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Abstract 

The added mass for cylinders and spheres is examined for unidirectional constant 

acceleration.    

In the case of cylinders, a numerical model is developed to determine the forces acting on 

the cylinder.  The results of the model are compared to published experimental results and 

demonstrated to be a reasonable representation of the forces of an accelerating fluid acting on a 

stationary cylinder.  This model is then used to investigate the effect of a constant non-zero 

velocity before the constant acceleration portion of the flow.  Two different non-zero initial 

velocities are used as well as three different constant unidirectional accelerations and three 

different diameters.  All sets of numerical experiments are shown to produce results that 

correlated very well when presented in terms of dimensionless forces and dimensionless 

distance.  Two methods are presented for splitting the total force into unsteady drag and added 

mass components.  The first method is based on the linear form of the equation that relates the 

dimensionless force, added mass, unsteady viscous drag and the dimensionless displacement.  

The slope includes the unsteady drag coefficient and the y-intercept includes the added mass 

coefficient. The second method, the Optimized Cubic Spline Method (OCSM), uses cubic 

splines to approximate the added mass coefficient and the unsteady drag coefficient variation 

with dimensionless distance.  The parameters are optimized using the method of least squares.  

Both methods are compared with the experimental results.  The OCSM produces better results 

therefore it is applied to the numerical experiment results. 

 The added mass coefficient for the initial portion of the acceleration of a sphere is 

studied experimentally using a high speed camera to determine the displacement of the sphere 

and subsequently the acceleration of the sphere.  From the acceleration data and a mathematical 

model of the process, the dimensionless force on the sphere is calculated.  The added mass is 

then determined using two approaches. For the first case the viscous drag is neglected and in the 

second case viscous drag is included by applying the OCSM.   For small values of dimensionless 

distance, both methods produce added mass values close to those predicted by potential flow 

theory. 
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Chapter 1 - Introduction  

 

The force exerted by a fluid on a bluff body has been of interest to researchers and 

designers for many years.  The complexity of the research has ranged from the simple 

static case to complicated accelerating cases.  In terms of general interactions between a 

bluff body and the surrounding fluid, the simplest form occurs when both the body and 

the fluid are not moving. The interaction in this case is only a pressure force but no shear 

force; the net effect is the buoyancy force.   The interaction becomes more complicated 

when either the bluff body or the fluid moves at a steady rate.  In this situation, there is an 

additional force due to the viscous shear. This combines with the pressure forces that are 

different from those for the static case and results in a drag force along the direction of 

the flow and in the opposite direction.  The interaction is even further complicated by the 

addition of unsteady velocity in either the fluid or the body.  When considering an 

unsteady velocity flow situation the fluid particles around the object generate yet another 

force.  The inertia associated with the fluid particles change the pressure and shear 

distributions when compared to the steady flow case.   This additional force is, in reality, 

a fluid inertia force. 

Initial work in this area was done by Du Buat[1]. Du Buat performed a series of 

experiments on spheres accelerating in water and air, in which he noticed that the forces 

could not be accurately described by Newton’s Second Law, 

 

 𝐹 = (𝑀)𝑎. (1.1)  

 

In the case of an object accelerating through a stationary media the missing force 

is the inertia force of the fluid being accelerated out of the way of the moving object.  In 

the case of an accelerating fluid over a stationary object it represents the difference 

between the inertia force of the fluid with and without the presence of the object[2].  

Du Buat found that the inertial force was proportional to the acceleration.  This 

means that for an object of mass M, undergoing acceleration, a, another mass, Madd, 

needed to be “added” in order to better account for the forces, i.e.: 
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 𝐹 = (𝑀 +𝑀𝑎𝑑𝑑)𝑎. (1.2)  

 

The addition of an "added mass" term has become a standard approach to 

handling this additional force.  

 

 1.1 Background/Literature Review 

 

One of the earliest methods of theoretically estimating the added mass of an 

object was the use of potential flow theory which does not take into account the effect of 

viscosity or compressibility. There are several text books such as those by Yih[3], 

Lamb[4] and Birkhoff[5] which contain a theoretical development of the added mass for 

basic geometries. There is also a large amount of work that has been done on a wide 

variety of more complicated geometries as documented  by Kennard[6], Brennen[2], 

Patton[7] and Keulegan and Carpenter[8].  

   When considering flow over a complicated geometry, the problem becomes 

extremely complex. The complication is due to the fact that added mass forces can arise 

in one direction due to motion in a different direction (translational or rotational). For an 

arbitrary motion, an object has six degrees of freedom; three translational and three 

rotational.  For each component of acceleration of the object there is a relationship to the 

inertial forces imposed on the fluid by this acceleration, i.e. acceleration in one direction 

may cause an inertial force in another direction.  This relationship is usually expressed in 

the form of a 6x6 added mass tensor.  There are possibly 36 different scalar values that 

are required to describe the added mass.  Thankfully, it is not usually necessary to deal 

with all 36 elements.  Through proper choice of the origin and use of geometric 

symmetry the number of elements can usually be reduced to something more reasonable.  

This is one of the main reasons for the extensive use of cylinders and spheres in the 

literature in this field of study, including the present work.  

  The assumptions of inviscid, irrotational and incompressible flow raise the 

question of how reasonable the approximation is and in what range it can be used for a 

viscous flow. The major affect that viscosity has on the flow over bluff bodies is the 
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formation of a wake which is known to greatly affect the drag and inertial forces acting 

on the object. According to Sarpkaya and Isaacson[9], the added mass will vary with the 

shape and volume of the wake as well as its rate of change. The treatment of viscosity can 

be included in theoretical work with varying degrees of success.  Sarpkaya[10] placed 

vortices in his potential flow solution in order to simulate the effect of viscosity. The use 

of potential flow to determine the added mass has also been extended to include more 

complicated flow dynamics such as that by Villaggio[11] for deformable cylinders. 

When dealing with real fluids there are two main approaches used to treat the drag 

and added mass forces on the bodies.  Some researchers, such as Bird[12],  use a pseudo-

steady drag (the unsteady drag is taken as the steady state drag at the corresponding 

instantaneous velocity) along with a constant (potential flow value) for the added mass. 

Others, such as Sarpkaya[10], Sarpkaya and Garrison[13] and Garrison[14] show that the  

unsteady drag force (proportional to the square of the instantaneous velocity) differs from 

the pseudo-steady value and the added mass force (proportional to acceleration) also 

changes with time. 

The use of a pseudo-steady drag and constant Potential flow value for added mass 

has been shown, by Bird[12], to require an additional  Basset history force to completely 

account for all effects of acceleration.  The history force is the force associated with the 

change in the flow pattern over time.  When an object moves from one position to 

another, the flow field does not instantaneously adjust.  This concept was first introduced 

by Basset[15, 16].  The mathematical nature of the force does not allow easy application 

to practical situations.   It is also unknown as to what range of motion this term is 

applicable. Sarpkaya’s view that there are just two forces, drag and the inertia, which 

both change with time, is a simpler approach that inherently accounts for the Basset 

history term [12]. 

For the special case of a sinusoidal relative motion between the flow and object, it 

can be mathematically shown that the history term is zero.  This was a concept introduced 

by Morison et al[17].  Morison was interested in the forces exerted by waves on 

submerged cylindrical objects. The Morison equation utilizes the principle that the drag is 

proportional to the square of velocity while the added mass is proportional to the 

acceleration at discrete points of time.   
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1.1.1 Experimentally/Numerically Determining Added Mass  

 

Historically, two distinctly different approaches have been developed for 

experimentally determining the added mass of an object. These will be referred to as the 

indirect force measurement approach and direct force measurement approach. These 

methods will be discussed more fully in the following paragraphs in connection with their 

application to cylinders and spheres.   

The first of two techniques in the category of the indirect force measurement 

approach is most suited for determining the added mass of groups of irregular objects 

such as rubble mounds with high blockage effect such as the work presented by 

Hannoura[18]  and Hannoura and McCorquodale[19, 20].  This approach uses the head 

loss across the objects by measuring the pressure difference across the objects as well as 

the velocity upstream of the object.  The pressure difference can be used to determine the 

head loss over the test section.  The pressure difference across the objects for accelerated 

flow is compared to the steady flow pressure difference across the same set of objects.  

The difference between the steady and unsteady resistance is considered as the 

acceleration head for the object and is proportional to the added mass of the objects.  

Although this is a good technique when trying to determine the added mass of a group of 

objects, it is most useful when the majority of the test area is blocked, hence a large 

pressure difference can be measured. This type of measurement also requires that the 

velocity profile before and after the object be fairly uniform.  For a cylinder or sphere in a 

similar flow situation the wake is not uniform which would require pressure 

measurements at more than one place along the velocity profile.  For these reasons this 

type of measurement is not considered for use in the current study. 

The second indirect force measurement approach makes use of the velocity field 

and its derivatives to determine the forces acting on an object. This technique is of 

interest because of recent developments in Particle Image Velocimetry (PIV) which 

makes it possible to determine the instantaneous velocity at a large number of points 

throughout a flow field. Noca[21] and Noca et al[22] derived three different equations for 

the force on an object completely contained within a region of fluid in terms of the 
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velocities and derivatives of velocity at different locations within the region. His 

"impulse" method required information on the instantaneous velocity and derivative 

(vorticity) field throughout the volume. The "momentum" method required the 

instantaneous velocity field while his "flux" method only required instantaneous velocity 

information on the boundary enclosing the region. He conducted experiments on 

accelerating circular cylinders which indicated a self-consistency in the results among the 

three methods. However, he was not able to obtain independent force measurements and 

could not determine the accuracy of the methods. 

Although the main focus of his work is the derivation of a term used to measure 

the force, a small section was included which specified the equations needed to calculate 

the added mass in terms of the velocity field.  Although showing promise in two-

dimensional flow situations, the technique would be difficult, if not impossible to apply 

in three-dimensional cases such as spheres. Hence, no further consideration is given to 

velocity field methods in this dissertation. 

The direct force method is the traditional approach to determining added mass. It 

consists of measuring the components of the total force acting on the object subjected to 

an accelerated motion with the use of a force transducer and then splitting the total force 

into the appropriate components (i.e. drag and added mass force). It is common practice 

to accelerate the fluid and have the object stationary in added mass research as this is 

closer to the scenario encountered in offshore structure design.  This, however, presents a 

problem when comparing the results to an accelerating object in a stationary fluid.  When 

the fluid is accelerated, as opposed to the object, there is an added pressure that the 

moving fluid exerts on the object.  Determining the fluid’s inertia force requires that this 

be taken into account.  The added pressure of the accelerated fluid will result in an 

“added mass” that consists of the actual added mass plus the mass of the fluid displaced 

by the object.  The added mass coefficient (actual added mass divided by the theoretical 

added mass)  for a circular cylinder is two for an inviscid, irrotational flow in which the 

fluid is accelerating and one for an inviscid, irrotational flow in which the fluid is 

stationary and the object is accelerating. 

Researchers also have chosen to study simple motions since it is very difficult, if 

not impossible, to find a correlation between a truly arbitrary acceleration and the 
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resulting added mass. The two most common simple motions are sinusoidal oscillation 

and unidirectional translation. 

In the case of sinusoidal motion of the object (or the fluid) the total force on the 

object is measured and then split into its components; added mass and drag.  The drag is 

assumed to be proportional to the square of the velocity component and the added mass is 

assumed to be proportional to the acceleration component of the measured force 

calculated at the discrete positions of the prescribed sinusoidal motion.   For sinusoidal 

motion the Basset history term is mathematically shown to be equal to zero which yields 

a more manageable relationship.  This is the approach that Morison et al [17] took when 

determining the added mass for cylinders in a sinusoidal wave.    The data were analyzed 

and separated into drag and added mass by looking at the measured forces at two phases 

in the cycle, one when the velocity is zero and one when the acceleration is zero.   

Morison et al [17] were able to show that during the phase of the cycle when velocity is 

zero, the force represents the inertial component of the total force.  During the phase 

when the acceleration is zero the force represents the unsteady drag of the force.  Many 

experimentalists, such as Keulegan and Carpenter [8], have modified the original 

Morison equation in order to have a better representation of actual forces.  Keulegan and 

Carpenter[8] added a remainder function to account for the difference between the 

computed values and observed values. Other researchers have also used a similar 

approach for oscillating cylinders as well as spheres with a variety of techniques to 

account for any discrepancy between calculated and observed values in a variety of flow 

situations[23-42].  One of the other reasons for the popularity of conducting experimental 

work using an oscillating cylinder/sphere is that sinusoidal motion is a common 

approximation for modeling wave forces.  This becomes important for the application of 

designing offshore structures, which is the most common application requiring accurate 

added mass information.  Some problems associated with this method are: difficulty in 

measuring the instantaneous velocity and acceleration instead of simply deriving them, 

several flow regimes exist based on the combinations of experimental parameters chosen 

(i.e. the Reynold’s number based on the frequency, the Keulegan-Carpenter number) 

which are complicated to quantify, and results are not readily transferable to general 

motion. 
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It can be argued that the case of unidirectional acceleration gives results that are 

more easily transferable to general motion due to the fact that any general variation can 

always be separated into small steps of constant acceleration.  

There is a relatively limited amount of research that has been reported on 

unidirectional acceleration for both cylinders and spheres.  The most comprehensive body 

of work for cylinders is that done by Sarpkaya[10], Sarpkaya and Garrison[13] and 

Garrison[14].   It includes data on unidirectional, constant acceleration of fluid over a 

stationary cylinder in terms of a dimensionless force and a dimensionless distance.  The 

experiments included several different diameters and accelerations which showed 

excellent correlation.  This set of experiments also used flow visualization to determine 

the size and strength of the vortices in the wake region.  These measurements were then 

applied to the formulations originally developed by Sarpkaya [10] which allowed the  

force to be split into the unsteady drag and the inertia components.  There are a few other 

variations of this research: Keim[43] experimented with cylinders of different lengths but 

did not separate the resulting force into drag and inertia components; Sarpkaya[44] 

accelerated cylinders and flat plates to a constant velocity (added mass was constant); and 

McLain[45]  and McLain and Rock[46] experimented on an underwater manipulator, 

determining the added mass using a vortex technique. Bird[12] also performed 

experiments for unidirectional accelerating and decelerating cylinders, however the 

acceleration was not a constant.  The scenarios in this set of experiments included 

acceleration from rest, deceleration to rest, acceleration from one constant velocity to 

another and reversal of flow.  The added mass was assumed to be the theoretical value 

derived from potential flow while the drag was calculated using pseudo-steady drag.  The 

remainder of the measured force was considered to be the history force.   

The most comprehensive work for spheres undergoing unidirectional constant 

acceleration was that of Moorman[47].  Moorman used a photographic method for 

determining the time and distance required for a sphere to reach terminal velocity.  In 

order to determine an appropriate equation to predict this particular aspect of accelerated 

flow Moorman used a constant potential flow value of added mass.  There were several 

different variations of this set of experiments including Odar [48] who added a simple 
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harmonic component to the fluid and Hamilton and Courtney[49] who studied the effect 

of a solid boundary on the accelerating sphere.  

Engineers and designers are depending more on numerical approaches in order to 

reduce the need for expensive experimental apparatus.  This is a growing area of research 

in the field of unsteady flow, but there is still a limited amount of material that is 

specifically directed toward the added mass of an object in a unidirectional, constant 

acceleration.  The work that is the most closely related to the present study is the work by 

Wang and Dalton [50] for impulsively started  flow over cylinders .   

Numerical studies that are directly comparable to Moorman’s experimental results 

are also available.  Ferreira and Chhabra [51], Chang and Yen[52] and Guo[53] were 

interested in determining the time and distance required for a sphere to reach terminal 

velocity and they used Moorman’s experimental results for comparison.  In these papers 

there is no focus on the beginning of the flow and determining the added mass is not the 

main goal. 

The issue of splitting the total force into the drag and inertia terms has been 

resolved in two fundamentally different ways.  The first method, employed by Bird [12],  

uses the pseudo-steady drag and the theoretical (potential flow) value of the added mass.  

These two terms are added together and then subtracted from the total force in order to 

determine the value of the Basset history term. The assumption made in this first method 

is that the instantaneous velocity governs the drag as if it were in a steady flow situation. 

The  second method splits the force into an unsteady drag (different than the value at the 

same steady velocity) plus an unsteady added mass force, as done by Sarpkaya and 

Garrison[13].  The assumptions made in this method are: drag is proportional to the 

square of the velocity, added mass is proportional to the acceleration and the total force is 

simply a linear summation of the drag and inertial components. One of the other 

important contributions by Sarpkaya and Garrison[13] is the development of a 

dimensionless force (C) which is the measured force in the direction of the flow divided 

by fluid inertia force (Madd x acceleration). This form of the dimensionless force uses the 

acceleration instead of the conventional velocity and is shown to be the dimensionless 

group that is required to collapse the data The method employed by Sarpkaya and 

Garrison[13] has the least restrictive assumptions concerning the values of the 
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coefficients. This method has the inherent problem of identifying the coefficients.  The 

equation relates the added mass and drag coefficients to the force, but there is only one 

equation for two unknowns.  Sarpkaya[9] attempted to solve this problem by assuming 

the coefficients were constant over a short period of time.  Thus a system of two 

equations and two unknowns were solved, however the results were very noisy.  

McLain[45] and McLain and Rock[46] developed a method of curve fitting using a 

polynomial cubic spline with non-linear optimization for the case of an underwater  

manipulator oscillating in a fluid.  The technique helped to overcome the problem with 

noise. 

 

1.2 Summary of Literature Review 
 

A review of the literature regarding added mass and the resulting inertial force 

indicates that considerable effort has been made, over many years, to identify ideal 

(potential) flow values for a variety of shaped objects. Spheres and circular cylinders 

have been the focus of most of the research papers in the literature due to the single 

added mass coefficient required as a result of symmetry in addition to their important 

practical applications.  In practical usage these potential flow theory values of added 

mass continue to be applied in the equations used to describe the forces acting on objects 

in general acceleration situations in real fluids in spite of their questionable accuracy. The 

Basset force term, which is required in this case, is often neglected.  

 Experimental research is limited to simple types of relative motion of the object 

and the fluid due to the complexity involved with handling the general acceleration 

variation in real fluids.  The most common simple types of motion are sinusoidal and 

constant unidirectional acceleration. The sinusoidal variation has direct application to 

wave forces of water on offshore structures.  Research on this topic is quite well 

advanced but is limited to the application mentioned.  

 There is a relatively limited amount of research regarding constant unidirectional 

acceleration of flow over circular cylinders.  It has been found that the added mass values 

determined using potential flow theory accurately describe the values found during the 

initial period of motion of an object starting from rest [12, 54].  This is surprising in that 
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the Reynolds number of the flow is extremely small during that time which would tend to 

imply that viscous effects are important, however, during that time the relative flow 

between the fluid and object, and hence the shear stress, has not had time to establish. 

The case of a constant relative acceleration from an initially non-zero relative velocity 

needs further study. It is clear that the usual thought process involved with steady flows 

cannot be applied when considering unsteady flow situations.  

Although there has been research work reported on spheres falling from rest, most 

of these studies were concerned with the time required to reach terminal velocity.  A 

fundamental study, similar to that of Garrison[14] and Sarpkaya and Garrison[13] for the 

circular cylinder, is missing in the literature. 

 

1.3 Objectives of this Study 
  

The overall objectives of the present study are to extend the state of the art in the 

field of added mass in the following ways; to extend the research in the area of 

unidirectional constant acceleration of an initially stationary fluid over a stationary 

circular cylinder to include flows with a small initial velocity (Re < 40) and to provide 

new experimental data for that of a sphere falling from rest with a constant acceleration 

in a stationary medium. This work, therefore, is limited to applications where the 

Reynolds number is quite small. An application example in the case, of the circular 

cylinder is the approximation to insect motion by Kikuchi and Mochizuki[55] while the 

acceleration of bubbles in a liquid as described by Brennen[56] is a good example of low 

Reynolds flows associated with spheres. The specific objectives in each of these cases are 

given in the following. 

 

 

1.3.1 Study of Cylinders 

 

1) To develop a numerical model to simulate the forces exerted by a fluid, which 

is accelerated over a stationary cylinder.   
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2) To investigate the case of a circular cylinder subjected to an initially steady 

flow followed by a constant unidirectional acceleration using computational 

fluid dynamic techniques and compare with the potential flow values. The 

initial steady state values are limited to the laminar flow regime. 

 

3) To develop an analysis technique similar to the dimensionless technique of 

Sarpkaya’s to separate the drag force and the force due to inertia (or added 

mass) in the case mentioned above.     

 

 

1.3.2 Study of Spheres 

 

The experiments presented in this dissertation explore the added mass values at 

the beginning of the accelerated flow immediately after a sphere is released from rest.  

 

1) To experimentally study spheres of different density, falling in a stationary fluid 

to determine the added mass at different values of acceleration.  

 

2) To develop a dimensionless technique similar to Sarpkaya's that can be applied to 

the sphere undergoing constant acceleration. 

 

3) To determine the added mass of a sphere using simplifying assumptions and 

compare with the potential flow values. 
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Chapter 2 - Numerical Investigation of the Added Mass 

of Cylinders Subjected to a Constant Acceleration after 

an Initially Steady Flow  

 

 The numerical study presented in this section involves a determination of the 

added mass of a circular cylinder subjected to an initially constant velocity followed by 

constant acceleration. A numerical model is developed for this purpose and used to 

conduct numerical experiments. The error that results in using the potential flow value of 

added mass is of particular interest.  

 The chapter begins with a description of the governing equations that are being 

solved numerically. This is followed by a description of the physical geometry being 

modeled and its computational approximation.  A discussion of the boundary conditions 

and the details involved in obtaining the numerical solution using the commercial 

software package Fluent are given next. Considerations made in determining the final 

form and parameters for the model are then presented for the case of a constant 

acceleration from a condition of rest.  The results are then validated by comparison with 

existing experimental results for this case. 

 Numerical experiments for determining the fluid forces acting on a circular 

cylinder experiencing a constant velocity followed by a constant acceleration are then 

presented. The results are presented in a dimensionless form which is an extension of that 

used by Sarpkaya[9]. 

 Finally, two methods of separating the total dimensionless force into the drag and 

inertial components are presented, evaluated using existing experimental results and then 

applied to the results of the current numerical experiment.  
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2.1 Governing Equations 

 

The commercial software package used to solve the acceleration of fluid over a 

stationary cylinder is Fluent 6.3.26. The pressure based solver is used because it was 

originally developed for low velocity incompressible flow, which gives it an advantage in 

the current flow situation; incompressible flow which begins from rest[57]. PISO 

(Pressure-Implicit with Splitting of Operators) is a pressure based segregated algorithm 

that is highly recommended for transient flow[57]. Segregated solvers will solve for each 

individual fluid parameter for each cell using the pressure and mass flux across each cell 

face then move on to the next fluid variable.  After all the variables are solved with the 

current pressure and mass flux across each cell face, the solution is checked for 

convergence. If convergence is not satisfied then the process is repeated. 

The basic governing equations are the conservation of mass 

 
𝜕𝜌𝜕𝑡 + ∇ ∙ 𝜌𝑢𝑖 = 0, (2.1) 

  

and the  conservation of momentum, 

 
𝜕𝜕𝑡 (𝜌𝑢𝑖) + ∇ ∙ (𝜌𝑢𝑖𝑢𝑗) = ∇p + ∇(τ̿) + ρ �⃗⃗� . (2.2) 

 

where ρ is the density,  u is the component of the velocity in the ith and jth direction, p is 

the pressure, τ̿ is the stress tensor and g is the gravitational acceleration.  

 These equations apply to laminar flow, for which there are no fluctuating 

components superimposed on the mean velocities or pressures.  However, turbulent flow 

is characterized by fluctuations in the velocities and pressures at each point.  Fluent uses 

Reynolds Averaged Navier Stokes (RANS) equations in order to reduce the 

computational expense of trying to resolve the entire range of turbulence fluctuations.   

The instantaneous velocities used in Equation 2.1 and Equation 2.2 are replaced by a 

turbulent velocity that is composed of a mean and a fluctuating velocity, 
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 𝑢𝑖 = �̅�𝑖 + 𝑢𝑖′ (2.3) 

 

where �̅�𝑖  is the mean component and 𝑢𝑖′ is the fluctuating component.  Substituting the 

mean and fluctuating velocities for the velocities in Equation 2.1 and 2.2 and averaging 

gives 

 
𝜕𝜌𝜕𝑡 + ∇ ∙ 𝜌�̅�𝑖 = 0 (2.4) 

and 

 

𝜕𝜕𝑡 (𝜌�̅�𝑖) + 𝜕𝜕𝑥𝑗 (𝜌�̅�𝑖�̅�𝑗)= 𝜕𝜕𝑥𝑖 p̅ + 𝜕𝜕𝑥𝑗 [μ (𝜕�̅�𝑖𝜕𝑥𝑗 + 𝜕�̅�𝑗𝜕𝑥𝑖 − 23𝛿𝑖𝑗 𝜕�̅�𝑙𝜕𝑥𝑙)]+ 𝜕𝜕𝑥𝑗 (−𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ) (2.5) 

where  −𝜌𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅  are the Reynold’s stress terms.  The Reynold’s stress terms represent the 

mean transport of momentum caused by the turbulent velocity fluctuations. These 

additional Reynold’s stresses cause a closure problem i.e. in the case of incompressible 

flow, there are four equations and ten unknowns (four mean variables and six Reynold’s 

stress terms).  In order to overcome this, Fluent uses what is called the Boussinesq 

approach where the Reynold's stresses are assumed to be related to the mean flow 

velocity gradients with the same form as in the laminar flow case, except that a turbulent 

viscosity is used instead of the fluid viscosity. The closure problem, hence reduces to 

specifying a relation for the turbulent viscosity.  This is accomplished using turbulence 

models which involve the solution of one or more model transport equations which may 

be either algebraic or differential equations, the details of which are provided in the 

literature [52]. Many of the models also assume that the Reynold's stresses are isotropic, 

which is not true in general. The turbulent transfer equations involve coefficients which 

have been empirically determined. No references that deal with the effect that 

acceleration has on the coefficients could be found in the literature and hence, these 

coefficients are assumed to applicable to accelerated flow. 
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2.2 Physical Geometry, Computational Domain and Mesh 

 

 The numerical model simulates a water tunnel in which cylinders of varying sizes 

(0.0127 m -0.0254 m in diameter) are placed.  The water is initially allowed to achieve a 

steady downward flow and then is accelerated. The special case of zero initial velocity is 

also considered in order to evaluate the model using existing experimental data. 

 A complete and unobstructed velocity field is required to gather the necessary 

data for the determination of added mass and hence, a domain is chosen slightly larger 

than that normally recommended for bluff body simulations.  The distances from the inlet 

and outlet to the cylinder are chosen in order to reduce the influence of these boundaries 

on the velocity field as shown in Figure 2.1.  An upstream dimension of 20 diameters is 

considered an adequate distance to allow for the natural adjustment of the flow 

approaching the object from that given at the inlet boundary.  A downstream dimension 

of 60 diameters is considered adequate to include the steady flow wake effects caused by 

the cylinder.  Since the cylinder and the wall were both assigned a no-slip boundary 

condition a distance of 12 diameters from the centre of the cylinder to the wall was 

considered sufficient in order to avoid any effects of the wall on the cylinder.  This 

dimension is larger than that used experimentally by Garrison[14] and Sarpkaya and 

Garrison[13] in order to produce an accurate steady state result for the value of the drag 

force.  Use of the original experimental dimensions was investigated and found not to 

have an influence on the solution for simulations that have a constant uniform 

acceleration starting from rest.  However when the flow was started from an initial 

velocity other than rest the experimental dimensions caused inaccurate forces to be 

calculated for the initial, steady state portion of the flow. 
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Figure 2.1: Schematic of the physical flow field. 

  

Both the sides of the flow region as well as the cylinder are defined as walls. The 

side walls are placed sufficiently far away from the cylinder as to not interfere with the 

flow around it. It is expected, however, that there will be very high gradients around the 

cylinder and in the wake region; hence a finer mesh is desired in these areas.  In order to 

realize the higher density meshes and still have a manageable mesh size, the fluid region 

is divided into nine regions as shown in Figure 2.2.  The region surrounding the cylinder 

has the highest density mesh.  The mesh density then decreases as it moves away from 

the cylinder. All grids considered consisted of a structured mesh attached to the cylinder 

wall that extended at least 10% of the cylinder diameter into the flow field. The mesh 

attached to the structured mesh was an unstructured mesh that had a high density in the 

wake region in order to resolve any gradients that are present at the edge of the wake. 

 Special attention must be paid to the boundary layer around the cylinder.  Since 

this is a flow with an adverse pressure gradient, the near wall region must be resolved 

adequately to resolve the laminar region extremely close to the wall. This requires that 

the y+ value be close to one.  The y+ value is defined as 

 𝑦+ = 𝜌𝑢𝜏𝑦𝑃𝜇  (2.6) 

20D 

60D 

12D 12D 

Inlet 

Outlet
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where 𝑢𝜏 is the friction velocity, yp is the distance from the node point, P, closest to the 

cylinder wall,  ρ is the density of the fluid and µ is the viscosity of the fluid at point P. 

The proper range of y+ for the cylinder wall is achieved using the Fluent y+ adaptation 

function.  This function splits, in half, the cells that do not meet the criteria in height and 

width.  This effectively doubles the number of nodes around the cylinder. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Mesh of solution region. 

 

2.3 Boundary Condition 

 

 The vertical walls as well as the cylinder surface are set to the no-slip boundary 

condition. The inlet boundary condition is defined by a User Defined Function (UDF) 

(See Appendix A). For purposes of model testing the UDF is a constant acceleration in 

the direction normal to the inlet boundary (-y direction) starting from an initial zero 

velocity. This UDF is modified for the numerical experiment section which is described 

later. The outlet is set to outflow which assumes zero gradients perpendicular to the 
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outlet.  Since the outlet is a considerable distance from the cylinder, this is a reasonable 

assumption to make. 

 

 

 

 

2.4 Numerical Aspects of the Model 

 

According to the Fluent documentation [57]  and  Jones and Clarke[58] an 

appropriate turbulence model for a bluff body is the k-omega SST (Shear-Stress 

Transport) model due to its ability to handle the adverse pressure gradient that results in 

boundary layer separation.  Since the entire model includes flow with a varying velocity 

over a wide range, the flow field could include both laminar and turbulent regions 

therefore the transitional flow option is used in the k-omega SST turbulence model.  

Second order solvers are chosen for the Pressure, Momentum, Turbulent Kinetic 

Energy and Specific Energy dissipation equations.  Quadratic Upstream Interpolation for 

Convective Kinetics (QUICK)[57] is also used since it is found to have negligible 

difference compared to other second order solvers.  Pressure-Implicit with Splitting of 

Operators (PISO)[57] is used for the pressure-velocity coupling method since this is a 

transient flow situation.  The under-relaxation factors used for the simulations can be 

found in Table 2.1.  

 Under-Relaxation Factor 

Pressure 0.3 

Density 1 

Body Force 1 

Momentum 0.5 

Turbulent Kinetic Energy 0.8 

Specific Dissipation 0.8 

Turbulent Viscosity 1 

 

Table 2.1: Under-Relaxation Factors used in numerical simulations 
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Default settings are used for the convergence criterion except for the steady 

velocity simulations used in the numerical experiments.  For steady velocity simulations 

a convergence criteria with a residual of 1e-6 is used.   

 

2.5 Validation of Model and the Parameters 

 

  This section begins with a comparison of the different factors that affect the 

accuracy of the two-dimensional solution. These factors or parameters are selected to 

ensure that the model yields an accurate solution in a reasonable period of time.  

 

2.5.1 Grid Convergence 

 

In order to get an accurate simulation, the gradients around the cylinder must be 

resolved adequately.  The most important factor in determining whether a grid is able to 

resolve the high gradients on the surface of the cylinder is the height of the first layer of 

cells next to the cylinder wall.  Although a number of grid configurations are studied, 

three are chosen in order to demonstrate the important factors associated with a 

successful mesh.  Table 2.2 gives more detailed information about the three meshes that 

are considered when determining grid convergence. 

 

 1st Cell Height 
Total No. of 

Cells 

Nodes Around 

the Cylinder 

Mesh 1 1.961e-6 m 178001 13775 

Mesh 2 3.132e-6 m 206043 937 

Mesh 3 3.924e-6 m 149666 9600 

Table 2.2: Mesh information for grid convergence study. 

 

It is critical that this first layer be very small, however this high level of mesh 

density does not need to extend throughout the whole flow field.  The most effective way 
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of achieving this high mesh density near the surface and still have a manageable number 

of cells in the whole mesh is to use Fluent’s mesh adaptation feature in order to have a 

resulting y+ value of approximately 1.  This is the technique that is used in the 

simulations used in this case. 

 

Figure 2.3: Comparison of different grid configurations (experimental data from Sarpkaya and 

Garrison [13]). 

 

Figure 2.3 shows the dimensionless force (as described in Section 1.1.1) versus 

the dimensionless distance moved by the cylinder for the three different meshes 

compared to the experimental results from Sarpkaya and Garrison[13].  As can be seen 

from Figure 2.3 the case with the largest height of cell next to the cylinder boundary 

shows oscillation beginning at an s/d value of around 12.  By decreasing the first cell 

height by approximately 1e-6 m (i.e. from 3.924e-6 m to 3.132e-6 m) the oscillation is 

delayed to values of s/d greater than 20 and hence do not appear on the graph.  However, 

decreasing the first cell height by another 1e-6 m does not change the results.  It is 

decided that the simulations use a first cell height of 2e-6 m to ensure the high velocity 

gradients are resolved. 

It is also observed from Figure 2.3 that the number of cells around the cylinder is 

not a good indication of the reliability of the mesh.  The cylinder with the least number of 

cells around the cylinder (Mesh 2) still performed well compared to the medium density 

mesh (Mesh 3).  Although it had similar results to Mesh 2, the aspect ratio for Mesh 1 is 
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one whereas the aspect ratio for Mesh 2 is around 4. Mesh 1 is used in the remainder of 

the simulations. 

It should be noted that there is a discrepancy between the numerical and 

experimental results in the form of a “hump” at lower values of s/d.  This will be 

discussed in detail in Section 2.5.5. 

 

2.5.2 Choice of Turbulence Model  

 

Several turbulence models are available in Fluent 6.3.26 including Laminar, 

Spalart-Allmaras, k-epsilon, k-omega and RSS.  As stated in Section 2.4, according to the 

literature[57, 58] the most appropriate model is the k-omega SST turbulence model. This 

is due to its superior treatment of the viscous near wall region in addition to accounting 

for the effects of stream-wise pressure gradients.  The SST version also accounts for the 

transport of turbulent shear stresses. In addition, Fluent has incorporated a (transitional) 

low- Reynolds number version of this model which applies when fine grids are utilized. 

These features are important in accurately modeling the boundary layer separation 

process which is of paramount importance in obtaining good results for flow over bluff 

bodies.  The other models are, however, considered here to verify their lack of 

applicability. In each case, all other conditions regarding the numerical model are kept 

constant except the turbulence model.  Both the k-epsilon and the RSS models utilize the 

enhanced wall function which is used in the simulations for comparison.  This allows the 

use of a wall function that can be more appropriately used for a near wall region that 

includes a consideration of a laminar sub-layer, buffer region, and fully-turbulent outer 

region.  Since the transitional flow option is used for the k-omega model, the same guide 

lines as for the enhanced wall function apply.  The inlet turbulence conditions are 

specified using a turbulence intensity and a turbulence length scale. The values of the 

turbulence intensity considered for the inlet boundary condition are 1%, 2% and 5%.  A 

value of 10% for the turbulence intensity is considered very high and a value of 1% is 

generally considered low(from Fluent User’s Manual[57], Section 7.2.2).  Although  

several different values for these two conditions were tested there was little effect on the 

end result.  The turbulence variables are set for the inlet boundary conditions which are 
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far enough away from the cylinder for any effects to have been dissipated by the time the 

flow reaches the cylinder.  Another consideration is the difference in the turbulence from 

the beginning of the flow (at rest) and the end of the simulation (moderate turbulence). 

The value of the turbulent length scale was based on the recommended value as 

determined from the equation  

 𝑙 = 0.07𝐿. (2.7) 

where l is the turbulent length scale and L is the characteristic length which in this case is 

the diameter of the cylinder. 

 

Figure 2.4: Comparison of different Fluent turbulence models (experimental data from Sarpkaya 

and Garrison [13]). 

  

Figure 2.4 shows the dimensionless force results for the turbulence models tested 

as well as the experimental results for comparison. From Figure 2.4 several things can be 

observed about the different turbulence models.  The laminar model shows the 

occurrence of vortex shedding very early on in the simulation while the others do not.  

The experimental results of Sarpkaya do not indicate such a vortex shedding (fluctuations 

in the force measurement) and hence this model is unrealistic.  The k-epsilon model 

shows a much lower value of C than the other models and, therefore not desirable.  

Although the Spalart-Allmaras model seems to show similar results to the k-omega and 

Reynolds Stress models for higher values of s/d, the initial value of C is closer to five 

upon inspection. This is in disagreement with experimental results and theoretical results 
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so the use of this model is also discounted. The two remaining models, k-omega and 

Reynolds Stress, show excellent agreement with each other with only a slight difference 

at higher values of s/d (>18) and hence both are considered to be equally applicable.  The 

Reynolds Stress model requires a longer computational time than the k-omega model, 

therefore the k-omega model is chosen as the turbulence model for the remainder of the 

simulations. 

 

2.5.3 Time Step Independence 

 

A 2D model with a first layer height of 2e-6 m, using a k-omega SST turbulence 

model is run with several different time steps in order to determine the optimal time step. 

 

Figure 2.5: Comparison of different time steps (experimental data from Sarpkaya and Garrison 

[13]). 

 

The time step is initially chosen such that the fluid, at its maximum velocity, does 

not pass through more than one cell boundary within the time step.  This is determined to 

be approximately 0.0001 s.  The time step is then decreased and increased from this value 

by a factor of 10 to determine if any change in the solution is apparent.  As indicated in 

Figure 2.5, when the time step increases (0.001 s) the small oscillations are not present.  

This indicates that the time step is not sufficiently small to resolve this flow.  However 
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when the time step is decreased (0.00001 s) there is little change to the solution.  

Therefore a time step of 0.0001 s is used for the remainder of the simulations. 

 

2.5.4 Three-dimensional versus Two-dimensional Model Geometry 

  

The computational time required for a two-dimensional numerical solution of the 

flow field is considerably less than that for a three-dimensional numerical solution simply 

because of the reduction in the number of cells that need to be determined. The important 

point to consider is whether the two-dimensional assumption reduces the accuracy of the 

solutions to an unacceptable level.  In this regard, a comparison is made between 

solutions for a three-dimensional and a two-dimensional representation of the flow field 

in question.  

 The width and height of the fluid domain remain the same for both cases.  The 

length of the cylinder (for three-dimensional case) is the same as the width of the fluid 

domain and the cylinder extends all the way to the end walls which are given the no slip 

boundary condition.    Similar to the two dimensional simulation, the three dimensional 

simulation uses y+ adaptation to produce the small first cell height that is required for an 

accurate solution.   In order to keep the number of nodes reasonable enough for a 12 CPU 

computer to complete a solution, the y+ is adapted in order to obtain a value of four 

which is still within the range suggested as acceptable by the Fluent User’s Manual [57] 

and considerably reduces the number of nodes that are generated. The value of the 

acceleration is 9.81 m/s2 and the boundary conditions as well as flow parameters (i.e. k-

omega SST turbulence solver, time step of 0.0001secs, and relaxation factors as 

described in Table 2.1) are the same for both simulations. 
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Figure 2.6: Comparison of three-dimensional and two dimensional simulation results (experimental 

data from Sarpkaya and Garrison [13]). 

 

The results of this comparison are shown in Figure 2.6 and demonstrate that there 

is little difference between the two results for the lower values of s/d.  For the range 

0<s/d<9, the maximum difference between the two results is less than 6%.  The 

maximum difference is 18.6% which occurs at s/d = 12.9. From Figure 2.6 it can be seen 

that the three dimensional simulation begins to oscillate due to early (pre-mature) onset 

of vortex shedding.  This presents itself in the simulation data as a wave in the C value. 

The experimental data does not show this wave in the C data which suggests that the 2D 

simulation, which does not indicate the vortex shedding, is a closer representation of the 

experimental results.  The maximum difference occurs when the oscillation for the three 

dimensional results is at a maximum compared with a two dimensional simulation that is 

not oscillating.  The difference between the two simulations occurs at higher values of 

s/d, which is outside the range of interest for the remainder of the work, therefore no 

further modification done on the 3 dimension model to reduce the oscillations (i.e. 

reducing the y+ further). In terms of computational time a three dimensional simulation 

takes approximately 15 days with a computer with a Intel(R) Core™ i7 CPU 

x980@3.33GHz 3.33 GHz processor, 600 GB RAM and a 64-bit Operating System  

while the  two dimensional simulation takes less than six hours on the same computer.  

1

10

0.1 1 10

C

s/d

C (2D)
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In the present study it is the time immediately after the acceleration begins that is 

of particular interest, therefore, it is important to have an accurate and efficient solution 

in the region 0<s/d<5. Hence, the use of 2D simulations can be justified in view of the 

drastically reduced simulation times with comparable accuracy. 

 

2.5.5 Further Comparison of Numerical Model with Experimental Data 

 

Having established grid independence, the appropriate turbulence model and the 

appropriate time step, the results will be compared to the experimental work of 

Garrison[14] and Sarpkaya and Garrison [13] over the range of s/d of interest.  Although 

both curves in Figure 2.7 have been seen previously on various figures, it is advantageous 

to present them again in order to emphasis the results and aid in further discussion. 

 

 
Figure 2.7: Comparison of experimental and numerical results (experimental data from Sarpkaya 

and Garrison [13]). 

 

The comparison of the experimental work with the CFD work, presented in 

Figure 2.7, shows a reasonable agreement.  It can be seen that there is a slight “hump” in 

the CFD results when compared to the experimental results for values of s/d in the range 

(1.3<s/d<4).  It can also be seen that the CFD results do not compare as well as the value 

of s/d increases.  This study focuses on the beginning of the accelerated flow (s/d<5) and 
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hence this is not considered to be a problem.  The "hump”, however, is an interesting 

phenomenon and will be investigated in more detail in the following paragraph.  

 Figure 2.8 shows the streamlines for various values of s/d throughout the duration 

of the “hump”.  Along with the streamline diagrams is a graph showing the numerical 

results (red line) and the experimental results (blue line) with a green square that 

indicates the position that corresponds to the streamline diagram.  The third graph for 

each set is the y-wall shear stress of the cylinder with respect to the x position.  This 

graph is used to determine the separation point.  The shear stress changes from positive to 

negative when separation occurs.  It should be noted that the shear stress also changes 

sign due to recirculation. The start of the “hump” does not coincide with the formation of 

the large vortices in the wake of the cylinder.  It does, however, coincide with the 

formation of the smaller vortices located just after the separation points.  

The streamline diagrams also include red arrows that indicate the approximate 

point of separation.  It can be seen that the point of separation quickly recedes back to 

approximately 90o due to the formation of the smaller secondary vortices. When 

examining the experimental visualization results of Garrison[14], there does not seem to 

be a distinct set of secondary vortices at similar values of s/d.  These results are 

consistent with the fact that the numerical results have a higher drag force.  It appears that 

this is due to the premature recession of the separation point which in turn is due to the 

over estimation of the secondary vortex development in size and strength. The premature 

recession of the separation point increases the amount of drag on the cylinder, which in 

turn produces a higher force in the direction of the flow. This difference exists both in the 

two-dimensional as well as the three-dimensional solutions. 

Another difference in the simulation compared to the experimental work is the 

difference in the slope at intermediate values of s/d.  This may be due to the symmetry of 

the attached vortices.  According to Sarpkaya and Garrison[13], asymmetry of the 

attached vortices occurs  around an s/d value of 3. From Figure 2.8, however, there does 

not seem to be any asymmetry apparent for s/d values as high as four (Figure 2.8 f).   
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 a) time = 0.056 s, s/d = 1.211, Separation =105.49O from leading edge 

 

 

 

 

 

 

 

 

b) time = 0.063 s, s/d = 1.533, Separation = 100.31O from leading edge 

 

 

 

 

 
 

 

 

 

c) time = 0.073 s, s/d = 2.058, Separation = 95.06O from leading edge    
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d) Time = 0.083 s, s/d = 2.661, Separation = 91.65O from leading edge 
 

 

 

 
 

 

 

 

  

e) Time = 0.093 s, s/d = 3.340, Separation = 89.70O from leading edge  

 

 

 

 

 

 

  

 

 

 f) Time = 0.103 s, s/d = 4.097, Separation = 87.98O from leading edge 

 
Figure 2.8: Streamlines of numerical experiments for diameter = 0.0127 m at various times (first graph shows the value that corresponds to the diagram 

(green square), numerical results (red line) and experimental results from Sarpkaya and Garrison[13] (blue line), second graph shows the y-wall shear 

stress over the cylinder,  red arrows indicate point of separation).
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In order to further investigate possible reasons for the formation of the "hump" 

two additional geometries are studied. The first tank has width to diameter ratio twice as 

large as the original and the second has exactly the same geometry as that of Sarpkaya 

and Garrison[13] to see if blockage contributes to the differences. Figure 2.9 shows there 

is no difference between the solutions which demonstrates that there is no evidence that 

blockage effect is smoothing out the “hump” in the experimental results. 

 

 

Figure 2.9: Comparison of 3D numerical simulation with 3D  numerical simulation using physical 

parameters of experimental set up by Sarpkaya and Garrison[13]. 

2.6 Numerical Experiments  

 

 Now that the CFD methodology has been verified, it is possible to use it as a tool 

to perform numerical experiments which would have otherwise been very costly and 

physically difficult to perform.  Another advantage to using CFD for this type of study is 

the ability to accurately determine the forces at very low values of s/d.  It is difficult to 

obtain experimental data at the beginning of accelerated flow due to the small forces that 

are involved. 

 Most of the available work on added mass for unidirectional constant acceleration 

concerns an initially zero velocity.  In addition to that condition, this investigation deals 
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with the flow situation that starts from a constant velocity, other than zero, then 

experiences a constant unidirectional acceleration.  

The numerical experiments that are presented in the following sections are for the 

case of unidirectional, constant acceleration of fluid flowing over a stationary cylinder 

following a non-zero constant velocity of the fluid.  The simulation is first run for a 

constant velocity of the fluid until convergence. The constant acceleration is then 

implemented.    The solver used for the constant velocity portion of the simulation is also 

an unsteady solver to account for any unsteadiness that may develop in the wake.  The 

residuals are set to 1e-6 for this portion of the simulation and the solution is considered to 

have converged when the measured CD reaches a constant value. The CD values obtained 

for a Reynolds number of 40 range from 1.77 to 1.89 where the experimental value is 

1.8[59].  The CD value obtained for a Reynolds number of 10 is 3.53 where the 

experimental value is 3.57[60].  The grid, turbulence mode and, time step are all the same 

for both the constant velocity and constant acceleration portions of the simulation. It 

should be mentioned that the Reynolds numbers are based on one cylinder diameter with 

the value of the constant velocity adjusted accordingly. 

The following sections include a comparison of the results for the three different 

initial constant velocities followed by an acceleration of 9.81 m/s2.  Similar to Sarpkaya 

and Garrison[13], a comparison is made for a change in the acceleration, ranging from 2 

m/s2 to 9.81 m/s2 while the initial velocity and the diameter of the cylinder remain 

constant.  Finally, the diameter is adjusted in the range from 0.00635 m to 0.015875 m, 

while the initial velocity and the acceleration remain the same.  The results of these 

numerical experiments will be presented non-dimensionally as described in the next 

section.  

 

2.6.1 Equations for Cylinder Starting from Non-zero Constant Velocity 

 

Garrison[14] and  Sarpkaya and Garrison[13] found that regardless of the 

diameter of the cylinder or acceleration of the fluid, the data consistently correlated well 

when using the dimensionless variables C vs. s/d. A similar development can be made for 
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the case of a constant, unidirectional acceleration starting from non-zero constant 

velocity.  These equations are developed in this section. 

The total force acting on a cylinder can be separated into the drag and inertia 

forces for the case of acceleration from rest as indicated below.  

 𝐹 = 𝐶𝐷𝜌𝑉22 𝑑𝐿 + 𝐶𝑀(𝑀𝑎𝑑𝑑)𝑎 , (2.8) 

 

where F is the force action on the cylinder, CD is the unsteady drag coefficient, ρ is the 

density, V is the velocity of the fluid, L is the length of the cylinder, CM is the added 

mass coefficient, Madd is the added mass, and a is the acceleration. 

For the case of the fluid undergoing an initial constant velocity a similar approach 

can be taken using quantities that are relative to the initial conditions, such as the Force 

(F) and the velocity (V) in the following form, 

 𝐹𝑟𝑒𝑙 = 𝐶𝐷𝜌𝑉𝑟𝑒𝑙22 𝑑𝐿 + 𝐶𝑀(𝑀𝑎𝑑𝑑)𝑎, (2.9) 

 

where 

 𝐹𝑟𝑒𝑙 =  𝐹 − 𝐹𝑜 , (2.10) 

 

 𝑀𝑎𝑑𝑑 = 𝜋𝑑2𝐿4 𝜌 , (2.11) 

 

and 

 𝑉𝑟𝑒𝑙 = 𝑉 − 𝑉𝑜, (2.12) 
 

where Fo is the initial force exerted on the cylinder during the steady state portion of the 

flow and Vo is the velocity of the steady state portion of the flow. 

Acceleration is also a relative term, however, it is rectilinear and the acceleration that is 

used for comparison (during the constant acceleration) is zero.  Therefore it is simply 

referred to as the acceleration. Substituting Equation 2.10 and 2.11 into Equation 2.9 

results in, 

 𝐹 − 𝐹𝑜 = 𝐶𝐷𝜌𝑉𝑟𝑒𝑙22 𝑑𝐿 + 𝐶𝑀 (𝜋𝑑2𝐿4 𝜌 ) 𝑎. (2.13) 
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Dividing both sides of Equation 2.13 by the term (𝜋𝑑2𝐿4 𝜌)𝑎 , gives, 

 
𝐹 − 𝐹𝑜(𝜋𝑑2𝐿4 𝜌 ) 𝑎 = 𝐶𝐷𝜌𝑉𝑟𝑒𝑙22 𝑑𝐿(𝜋𝑑2𝐿4 𝜌 ) 𝑎 + 𝐶𝑀. (2.14) 

 

Expressing Equation 2.14 per unit length and simplifying yields, 

 

 

𝐹 − 𝐹𝑜(𝜋𝑑24 𝜌 ) 𝑎 = 2𝐶𝐷𝑉𝑟𝑒𝑙2( 𝜋𝑑2)𝑎 + 𝐶𝑀 (2.15) 

 

In order to get Equation 2.15 in terms of s/d the equations for displacement and velocity 

in a constant unidirectional acceleration that does not start from rest, Vo≠0 are required 

and shown below.  

 𝑠 = 𝑉𝑜𝑡 + 12𝑎𝑡2. (2.16) 

 

Rearranging Equation 2.16, 

 

 𝑎 = 2𝑡2 (𝑠 − 𝑉𝑜𝑡) (2.17) 

where 

 𝑠𝑟𝑒𝑙 = (𝑠 − 𝑉𝑜𝑡) (2.18) 
 

and 

 𝑉 = 𝑉𝑜 + 𝑎𝑡. (2.19) 
 

Substituting Equation 2.18 into Equation 2.17 gives, 

 

 𝑎 = 2𝑡2 𝑠𝑟𝑒𝑙. (2.20) 

 

Rearranging Equation 2.19 and substituting Equation 2.12 into it gives, 
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 𝑎 = 𝑉 − 𝑉𝑜𝑡 = 𝑉𝑟𝑒𝑙𝑡  (2.21) 

 

Equating Equation 2.21 and Equation 2.20 gives a relationship between the relative 

velocity and the relative displacement as, 

 

 
𝑉𝑟𝑒𝑙𝑡 = 𝑎 = 2𝑠𝑟𝑒𝑙𝑡2 . (2.22) 

 

This can also be expressed as, 

 

 𝑉𝑟𝑒𝑙 = 2𝑠𝑟𝑒𝑙𝑡 . (2.23) 

 

Substituting Equation 2.23 and Equation 2.20 into Equation 2.15 gives, 

 
𝐹 − 𝐹𝑜(𝜋𝑑24 𝜌 ) 𝑎 = 2𝐶𝐷 (2𝑠𝑟𝑒𝑙𝑡 )2(𝜋𝑑2) (2𝑠𝑟𝑒𝑙𝑡2 ) + 𝐶𝑀 (2.24) 

 

Simplifying Equation 2.24 yields, 

 

𝐹 − 𝐹𝑜(𝜋𝑑24 𝜌 ) 𝑎 = 𝐶 = 𝐶𝐷 4𝜋 𝑠𝑟𝑒𝑙𝑑 + 𝐶𝑀 
(2.25) 

 

It can be seen that the equation is the same as that developed by Sarpkaya and 

Garrison[13] if the initial velocity and force are set to zero.    

 

 

2.6.2 Results and Discussion for Cylinder Starting from Non-zero 

Constant Velocity 

 

The first set of data presented is a comparison of the C values determined using 

different initial velocities. The initial velocity is chosen in order to have a resulting 

Reynolds number of 10 and 40 respectively, based on the diameter of the cylinder.  The 
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results for three different initial velocities (including Vinit = 0) are shown in Figure 2.10 

along with the experimental results from Sarpkaya and Garrison[13]. 

 

Figure 2.10: Numerical results for different initial velocities (experimental data from Sarpkaya and 

Garrison [13]). 

 

 As can be seen from Figure 2.10 the results are almost identical regardless of the 

initial velocity when plotted using relative values.  The initial velocity does not seem to 

have any effect which is not what was expected. 

The second set of numerical experiments consists of simulations with the same 

diameter and initial velocities but three different accelerations.  The accelerations are 

presented in dimensionless form (a/g) with respect to gravitational acceleration (g). 
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Figure 2.11: Numerical results for different accelerations (experimental data from Sarpkaya and 

Garrison [13]). 

 

It can be seen from Figure 2.11 that the data correlate very well regardless of the 

acceleration of the cylinder.  This implies that the dimensionless variables are effective in 

collapsing the data. 

The third set of numerical experiments consists of the same initial velocities and 

accelerations but three different cylinder diameters.   

 

Figure 2.12: Numerical results for different diameters (experimental data from Sarpkaya and 

Garrison [13]). 
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The numerical experiment included several different initial velocities, 

accelerations and cylinder diameters.   The results shown in Figure 2.12  show the data 

correlates fairly well regardless of the cylinder diameter. 

The results presented in Figures 2.10- 2.12  show that the values of C versus s/d 

correlate well regardless of the initial velocity, acceleration or cylinder diameter.  These 

results are also compared to the experimental results of Garrison[14] and Sarpkaya and 

Garrison[13]  for which the relative variables are also applied.  Initially the numerical 

results show that the value of C corresponds to values that would be indicated by 

potential flow calculations.  It should be noted that the experimental results for the initial 

stages of accelerated motion (s/d<0.5) were estimated in the experiments described in the 

literature. The numerical results in this region then follow the trend of increasing almost 

linearly with a constant slope. 

 

 

 

2.7 Determining Unsteady Added Mass and Drag Coefficient 

 

Once the force has been calculated it must still be split into the appropriate 

components of unsteady added mass and drag.  This section includes the development of 

two methods for achieving this goal.  

 

2.7.1 Equation of a Line Method 

 

On further inspection of Equation 2.25, the relationship between the force in the 

direction of the flow and the unsteady drag and added mass is similar to an equation of a 

line.   The method presented here is abbreviated to ELM which stands for Equation of a 

Line Method. The equation of a line can be expressed as, 

 

 𝑦 = 𝑚𝑥 + 𝑏. (2.26) 
 

Relating the coefficients in Equation 2.25 to the coefficients in Equation 2.26, 
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 𝑚 = 4𝐶𝐷𝜋  (2.27) 

and 

 𝑏 = 𝐶𝑀 (2.28) 
 

The function for a specific value of s/d can be calculated by fitting a second order 

Lagrange interpolating polynomial to each set of three adjoining data points.  This can 

then be differentiated analytically to determine the slope, m as expressed in Equation 

2.29.  This method is ideal for unequally spaced values of s/d.  

 

 

𝑚 = 𝑓′(𝑥) ≅ 𝑓(𝑥𝑖−1) 2𝑥 − 𝑥𝑖 − 𝑥𝑖+1(𝑥𝑖−1 − 𝑥𝑖)(𝑥𝑖−1 − 𝑥𝑖+1)+ 𝑓(𝑥𝑖) 2𝑥 − 𝑥𝑖−1 − 𝑥𝑖+1(𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1)+ 𝑓(𝑥𝑖+1) 2𝑥 − 𝑥𝑖−1 − 𝑥𝑖(𝑥𝑖+1 − 𝑥𝑖−1)(𝑥𝑖+1 − 𝑥𝑖). 
(2.29) 

 

Once the slope (m) and intercept (b) of each point is determined, the unsteady drag 

coefficient and the added mass coefficient can be determined from the following 

relations, 

 

 𝑚 = 𝐶𝑖+1 − 𝐶𝑖−1(𝑠𝑟𝑒𝑙𝑑 )𝑖+1 − (𝑠𝑟𝑒𝑙𝑑 )𝑖−1 = 4𝜋 𝐶𝐷 (2.30) 

 

and 

 𝐶𝑀 = 𝐶 −𝑚𝑠𝑟𝑒𝑙𝑑 = 𝐶 − 𝐶𝐷 4𝜋 𝑠𝑟𝑒𝑙𝑑  (2.31) 

 

2.7.2 Application of ELM 

 

The technique of fitting the data to an equation of a line ( ELM) described in 

section 2.6.1 is applied to the experimental data presented by Sarpkaya and Garrison[13].  
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It is then compared to the added mass and unsteady drag coefficients determined using 

their vortex technique method as shown in Figure 2.13. 

 

 

 

Figure 2.13: Added mass coefficient (purple line) and unsteady drag coefficient (green line) using 

Equation of a Line Method (ELM) applied to experimental data, compared with results from 

Sarpkaya and Garrison[13] using vortex technique. 

 

It can be seen that the shape of the curve is similar in both cases although the 

values are not the same. 

 

2.7.3 Optimized Cubic Spline Method 

 

The unsteady drag and added mass determined by Sarpkaya and Garrison[13] can 

be expressed in the form of two curves as shown in Figure 2.14, however a simple 

polynomial fit is not sufficient to accurately fit the data.  
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Figure 2.14: Schematic representation of the nodes used in Optimized Cubic Spline Method. 

 

In order to determine the components of the dimensionless force (C) in terms of 

the added mass coefficient (Cm) and the unsteady drag coefficient (Cd) a cubic spline is 

used. The method described in this section is called the Optimized Cubic Spline Method 

and is given the acronym of OCSM. Using cubic splines, two equations are developed 

similar to those used by Mclain[45]; one for the added mass coefficient and one for the 

unsteady drag coefficient.  The equation for the added mass was developed in terms of 

the variables m0-m4 located at the knot values (s/d)rel,1, (s/d)rel,2, (s/d)rel,3 and (s/d)rel,4 

while the equation for the unsteady drag was developed in terms of d0-d4 also located at 

the knot values (s/d)rel,1, (s/d)rel,2, (s/d)rel,3 and (s/d)rel,4.  The knot values for the x axis are 

the same for both curves. The variable d0 is restrained in both the s/d and Cd, directions;  

 

 (𝑠𝑑)𝑟𝑒𝑙,𝑑0 = 0, (2.32) 

 

 (𝐶𝑑)𝑑0 = 0. (2.33) 

 

The variable m0 is restrained in the s/d direction but unrestrained in the Cm direction; 

 (𝑠𝑑)𝑟𝑒𝑙,𝑚0 = 0, (2.34) 
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 (𝐶𝑚)𝑚0 = 𝑚0. (2.35) 

 

 The variables m1-m4 and d1-d4 have no restraints in either the Cm, Cd or the (s/d)rel 

directions; 

 (𝑠𝑑)𝑟𝑒𝑙,𝑚1 = 𝑥1, (𝐶𝑚)𝑚1 = 𝑚1, (𝐶𝑑)𝑑1 = 𝑑1, (2.36) 

 

 (𝑠𝑑)𝑟𝑒𝑙,𝑚2 = 𝑥2,  (𝐶𝑚)𝑚2 = 𝑚2, (𝐶𝑑)𝑑2 = 𝑑2, (2.37) 

 

 (𝑠𝑑)𝑟𝑒𝑙,𝑚3 = 𝑥3, (𝐶𝑚)𝑚3 = 𝑚3, (𝐶𝑑)𝑑3 = 𝑑3, (2.38) 

 

 (𝑠𝑑)𝑟𝑒𝑙,𝑚4 = 𝑥4, (𝐶𝑚)𝑚4 = 𝑚4, (𝐶𝑑)𝑑4 = 𝑑4. (2.39) 

 

The cubic equation for each interval can be expressed in the form given by Chapra and 

Canale[61] as; 

 

 

𝑓𝑖(𝑥) = 𝑓"(𝑥𝑖−1)6(𝑥𝑖 − 𝑥𝑖−1) (𝑥𝑖 − 𝑥)3 + 𝑓"(𝑥𝑖)6(𝑥𝑖 − 𝑥𝑖−1) (𝑥 − 𝑥𝑖−1)3+ [ 𝑓(𝑥𝑖−1)𝑥𝑖 − 𝑥𝑖−1 − 𝑓"(𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖−1)6 ] (𝑥𝑖 − 𝑥)+ [ 𝑓(𝑥𝑖)𝑥𝑖 − 𝑥𝑖−1 − 𝑓"(𝑥𝑖)(𝑥𝑖 − 𝑥𝑖−1)6 ] (𝑥 − 𝑥𝑖−1). 
(2.40) 

 

The second derivatives for the internal knots can be determined using the following 

equation; 

 

(𝑥𝑖 − 𝑥𝑖−1)𝑓"(𝑥𝑖−1)+2(𝑥𝑖+1-𝑥𝑖−1)𝑓"(𝑥𝑖)+ (𝑥𝑖+1 − 𝑥𝑖)𝑓"(𝑥𝑖+1)= 6(𝑥𝑖+1 − 𝑥𝑖) [𝑓(𝑥𝑖+1) − 𝑓(𝑥𝑖)]+ 6(𝑥𝑖 − 𝑥𝑖−1) [𝑓(𝑥𝑖−1) − 𝑓(𝑥𝑖)]. (2.41) 
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The second derivatives need to be determined first for each of the two curves 

(added mass and unsteady drag).  For the first interval of the added mass equations, 

 𝑥𝑖−1 = 𝑥0 = 0, 𝑓(𝑥𝑖−1) = 𝑓(𝑥0) = 𝑚0 , 𝑓"(𝑥𝑖−1)=𝑓"(𝑥0) = 0, (2.42) 
 

 𝑥𝑖 = 𝑥1 , 𝑓(𝑥𝑖) = 𝑓(𝑥1) = 𝑚1 , 𝑓"(𝑥i)= 𝑓"(𝑥1), (2.43) 
 

 𝑥𝑖+1 = 𝑥2,  𝑓(𝑥𝑖+1) = 𝑓(𝑥2) = 𝑚2 , 𝑓"(𝑥i+1)= 𝑓"(𝑥2). (2.44) 
 

  Therefore Equation 2.41 becomes, 

 

(𝑥1)(0)+2(𝑥2)𝑓(x1)+(x2-x1)f(𝑥2)= 6(𝑥2 − 𝑥1) [𝑚2 −𝑚1] + 6(𝑥1) [𝑚0 −𝑚1]. (2.45) 

 

Rearranging Equation 2.45 gives, 

 

2(𝑥2)𝑓(𝑥1)+(𝑥2 − 𝑥1)f(𝑥2)= 𝑚0 [ 6(𝑥1)] − 𝑚1 [ 6(𝑥2 − 𝑥1) + 6(𝑥1)]+ 𝑚2 [ 6(𝑥2 − 𝑥1)]. (2.46) 

 

Similarly, the equations can be developed for the second and third interval giving a 

system of linear equations with three equations and three unknowns, 

 [ 2𝑥2 𝑥2 − 𝑥1 0𝑥2 − 𝑥1 2(𝑥3 − 𝑥1) 𝑥3 − 𝑥20 𝑥3 − 𝑥2 2(𝑥4 − 𝑥2)    |     𝑒     𝑓     𝑔     ]. (2.47) 

 

where 

 𝑒 = 𝑚0 [ 6(𝑥1)] − 𝑚1 [ 6(𝑥2 − 𝑥1) + 6(𝑥1)] + 𝑚2 [ 6(𝑥2 − 𝑥1)], (2.48) 

 

 

𝑓 = 𝑚1 [ 6(𝑥2 − 𝑥1)] − 𝑚2 [ 6(𝑥3 − 𝑥2) + 6(𝑥2 − 𝑥1)]+ 𝑚3 [ 6(𝑥3 − 𝑥2)], (2.49) 

 

and 
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𝑔 = 𝑚2 [ 6(𝑥3 − 𝑥2)] − 𝑚3 [ 6(𝑥4 − 𝑥3) + 6(𝑥3 − 𝑥2)]+ 𝑚4 [ 6(𝑥4 − 𝑥3)]. (2.50) 

 

Applying equation 2.40 to interval one gives, 

 

 𝐶𝑚(𝑥1) = 𝑓"(𝑥1) [ 𝑥36𝑥1 - 𝑥1𝑥6 ]+𝑚0 [𝑥1 − 𝑥𝑥1 ] + 𝑚1 [ 𝑥𝑥1]. (2.51) 

 

 In a similar manner, the equations can be developed for intervals 2, 3 and 4. From the 

equations developed above, a value of C can be calculated and compared with the 

measured (experimentally or numerically obtained) value of C.  The points of the spline, 

(s/d)rel,1-4, m0-4 and d1-4, can then be optimized using the method of least squares using the 

"Solver" function in Excel 2007 to minimize the quantity; 

 𝜖 =∑(𝐶𝑐𝑎𝑙 − 𝐶𝑚𝑒𝑎𝑠)2 (2.52) 

 

where 𝜖 is the error that is minimized.  

 

2.7.4 Application of OCSM 

 

The OCSM is applied to the experimental data of Sarpkaya and Garrison[13] and 

compared to the results of their vortex technique. 



44 

 

 

Figure 2.15: Added mass coefficient (purple line) and unsteady drag coefficient (green line) using 

Optimized Cubic Spline Method (OCSM) applied to experimental data compared with results from 

Sarpkaya and Garrison[13] using vortex technique (square markers represent the knots). 

 

The comparison is presented in Figure 2.15. The trends are very similar and the 

values reasonably close to those of the vortex technique.   

 

2.7.5 Discussion of ELM and OCSM 

 

Both techniques produce similar trends to those presented by Sarpkaya and 

Garrison[13].  The OCSM, however, shows a closer prediction of the actual values than 

the ELM.  

The advantages of the ELM lie in the quick and easy execution of the technique to 

determine the components of added mass and unsteady drag when given the force 

measurements (in the form of the dimensionless force C).  Since this uses the derivative 

(slope) of the original data, any noise present in the data is amplified.  In order to 

alleviate this problem the number of data points used for the technique was reduced by 

taking values every 0.5 s/d.   Using the ELM technique the initial value of the added mass 

coefficient is very close to 2, which is the theoretical value calculated using potential 

flow.  This matches what has previously been accepted as the value for the initial portion 

of the accelerated flow. The initial value of the unsteady drag coefficient appears to go to 

approximately zero.  It is difficult to determine the exact initial value due to the fact that 
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experimental data very close to s/d = 0 is not available.  Although the general shape of 

the curve is similar to the experimental results, it is rather severely out of phase with the 

experimental results (i.e. ELM reaches a maximum while the experimental data is at a 

minimum). 

 The advantage of the OCSM is that it yields values closer to those found in the 

literature. There are no restraints on the initial values of the added mass or on the position 

of the x value of the spline.  It was specified, however, that the knot values must be at 

least 0.5 s/d apart. It was also specified that the last knot be within the range of the data 

(s/d<5). This is less restricted than the method used by McLain[45] who had set values 

for the x (s/d) positions of his spline.   Although the unsteady drag coefficient was set to 

zero for the initial value of the (s/d)rel the added mass coefficient was not constrained for 

the initial value of s/d (also an improvement over McLain[45]).  This resulted in a value 

that was only 2.71% higher than the theoretical value calculated from potential flow. The 

disadvantages of this technique are in the application: it is difficult to set up the equations 

to perform the optimization and it is also very sensitive to the initial (s/d) values used in 

the optimization process.  The optimization process produces a minimum value for the 

square of the difference between the calculated values of C and the measured value of C.  

Since the initial guesses produce different results, a measure of how well the curve is 

optimized can be done by comparing the square of the difference value for each set of 

initial guesses.  The minimum value of the square of the difference is considered the 

optimal set and is used for the final results.  A sequential systematic method was used to 

determine the best initial guesses. 

 

2.7.6 Application to Fluent Data 

 

Both techniques, ELM and OCSM, have been applied to the experimental data of 

Sarpkaya and Garrison[13] in order to compare the validity of each of the results.  As 

stated in the previous section ELM is simpler and gives the appropriate shape of the 

curve, however the maximums and minimums for the ELM do not coincide with the 

maximums and minimum of the experimental work.  The use of OCSM, may be more 
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complicated to implement, however it gives much better results when compared to the 

experimental data.  Therefore the OCSM will be applied for any further data processing. 

The OCSM is applied to the results of the numerical experiments and presented in 

Figure 2.16. Due to the differences between the numerical and experimental values of C 

versus s/d, it is not expected that the resulting curves be the same.  The experimental 

curves are included simply to illustrate the differences. 

 

 

Figure 2.16: Added mass coefficient (purple line) and unsteady drag coefficient (green line) using 

Optimized Cubic Spline Method (OCSM) applied to numerical data, compared with results from 

Sarpkaya and Garrison[13] using vortex technique (square markers represent the knots). 

 

From Figure 2.16 it can be seen that there are some differences in the application 

of OCSM to the numerical results when compared with the experimental results.  As 

discussed in Section 2.6.3 the initial value of Cm is not restrained.  The results show that 

the initial value of Cm calculated by the OCSM is 2.11. This is 5.57% higher than the 

theoretically calculated value of 2, which is what is expected for the initial portion of 

acceleration.  From Figure 2.16 it is also apparent that the unsteady drag is larger in the 

range of (s/d)rel from 1 to approximately 2.  This corresponds to the “hump” that was 

discussed in Section 2.5.5.  The difference in the slope of the dimensionless force curve is 

amplified by the separation into unsteady drag and added mass coefficients manifesting 

itself as a larger value of the added mass coefficient and a relatively smaller value of the 

unsteady drag for s/d ranges above 3. 
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Chapter 3 - Experimental Study of Added Mass of a 

Sphere Falling from Rest in a Stationary Fluid 

 

This chapter begins with the development of the dimensionless force for a sphere, 

similar in form to that developed for the cylinder, assuming a constant acceleration over 

the range of motion of the experimental data.  This is followed by a detailed description 

of the method used in the experiments. The basic methodology behind the experiments is 

to use a high speed, high resolution camera to record the position of the sphere as it falls.   

Then the procedure used to analyze the images in order to calculate the position 

and corresponding time is presented.  From the time and displacement of the sphere the 

acceleration is then calculated. The acceleration is then used along with Newton’s Second 

law in order to determine the forces acting on a sphere, one of which is the force due to 

added mass.  The results are presented in a dimensionless form similar to those of the 

cylinder.  

Finally, two methods are applied to the dimensionless forces in order to indirectly 

determine the added mass. The first method uses the assumption of no drag forces, while 

the second method includes the drag and a modified version of that used in the cylinder 

analysis.   

 

3.1 Dimensionless Force Formulation for a Sphere  
 

Similar to the equations for the cylinder, the dimensionless force for the sphere 

can be developed as indicated below.  The equations are an application of Newton’s 

second law to the sphere shown in Figure 3.1, 
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Figure 3.1: Diagram of forces acting on a sphere. 

 

This results in, 

 

 (𝑀 +𝑀𝑎𝑑𝑑)𝑎 = 𝑊 − 𝐹𝐵 − 𝐹𝐷 , (3.1) 
 

where M is the mass of the object, Madd is the added mass of the object, a is the 

acceleration, W is the weight of the object, FB is the buoyant force and FD is the drag 

force.   The drag force can be expressed as follows, 

 

 𝐹𝐷 = 𝐶𝐷 12𝜌𝑉2A, (3.2) 

 

where 

 

 𝐴 = 𝜋𝑑24 . (3.3) 

 

Substituting Equations 3.2 and 3.3 into Equation 3.1 and rearranging yields, 

 

W 

FD FB 



49 

 

 (𝑀 +𝑀𝑎𝑑𝑑)𝑎 + 𝐶𝐷 12𝜌𝑉2 𝜋𝑑24 = 𝑊 − 𝐹𝐵. (3.4) 

 

 It should be noted that the acceleration for the cylinder is held constant.  In 

this set of experiments constant acceleration is only an approximation.  This 

approximation is more accurate closer to the beginning of acceleration where the drag 

forces are zero.  One of the assumptions for the range of data of interest is that the drag is 

very small but not zero.  

 In order to obtain equations in terms of s/d the following relations are needed, 

 

 𝑠 = 𝑎𝑡22 , (3.5) 

and 

 

 𝑉 = 𝑠𝑡. (3.6) 

 

Rearranging Equation 3.5 gives, 

 𝑎 = 2𝑠𝑡2 . (3.7) 

 

The theoretical added mass can be expressed as, 

 𝑀𝑎𝑑𝑑.𝑡ℎ𝑒 = 𝜌𝜋𝑑312 . (3.8) 

 

Dividing Equation 3.4 by the force associated with the added mass (Equation 3.8 

multiplied by acceleration) results in, 

 (𝑀 +𝑀𝑎𝑑𝑑)𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 + 𝐶𝐷2 𝜌 𝑉2𝜋𝑑24𝑀𝑎𝑑𝑑,𝑡ℎ𝑒𝑎 = 𝑊 − 𝐹𝐵𝑀𝑎𝑑𝑑,𝑡ℎ𝑒𝑎. (3.9) 

 

This can also be expressed as 

 (𝑀 +𝑀𝑎𝑑𝑑)𝜌𝜋𝑑312 + 𝐶𝐷2 𝜌𝑉2𝜋𝑑24𝜌𝜋𝑑312 𝑎 = 𝑊 − 𝐹𝐵𝜌𝜋𝑑312 𝑎 . (3.10) 
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Simplifying Equation 3.10 gives 

 

 (𝑀 +𝑀𝑎𝑑𝑑)𝜌𝜋𝑑312 + 32𝐶𝐷 𝑉2𝑑𝑎 = 𝑊 − 𝐹𝐵𝜌𝜋𝑑312 𝑎 . (3.11) 

 

Substituting Equation 3.6 and 3.7 into Equation 3.11 gives, 

 

 (𝑀 +𝑀𝑎𝑑𝑑)𝜌𝜋𝑑312 + 32𝐶𝐷 (𝑠𝑡)2𝑑 (2𝑠𝑡2) = 𝑊 − 𝐹𝐵𝜌𝜋𝑑312 𝑎 . (3.12) 

 

Simplifying Equation 3.12 gives, 

 

 (𝑀 +𝑀𝑎𝑑𝑑)𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 + 34𝐶𝐷 𝑠𝑑 = 𝑊 − 𝐹𝐵𝑀𝑎𝑑𝑑,𝑡ℎ𝑒𝑎. (3.13) 

 

The added mass coefficient is the ratio of the added mass to the theoretical added mass, 

 

 𝐶𝑀 = 𝑀𝑎𝑑𝑑𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 . (3.14) 

 

Substituting Equation 3.14 into Equation 3.13 gives, 

 

 (𝑀)𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 + 𝐶𝑀 + 34𝐶𝐷 𝑠𝑑 = 𝑊 − 𝐹𝐵𝑀𝑎𝑑𝑑,𝑡ℎ𝑒𝑎. (3.15) 

 

Rearranging Equation 3.15 gives, 

 

 [𝑊 − 𝐹𝐵𝑎 −𝑀] 1𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 = 𝐶𝑀 + 32𝐶𝐷 𝑠𝑑 = 𝐶. (3.16) 

 

This is very similar in form to the dimensionless force variable developed for the cylinder 

and is used in analyzing the experimental data obtained from the experiments described 

below. 
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3.2 Experimental Equipment 
 

This section describes the equipment used in order to perform the experiments on 

the falling sphere. 

 

 

 

Figure 3.2: Picture of experimental equipment for spheres falling from rest. 
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                               a)                                                                       b) 

Figure 3.3: Schematic of experimental set up a) side view, b) front view. 

 

The experimental set up is shown in Figure 3.2 with a schematic shown in Figure 3.3.  It 

consists of a tank, a sphere, a sphere release mechanism, a high speed camera, two light 

sources and a traverse.  The tank has the dimensions of 38 cm deep, 30 cm wide and 120 

cm long.  The properties of the spheres can be seen in Table 3.1. 

  

1.3 cm

24.0 cm

1.3 cm

0.5 cm

11.4 cm

41.5 cm

0.5 cm

11.4 cm

light source

light source light source

121.0 cm

light source
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Table 3.1: Properties of the spheres. 

 

The material and diameter of the spheres are determined from manufacturer 

specifications. The mass of the sphere is determined using a scale with a ±0.0005 g 

uncertainty.  The weight minus the buoyant force is determined by weighing the sphere 

suspended in water at room temperature.  The water that is not allowed to touch the scale 

therefore the scale measures the net force downward, which is the weight of the object 

acting in a downward direction minus the buoyant forces of the water acting in the 

upward direction.  The determination of the acceleration will be developed in later 

sections. 

The spheres were painted yellow in order to yield a better image using the high speed 

camera.  Care was taken to ensure that the finish is smooth and even.  A thread was 

attached to the spheres using a small amount of high strength adhesive.  Several different 

types of thread material were tested and the easiest to work with was found to be cotton 

thread. The amount and form of the adhesive was deemed to be negligible to overall 

symmetry of the sphere.  The effect of the string (drag and added mass) was determined 

to be a negligible portion of the overall forces.   

Sphere No. Material 
Diameter 

(m) 
Mass (kg) 

Weight- 

Buoyant 

Force (N) 

Avg 

Acceleration 

(m/s2) 

1 

Stainless 

Steel 

(hollow) 

0.0254 0.01912 0.1036 4.00 

2 

Stainless 

Steel 

(hollow) 

0.0254 0.01937 0.1059 4.08 

3 Brass 0.01905 0.03065 0.2642 7.98 

4 Brass 0.01905 0.03066 0.2641 7.98 

5 
Stainless 

Steel (solid) 
0.0254 0.06702 0.5716 7.90 

6 
Stainless 

Steel (solid) 
0.0254 0.06704 0.5742 7.95 
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Figure 3.4: Release mechanism for falling sphere. 

 

Preliminary experimentation utilizing a manual release of the string revealed that 

the release conditions such as initial zero velocity, could not accurately be established. 

Several different release mechanisms were attempted in order to overcome this problem.  

These included various forms of friction release as well as burning the thread.  A high 

speed camera was used to determine the repeatability of the release mechanism.  The best 

results are obtained with the simple device shown in Figure 3.4.  This consists of 

attaching the thread to the sphere and the other end of the thread to a washer.  The washer 

is then balanced on the rod and set flush to the housing of the sliding rod mechanism.  

The rod is quickly moved, which in turn releases the washer and the sphere.  The washer 

is not allowed to disturb the water by installing a device which catches it before it hits the 

water surface. 
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Figure 3.5: Picture of Fastec high speed camera. 

 

A Fastec Trouble Shooter high speed camera as shown in Figure 3.5 is used to 

record the descent of the spheres.  The Fastec camera is capable of capture speeds of 

1000 fps and has an image resolution of 1280 x 512 pixels.  The resulting video files are 

in the .avi format which makes it easy to transfer the files to a computer for post 

processing.  A Vivitar 55 mm Auto Macro camera lens is used on the camera which is 

meant to help reduce parallax effects. 

Two high intensity incandescent light sources are required in order to illuminate 

the sphere sufficiently to be captured by the high speed camera.  The spheres are lit from 

below and in front of the tank.  It is important that the bottom of the sphere be properly lit 

to produce a clean image for post processing.  The back and the sides of the tank are 

blacked out in order to aid in the production of a higher contrast image of the sphere. 

  The traverse is used in order to ensure the accurate positioning of the sphere 

relative to the camera at the onset of each set of runs.  The distance that the traverse can 

be programmed to move is accurate to within 0.001 inches.  This allows an accurate 
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calibration of the position of the sphere on the photos to a real distance measurement.  

For example, the sphere is positioned so that just the very bottom of the sphere is in the 

field of view of the camera then a picture is taken.  The traverse then moves the sphere 

0.02 m and another picture is taken.  Using the bottom of the sphere as a common 

reference point,  the distance the sphere has moved between the two pictures can be 

measured in pixels.  A relationship can then be calculated for the distance, in meters, for  

one pixel. 

 

3.3 Experimental Procedure 

 

The following section outlines the procedure used in collecting the data for the sphere 

falling from rest experiment.  The calibration procedure is explained first, followed by an 

explanation of the procedure used to obtain the falling sphere data. 

 

3.3.1 Calibration 

 

The camera is placed next to the tank as close to the sphere as physically possible.  

This allows for the best possible resolution of the initial stages of the sphere’s position. 

This results in a field of view of approximately 0.0381 m (1.5 inches) in the direction of 

sphere motion. The lens used on the camera is specifically chosen to reduce the parallax 

effect of close-up shots. In order to completely eliminate any such effects a simple 

calibration is performed.  Before each set of experiments the camera and sphere are 

positioned such that only the bottom of the sphere is visible in the camera view.  The 

traverse is then used to lower the sphere a known distance and a picture is taken using the 

high speed camera.  This process is repeated three more times.  The result is five pictures 

equally spaced over the field of view of the camera.  The distances are then compared 

with the number of pixels for each of the corresponding pictures which are then used to 

calculate the distance per pixel. The distance per pixel is the same throughout the field of 

view which verifies that there is no parallax effect.    This calibration also accounts for 

any possible refraction since it relates a physical measurement to the pixels for the 

corresponding movement of the sphere.  The distance between subsequent pictures (five 
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different pictures over a 0.0381 m field of view) is sufficiently small to account for any 

possible refraction over the entire field of view. Pictures are taken of the initial position 

and the final position in which the bottom of the sphere is as close as possible to the 

bottom of the field of view of the camera.  The other intermediate pictures produce the 

same distance/ pixel ratio so only two images are needed.  The known distance between 

the two images are compared with the number of pixels between the bottom-most point 

on the sphere.  This distance/pixel measurement is used in calculating the distance moved 

by the sphere for the experiments. 

The thread used to suspend the sphere in place is illuminated and a high resolution 

picture is taken.  This image is then be used to account for any deviation from the vertical 

in the image. 

 

3.3.2 Experiments 

 

The experiments consisted of a sphere falling from rest in an otherwise stationary 

fluid.  Three different accelerations, accomplished by using spheres of different weight, 

are examined.  The specifics of the sphere properties can be seen in Table 3.1.  The 

following steps are followed in acquiring one set of images. 

 

1) The sphere is suspended by a string at least 4.5 diameters[7] below the surface of 

the water. 

 

2) The sphere is allowed to come to rest. 

 

3) The lighting from the bottom and front of the tank are adjusted to produce 

maximum illumination of the sphere. 

 

4) The camera is placed on a tripod and leveled in order to get an image that is 

parallel to the string in the vertical plane and parallel to the bottom of the tank in 

the horizontal plane.  
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5) The camera is then "zoomed in" until the bottom of the sphere is visible at the top 

of the frame and 1.5 inches of the test section are visible. 

 

6) The string is illuminated and a high resolution picture is taken in order to adjust 

for any discrepancies in the angle of the camera (the photos are rotated if the 

camera is found to be skewed). 

 

 

7)  The camera is triggered and the sphere is released.  It is not necessary that the 

timing of the sphere’s release and the triggering of the camera be synchronized.  

Any synchronization problems between the start of the filming and the start of the 

sphere’s decent are accounted for in the image processing. 

 

This procedure gives the results for a single run of a single sphere, however, the 

experiment consists of 30 runs for each sphere. In a few cases it was obvious that 

something had interfered with the experiment and hence the data were not realistic and 

were discarded.  This results in 30 runs for sphere 1, 28 runs for sphere 2, 29 runs for 

sphere 3, 28 runs for sphere 4, 27 runs for sphere 5 and 25 runs for sphere 6. Looking at 

Table 3.1, for which the properties of each of the six spheres is presented, the spheres are 

separated into three different groups. Each group consists of two spheres of similar 

properties (mass, diameter and acceleration) in order to demonstrate repeatability for a 

given set of properties. Spheres 1 and 2 are grouped together, similarly spheres 3 and 4 as 

well as 5 and 6.  Each group includes the data from both spheres for that grouping and is 

presented using a  non-dimensional diameter as well as a non-dimensional acceleration.  

The non-dimensional diameter is the diameter of the sphere divided by the diameter of 

the largest sphere d0, where d0 = 0.0254 m.  The non-dimensional acceleration is the 

average acceleration, as described in Section 3.4.1, of all viable runs divided by 

gravitational acceleration g, where g = 9.81 m/s2. 
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3.4 Image Processing Procedure 

 

Each experimental run is capture using the Fastec Trouble Shooter camera with a 

capture speed of 1000 fps and a resolution of 1280 x 512 pixels.  The .avi files are then 

transferred to a PC where Photran Fastcam Viewer 3 is used to convert each individual 

frame of the avi file into a .jpg picture file. Example images are shown in Figure 3.6.  

 

 

 

 

 

 

 

 

 

 

 

          a     b    c  

  

Figure 3.6: Pictures from .avi file. a) beginning of run, b)midway through run, c)end of run 

 

The images are then processed using the photo editing software Photoshop CS5 

Professional Extended. The images are cropped and converted to black and white photos 

using Photoshop’s threshold function as shown in Figure 3.7.   The distance is measured 

from the bottom of the sphere to the bottom of the field of view for each image. 
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         a     b      c 

Figure 3.7: Images cropped and transformed using threshold function.  The red arrows indicate the 

measurements taken.  a)beginning of run, b) midway through run, c)end of run. 

 

The distance is measured in pixels, for the first picture, then subtracted from 

subsequent measurements in order to get the distance as it changes with time.   

 

 𝑠𝑖 = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑖 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡1. (3.17) 
 

The time for each measurement is determined using the prescribed camera speed, 

 

 𝑡𝑖 = 11000 𝑓𝑝𝑠 × 𝑓𝑟𝑎𝑚𝑒#. (3.18) 

 

The result is a set of displacements with respect to time. 

 

3.4.1 Acceleration Calculations 

 

Using a finite difference approach to estimate the acceleration of the sphere was 

initially attempted, but resulted in extremely noisy results.  Therefore, an alternative 
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method is needed that allowed for smoothing of the data.   The final result is a method for 

calculating the acceleration that grouped the data in sets of 70 with overlapping data 

points as indicated in Figure 3.8.  The data set consisting of 70 points was found to be the 

lowest value of data points with an acceptable level of noise reduction. Data points 1-70 

are used to determine the velocity and acceleration that corresponded to the time for point 

35.  The data set is then moved by one data point (i.e. points 2-71 determine velocity and 

acceleration for time corresponding to point 36).  This gives a moving calculation for the 

acceleration and velocity. 

 

Figure 3.8: Acceleration calculations. 
 

Each set of data is fitted with a second order polynomial curve using the LINEST 

function in an Excel spreadsheet.  The second order coefficient is used to determine the 

acceleration. The curve fitting algorithm in Excel will result in the first and second order 

coefficients as well as the y intercept which has the following form 

 

 𝑦 = 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0, (3.19) 
 

Time  

(t) 

Displacement 

(S) 

  2
nd

 Order 

Coefficient 

(x 2) 

1 S1    

2 S2    

3 S3    

. .    

. .    

35 S35   Acc 35 

36 S36   Acc 36 

37 S37   Acc 37 

. .    

. .    

70 S70    

71 S71    

72 S72    
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where 𝑦 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑠  and 𝑥 = 𝑡𝑖𝑚𝑒 = 𝑡.  Rewriting Equation 3.19 in terms of 

distance and time; 

 

 𝑠 = 𝑎2𝑡2 + 𝑎1𝑡 + 𝑎0. (3.20) 
 

This is similar, in form, to the equation of motion for a particle 

 

 𝑠 = 12𝑎𝑡2 + 𝑉𝑜𝑡 + 𝑠𝑜 , (3.21) 

 

where a = acceleration, Vo = initial velocity and so = initial position. 

 Equation 3.21 assumes that the acceleration is constant.  For the range of each 

curve fit (70 data points) this is an acceptable assumption. The second order coefficient 

can be related to the acceleration, 

 𝑎 = 2𝑎2. (3.22) 
 

This is the acceleration calculated for the distance corresponding to 35th (midpoint 

of the data range) point.  

The following graphs show the experimentally determined acceleration with 

respect to s/d for the cases considered. 

 
Figure 3.9: Acceleration curves for 58 runs for d/do = 1, a/g=0.43 (do=0.0254 m, g=9.81 m/s2). 
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Figure 3.10: Acceleration curves for 52 runs for d/do = 0.75, a/g = 0.82 (do=0.0254 m, g=9.81 m/s2). 

 

 

 

Figure 3.11: Acceleration curves for 57 runs for d/do = 1, a/g = 0.82(do=0.0254 m, g=9.81 m/s2). 

 

 

Figure 3.9 shows the acceleration calculated for the 58 runs performed for spheres 

1 and 2 as described in Table 3.1.(each curve represents the acceleration of a different 

run). The acceleration changes by approximately 22% from its original value for the 

range of data collected for d/do = 1, a/g=0.43; however, if the data are limited to a range 
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that is common for all three groups of spheres (0.1 < s/d < 0.8) the acceleration only 

changes by approximately 7.2%.  Therefore the data for this sphere will be limited for the 

remainder of the analysis. 

Figure 3.10 shows the acceleration curves calculated for  the 52 runs performed 

for spheres 3 and 4 as described in Table 3.1 which are labeled d/do = 0.75, a/g = 0.82 

(each curve represents the acceleration calculations for one run).  Figure 3.11 shows the 

acceleration curves for the 57 runs performed for spheres 5 and 6 as described in Table 

3.1 which are labeled d/do = 1, a/g = 0.82 (each curve represents the acceleration 

calculations for one run). The acceleration only changes from the original value by less 

than 2.5% for both sets of data. 

Although one set of data has an acceleration that changes by more than 7%, it is 

still reasonable to apply the assumption of constant acceleration (even more so for the 

two data sets that change less than 2.5%). 

 

 

3.5 Results and Discussion for Sphere 
 

Equation 3.16, developed in Section 3.1, is used  to determine the dimensionless 

force (C) for each set of spheres.  All the variables used in Equation 3.16 to calculate the 

dimensionless force are determined.  This includes the Mass of the sphere (M), the 

Weight of the sphere minus the buoyancy force exerted by the object (W-FB) (as 

described in Section 3.2), the theoretical added mass and the acceleration.  The 

dimensionless force (C) is then represented with respect to the dimensionless distance 

(s/d).  The dimensionless distance is calculated using the distance, calculated from 

Equation 3.5, divided by the diameter of the sphere (d) (see Table3.1). The acceleration 

required in Equation 3.5 is the average acceleration for all runs at a given time (t).   
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Figure 3.12: C curves for three different sets of spheres with error bars representing the uncertainty. 

 

Figure 3.12 shows the results of each set of spheres using the dimensionless force 

(C) versus the dimensionless distance, s/d.  The results consist of three sets of spheres 

which contain two different diameters and two different accelerations (see Table 3.1). 

Also included in Figure 3.12 are the error bars due to the uncertainty in the 

measurements.  The uncertainties for the measured values of C are approximately 26% 

for the initial values and approximately 19% at the upper portion of the measurements.  

The uncertainties in the final measurements stem from the necessity to obtain a second 

derivative (acceleration) from the experimental data (displacement).  The second 

derivative amplifies any noise in the measurements to such a degree that a smoothing 

method is necessary to overcome this problem.   Although the curve fitting method 

produces a high uncertainty, the alternative of simply taking the numerical second order 

derivative had an even higher level of uncertainty.  These values (both initial and upper 

region) are indicated for each of the three curves. A full development of the uncertainty is 

presented in Appendix B. 

From the diagram, the trend of the curves is similar in shape to those presented for 

the cylinder; the curve is fairly flat during the initial acceleration then increases in a non-

linear manner.   Although the curve for the d/do = 1, a/g=0.43 (blue line from Figure 

3.12) agrees very well with the curve for d/do = 0.75, a/g = 0.82 (green line from Figure 
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3.12), there is a difference between those two curves and the one for the d/do = 1, a/g = 

0.82 (red line from Figure 3.12). The maximum difference in the curves is 9.7% which is 

well within the uncertainty of the measurement. 

From Chapter 2 it is known that the initial value of the added mass is the 

theoretical value calculated using potential flow.  A sphere accelerating through a 

stationary fluid has a theoretical added mass coefficient of 1. 

 

Sphere Initial Value 

of C 

% Difference from 

Theoretical 

Uncertainty (%) 

d/do = 1, a/g = 0.43 1.16 15.8 15.8 

d/do = 1, a/g = 0.82 1.06 5.95 15.9 

d/do = 0.75, a/g = 0.82 1.21 21.4 25.4 

Table 3.2: Initial values of C. 

 

Table 3.2 shows the initial values of C and the difference from the theoretical 

value.  The largest difference is that of d/do = 0.75, a/g = 0.82 with a difference of 21.4%.  

From Figure 3.12 it can be seen that the curve for d/do = 0.75, a/g = 0.82 (green line from 

Figure 3.12) has a shorter range than the similar curve for d/do = 1, a/g=0.43 (blue line 

from Figure 3.12).  The value of C for d/do = 1, a/g=0.43 (blue line from Figure 3.12) at 

an equivalent s/d would result in a difference from the theoretical value of 19.9%.   

 

3.6 Determining Added Mass and Unsteady Drag for a Sphere 

 

In a similar manner as in the case of the cylinder, the dimensionless force (C) can 

be separated into the added mass and unsteady drag coefficients.   

 

3.6.1 Assume No Drag 

 

The simplest method of determining the added mass of the sphere is to neglect the 

drag force.  With this assumption Equation 3.23 becomes. 
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 [𝑊 − 𝐹𝐵𝑎 −𝑀] 1𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 = 𝐶𝑀 = 𝐶 (3.23) 

 

However, this assumption is limited to the initial portion of the acceleration.   

 

 
Figure 3.13: Added mass with the assumption of no drag. 

 

  The range of applicability for the no drag assumption is chosen such that the 

values are within 10% of the initial value of C.  Using this criteria the range of 

applicability is 0.1 < s/d < 0.35 and the resulting values are plotted versus dimensionless 

distance in Figure 3.13.  The uncertainty of the added mass coefficient is the same as that 

calculated for the dimensionless force in section 3.4.  It should be noted that for d/do = 1, 

a/g=0.43 and for this range of data, the acceleration does not change more that 2% from 

the initial value.  The other two sets change less than 0.6%.   This indicates that the 

assumption of constant acceleration is even more applicable in this limited range than for 

the whole range of collected data.   

 

3.6.2 Application of the Optimized Cubic Spline Method to Spheres 

 

As discussed in section 2.6.6 the Optimized Cubic Spline Method gives the best 

results of the two previously developed methods (ELM and OCSM) in the case of 

cylinders.  Therefore that method is applied to the sphere data.  The range of data 
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obtained for the spheres is limited compared with that of the cylinders therefore the 

constraint placed on the final knot (d4 = d3 and m4 = m3) is not necessary here.  Similar to 

the application of the OCSM to a cylinder, certain constraints on the optimization are 

necessary.  This includes specifying that the s/d values at knot 1 are less than the s/d at 

knot 2, the s/d values at knot 2 are less than s/d at knot 3, etc.  The s/d values are 

specified to be at least 0.05 apart although this limitation is not reached in the final result 

(i.e. the final knots are more than 0.05 apart).  Another limitation placed on the 

optimization program is the value of the second knot (the first one inside the measured 

data) must be at least 0.04 from the beginning of the data.  Again, this limitation is not 

reached in the final result (i.e. in the final result the knot is more than 0.4 from the 

beginning of the data). 

 

 
Figure 3.14: OCSM applied to sphere data (dotted line indicates extrapolated data, squares indicate 

the knot positions). 

 

Applying the OCSM to the sphere data produces the results given in Figure 3.14. 

The added mass is seen to decrease while the unsteady drag increases.  The added mass 

coefficient decreases more slowly than the unsteady drag increases.  The initial value of 

the added mass was calculated to be 1.18.  This is 18.4% higher than the expected value 

of 1, but it is within the range of the uncertainty.   It also reflects the high initial values of 
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the original dimensionless force curves.  It does, however, show that the value of C at the 

initial onset of acceleration is approximately 1. 
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Chapter 4 – Summary and Conclusions 

This chapter first includes summaries of the two distinct sections of the 

dissertation, cylinder study and sphere study, followed by the conclusions. 

 

4.1 Summary of Numerical Investigation of the Added Mass of 

Cylinders 

A numerical model has been developed to determine details of the flow field in a 

fluid experiencing a unidirectional constant acceleration around a stationary cylinder. The 

force that is found using this model is used to determine the added mass of the object.  

Several features of the model are examined in order to produce the best possible 

simulation.  These features included grid convergence, turbulence models, time 

sensitivity and three dimensional versus two dimensional simulations.  The model is then 

compared to the experimental results of Sarpkaya and Garrison[13]. The largest 

difference between the two is found to be associated with the formation of a small 

secondary vortex just downstream of the flow separation point in the model results. 

Experimental flow visualization images of this case, available in the literature, do not 

indicate such a vortex.  It is speculated that other experimental factors such as flow 

disturbances could be responsible for this discrepancy. The model, however, is 

considered to provide a reasonable tool for determining the forces on a cylinder subjected 

to unidirectional constant acceleration, especially in the initial stage. The results agree 

with the findings of others that the initial added mass is well predicted using potential 

flow. 

The model is then used to investigate the effect on the added mass if the object 

started from some non-zero constant velocity, then accelerated in a unidirectional 

constant manner. In the first section of this work, a cylinder subjected to two different 

non-zero constant velocities followed by unidirectional constant acceleration is studied.  

These results are compared to the results for acceleration starting from rest (and Re = 0) 

as well as the available experimental results for that case. In order to make this 

comparison, Sarpkaya's dimensionless equation is generalized using kinematic values 

expressed relative to the time the acceleration is initiated.  The new dimensionless 
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variables are capable of collapsing the numerical force results on one curve regardless of 

the initial constant velocity for the range of parameters studied.   

The numerical experiments were repeated with a cylinder of the same diameter 

and initial non-zero constant velocity but with three different unidirectional constant 

accelerations.  These results also are shown to collapse on the previous results when 

plotted non-dimensionally.   

 The final set of numerical experiments consists of simulating a cylinder with the 

same initial constant velocity and acceleration, however with three different diameters.  

Again, the results compare very well with the dimensionless experimental data. 

Two methods for splitting the dimensionless force into the added mass coefficient 

and the unsteady drag coefficient are developed. The first method is referred to as the 

Equation of a Line Method or ELM.  The basis for this method is the fact that the 

equation relating the dimensionless force, added mass, unsteady drag and the 

dimensionless displacement is linear. The slope of a line includes the unsteady drag 

coefficient and the added mass coefficient is included in the y intercept. The second 

method is referred to as the Optimization of a Cubic Spline Method or OCSM.  This 

method utilizes two, five knot (three internal and two end knots) cubic splines.  The first 

cubic spline approximates the added mass coefficient and the second cubic spline the 

unsteady drag coefficient. The positions of the knots are left as variables such that they 

could be changed in order to optimize the system using a method of least squares.  This 

was accomplished by comparing the estimated dimensionless force (which is dependent 

on the combination of the two individual spline curves) with the actual dimensionless 

force. 

  The results of the two methods are compared with the force splitting results 

presented by Sarpkaya and Garrison[13] which is considered to be a good basis for 

comparison. It is determined that the OCSM gave better results therefore it is used for the 

remainder of the data analysis in this study including data from the numerical 

experiments. 

 

 

 



72 

 

4.2 Summary of Experimental Study of Added Mass of 

Spheres 

 

A set of experiments is conducted to investigate the transient added mass and 

friction coefficient in the initial period of the release of a sphere in a stationary fluid. The 

experiments consisted of releasing a sphere from rest and recording the descent of the 

sphere using a high speed, high resolution video camera. Three different sets of spheres 

were chosen to give two different values of acceleration and a number of runs were 

conducted for each set.  

The data are plotted using non-dimensional groups developed in a manner similar 

to that in the case of the circular cylinder. The resulting curves for the dimensionless 

force follow the same trends as those found in the cylinder work. The dimensionless total 

force is further analyzed in two ways. The first method uses the assumption that there is 

no drag which is exactly the case for constant acceleration.  For this range the 

acceleration does not change more than 2% from its initial value. The second method 

includes the frictional term and the OCSM is used to separate the forces.  The results 

demonstrate that the trend of the added mass and drag coefficients is similar to that found 

in the case of the circular cylinder and the added mass coefficient is close to the value 

determined by use of potential flow calculations. 

 

4.3 Conclusions 
 

The conclusions are grouped according to the natural division of the research into 

cylinders and spheres. Those associated with the work done with cylinders are first 

covered followed by the conclusions for the work done with spheres. 

 

4.3.1 Cylinder Study 

 

This study extends the knowledge base found in existing literature regarding the flow 

of fluid accelerated over a stationary cylinder in a unidirectional and constant manner and 
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the added mass.  Computational fluid dynamics is used as a means of determining the 

force on a cylinder as well as its added mass.  The following are the conclusions for this 

body of work. 

 

1) A numerical model is developed that simulates, reasonably well, the flow of fluid 

with a unidirectional constant acceleration over a stationary cylinder. 

 

2) Results of the numerical experiment conducted using the above mentioned model 

show that, regardless of initial velocity, acceleration or diameter, the data can be 

collapsed onto one curve by plotting dimensionless values based on the changes 

in displacement and velocity from those values at the time that the acceleration 

begins. 

 

3) The dimensionless force determined for the case of constant non-zero velocity 

followed by unidirectional constant acceleration shows the same trend of starting 

at the potential flow value as the cylinder experiments that accelerated from rest. 

 

4) The Equation of a Line Method of splitting the force into added mass and 

unsteady drag results in a curve that is similar in shape to the one based on vortex 

methods presented in the literature [13], however it does have differing values. 

 

5) The Optimized Cubic Spline Method of splitting the force into added mass and 

unsteady drag is easier to implement than the vortex method [13] yielding similar 

trends in the curve as well as similar values.  Although this technique requires 

more effort to apply than the ELM, it is the preferred technique because of the 

better agreement with the vortex technique.   

 

4.3.2 Sphere Study 

 

This study is different than previous studies on falling spheres in that the focus is on 

the added mass of the sphere. The results are related to and complement those of the 
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circular cylinder in that the added mass of the sphere is studied as it experiences an 

approximately constant and unidirectional acceleration. Techniques previously developed 

for analysis of the circular cylinder added mass are developed and applied in this case.  

The conclusions for this body of work are presented below. 

 

1) The sphere falling from rest in a stationary fluid results in a similar trend in the 

dimensionless total force curve versus dimensionless distance as that of a circular 

cylinder.  The value starts at approximately the value predicted by use of potential 

flow theory then rises with increasing slope over the range of this experiment. 

 

2) The data analysis method that includes the assumption that there is no drag during 

the descent of the sphere results in an added mass that is reasonably close to the 

potential flow value.  The difference is within the uncertainty of the experimental 

procedure. 

 

3) The application of the Optimized Cubic Spline Method to the sphere data shows 

that the added mass is also reasonably close to the value of the potential flow 

value of added mass and decreases slightly with increasing s/d while the drag 

coefficient tends to zero initially and increases with increasing s/d.  Again this is 

within the uncertainty of the experimental procedure. 

  



75 

 

Bibliography 

 

1. Du Buat, C., Principles D'hydraulique, Paris, 1786. 

2. Brennen, C.E., A Review of Added Mass and Fluid Inertial Forces, Report CR 

82.010, Naval Civil Engineering Laboratory, Port Hueneme, California, 1982. 

3. Yih, C.S., Fluid Mechanics: A Concise Introduction to the Theory, McGraw-Hill  

New York, NY, 1969. 

4. Lamb, H., Hydrodynamics, 6th Ed., Dover Publications, New York, NY, 1945. 

5. Birkhoff, G., Chapter 6: Added Mass, in Hydrodynamics: A Study in Logic, Fact 

and Similitude, pp. 148-178, Princeton University Press, Princeton, New Jersey, 

1960. 

6. Kennard, E., Irrotational Flow of Frictionless Fluids : Mostly of Invariable 

Density, Report 2299, David Taylor Model Basin, Washington, D.C., 1967. 

7. Patton, K.T., Tables of Hydrodynamic Mass Factors for Translational Motion, in 

American Society of Mechanical Engineers - Meeting WA/UNT-2, American 

Society of Mechanical Engineers (ASME), New York, NY, United States, 1965. 

8. Keulegan, G.H. and L.H. Carpenter, Forces on Cylinders and Plates in 

Oscillating Fluid, United States Bureau of Standards - Journal of Research, Vol. 

60, pp. 423, 1958. 

9. Sarpkaya, T. and M. Isaacson, Mechanics of Wave Forces on Offshore Structures, 

Van Nostrand Reinhold Company, NY, 1981. 

10. Sarpkaya, T., Lift, Drag, and Added-Mass Coefficients for Circular Cylinder 

Immersed in Time-Dependent Flow, in Journal of Applied Mechanics Meeting 

WA-61, pp. 13-15, 1962. 

11. Villaggio, P., The Added Mass of a Deformable Cylinder Moving in a Liquid, 

Continuum Mechanics and Thermodynamics, Vol. 8, No. 2, pp. 115-120, 1996. 

12. Bird, A.R., Measured Fluid Forces on an Accelerated/Decelerated Circular 

Cylinder (History Force), PhD Dissertation, Department of Civil Engineering, 

Northwestern University, Evanston, Illinois, 1984. 

13. Sarpkaya, T. and C.J. Garrison, Vortex Formation and Resistance in Unsteady 

Flow, Transactions of the ASME Journal of Applied Mechanics, pp. 16-24, 

March,1963. 



76 

 

14. Garrison, C.J., Resistance in Unsteady Flow, M.A.Sc. Thesis, Department of 

Engineering Mechanics, University of Nebraska, Lincoln, Nebraska, 1962. 

15. Basset, A.B., Hydrodynamics, Philosophical Transactions, Vol. 2, pp. 43, 1888. 

16. Basset, A.B., Descent of a Sphere in Viscous Liquid, Nature, Vol. 83, pp. 369-

381, 1910. 

17. Morison, J.R., M.P. O'Brien, J.W. Johnson, and S.A. Schaaf, Force Exerted by 

Surface Waves on Piles, American Institute of Mining and Metallurgical 

Engineers - Journal of Petroleum Technology, Vol. 2, No. 5, pp. 149-154, 1950. 

18. Hannoura, A.-A.A., Numerical and Experimental Modelling of Unsteady flow in 

Rockfill Embankments, PhD, Department of Civil Engineering, University of 

Windsor, Windsor, 1978. 

19. Hannoura, A.-A.A. and J.A. McCorquodale, Rubble Mounds - Hydraulic 

Conductivity Equation, Journal of Waterway Port Coastal and Ocean 

Engineering- ASCE, Vol. 111, No. 5, pp. 783-799, 1985. 

20. Hannoura, A.-A.A. and J.A. McCorquodale, Virtual Mass of Coarse Granular 

Media, Journal of the Waterway Port Coastal and Ocean Division - ASCE, Vol. 

104, No. 2, pp. 191-200, 1978. 

21. Noca, F., On the Evaluation of Time-Dependent Fluid Dynamic Forces on Bluff 

Bodies, PhD Dissertation, Graduate Aeronautical Labs, California Institute of 

Technology, Pasedena, California, 1997. 

22. Noca, F., D. Shiels, and D. Jeon, Measuring Instantaneous Fluid Dynamic Forces 

on Bodies, using only Velocity Fields and Their Derivatives, Journal of Fluids and 

Structures, Vol. 11, pp. 345-350, 1997. 

23. Sarpkaya, T., Forces on Cylinders and Spheres in a Sinusoidally Oscillating 

Fluid, Journal of Applied Mechanics, Transactions ASME, Vol. 42, No. 1, pp. 32-

37, 1975. 

24. Sarpkaya, T., In-Line and Transverse Forces on Cylinders in Oscillatory Flow at 

High Reynolds Numbers, Journal of Ship Research, Vol. 21, No. 1, pp. 200-216, 

1977. 

25. Skop, R.A., S.E. Ramberg, and K.M. Ferer, Added Mass and Damping Forces on 

Circular Cylinders, American Society of Mechanical Engineers (Paper), No. 76, 

pp. 1-11, 1976. 



77 

 

26. Cotter, D.C. and S.K. Chakrabarti, Wave Force Tests on Vertical and Inclined 

Cylinders, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 110, 

No. 1, pp. 1-14, 1984. 

27. Romagnoli, R. and R. Varvelli, Drag and Added Mass Study on Arbitrarily 

Oscillating Marine Bodies, in Proceedings of the First (1990) European Offshore 

Mechanics Symposium, Trondheim, Norway, Int Soc of Offshore and Polar 

Engineerns (ISOPE), 1990. 

28. Nakamura, M., K. Hoshino, and W. Koterayama, Three-Dimensional Effects on 

Hydrodynamic Forces Acting on an Oscillating Finite-Length Circular Cylinder, 

International Journal of Offshore and Polar Engineering, Vol. 2, No. 2, pp. 81-86, 

1992. 

29. Hoshino, H., S. Kato, M. saito, and H. Sato, Hydrodynamic Forces Acting on 

Finite-Length Circular Cylinder oscillating in a Uniform Flow, in Proceedings of 

the Third (1993) International Offshore and Polar Engineering Conference, Part 

3 (of 4), Singapore, Singapore, Int Soc of Offshore and Polar Engineerns 

(ISOPE), 1993. 

30. Medeiros, E.F., An Experimental Study of the Flow Structures and Hydrodynamic 

Forces of a Cylinder in a Reversing Flow, PhD, The University of Texas at 

Austin, Austin, Texas, 1995. 

31. Dutsch, H., F. Durst, S. Becker, and H. Lienhart, Low Reynolds-Number Flow 

Around an Oscillating Circular Cylinder at Low Keulegan-Carpenter Numbers, 

Journal of Fluid Mechanics, Vol. 360, pp. 249-271, 1998. 

32. Nishihara, T., S. Kaneko, and T. Watanabe, Characteristics of Fluid Dynamic 

Forces Acting on a Circular Cylinder Oscillated in the Streamwise Direction and 

its Wake Patterns, Journal of Fluids and Structures, Vol. 20, No. 4, pp. 505-518, 

2005. 

33. Odar, F. and W.S. Hamiltan, Forces on a Sphere Accelerating in a Viscous Fluid, 

Journal of Fluid Mechanics, Vol. 18, pp. 302-314, 1964. 

34. Abbad, M. and M. Souhar, Effects of the History Force on an Oscillating Rigid 

Sphere at Low Reynolds Number, Experiments in Fluids, Vol. 36, No. 5, pp. 775-

82, 2004. 

35. Abbad, M., Experimental Investigation on the History Force Acting on 

Oscillating Fluid Spheres at Low Reynolds Number, Physics of Fluids, Vol. 16, 

No. 10, pp. 3808-3817, 2004. 



78 

 

36. Ikeda, Y., K. Osa, and N. Tanaka, Viscous Forces Acting on Irregularly 

Oscillating Circular Cylinders and Flat Plates, Journal of Offshore Mechanics 

and Arctic Engineering, Vol. 110, No. 2, pp. 140-147, 1988. 

37. McConnel, K.G. and D.F. Young, Added Mass of a Sphere in a Bounded Viscous 

Fluid, ASCE - Journal of the Engineering Mechanics Division, Vol. 91, No. 4, pp. 

147-164, 1965. 

38. Chew, Y.T., H.T. Low, S.C. Wong, and K.T. Tan, An Unsteady Wake-Source 

Model for Flow Past an Oscillating Circular Cylinder and its Implications for 

Morison's Equation, Journal of Fluid Mechanics, Vol. 240, pp. 627, 1992. 

39. Rahman, M. and D.D. Bhatta, Evaluation of Added Mass and Damping 

Coefficient of an Oscillating Circular Cylinder, Applied Mathematical Modelling, 

Vol. 17, No. 2, pp. 70-79, 1993. 

40. Kim, I., S. Elghobashi, and W.A. Sirignano, On the Equation for Spherical-

Particle Motion: Effect of Reynolds and Acceleration Numbers, Journal of Fluid 

Mechanics, Vol. 367, pp. 221-253, 1998. 

41. Whitman, A.M., Aspect Ratio Effects on the Added-Mass of a Slender Pulsating 

Cylinder, Journal of Applied Mechanics, Vol. 39, No. 4, pp. 1047, 1972. 

42. Mikishev, G.N. and V.I. Stolbetsov, Vibrations of a Body in a Bounded Volume of 

Viscous Fluid, Fluid Dynamics, Vol. 18, No. 1, pp. 12, 1983. 

43. Keim, S.R., Fluid Resistance to Cylinders in Accelerated Motion, ASCE - Journal 

of the Hydraulics Division, Vol. 82, pp. 14, 1956. 

44. Sarpkaya, T., Separated Flow about Lifting Bodies and Impulsive Flow about 

Cylinders, AIAA Journal, Vol. 4, No. 3, pp. 414, 1966. 

45. McLain, T.W., Modeling of Underwater Manipulator Hydrodynamics with 

Application to the Coordinated Control of an Arm/Vehicle System, PhD 

Dissertation, Department of Mechanical Engineering, Stanford University, 

Stanford, California, 1995. 

46. McLain, T.W. and S.M. Rock, Experiments in the Hydrodynamic Modeling of an 

Underwater Manipulator, Proceedings of the 1996 Symposium on Autonomous 

Underwater Vehicle Technology  pp. 463-469, 1996. 

47. Moorman, R.B., Motion of a Spherical Particle in the Accelerated Portion of Free 

Fall, PhD Dissertation, Department of Mechanics and Hydraulics, State 

University of Iowa, Iowa City, Iowa, 1955. 



79 

 

48. Odar, F., Verification of the Proposed Equation for Calculation of the Forces on a 

Sphere Accelerating in a Viscous Fluid, Fluid Mechanics, Vol. 25, No. 3, pp. 591-

592, 1966. 

49. Hamilton, W. and G. Courtney, Added Mass of Sphere Starting Upward Near 

Floor, ASCE J Eng Mech Div, Vol. 103, No. 1, pp. 79-97, 1977. 

50. Wang, X. and C. Dalton, Numerical Solutions for Impulsively started and 

Decelerated Viscous Flow Past a Circular Cylinder, International Journal for 

Numerical Methods in Engineering, Vol. 12, pp. 383, 1991. 

51. Ferreira, J.M. and R.P. Chhabra, Accelerating Motion of a Vertically Falling 

Sphere in Incompressible Newtonian Media: an Analytical Solution, Power 

Technology, Vol. 97, pp. 6-15, 1998. 

52. Chang, T.-J. and B.C. Yen, Gravitational Fall Velocity of Sphere in Viscous 

Fluid, Journal of Engineering Mechanics, Vol. 124, No. 11, pp. 1193-1199, 1998. 

53. Guo, J., Motion of Spheres Falling Through Fluids, Journal of Hydraulic 

Research, Vol. 49, No. 1, pp. 32-41, 2011. 

54. Schlichting, H., Boundary-Layer Theory, 6th Ed., McGraw-Hill, New York, NY, 

1968. 

55. Kikuchi, K. and O. Mochizuki, Consideration of Thrust in Escaping Motion of a 

Mosquito Larva, Journal of Aero Aqua Bio-mechanisms, Vol. 1, No. 1, pp. 111-

116, 2010. 

56. Brennen, C.E., Fundamentals of Multiphase Flow, Cambridge University Press, 

Cambridge, England, 2005. 

57. Fluent User Manual Version 6.3.26, Fluent Inc., Lebanon, NH, USA, 2006. 

58. Jones, D.A. and D.B. Clark, Simulation of a Wing-Body Junction Experiment 

using the Fluent Code, DSTO-TR-1731, Report for Australian Department of 

Defence, Australia, 2005. 

59. Anderson, J.D., Fundamentals of Aerodynamics, 3rd Ed., McGraw-Hill, Boston, 

2001. 

60. Munson, B.R., D.F. Young, and T. Okiishi, H., Fundamentals of Fluid 

Mechanics, 4th Ed., John Wiley & Sons, Inc., New York, NY,, 2002. 

61. Chapra, S.C. and R.P. Canale, Numerical Methods for Engineers, 2nd Ed., 

McGraw-Hill, 1998. 



80 

 

62. Coleman, H.W. and W.G. Steele, Experimentation and Uncertainty Analysis for 

Engineers, 2nd Ed., John Wiley & sons, 1999. 

 

 

  



81 

 

Appendix A – User Defined Function 

 

The following is the user defined function used to control the velocity of the inlet 

boundary for the simulations described in Chapter 2. 

 

/********************************************************************** 

   unsteady.c                                                          

   UDF for specifying a transient velocity profile boundary condition  

***********************************************************************/ 

 

#include "udf.h" 

 

DEFINE_PROFILE(un_accel9o81re0, thread, position)  

{ 

  face_t f; 

  real t = CURRENT_TIME; 

 

/********************************************************************* 

Velocity_init is the initial velocity of the flow  used for the constant portion of the 

simulation.  This was calculated for the desired Reynolds number based on the diameter. 

 

accelerationstart is the time that the acceleration starts. 

*********************************************************************/ 

  begin_f_loop(f, thread) 

    {    

      F_PROFILE(f, thread, position) =Velocity_Init + (9.81*(t-accelerationstart)); 

    } 

  end_f_loop(f, thread) 

} 
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Appendix B – Uncertainty Analysis 

There is a certain amount of uncertainty involved with any experimental 

measurement.  The purpose of this appendix is to explore the uncertainty in the 

measurements used for the experiments involving the sphere. 

 

B.1 Uncertainty for Gravitational Acceleration 

Gravitational acceleration can be calculated based on the latitude and the height of 

the experimental location above sea level, 

 𝑔 = 9.78(1 + 5.3𝑒−3𝑠𝑖𝑛2𝜙 − 5.8𝑒−6𝑠𝑖𝑛22𝜙) −3.086𝑒−6ℎ, (B.1) 

 

where 𝜙 is the latitude and h is the height above sea level. 

 

The uncertainty in the gravitational acceleration can be expressed as 

 𝑈𝑔 = √(𝜕𝑔𝜕∅𝑈∅)2 + (𝜕𝑔𝜕ℎ 𝑈ℎ)2, (B.2) 

 

where, 

 𝜕𝑔𝜕∅ = 0.1037 𝑠𝑖𝑛∅ 𝑐𝑜𝑠∅ − 1.134𝑒−4 sin 4∅, (B.3) 

 

and 

 𝜕𝑔𝜕ℎ =  −3.086𝑒−6. (B.4) 

 

The uncertainty for the measurement of the latitude is 𝑈∅ = ±5𝑒−3 𝑟𝑎𝑑 and the 

uncertainty for the height is 𝑈ℎ = ±1 𝑚. 

For example for Windsor, Ontario, Canada ∅ = 42.3° = 0.738 𝑟𝑎𝑑 and ℎ =190 𝑚.  Therefore Equation B.2 becomes, 
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 𝑈𝑔 = √((0.103718 𝑠𝑖𝑛(0.738) 𝑐𝑜𝑠(0.738)−1.13452 e−4sin(4 × 0.738) ) × 5𝑒−3)2+((−3.086𝑒−6) × 1)2 . (B.5) 

 

This results in, 

 𝑈𝑔 = ±2.58𝑒−4  𝑚𝑠2. (B.6) 

 

B.2 Uncertainty for Weight minus Buoyancy Force 

This section develops the uncertainty equations for the weight minus the 

buoyancy force.  The equation can be expressed as 

 

 𝑊 − 𝐹𝐵 = 𝑀𝑖𝑛𝑊𝑎𝑡𝑒𝑟𝑔 (B.7) 

 

where MinWater is the mass of the sphere suspended in water.  The uncertainty can be 

expressed as 

 

 𝑈𝑊−𝐹𝐵 = √(𝜕(𝑊 − 𝐹𝐵)𝜕𝑀𝑖𝑛𝑊𝑎𝑡𝑒𝑟 𝑈𝑀𝑖𝑛𝑊𝑎𝑡𝑒𝑟)2 + (𝜕(𝑊 − 𝐹𝐵)𝜕𝑔 𝑈𝑔)2, (B.8) 

 

where, 

 

 𝜕(𝑊 − 𝐹𝐵)𝜕𝑀𝑖𝑛𝑊𝑎𝑡𝑒𝑟 = 𝑔, (B.9) 

 

and 

 𝜕(𝑊 − 𝐹𝐵)𝜕𝑔 = 𝑀𝑖𝑛𝑊𝑎𝑡𝑒𝑟. (B.10) 

 

Substituting Equation B.9 and B10 into Equation B.8 results in, 

 



84 

 

 𝑈𝑊−𝐹𝐵 = √(𝑔𝑈𝑀𝑖𝑛𝑊𝑎𝑡𝑒𝑟)2 + (𝑀𝑖𝑛𝑊𝑎𝑡𝑒𝑟𝑈𝑔)2. (B.11) 

 

For example, for sphere 3 𝑀𝑖𝑛𝑊𝑎𝑡𝑒𝑟= 0.0263 kg, g = 9.80 m/s2, 𝑈𝑀𝑖𝑛𝑊𝑎𝑡𝑒𝑟= ±0.000005 

kg, and Ug = ±2.58 e-3 m/s2.  Equation B.11 becomes, 

 𝑈𝑊−𝐹𝐵 = √    
      (9.80 𝑚𝑠2 (0.000005 𝑘𝑔))2+(0.0263 𝑘𝑔 (2.58 𝑒−4 𝑚𝑠2))2. (B.12) 

 

This results in, 

 

 𝑈𝑊−𝐹𝐵 = ±4.95 𝑒−5𝑁. (B.13) 

 

B.3 Uncertainty for Madd, the (theoretical added mass) 

 
This section develops the uncertainty equations for the calculating the theoretical 

added mass.  The equation for the theoretical added mass is, 

 

 𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 = 23𝜋𝑟3𝜌 = 12𝑉𝜌. (B.14) 

 

The uncertainty for the added mass can be expressed as, 

 

 𝑈𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 = √(𝜕𝑀𝑎𝑑𝑑,𝑡ℎ𝑒𝜕𝑟 𝑈𝑟)2+(𝜕𝑀𝑎𝑑𝑑,𝑡ℎ𝑒𝜕𝜌 𝑈𝜌)2. (B.15) 

 

The uncertainty in the radius was obtained from the manufacturer, 

 

 𝑈𝑟 = 𝑈𝑑2 = 0.001 𝑖𝑛2 = 0.0005 𝑖𝑛 × 0.0254 𝑚1 𝑖𝑛 = 1.27𝑒−5𝑚. (B.16) 

 

 The uncertainty for the density is taken to be  
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 𝑈𝜌 = ±1 𝑘𝑔𝑚3. (B.17) 

 

The partial differentials in Equation B.15 can be calculated as, 

 

 𝜕𝑀𝑎𝑑𝑑,𝑡ℎ𝑒𝜕𝑟 = 2𝜋𝑟2𝜌, (B.18) 

 

and 

 𝜕𝑀𝑎𝑑𝑑,𝑡ℎ𝑒𝜕𝜌 = 23𝜋𝑟3. (B.19) 

 

Substituting Equation B.18 and B.19 into Equation B.15, the uncertainty in the theoretical 

added mass can be expressed as 

 

 𝑈𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 = √(2𝜋𝑟2𝜌𝑈𝑟)2+(23𝜋𝑟3𝑈𝜌)2 (B.20) 

 

For example, the uncertainty in the theoretical added mass for a sphere with a diameter of 

0.0254 m (1 inch) in water at 20oC is, 

 

 

𝑈𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 =
√    
      
     (2𝜋 (0.0254 𝑚2 )2 (998.2 𝑘𝑔𝑚3) (1.27𝑒−5𝑚))2

+(23𝜋 (0.0254 𝑚2 )3 (1 𝑘𝑔𝑚3))2 . (B.21) 

 

The result is, 

 

 𝑈𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 = ±1.354𝑒−5 kg. (B.22) 
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B.4 Uncertainty in Determining C using Curve Fits for 

Acceleration 
 

This section begins with the calculations for the uncertainty of the second order 

coefficient of the curve fit.  This is then used to find the uncertainty of the acceleration. 

 

B.4.1 Curve Fit Equations 

 

The method of least squares was used to determine the second order polynomial 

curve fit for sets of 70 data points.  The second order coefficient was then used to 

determine the acceleration for that set of data.  The method of least squares starts with the 

equation 

 𝑦 =  𝑎𝑜 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖2. (B.23) 

 

The coefficients are determined by minimizing the sum of the square of the residuals.  

The residuals are expressed as 

 ∈= 𝑦𝑖 − 𝑦. (B.24) 
 

Substituting Equation B.23 into Equation B.24 gives, 

 ∈= 𝑦𝑖 − (𝑎𝑜 + 𝑎1𝑥𝑖 + 𝑎2𝑥𝑖2). (B.25) 

 

Simplifying Equation B.25 gives, 

 ∈= 𝑦𝑖 − 𝑎𝑜 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖2. (B.26) 

 

The sum of the squares of the residuals (Equation B.26) is, 

 𝑆 =∑(𝑦𝑖 − 𝑎𝑜 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖2)2𝑛
𝑖=1 . (B.27) 

 

In order to minimize the error, the derivative of each equation is taken with respect to 

each of the unknown coefficients of the polynomial, 

 

 𝜕𝑆𝜕𝑎0 =∑−2𝑛
𝑖=1 (𝑦𝑖 − 𝑎𝑜 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖2) = 0, (B.28) 
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 𝜕𝑆𝜕𝑎1 =∑−2𝑛
𝑖=1 (𝑦𝑖 − 𝑎𝑜 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖2)𝑥𝑖 = 0, (B.29) 

 

 𝜕𝑆𝜕𝑎2 =∑−2𝑛
𝑖=1 (𝑦𝑖 − 𝑎𝑜 − 𝑎1𝑥𝑖 − 𝑎2𝑥𝑖2)𝑥𝑖2 = 0. (B.30) 

 

Rearranging the equations B.28-B.30 gives, 

 

 𝑎0 + 𝑎1∑𝑥𝑖𝑛
𝑖=1 + 𝑎2∑𝑥𝑖2𝑛

𝑖=1 =∑𝑦𝑖𝑛
𝑖=1 , (B.31) 

 

 𝑎0∑𝑥𝑖𝑛
𝑖=1 + 𝑎1∑𝑥𝑖2𝑛

𝑖=1 + 𝑎2∑𝑥𝑖3𝑛
𝑖=1 =∑𝑦𝑖𝑛

𝑖=1 𝑥𝑖 , (B.32) 

 

 𝑎0∑𝑥𝑖2𝑛
𝑖=1 + 𝑎1∑𝑥𝑖3𝑛

𝑖=1 + 𝑎2∑𝑥𝑖4𝑛
𝑖=1 =∑𝑦𝑖𝑥𝑖2𝑛

𝑖=1 . (B.33) 

 

This results in a set of linear equations in which the variables ao, a1, and a2 are the desired 

quantities for which a solution is required. Using Matlab to solve the linear system 

equations gives the following relations between the coefficients and the summations for 

the set of 70 data points; 

 𝑎0 = ∑𝑥𝑖2 ∑𝑥𝑖4∑𝑦𝑖−∑𝑥𝑖2 ∑𝑥𝑖2 ∑𝑦𝑖𝑥𝑖2+∑𝑥𝑖2∑𝑥𝑖3 ∑𝑦𝑖𝑥𝑖−∑𝑥𝑖3∑𝑥𝑖3 ∑𝑦𝑖−∑𝑥𝑖∑𝑥𝑖4 ∑𝑦𝑖𝑥𝑖+∑𝑥𝑖∑𝑥𝑖3 ∑𝑦𝑖𝑥𝑖2∑𝑥𝑖4 ∑𝑥𝑖2−∑𝑥𝑖4∑𝑥𝑖 ∑𝑥𝑖−∑𝑥𝑖2 ∑𝑥𝑖2∑𝑥𝑖2−∑𝑥𝑖3∑𝑥𝑖3+∑𝑥𝑖3 ∑𝑥𝑖∑𝑥𝑖2+∑𝑥𝑖2∑𝑥𝑖 ∑𝑥𝑖3 ,  
  (B.34) 
 

 𝑎1 = ∑𝑥𝑖4∑𝑦𝑖𝑥𝑖 − ∑𝑥𝑖2∑𝑥𝑖2∑𝑦𝑖𝑥𝑖 − ∑𝑥𝑖 ∑𝑥𝑖4∑𝑦𝑖 − ∑𝑥𝑖3∑𝑦𝑖𝑥𝑖2 + ∑𝑥𝑖2 ∑𝑥𝑖3∑𝑦𝑖 + ∑𝑥𝑖 ∑𝑥𝑖2∑𝑦𝑖𝑥𝑖2∑𝑥𝑖4∑𝑥𝑖2 − ∑𝑥𝑖4∑𝑥𝑖 ∑𝑥𝑖 − ∑𝑥𝑖2∑𝑥𝑖2∑𝑥𝑖2 − ∑𝑥𝑖3∑𝑥𝑖3 + ∑𝑥𝑖3∑𝑥𝑖 ∑𝑥𝑖2 + ∑𝑥𝑖2∑𝑥𝑖 ∑𝑥𝑖3 , 
  (B.35) 
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𝑎2 = ∑𝑥𝑖2∑𝑦𝑖𝑥𝑖2 − ∑𝑥𝑖 ∑𝑥𝑖 ∑𝑦𝑖𝑥𝑖2 − ∑𝑥𝑖2∑𝑥𝑖2∑𝑦𝑖 − ∑𝑥𝑖3∑𝑦𝑖𝑥𝑖 +∑𝑥𝑖 ∑𝑥𝑖3∑𝑦𝑖 + ∑𝑥𝑖 ∑𝑥𝑖2∑𝑦𝑖𝑥𝑖∑𝑥𝑖4∑𝑥𝑖2 − ∑𝑥𝑖4∑𝑥𝑖 ∑𝑥𝑖 − ∑𝑥𝑖2∑𝑥𝑖2∑𝑥𝑖2 − ∑𝑥𝑖3∑𝑥𝑖3 +∑𝑥𝑖3∑𝑥𝑖 ∑𝑥𝑖2 + ∑𝑥𝑖2∑𝑥𝑖 ∑𝑥𝑖3 . 
  

  (B.36) 
 

 

Since the coefficient a2 is related to acceleration, the uncertainty for this coefficient will 

be needed. 

 

B.4.2 Uncertainty in Acceleration 

 

The uncertainty for the second order coefficient of the curve fit will be used to determine 

the uncertainty of the acceleration. Equation B.36 can be considered a data reduction 

equation of the form 

 

 𝑎2 = 𝑎2 = 𝑎2 (𝑥1, 𝑥2, … , 𝑥𝑛, 𝑦1, 𝑦2, … , 𝑦𝑛),  (B.37) 

  

where x1, x2,… , xn are the  times in seconds for each of the 70 data points used for each 

curve fit and y1, y2,… , yn are the displacements in m for each of the 70 data points used 

for each curve fit (this equation will only give the uncertainty for one point on the 

acceleration curve).  Applying the uncertainty analysis equations (Coleman and 

Steele[62] 1999) to equation B.36, the general form of uncertainty is 

 

 𝑈𝑎22 =∑(𝜕𝑎2𝜕𝑦𝑖 )2 𝑃𝑦𝑖2𝑛
𝑖=1 +∑(𝜕𝑎2𝜕𝑦𝑖 )2 𝐵𝑦𝑖2𝑛

𝑖=1 +∑(𝜕𝑎2𝜕𝑥𝑖 )2 𝐵𝑥𝑖2𝑛
𝑖=1 , (B.38) 

 

 

where Py is the random uncertainty variable (the uncertainty associated with the goodness 

of the curve fit) for the y, By is the systematic uncertainty (the uncertainty associated with 

the experimental measurement) for the y variable and Bx is the systematic uncertainty for 

the x variable.  It is assumed that there is no random uncertainty in x.  
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 Py can be obtained from the curve fits in Excel.  The systematic uncertainty for the y 

variable (which is displacement) can be determined by the following equation, applied to 

the displacement data, 

 

 𝐵𝑦𝑖2 = (𝑆𝑦)2, (B.39) 

where, 

 𝑆𝑦 = √ 1𝑛 − 1∑(𝑦𝑖 − �̅�)2𝑛
𝑖=1 . (B.40) 

 

 

 One standard deviation was used for these calculations.  The partial differentiation of a2 

is needed with respect to yi and xi.  Equation A.36 is a complicated combination of small 

functions of  ∑𝑦𝑖 and  ∑𝑥𝑖.  With this in mind the partial differentiation was done using 

a combination of the quotient rule and the product rule 

 

 ∑(𝜕𝑎2𝜕𝑦𝑖 )2 =∑(𝜕𝑎2𝜕𝑦1 + 𝜕𝑎2𝜕𝑦2 +⋯+ 𝜕𝑎2𝜕𝑦𝑖 )2 (B.41) 

 

Remember  

 

 𝑎 = 2𝑎2. (B.42) 
 

Therefore, 

 

 𝑈𝑎 = √( 𝜕𝑎𝜕𝑎2𝑈𝑎2)2. (B.43) 

 

The partial differential of acceleration with respect to a2 is 

 

 𝜕𝑎𝜕𝑎2 = 2. (B.44) 
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Substituting Equation B.44 into Equation B.43 results in, 

 

 𝑈𝑎 = √(2𝑈𝑎2)2. (B.45) 

 

Simplifying Equation B.45 gives, 

 

 𝑈𝑎 = 2𝑈𝑎2 . (B.46) 

 

This is the uncertainty in one value of acceleration (one s/d) for one run.  Since each ball 

consisted of multiple runs the average acceleration for all runs can be expressed as 

 

 𝑎𝑎𝑣𝑔 = 𝑎𝑟1 + 𝑎𝑟2 +⋯+ 𝑎𝑟𝑛𝑛 . (B.47) 

 

The uncertainty in aavg can be expressed as 

 𝑈𝑎𝑎𝑣𝑔 = √(𝜕𝑎𝑎𝑣𝑔𝜕𝑎𝑟1 𝑈𝑎𝑟1)2+(𝜕𝑎𝑎𝑣𝑔𝜕𝑎𝑟2 𝑈𝑎𝑟2)2 +⋯+ (𝜕𝑎𝑎𝑣𝑔𝜕𝑎𝑟𝑛 𝑈𝑎𝑟𝑛)2. (B.48) 

 

Simplifying Equation B.48, 

 𝑈𝑎𝑎𝑣𝑔 = √(1𝑛𝑈𝑎𝑟1)2+(1𝑛𝑈𝑎𝑟2)2 +⋯+ (1𝑛𝑈𝑎𝑟𝑛)2. (B.49) 

 

If  the values for the uncertainties for each run are assumed to be approximately the same, 

then Equation B.49 becomes, 

 

 𝑈𝑎𝑎𝑣𝑔 = √𝑛 (1𝑛𝑈𝑎𝑟)2. (B.50) 

 

where 𝑈𝑎𝑟is the average value of the uncertainties.   

 For example, the acceleration uncertainty for sphere 3 for the first four runs are  𝑈𝑎𝑟1 = ±0.2230 𝑚𝑠2 , 𝑈𝑎𝑟1 = ±0.2230 𝑚𝑠2  , 𝑈𝑎𝑟1 = ±0.2215 𝑚𝑠2  ,  𝑈𝑎𝑟1 = ±0.2235 𝑚𝑠2 . 
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These values are very close to the average value of 𝑈𝑎𝑟= 0.1690 m/s2 Equation B.50 then 

becomes, 

 𝑈𝑎𝑎𝑣𝑔 = √28 ( 128 0.1690)2. (B.51) 

 

The result is 

 

 𝑈𝑎𝑎𝑣𝑔 = ±0.0319 𝑚𝑠2. (B.52) 

 

 

B.4.3 Uncertainty in C 

 

The equation used to determine C for the sphere is 

 

 [𝑊 − 𝐹𝐵𝑎𝑎𝑣𝑔 −𝑀] 1𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 = 𝐶. (B.53) 

 

The uncertainty for C can be expressed as 

 

 𝑈𝐶 = √    
      ( 𝜕𝐶𝜕(𝑊 − 𝐹𝐵) 𝑈𝑊−𝐹𝐵)2+( 𝜕𝐶𝜕𝑎𝑎𝑣𝑔 𝑈𝑎𝑎𝑣𝑔)2+(𝜕𝐶𝜕𝑀𝑈𝑀)2+( 𝜕𝐶𝐴𝜕𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 𝑈𝑀𝑎𝑑𝑑,𝑡ℎ𝑒)2 . (B.54) 

 

The partial differentials can be expressed as, 

 𝜕𝐶𝜕(𝑊 − 𝐹𝐵) = 1𝑎𝑎𝑣𝑔𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 , (B.55) 

 

 𝜕𝐶𝜕𝑎𝑎𝑣𝑔 = − 𝑊 − 𝐹𝐵𝑎𝑎𝑣𝑔2𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 , (B.56) 
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 𝜕𝐶𝜕𝑀 = 1𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 , (B.57) 

 

 𝜕𝐶𝐴𝜕𝑀𝑎𝑑𝑑.𝑡ℎ𝑒 = 𝑎𝑎𝑣𝑔𝑀 − (𝑊 − 𝐹𝐵)𝑀𝑎𝑑𝑑,𝑡ℎ𝑒2𝑎𝑎𝑣𝑔 . (B.58) 

 

 

Substituting Equation B.55-B.58 into Equation B.54 gives, 

 

𝑈𝐶 =
√    
      
      
      
 ( 1𝑎𝑎𝑣𝑔𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 𝑈𝑊−𝐹𝐵)2+(− 𝑊 − 𝐹𝐵𝑎𝑎𝑣𝑔2𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 𝑈𝑎𝑎𝑣𝑔)2+( 1𝑀𝑎𝑑𝑑.𝑡ℎ𝑒 𝑈𝑀)2+(𝑎𝑎𝑣𝑔𝑀 − (𝑊 − 𝐹𝐵)𝑀𝑎𝑑𝑑,𝑡ℎ𝑒2𝑎𝑎𝑣𝑔 𝑈𝑀𝑎𝑑𝑑.𝑡ℎ𝑒)2

 (B.59) 

 

 

For example, using the information from sphere 3, the uncertainty at t = 0.037 s can be 

calculated using the following values, 𝑎𝑎𝑣𝑔=8.026 m/s2, Madd,the =1.806 e-3 kg, W-FB = 

0.264196 N, M = 0.03066 kg, 𝑈𝑎𝑎𝑣𝑔 = ±0.0319 𝑚𝑠2, 𝑈𝑀𝑎𝑑𝑑,𝑡ℎ𝑒 = ±1.354𝑒−5 𝑘𝑔, 𝑈𝑊−𝐹𝐵 = ±4.95𝑒−5 𝑁, UM = ± 0.000005 kg, 
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𝑈𝐶 =

√    
      
      
      
      
      
   ( 18.026 𝑚𝑠2 (1.806𝑒−3 𝑘𝑔) (4.95𝑒−5 𝑁))

2

+( 
 − 0.264196 𝑁(8.026 𝑚𝑠2)2 (1.806𝑒−3 𝑘𝑔) (0.0319 𝑚𝑠2)) 

 2

+( 1(1.806𝑒−3 𝑘𝑔) (0.000005 𝑘𝑔))2
+(8.026 𝑚𝑠2 (0.03066 𝑘𝑔) − (0.264196 𝑁)(1.806𝑒−3 𝑘𝑔)2 (8.026 𝑚𝑠2) (1.354𝑒−5 𝑘𝑔))2

 (B.60) 

 

The results is 

 𝑈𝐶 = 0.1548. (B.61) 

 

This is the uncertainty for on standard deviation which includes 66.6% of the data.  Two 

standard deviations will be used in order to include 95% of the data.  This results in an 

uncertainty in the calculation of C, 

 

 𝑈𝐶2𝜎 = 0.3098. (B.62) 

 

 

B.5 Uncertainty in s/d 

 

The dimensionless distance can be represented by the equation 

 

 Dimensionless distance = savg/d (B.63) 
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where savg is the average distance at a given time.  The uncertainty for each distance 

measurement in each run is the same.  Therefore the uncertainty for the average can be 

given by 

 𝑈𝑠𝑎𝑣𝑔 = √𝑛 (1𝑛𝑈𝑠𝑟)2 (B.64) 

 

where the uncertainty for one distance measurement is ±1 pixel.  For sphere 3 1pixel = 

3.570e-5 m therefore 𝑈𝑠𝑟= ±3.570e-5 m and there are 28 runs (n = 28).  Therefore 

Equation B.64 becomes 

 

 𝑈𝑠𝑎𝑣𝑔 = √28 ( 128 3.570𝑒−5 𝑚)2. (B.65) 

 

The result is, 

 𝑈𝑠𝑎𝑣𝑔 = ±6.748𝑒−6 𝑚. (B.66) 

 

 

 The uncertainty in the dimensionless distance can be expressed as 

 

 𝑈𝑠𝑎𝑣𝑔/𝑑 = √(𝜕(𝑠𝑎𝑣𝑔/𝑑)𝜕𝑠𝑎𝑣𝑔 𝑈𝑠𝑎𝑣𝑔)2 + (𝜕(𝑠𝑎𝑣𝑔/𝑑)𝜕𝑑 𝑈𝑑)2, (B.67) 

where 

 

 𝜕 (𝑠𝑎𝑣𝑔𝑑 )𝜕𝑠𝑎𝑣𝑔 = 1𝑑, (B.68) 

 

and 

 

 𝜕 (𝑠𝑎𝑣𝑔𝑑 )𝜕𝑑 = −𝑠𝑎𝑣𝑔𝑑2 . (B.69) 
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Substituting Equation B.67 and B.68 into Equation B.67 gives, 

 

 𝑈𝑠𝑎𝑣𝑔/𝑑 = √(1𝑑 𝑈𝑠𝑎𝑣𝑔)2 + (− 𝑠𝑎𝑣𝑔𝑑2 𝑈𝑑)2. (B.70) 

 

For sphere 3 the manufacturer specifications of the uncertainty for the diameter of the 

sphere is ±0.0005 in = ± 0.0000127 m, the diameter of the sphere is 0.01905 m, the 

average distance at time = 0.037 s is 0.0058 m and the uncertainty for the average 

distance is ±6.748 e-6 m.  Equation B.70 becomes 

 

 𝑈𝑠𝑎𝑣𝑔/𝑑 = √ ( 10.01905 𝑚 6.748𝑒−6𝑚)2 +(− 0.0058 𝑚(0.01905 𝑚)2 0.0000127 𝑚)2. (B.71) 

 

The result is 

 𝑈𝑠𝑎𝑣𝑔/𝑑 = 4.083𝑒−4 (B.72) 

 

Similar to the uncertainty for the dimensionless force this is for one standard deviation.  

Therefore in order to get two standard deviations Equation B.72 must be multiplied by 2, 

 

 𝑈𝑠𝑎𝑣𝑔/𝑑2𝜎 = 8.166𝑒−4 (B.73) 
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