Fig. 3). This way the measurement also includes additional ~10% contribution from the next neighbors [23, 10]. 

The inter-strip capacitance before irradiation was measured on 25 ATLAS12 sensors at 100 kHz test frequency as 

required by specifications. The average values of Cint are equal to 0.76±0.02, 0.79±0.01 and 0.55±0.01 pF/cm for barrel, 

small and large pitch end cap sensors, respectively. The value for the barrel miniature sensors is in very good agreement with 

value of large area sensor having the same strip pitch [24]. The bias voltage dependence of Cint was measured at different 

                                                           
2
 α=4×10-17A/cm2 at 20°C after annealing for t = 80min at 60°C [19]. Bulk current temperature normalization with activation energy of 1.2 eV was used. 
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proton fluences and gamma doses at test frequency 1MHz
3
. Fig. 4a shows the results for gamma irradiation. The higher the 

radiation dose the higher the value of the bias voltage needed for Cint to saturate to the pre-radiation value. This is caused by 

the surface effect when the increasing charge trapped in the oxide upon irradiation induces an increase in carrier 

concentration in thin accumulation layer between strips. Beyond VFD the Cint becomes constant for both types of irradiation 

and for all tested doses. Cint is not influenced by the PTP structure type. In the case of gamma irradiation, the VFD does not 

change with irradiation dose, unlike of the proton irradiation. At high proton fluences the depletion depth does not reach the 

full thickness of the sensor and small increase in values of measured Cint at 400 V is probably due to the contribution of the 

strip-to-backplane capacitance (Cbulk) as seen in Figure 4b. Figure 5 shows the Cint as a function of proton fluence of 

ATLAS12A, 12M and 07 measured at various institutions. The inter-strip capacitance is wafer independent and does not 

change with proton fluence at high bias.  

3.3 Inter-strip resistance 

A well performing strip sensor has to have a good isolation between the strips in order to maintain the high spatial 

resolution and adequate signal level of the recorded hits. The isolation between neighboring strips was verified by 

measurements of the inter-strip resistance (Rint). The measuring method is illustrated on Fig. 6. Three adjacent DC pads were 

contacted. Voltage Vapp was applied by the Source-Measurement Unit to the central strip and the current Iint was measured on 

the outer strips. The measurements were performed at +20°C for non-irradiated sensors and at cold temperatures (from -10° 

to -50°C) for irradiated ones. The inter-strip resistance was calculated by 

Rint =2/(dIint /dVapp).  

The inter-strip resistance values of non irradiated sensors are tens of GΩ’s which significantly exceeds the minimum 

limit 10×Rbias~15 MΩ required in the technical specification [18]. The inter-strip resistance as a function of bias voltage for 

ATLAS12A sensors irradiated by protons at different fluences from 1×10
14 

to 1×10
16 

neq/cm
2
 is shown in Fig. 7. A non-

irradiated sample is also shown for comparison. The sensors with PTP structure of type C and E are compared. Before 

irradiation the inter-strip resistance is independent of bias voltage. After proton irradiation the inter-strip resistance is reduced 

and is bias voltage dependent. The bias field decreases conductivity between strips. The results of various institutions are 

consistent. No dependence on PTP structure type was observed.  

The inter-strip current as a function of applied voltage for sensors irradiated to different proton fluences is shown in 

Fig. 8a. The inter-strip current is linear function of applied voltage up to the highest proton fluence 1×10
16 

neq/cm
2
. The total 

leakage current is in this case 124 μA. The Fig. 8b presents a comparison of proton and neutron irradiated sensors with the 

same fluence of 1×10
15 

neq/ cm
2
. Both sensors have a high the total leakage current of 26μA (at Vbias=-300V), but the neutron 

irradiated sensor has a high Rint=5.28±0.14 GΩ, whereas proton irradiated sensor has lower Rint=0.92±0.01GΩ.  

The inter-strip resistance of irradiated sensors is temperature dependent as illustrated in Fig. 9. The inter-strip current 

has the same temperature dependence as bulk generation current. Using the activation energy of 1.2 eV, the values of inter-

strip resistance, normalized to -20°C, are very consistent in the range -10° to -25°C at which sensors were measured in 

                                                           
3
 The inter-strip capacitance measurements are dependent on the frequency of the AC signal. There is a radiation induced resonance at 10 kHz that increases 

with increasing proton fluence and also affects measurements of Cint at 100 kHz [20]. Therefore, for irradiated sensors the higher test frequency of 1MHz 

was used. The resonance effect is not present at this value. 
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various laboratories (right plot of Fig. 9). In a larger range from 0° to -50°C the inter-strip resistance values are also very 

close. 

The ATLAS12A, 12M and 07 barrel sensors were irradiated in the same irradiation campaign for comparison. Inter-strip 

resistance as a function of proton fluence measured at various laboratories at the bias voltage 400 V is shown in Fig. 10. All 

sensor types have the same inter-strip resistance degradation with proton fluence. Inter-strip resistance values exceed the 

minimum specs limit up to 3×10
15 

neq/cm
2
. Up to 1×10

16 
neq/cm

2
 the inter-strip resistance is still larger than the pre-amplifier 

input impedance of <1kΩ for the ABC130 chip [25].  

The correlations between the total ionizing dose (TID) and inter-strip resistance has been studied by comparison of 

proton, neutron and gamma irradiated sensors. Due to the different damage mechanism caused by proton and gamma in 

silicon sensor, the proton fluence was converted to TID by:                (    )  , 

 

where Φ is the proton fluence given by irradiation facilities in 1MeV neutron equivalent, (     )  is the stopping power of 

protons of energy Ep in silicon taken from tables in [26] and κ is the conversion damage factor (κ is 1.5, 2.2 and 2 for CYRIC, 

Birmingham and Karlsruhe irradiation, respectively [27]). In proton irradiated samples the fluence of 1×10
15 

neq/cm
2
 then 

corresponds to 0.80, 1.13 and 1.44 MGy for CYRIC, Birmingham and Karlsruhe irradiation, respectively. The TID in neutron 

irradiated sensors due to secondary particles has been assessed to be 10 kGy for 1×10
15 

neq/cm
2
 [28]. The dependence of 

inter-strip resistance on TID is presented in Fig. 11. Gamma and proton irradiated sensors have a similar dependence of inter-

strip resistance on the TID, underscoring the influence of the surface damage on the strip isolation. Exceptions are samples 

from Birmingham 2013 irradiation campaign. This discrepancy is a subject of further studies and tests at the Birmingham 

facility.  

We further sought to check the influence of the bulk damage on the strip isolation by studying neutron irradiated 

sensors. They have one order of magnitude lower inter-strip resistance than gamma irradiated ones at the same TID. Neutrons 

in silicon, unlike gammas, cause mainly bulk damage resulting in increased leakage current. The leakage current of gamma 

irradiated sensors is more than 100 times lower than in neutron ones. Assuming that the TID dose determination for the 

neutron samples is sufficiently accurate, the difference indicates that the inter-strip resistance may be affected by the bulk 

damage by its current dependence in addition to the lead effect of the surface damage by TID.  

To study the annealing effect on inter-strip resistance, a proton irradiated sensor (2×10
15 

neq/cm
2
) was submitted to 

successive annealing steps at 60°C up to total time of 44000 min. The results of this study are presented in Fig. 12. The 

annealing of the leakage current is shown for comparison. The leakage current shows typical annealing behavior – decrease at 

low bias voltage with annealing time and increase at high voltage as charge multiplication (CM) appears at longer annealing. 

With annealing time the space charge concentration rises and higher electric field near strips causes CM [29]. Inter-strip 

resistance shows opposite behavior related to leakage current – significant increase at low bias voltage with annealing time 

and decrease at higher voltage. Annealing for 5000 min causes inter-strip resistance increase to pre-rad value, but the leakage 
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current is still 4 orders of magnitude higher than before irradiation. Charge multiplication near the strips influences the inter-

strip resistance at 700 V after annealing for 5000 min and at 400 V at more than 22000 min. 

3.4 Coupling capacitance and bias resistance 

The coupling capacitance (Ccoupl) was measured between strip metal and strip implant at 1kHz test frequency. The 

values of Ccoupl /cm achieved are greater than 24 pF for both non-irradiated and proton irradiated sensors, which meets the 

specifications of Ccoupl /cm > 20 pF [18].  

The direct method was used for an estimate of the bias resistance. A current–voltage scan was performed applying 

voltages (Vapp) from -1 to +1V in 0.4-V steps to the implant DC pad, and measuring the implant strip current (Iimpl). Iimpl is a 

linear function of applied voltage and resistivity (Rbias) was estimated as Rbias=dVapp/dIimpl. Gamma and proton irradiated 

sensors have much lower inter-strip resistance, and inter-strip currents influence the bias resistance measurements. To 

eliminate these inter-strip effects the voltage Vtest was applied also on two neighbours, and on next neighbours at the same 

time. IV was performed on the central strip. 

The polysilicon bias resistance of non-irradiated sensors is 1.48 ± 0.07 MΩ which is well within the specification's 

range (Rbias = 1.5 ± 0.5 MΩ). It slightly increases with proton fluence and gamma dose. However it agrees with the 

specification up to proton fluence of 3×10
15

 neq/cm
2
 and gamma dose 1 MGy. 

3.5 Stability measurements 

Possible time evolution of leakage current and surface parameters is an important operational aspect for strip sensor. 

Therefore the stability of the leakage current, as well as the inter-strip capacitance and resistance was studied by applying the 

bias voltage to the sensors for a few hours. Measurements performed at low temperature (from -10° to -25°C) and low 

humidity verified that the inter-strip capacitance and resistance does not change in time. The leakage current showed 

relatively small decrease up to 3% during 20 hours in some sensors. The results are in agreement with previous studies for the 

current Semiconductor tracker of ATLAS experiment [30]. 

 

3.6 Punch-through protection 

The effectiveness of the punch-through protection structure was tested by using the static DC method [10, 31, 32]. The 

test voltage Vtest (0 - 100V) was applied between the implant (DC pad) and the grounded bias rail and resulting current Itest 

was recorded. The Itest consists of the punch-through current IPTP and the current flowing through the polysilicon bias resistor 

(the bias resistance Rbias ≈ 1.5 MΩ). The punch-through onset voltage VPTP onset is then defined to be the test voltage at which 

IPTP = 10 μA. A well functioning PTP structure demands low VPTP onset, a steep current IPTP increase above VPTP onset along with 

maximal current flow below 100 V. The measured current Itest as a function of the test voltage for various PTP structure types 

for proton irradiated sensors at 1×10
15 

neq/cm
2
 is shown in Fig. 13 while the PTP onset voltage and current at 100 V are 

shown in Fig. 14.  

The full gate structures C and B exhibit the steepest increase in current while keeping VPTP onset low. In addition the C 

type have the modest increase of PTP onset voltage up to 2×10
15 

neq/cm
2 
and large current IPTP (@VPTP=100V)=2.5mA even at 
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1×10
16 

neq/cm
2 

(Fig.13 and 14). The novel full gate PTP structure C doubles the allowable current without increasing the 

onset voltage. 

4. Summary and Conclusions  

Surface properties of ATLAS12 n
+
-in-p strip sensors intended for upgraded ATLAS ITk fabricated by Hamamatsu 

were evaluated by several participating institutes to verify if they can cope with predicted high radiation environment. 

Different types of barrel and end-cap miniature sensors were tested. Sensors have high micro-discharge breakdown before 

and after irradiation which is well above the maximum operational voltage (500 V-600 V). The results show that sensor 

stability is not influenced by PTP structure type, strip pitch, type of edge strip ganging or the wafer used. The inter-strip 

capacitance of all types of sensors is less than 0.9pF/cm which complies with specifications and does not change with 

irradiation. The inter-strip resistance decreases with proton, neutron and gamma irradiations. The primary factor is TID dose. 

However, the inter-strip resistance is also related to the bulk leakage current, that changes with fluence, temperature, and 

annealing. The values of inter-strip resistance above 100 MΩ for 2×10
15 

neq/cm
2
 for proton-irradiated samples have proven 

that the strip isolation is sufficient for HL-LHC fluences. The most suitable PTP structure is the novel PTP structure with an 

extended electrode of the bias ring over the PTP gap. This full gate structure implemented in the ATLAS12 main sensor, 

shows a steep current increase above the low onset voltage and low effective resistance at large voltages even at the fluence 

of 2×10
15 

neq/cm
2
. Compared to a standard structure without a gate, the new structure doubles the allowable current flowing 

into bias rail without increasing the onset voltage. Results from the evaluation of various sensor properties are summarized in 

Table 1. 

The present surface studies have demonstrated that developed n
+
-in-p strip sensors of the latest sensor design 

ATLAS12 show appropriate performance for operation in ATLAS Upgrade ITk. 

 

Table 1: Summarized measurement values for various sensor properties. 

 Pre- radiation 

Protons 

1×1015 

[neq/cm2] 

Protons 

2×1015 

[neq/cm2] 

Gamma 

100kGy 

Leakage current 

[μA/cm2] (at Vbias=600V) 
<0.0048  (+20°C) 51 (-10°C) 103 (-10°C) 0.22 (+20°C) 

Inter-strip capacitance 

[pF/cm] (at 1MHz) 
0.75-0.82 0.82 0.82 0.77 

Coupling Capacitance 

[pF/cm] (at 1kHz) 
24 24 24 - 

Inter-strip resistance 
[GΩ/cm] (at Vbias=400V) 

15-65 (+20°C) 
0.5-2.2  

(-20°C) 

0.3-0.7 

(-20°C) 

0.0086 (+20°C) 

0.6-1.1 (-20°C) 

Bias resistance 

[MΩ] 
1.5±0.1 (+23°C) 

1.7-1.8 (-10,-20°C) 
2.0 (-20°C) 2.1 (-20°C) 1.7 (+23°C) 
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Figure 1: PTP structures in ATLAS12 miniature sensors. New PTP structure with full gate (C-type) is implemented in main 

ATLAS12 sensor in addition to the miniature test sensors. 

Figure 2: The leakage current vs. bias voltage after annealing 80 minutes at 60°C for (left) ATLAS12A, 12M and 07 barrel 

sensors irradiated by protons (CYRIC) to fluences in range 0.52 × 10
13

 - 8.8 × 10
15

 neq/cm
2 

taken at -20°C and for (right) 

various types of ATLAS12 end-cap sensors after proton (Birmingham and Karlsruhe), gamma and neutron irradiation 

compared with non-irradiated sensor. Proton and neutron sensors were measured at -10°C, gamma and non-irradiated ones at 

room temperature +20°C [20]. SP and LP in the legend denote for small and large pitch sensors, respectively; E and C are 

referring to different PTP structure types. 

Figure 3: Measuring method for the inter-strip capacitance: AC pads of metal strips are bonded to PCB board. The 

capacitance between the central strip and its neighbors is measured by an LCR meter in parallel mode. 

Figure 4: a) Inter-strip capacitance as a function of bias voltage: ATLAS12A end-cap sensors of small pitch (C and E PTP 

type) irradiated by gamma. Unirradiated sensor value shown for comparison. Beyond VFD the Cint saturates to pre-radiation 

value. b) Inter-strip capacitance vs. proton fluence measured at bias voltage -400 V and -1000 V: ATLAS12A barrel sensors. 

The measurements were done at 1 MHz. 

Figure 5: Proton fluence dependence of inter-strip capacitance. ATLAS12A, 12M and 07 barrel sensors. Vbias = -1000 V. 

Figure 6: Measurement set-up for inter-strip resistance measurement. The applied voltage was in range (-5V, +5V) for non-

irradiated sensors with low inter-strip currents (~100’s pA) and (-1V, +1V) for irradiated sensors. Bias voltage was applied to 

the sensor up to -1000V. 

Figure 7: The inter-strip resistance as a function of bias voltage for non- irradiated and proton irradiated (CYRIC) sensors 

ATLAS12A. The inter-strip resistance values are normalized to -20°C. C and F in the legend denote for PTP structure type, 

(*) for not annealed sensors. 

Figure 8: The inter-strip current as a function of applied voltage: a) comparison of different proton fluences and b) 

comparison of proton and neutron irradiated sensors to the same fluence of 1×10
15 

neq/cm
2
. The inter-strip current is linear 

function of applied voltage. 

Figure 9: Temperature dependence of total leakage current (left) and inter-strip resistance (middle) measured in temperature 

interval from -50 to 0°C. Inter-strip resistance is normalized to -20°C using Ea = 1.2 eV (right). The measured sample is 

ATLAS12M barrel sensor irradiated to fluence of 1×10
15 

neq/cm
2
. 

Figure 10: Inter-strip resistance vs. proton fluence for ATLAS12A, 12M and 07 barrel samples irradiated in the same 

irradiation campaign at CYRIC and measured by various laboratories at bias voltage of -400 V. The results are normalized to 

temperature of -20°C.  

Figure 11: Inter-strip resistance vs. total ionizing dose for ATLAS12 sensors irradiated by protons, neutrons and gammas at 

different irradiation sites. Results at bias voltage -400V are presented. The values are normalized to the temperature of -20°C. 

Figure 12: The leakage current (left) and the inter-strip resistance (middle) measured at different annealing time at 60°C, 

inter-strip resistance vs. annealing time (right) measured at 400 V and 700 V. ATLAS12A sensor irradiated by proton fluence 

http://rd50.web.cern.ch/RD50/NIEL/default.html
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2×10
15 

neq/cm
2 

(Karlsruhe) was studied. The arrows in the left and middle plot indicate the data trends with the annealing 

time. 

Figure 13: Current Itest as a function of applied test voltage Vtest for different types of PTP structures (A-F) implemented in 

ATLAS12M sensors. Sensors were irradiated by protons to fluence of 1×10
15 

neq/cm
2
and measured at bias voltage 1000 V 

and temperature -20°C. 

Figure 14: PTP onset voltage (upper left) and test current at 100V (upper right) for different types of PTP structures in 

sensors irradiated to 1×10
15 

neq/cm
2
. Fluence dependence of VPTP (bottom left) and Itest (bottom right) of PTP structure C. 

 

Highlights 

Surface study verified high radiation resistance of developed n-in-p strip sensors. 

Sensors have high breakdown voltage before and after irradiation. 

Inter-strip capacitance is sufficiently low and does not change with irradiation. 

Primary factor of inter-strip resistance decrease is total ionizing dose. 

New gated PTP doubles current flowing into bias rail without onset voltage increase. 
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