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Abstract In this paper, we applied the improved tan (®(§)/2)-expansion scheme for the
(2+1)-dimensional Zoomeron, the Duffing and the symmetric regularized long wave equa-
tions and exact particular solutions have been found. The exact particular solutions containing
four types hyperbolic function solution, trigonometric function solution, exponential solu-
tion and rational solution. We obtained the further solutions comparing with other methods
as sine—cosine function method (Qawasmeh in J Math Comput Sci 3:1475-1480, 2013).
Recently this method is developed for searching exact travelling wave solutions of nonlinear
partial differential equations. It is shown that this method, with the help of symbolic com-
putation, provide a straightforward and powerful mathematical tool for solving nonlinear
partial differential equations.

Keywords Improved tan (®(£)/2)-expansion method - The (2+1)-dimensional Zoomeron,
the Duffing and the symmetric regularized long wave (SRLW) equations - Traveling wave
Introduction

During the last decades, some major contributions have been made to both the theory and

applications of the nonlinear partial differential equations motivated by various practical
engineering and physical problems. These applications cross diverse disciplines, such as
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chemical physics [1], viscoelasticity [2], electricity [3], biomedical engineering [1], fluid
mechanics [4] and other sciences. In fact, it has been found that many models in mathematics
and physics are described by nonlinear partial differential equations (NPDESs). The theory of
solitons, the most important side in applications to NPDEs, has contributed to understanding
many experiments in mathematical physics. Thus, it is of interest to evaluate new solutions of
these equations. In the present paper, based on the improved tan (®(£)/2)-expansion method,
we will consider an important equation, which is the (2+1)-dimensional Zoomeron [5,6] with

the form

where u = u(x, y, t) is the unknown real function and the amplitude of the relevant wave
mode. Equation (1) appears in a wide variety of physical. The Zoomeron equation was
introduced by Calogero and Degasperis in 1976 [7]. The solitary wave solutions of the
Zoomeron equation obtained by Abazari [8]. In [6] the reliable treatment of the (2+1)-
dimensional Zoomeron equation have been surveyed by Alquran and Al-Khaled. Qawasmeh
[5] have applied the sine—cosine function method to construct the traveling wave solutions
for the (2+1)-dimensional Zoomeron equation, the Duffing equation and the SRLW equation.
In [9], Khan and Akbar investigated solutions of the (2 + 1)-dimensional Zoomeron equation
and the (2 +1)-dimensional Burgers equation by using the MSE method and the Exp-function
method. Also Bekir et al. [10] used the first integral method for constructing exact solutions
of the Zoomeron and Klein—-Gordon—Zakharov equations. As a second example we consider
the Duffing equations as follows

Uy + ou + ﬂu3 =0, ()

this equation have solved by sine—cosine method [5]. Both integral and non-integral forcing
terms for Duffing equation was solved by Balaji [11]. As a last example we consider the
SRLW equation [5] as follows

Uyt + Uxx 4 Uxxee + (Uug)e = 0. 3)

Authors of [12] was established exact travelling wave solutions of the symmetric regu-
larized long wave (SRLW) by using analytical methods. Xu [13] applied of Exp—function
method to SRLW equation. Cahnd and Malik [14] have found the exact solutions of some
nonlinear evolution equations by using (G’/G)-expansion method. Recently, a variety of
powerful methods for seeking the explicit and exact solutions of nonlinear evolution equa-
tions have been proposed and developed. Among them are the Hirota’s bilinear method
[15], homotopy analysis method [16], variational iteration method [17], homotopy perturba-
tion method [18,19], homogenous balance method [20], sine—cosine method [21], tanh-coth
method [22], Bicklund transformation [23], (%)-expansion method [24-27], Exp-function
method [28-30], modified simple equation method [31-33], first integral method [34-37],
functional variable method [38,39], and so on [40]. Here, we use of an effective method for
constructing a range of exact solutions for the following NPDEs that in this article we devel-
oped solutions as well. The standard tanh method is well-known analytical method which
first presented by Malfliet’s [41] and developed in [41,42]. In [22], we applied the generalized
tanh—coth method in for solving some NPDEs. Also in [43], the new approach of generalized
(G’/G)-expansion method to obtain exact traveling wave solutions of NLEE:s is presented. In
this paper we explain methods which are called the generalized tanh—coth and generalized
(G’/G)-expansion methods are presented to look for travelling wave solutions of nonlinear
evolution equations. Authors of [44], obtained exact solutions for the integrable sixth-order

@ Springer



Int. J. Appl. Comput. Math (2016) 2:243-268 245

Drinfeld—Sokolov—Satsuma—Hirota system by the generalized tanh—coth and generalized
(G’/G)-expansion methods. Chand and Malik [14] have applied the (G’/G)-expansion method
for finding the exact solutions of some nonlinear evolution equations. For further information
in about these methods refer to Ref. [45-49]. The purpose of this paper is to obtain exact
solutions of the (2+1)-dimensional Zoomeron, the Duffing and the SRLW equations and to
determine the accuracy of the improved tan (® (£)/2)-expansion method in solving these kind
of problems. The paper is organized as follows: In “Description of improved tan (®(£)/2)-
expansion technique” section, we describe the improved tan (P (£)/2)-expansion method. In
“Illustrative Examples” section, we examine the (2+1)-dimensional Zoomeron, the Duffing
and the SRLW equations respectively. Also a conclusion is given in “Conclusion” section.
Finally some references are given at the end of this paper.

Description of Improved tan (®(§)/2)-Expansion Technique

Step 1. We suppose that the given nonlinear fractional partial differential equation for u(x, t)
to be in the form
N (u, uy, ug, U, Uy, ) =0, “4)

which can be converted to an ODE
O, u', —pu', u"u”,..) =0, 5)
the transformation & = X — ut, is wave variable. Also, k, m and n are constants to be

determined later.
Step 2. Suppose the traveling wave solution of Eq. (5) can be expressed as follows:

- P R o -k
u(é):S(<b):kZ=:0Ak|:p+tan( f))] —I—gBk[p—l—tan(f))] . (6)

where Ax(0 <k <m) and Bx(l <k <m) are constants to be determined, such that
Am # 0, By # 0and ® = (&) satisfies the following ordinary differential equation:

P'(§) = asin(P(§)) + beos(P(§)) +c. )

We will consider the following special solutions of Eq. (7):

Family 1: When a> +b> —c> <0Oand b —c # 0,

/o2 _h2 52 /o2 _h2 52
®(§)=—2arctan|:—bic+ ¢ bfc 2 tan( ¢ ; 2 (E+C))] )

Family 2: When a> +b> —c¢?> > 0Oand b — ¢ # 0,

/o2 ¥ a2 — 2 /2 ral — 2
©($)=—Zarctan|:—bjc— b :_ac ¢ tanh( b +2a < (E+C)):|.

(C))
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Family 3: When a2 +b> —c¢? > 0,b # 0 and c = 0,
Vb2 4 a2 A/b2 + a2
o tanh > E+O)|.

® (&) = 2 arctan [z +

Family 4: When a?> +b?> —c? < 0,c # 0and b = 0,
2 _ 52 /a2 _ 42
® (&) = 2arctan |:—a+ c~a tan( i (§+C)):|.
C

C 2

Family 5: When a> +b> —c2 > 0,b—c #0and a = 0,

T2
@ (&) = 2arctan {Etanh(«/bz;c@ + C)):| :

Family 6: Whena =0 and c =0,

[ e2b¢+C) _ g 2eb¢+0)

©§) = aretan | HerE T BETO 11

Family 7: When b = 0 and ¢ = 0,
2e8G+C0)  g2a(E+0) _ 1]

® (&) = arctan ET0 11 G0 11

Family 8: When aZ +b% = ¢?,

® () = —2 arctan [(b +0@E+0) + 2>] |

a2 +0)
Family 9: When a =b = c =ka,

& (&) = 2arctan [eka(HC) - 1] )
Family 10: When a = ¢ = ka and b = —ka,

K +O)
®(£) = —2arctan T RGO |-

Family 11: When ¢ = a,

o) — o (a+b)eP¢+O — 1
(§) = —2arctan (@ —b)ebE0 1 |°

Family 12: When a = c,

bE+O)
® (&) :2arctan|:(b+c)e +1]

(b —c)eb¢+0O) — 1

Family 13: When c = —a,

ePE+0 L p—a
®(£) = 2 arctan .

ebE+0) —p—a
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Family 14: When b = —c,

22 E+0)
(b(é) = —2arctan m . (2])
Family 15: When b = 0 and a = c,
[ C)+2
d (&) = —2arctan M} . (22)
L c¢6+0O)
Family 16: Whena =0and b = c,
d (&) =2arctan [c(§ + O)]. (23)
Familyl7: Whena =0 and b = —c,
1
o = —2arctan | — |, 24
© [C(E + C)} &4

where Ax(k =0,2,...,m),Bx(k =1,2,...,m),a,b and ¢ are constants to be determined
later. But, the positive integer m can be determined by considering the homogeneous balance
between the highest order derivatives and nonlinear terms appearing in Eq. (7). If m is not
an integer, then a transformation formula should be used to overcome this difficulty.

Step 3. Substituting (6) into Eq. (5) with the value of m obtained in Step 2. Col-

k k
lecting the coefficients of tan (%S)) , cot (%) k=0,1,2,..), then setting each

coefficient to zero, we can get a set of over-determined partial differential equations for
Ap, Ax(k=1,2,...,m),Bx(k =1, 2, ..., m)a, b, c and p with the aid of symbolic computa-
tion Maple 13.

Step 4. Solving the algebraic equations in Step 3, then substituting Ao, Ay, By, ..., Ay, Bm,
M, pin (6).

Ilustrative Examples

In this section, we present several examples to illustrate the applicability of improved
tan (P (&)/2)-expansion method to solve nonlinear fractional partial differential equations
introduced in “Introduction” section.

The (2+1)-Dimensional Zoomeron Equation

Consider the nonlinear (2+1)-dimensional Zoomeron equation as follows

by using the wave variable £ = u(x + y — mt) reduce it to an ODE as follows
wr(m? — Hu”® + Nu =0, (26)

where obtained by twice integrating and neglecting the constant of integration. Balancing
the u” and u? by using homogenous principal, we have

M +2 = 3M, =M= 1. 27)
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Then the trail solution is

u(€) =Ap+ A |:p+tan (be))] + B [p—l—tan (cp;g))] . (28)

Substituting (28) and (7) into Eq. (26) and by using the well-known Maple software, we
obtain the following sets of non-trivial solutions

Set I:

2(b —¢)B; m a
Ap=0, A;=0, Bj=By, p=-

a2+b2—c2VYm2-1’ b—c’
(29)

2m(b — ¢)?B? a &)\

= hee vo=n [t rm((P)) e

where a, b and c are arbitrary constants. By using of the (30) and Family 1 and 4 respectively
can be written as

— 2 _hH2 _ 52
e cot( S a<s+C)),

V) 2
— (31)
cB; c-—a
w(é) = SR Cot( 5 (€+C))-
By using of the (30) and Family 2, 3 and respectively get
(b —¢)B; Va2 +b2 —¢?
u3(é) = P coth( > E+0 ),
bB /a2 +b?
w(§) = ———— coth( 2+ 0) ). (32)
/a2 4 b2 2

b= (e
us (&) = :I:Bl‘/b_'_zcoth(zc(“;‘ —|—C)).

By using of the (30) and Family 6 we get
1 eZb(§+C) 1 2eb(§+C)
ug(¢§) = B cot 3 arctan HEO T o 1) (33)
By using of the (30) and Family 10, 11, 12, 13 and 14 respectively give
-1 -1
1 eka¢+C) a (a+ b)eb(E+C) -1
u7(§) =By |:2 [eka(é+C) 1 , ug(§) =By a—b  (a—b)ePE+0 _ | ,

-1
¢ (b+c)ettrO 4 a  eP¢tO tp-a
u9($) Bl { + ’ UIO(S) - a+b + eb(‘§+c)—b—a

b— (b—c)eb¢E+0 —1
a aci€+0) 7
uj(§) = By %—m . 34
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By using of the (29) and Family 15, 16 and 17 respectively give

B
up(é) = —CTI(S +0), ui@) = us(§) = —Bie¢ +0), (35

By
cE+0)’

where § = :I:jz(:)_gzc)_Bc‘z S (x+y—mt).
Set II:

b—c) [m2—1
W= [L, Aoziu(a-ﬂ)( <) jm y AL =0,
2 m
2(b—c) — (b+c¢)+2a m2—1
B1=:|:M(p( ) 2( ) p) — (36)

202 -1
w,U(S)ZAo+B1 [p+tan(?)] )

m=m,p=p,N=

where a, b and c are arbitrary constants. By using of the (37) and Family 1 and 4 respectively
getto

21
wis(®) = £5 mm (@+p(b—c)) — (p2(b—c) — (b +c) + 2ap)
-1
2 _h2 _ a2 2 _h2 _ a2
[t TR )] |
w [m?—1 5
um(é‘):iz B (a —pc) — (—p“c —c + 2ap)
-1
2 __ 452 /~2 a2
><|:p—:+cb a tanh(c2 : (§+C)):| . (38)

By using of the (37) and Family 2, 3 and 5 respectively can be written as

2
up7(€) = i%,/ mT (@+p(b —c)) — (p*(b — ) — (b +c) + 2ap)

-1
a VaZz +b2 —c? Va2 +b2 —c2
tanh C ,
b—c+ b—c an 2 E+0

2 _
ws® = 5™ =} a4 pb) — (% — b + 2ap)

—1
2 2 /0?2 2
x|: a mtanh(a;b(gjto)} ,

p+6+ b
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Im2 — 1
upg(§) = :t% mT pb—c) = (p*(b—c) — (b +c))

-1
/M2 _ -2 /-2 52
X|:p+ E CC tanh( °2 a (§+C))j| . (39)

By using of the (30) and Family 6, 7 and respectively can be written as

2
Mn jms—1
un(€) = 2F
m
, 1 e2b(E+C) _ g 2eb(E+0) -
x{pb—b(p” —1) | p+ tan 3 arctan BET0 1 1° oET0 11 ,
o m2 — 1 1 2e2E+C)  Q2a(E+C) _q -
w (&) = 2 e a—2ap| p + tan Earctan G0 11 aEFO 1] )
m2—1
U2 8) = i“F{W — 7 +pb =) — (P’ —) = b +0)

+2p/ —b2) |:p+ 2+ag} ] (40)

3

By using of the (30) and Family 9, 10, 11, 12, 13 and 14 respectively can be written as

m2 —1 —1
u3(§) = ig\/T [ak —2ak(p— 1) [p -1+ eak<¥+C>] ] ,
LM m? — | ctkE+o 7!
un(@) =+ ak(1 — 2p) + 2akp(p — 1) R ’

ws(§) = i*\/ {(a +p(b —a)) — (p>(b —a) — (a+b) + 2ap)

[ (a + b)ePE+0 — 1]
X1p— 5

(a — b)ePE+0 |

2
e (€) = i%,/ mT {(c+pb—c) — (P*b—c) — (b+c) + 2cp)

-1
(b +c)e?E+0O 1
IPTo—geEo 1| [

m

u(€) = “ Mt plb+a)) — (pRb+a) — (b—a) +2cp)
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—1
ePC+O +h—a
“IPTeeo p—a| [

2

wg(E) =5

, e (E+0) !
2 (a —2pc) — (—2cp”+2ap) [ p — G0 — 1 . 4D

By using of the (29) and Family 15, 16 and 17 respectively can be written as

2+cE+0O)7"
u9(§) = g\/?[(C—PC)—(—sz—C—i—ZCp)|:p—C(g(ic)):l ]’
2_1 3
u3o(§) = igﬁ{k [p+cE +0O)] 1},
B ey B o )
wi(§) = =7,/ —— ‘p‘:“’C[p_m} ’ “2)

where £ = u(x +y — mt).

Set III:
N 2(b—c¢)B; m A0 A (b — ¢)?B; B —B
m =m, = s =0, =, = s
" a24+b2—-c2Vm2 -1 0 : a4+ b2 —c2 ! !
a
- _ i 43
P=—r— 43)
4m(b — ¢)’B? a 63)
N=——f———+, =A|——+t —=
aZ4+b2—c2 ue) ! b—c—i_an 2
o —1
+Bi|— e + tan ) ) (44)
b—c 2

where a, b and c are arbitrary constants. By using of the (44) and Family 1 and 4 respectively
getto

_ 2_Th2_ 42 2 _Rh2 a2
U (€)= — =B [tan(‘c b a(5+C>)—cot(czt”i<s+C))},

NEE=s 2
_ /-2 52 /-2 a2
U3 () = % |:tan(C2a(§ 4 C)) - cot(cza(é + C))} . (45)

By using of the (44) and Family 2, 3 and 5 can be written as

bo)B ST N
#)2_102 |:tanh (azc(s +C))+coth (azc(s + C))i| ,

_ bB; o Y& +P N 2+b
U.35(S) = ﬁ tan f(%‘ +C) -+ cot (%‘ +C)

— b2 — o2
uze(§) = —Bl,/z+z [tanh( b 5 ¢ & +C))—coth( (S +C)):| (46)

Sprlnger
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By using of the (44) and Family 6 we get
1 e2b(E+0) _ | 2ebE+0)
u3z7(§) = By | cot 3 arctan FHETO 11’ BETO 1]
1 e2b6+C) _ 2eb(E+0)
—tan 3 arctan THETO 11’ BETO 11 . 47)
By using of the (44) and Family 10, 11, 12, 13 and 14 respectively can be written as

i 1 cka(E+0) 5 1 eka(6+0) -
u(®) =—4B1| o - e 1 | TR |3 T mmeo -1 |

—1
—a)? bE+O) b(£4C) _
u39(§)=_(ba)Bl|: a (a_i_b)eli|+ 1|: a (a+b)e 1 :| 7

b2 a—b (a—b)ebEtO — | a—b (a— b)ePE+0 ]

b—c + (b —¢)ebE+0 — 1

b2

—1
_ (b—o0)? ¢ (btc)e®EHO 4 ¢ (b+0)ePEO 4
ugo(§) =— 1 b—c m 1 s

~1
(b+a)2 a eb(é—i'c) +b—a a eb(§+C) +b—a
uy(§)=— By B, ,

b2 atb  PEO_p_qa Tatb T ETO _p_a

~1
4c? a aetE+0 a aetE+0
() = =17 Bi |: —io |1 tB |5 e — | (48)

b2 2¢ cer+t0O 2c  ceal+0) |

where § = ijz(:)_ng)_BClz = (x +y —mt).
Set I'V:

2A 21 A b —
pm il [ = SMEEROSO g Ay Bi=0, @)

2(a® +b? — )mA?
(b—c)?

m=m, p=p, N=

. u(E) = Ag+Ap+A tan (?) ,
(50)

where a, b and c are arbitrary constants. By using of the (50) and Family 1 and 4 respectively
get to

b—c 2
/a2 a2 2 _ a2
wpa(e) = 2 CC 2 tan( S <s+C)). 51)

2 _ W2 _ a2 2 _Rh2 a2
up(e) = — Ve =P atan(” b a(s+C)),

2
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By using of the (50) and Family 2, 3 and Family 5 respectively can be written

AjvaZ +b2 —¢c2 Va2 +b2 —c?
ws@) = ——————tah{ ———E+O) ).
b—c 2
AvaZ +b? Va2 +b?
uy6(§) = ————tanh| ———— (¢ +O) ),
b 2
Ajvb? —¢? Vb? —¢?
uy7(§) = I tanh{ ———— (¢ +C) ). (52)
—c 2
By using of the (50) and Family 6 and 8 respectively get to
1 e2b¢+0) _ 2eb(E+0)
usg(€) = Ajtan 5 arctan HETO 11 BETO 1] s
A
W () = ——— [2= V& — (1 - €+ )] (53)
By using of the (50) and Family 10, 11, 12, 13 and 14 respectively can be written as
1 A ekEFO) aA; (a+b)ePE+tO 1
us0) =5 - — waro W€ = — Ay :
—1 + e2kE+0) a—b (a — b)eb¢E+0 — 1
cA| (b +¢)ePE+0O 4 1 aA| ePE+0 L p—a
us2(§) = —p— -+ Al (b — ¢)ebE+0) [ usé) = “bra R T "
aA; ae?¢+0
us4(§) = e Mo _ - (54)
By using of the (49) and Family 15 we get
&) A (55)
u =——,
» cE+0)
where £ = i%\/ mf;l (x +y — mt).
The Duffing Equation
Consider the nonlinear Duffing equation as follows
Uy + ou + Bud =0, (56)
by using the wave variable £ = u(x +y — mt) reduce it to an ODE as follows
—p’m?u” = 0. (57)
Balancing the u” and u® by using homogenous principal, we have
M+2=3M, =>M=1 (58)
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Then the trail solution is

so-mn () o ()]

(59

Substituting (59) and (7) into Eq. (5§7) and by using the well-known Maple software, we

obtain the following sets of non-trivial solutions
Set I

1 —2u

H= [, _i 2r_a Ap=0, A;=0,
\/—( 2402 —c?), (60)
-1
p=—i, u(®) = By [— a +tan(®@))] , 61)
b—c —cC 2

where a, b and c are arbitrary constants. By using of the (61) and Family 1, 4 respectively

getto

2

2 _ W2 _ a2 2 __ a2
uy (€)= JF\/;flot(m(éJrC)), uz(S)zi\/gcot(M(éJrC)).

By using of the (61) and Family 2, 3 and 5 respectively get to

2 2 _ 2
us(E) = i\/g coth (”‘“’C@ + C)),

2 2
us(8) = i\/% coth(‘a‘;b@ + C>),

/M2 _ 2
us (&) ::I:\/gcoth(bzc(f +C)).

By using of the (61) and Family 6 we get

_ 4 —a 1 e
ug(§) = ? cot 5 arctan FEO 11

By using of the (61) and Family 10, 11, 12, 13 and 14 respectively can be written as

— 1
w(E) = :F,/?“ L

ug(§) = ib

2
(62)
2
(63)
BEHC) _ | 9ebE+O)

7 . (64)

e (E"PC) + 1

ckaE+0) -1
[eka(E+C) 1] g

-1
(a+ b)ePE+O 65
(a —b)ebE+0) — 1 ' (65)

b —o a
b—aV B |a—b

B b —a
=TV B

ug(§)
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-1
® ab \/Ta a PO +b—a
u = — - ,
10 Thra B |a+tb ebE+tO _p—a
a? [—a| a aci€+0) 7
Sl e
whereé:u(x—}-yq:i /zﬂi)%@t)'
Set II:
1 —2a " a A =0
uV a2 £b2 -2’ Vo3g T
B — Y2 66
1 3(b—c)\/ (a* + %), (66)
Va4 b2 —c? ®)
=u, = — s u )=A +B + tan s
Y TS =2 l[p (2 )}
(67)

where a, b and c are arbitrary constants. By using of the (67) and Family 1, 4 respectively

get to

2 =
u®) =% -y 5\/?“@2 +b2 —c2) [

/a2 + b2 — 2
V3

-1
Tl a2
— cz—bz—aztan(cza(é—i—C))} ,

/a2 2

um(&)zi,/—“iz,/_“<a2—c2)[
38 3V B

/222

~1
cZ—a2tan ( (& +C))i| .

By using of the (67) and Family 2, 3 and Family 5 we get

1
—— + tan
V3

@) =% -2 12 7Y
36 3V B

o

[« 2 |-« i 1
u15($)=:|: _ﬁﬂ:g ? ﬁ—i-tanh(
U16(5)=i/—%:&§ /% \/lg—i-tanh(

By using of the (61) and Family 6 we get

up7(§) =+ /- ,/ @ |: +tan( arctan |:Z

a? +b?

/b2 — 2

/2102 — 2
2

(68)

-1

&+ C))} ,
—1
&+ C))} ,
-1
wro)]

WEHC) _
WE0) 1

2

(69)

I

(70)

2

2ePEC)
e2b(E+0) 4 ]
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By using of the (67) and Family 10, 11, 12, 13 and 14 respectively can be written as

g— gkero) 7!
wis(®) = £ [~ ,/ *—f—m ’
— —1
a  2b [~ b (a+b)ePE+O — 1
=+ [——* — | — | — = ’
ujo(§) \/ 3B 3 \/? a+ V3 (a—Db)ebE+0
- —1
@ 2 [—a (b+ )P +1
= :l: _—— Zt —_— - - = ’
u(§) =+ | T3 \/? c+ f t b= 0bEt0 — 1
- —1
@ =% |2 iZb\/Ta PRLI il
— —_——t——|—at =4 )
uy B3V 3 /3 PE0 _p_a
—1
@ _a [-a a e E+0)
un® =+ /-2 735 { VGl 7D
where & =u(x+y¢ i\/azJ:inCzt)-

Set III:
—:I:l —a A _:I:b—c —a
T V2@ =) T T T B@ 4 r— )’
B = L —« (72)
T b0V B@ =)’

Ao=0. p=up, p:_b;ic’ u)=A |:p+tan( (E))]

+B) [p+tan( f))} , (73)

where a, b and c are arbitrary constants. By using of the (73) and Family 1, 4 respectively
get to

1/ —a c2 —b?—a?
u3(§) = 5 B@ 02— &) |: ¢ —b? — aztan(z(é +C))
1 . c2—b2—a2( L O
T Va2 > ¢ ’

1 /o2 _ 52
i@ = 5\ 5o { cz—aztan(:a(sw))

/a2 a2
_ Czl_ - cot( c-a (§+C))]. (74)

2
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By using of the (67) and Family 2, 3 and Family 5 we get

! —a /eyl
us(§) = ii/% |:\/az+b—2—c2 tanh(z(-’E + C))

| N
_ o coth > E+O )|,

1 / Va2 +b?
ux (&) = 2 5 2 —|—b2) |:\/a2 + b2 tan h( 2+ (& +C))
1 a? +b?
_ N coth( 5 &+ C)):| ,

1 —a Vb2 —¢?
u7(§) = ii /m |:\/b2 —c2 tanh(z(s + C))

/M2 _ 2
bzl_ > coth( b : e+ C))} , (75)

By using of the (61) and Family 6 we get
a 1 eZb(E+C) -1 2eb(§+C)
uxg(§) = ﬂ:\/%tan 3 arctan e2bE+0) 4 17 e26(+0) 1
| o 1 e2bEHC) _ 1 peb¢+0)
¥ \/%cot Jaretan | S S | ) 06
By using of the (67) and Family 10, 11, 12, 13 and 14 respectively can be written as
1 eak(E+0) 1 1 eke+) 7!
ux9(§) = jF\/% 27 Ti4emEo [T a2y g |2 Sigeneio |
—1
sl [ (a+b)e?¢+O 17 1 \/Tz (a +b)ePE+O—1
=4— |—|-a———— — = |—a—— ,
U30 Y B (@—b)ebeO 1 | T 2py B (a—b)ebETO —1
—1
&)=+ 1 [« (b+c)ePE+0 41 ! \/7 (b+c)e?E+O 41
=4— |——|—Cc——T—7FF—— — = ,
U1 B (b—o)ebE+O—1 | T 26y (b—c)ebE+O —1
1 o eb(S"‘C) +b—a 1 P eb($+C) +b—a —1
) =5 T | T T @O —b_a | T by B T dEO —p_a|
—1
1 o | a 2e2E+0) 1 x| a 2e3¢+0)
u@) =F- /2|5~ Zemo i*\/j v ) 7
a\ B2 cer®tO 1|7 2a\y B2 cerlEtO |
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1 o o
N N Y A S—
" wV a2 +b2 —c? : LA 2B(a% 4+ b2 —c?)
1 2a(a2 + b2 —¢?)
B = . 78
1 :FZ(b—c)\/ 5 (78)

a
b—c’

-1
u¢) = |:p+tan(d);$))i|+B1 |:p+tan (?)] , (79)

where a, b and c are arbitrary constants. By using of the (79) and Family 1, 4 respectively
get to

2_b2 _a2 T_pl _ a2
u33(5)=¢,/2ﬂ [ta (C 5 . ((s+C))—cot(c : : (s+C))]
/a2 a2 /a2 a2
wa®) = F,/ = 2 [tan(c . . <s+C))—cot(° . . (s+C))] (80)

By using of the (79) and Family 2, 3 and Family 5 we get

— [ [ 12 /a2 >
uss(§) = + /Tg tanh(a—i_zbc(f—i-C))—c th(+bc(«§+C))j|,

o | [aZ T2 JaZ+ b2
uze(§) = & /2—;[ tanh (a;b(é + C)) — coth( &+ C))j| ,
o | /12 — 2 N s
uyr(€) = + /Tg tanh (bzc(g + C)) - coth( e+ C))] 81)

By using of the (79) and Family 6 we get
o 1 e2b(6+C) _ 2eb(E+0)
usg(§) = i\/%tan 2 WA | BEHO) 11 o0
a 1 e2b(6+0) _ 2eb(E+0)
;\/%cot 3 arctan THETO 11 HETO 11
By using of the (79) and Family 10, 11, 12, 13 and 14 respectively can be written as
2a |1 eak(E+C) 1 [2a |1 ctke+0) 7!
u39($) =+ ? 5 - _7] +eak(E+C) + Z ? E — 4_1 +eak(E+C) s
-1
1 [« (a+b)ePE+O o (a+b)ePE+O — 1
ug(§) == /— | —a— Fb sz |—a— ,
bV 28 (a — b)eb¢E+0 —1 28 (a —b)eb¢E+0 —1
-1
1 [« (b +c)ePE+0 11 o (b4c)eP¢+O 11
wn @ =+- [~ |-~ o | Fb o | e e
bV 28 (b — c)eb¢E+0 —1 28 (b — c)eb¢E+0 —1
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Ag=0, p=p, p=-
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1 [« ePE+O 1 b—a 1 [« eP¢+0 1 b—a B
@) = g | T T @EO —p—a | TV 2B | T EO —boa|
[« ae?¢+0 [a act€t0 7!
where & :u(x—i—y:}: i\/aZH;IZ_CZt).

Set V:
_il_izaA_i(_l_(b ))\/L
m = N2 i 207 aTpb-—c TB@ 40—
o
-0 e o
B =0, u=upn, p=p, 0(5)2A0+A1|:P+tan( (E))]’ (85)

where a, b and c are arbitrary constants. By using of the (85) and Family 1, 4 respectively
get to

uaa(§) = [M+ww—m

i\/_;
B(a? + b —c?)

I )
— cz—bz—aztan(czba(E—FC)):|
JZ 2
ugs () =+ /—h |:2a—2pc— cz—aztan( 5 a ($+C))i| (86)

By using of the (67) and Family 2, 3 and Family 5 we get

o
use(§) = i\/—m [2a +2p(b —¢)

/42 2 _ 2
CI—i-zi)C(§+C))j|’

e
w(§) =+ /-2 2+b2) [2a+2pb+mtanh( $+C)):|
2
wg(E) = + ﬁ(bz =) |:2p(b 0) +Mtanh(ﬁ §+C))i| . (87D

By using of the (61) and Family 6 we get

o 1 e2b(+0) _ | 2eb(E+0)
ug9(§) =+ /—E 2p + tan 5 arctan THETO 11 BETO 11 . (88)
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By using of the (67) and Family 10, 11, 12, 13 and 14 respectively can be written as

3 Ak (E+O)
uso(S)zi\/% 1—4p+2m s
1 [« (a+ b)ePE+0O _ |
usi®) = £ /=5 [a b —a) = b -a) e |
ol [a (b+c)ePE+O 1
us2(é) = ti/_ﬁ [C +2p(b—0c)+(b—0) (b—c)ebE+0O 1 |

1 [« ePE+0 4 p—a
u53(§')::|:6 —E a+2p(b+a)+(b+a)m s

1 [« ae?¢+0
u54(§_):ig _E a—4PC+20W ) (89)
where & =/L(x+yq:i /azJ:b%CZt)
The SRLW Equation

We consider last example the nonlinear SRLW equation as follows
Uy + Uxx + Uxxie + (Uuy)e = 0, (90)
by using the wave variable £ = u(x — mt) reduce it to an ODE as follows
m? + 1u + p>m2u” — %uz —0, 1)

where obtained by twice integrating and neglecting the constant of integration. Balancing
the u” and u? by using homogenous principal, we have

M +2 = 2M, =M=2. (92)

Then the trail solution is

B 2
s e ()] prn ()]

- -2
+B; [p—Han( f))] + B p—i—tan(?)} . (93)

For simplicity we set p = 1, then Eq. (93) is simplified as follows

®) = Ao+ A1t (2 (‘5))}+A2 1+ (2 (5))}
+Bi |:1+tan( (5))] + B2 H—Han(%é‘))}i. (94)

Substituting (94) and (7) into Eq. (91) and by using the well-known Maple software, we
obtain the following sets of non-trivial solutions
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Set I:

m=m —:I:l 7—(m2+1)

= k== a? 4+ b2 —c%’

(m? 4 1)(2b* — 6bc + 6ab + 2a* + 4c> — 6ac) ©5)
m(a? + b? —c2)

—6(b—c)a+b—c)(m?>+1)

m(a? + b? —¢c2)

3(b —c)*(m?* + 1)’ ©6)

m(a? + b? — ¢?)

u(§) = Ao+ A |:1 +tan( f))] + A |:1 —I—tan(q)f))} ,

where a, b and c are arbitrary constants. By using of the (96) and Family 1, 4 respectively

A =

’

B =0, By=0, A=

Ay =

get to

(m* +1)
nwe = e e {2a® — 4b% + 6bc — 2¢* —6(a+ b —¢)

2122
X |:a — V2 —b2 a2 tan(czba(é + C)):| Cn)
Z_pl_a2 2
+3 |:a+b—c— c2 —b? —aztan(z(é +C))] ,
/2 _ a2
U (€) = M [2a2 p —6(a—c)|: —aztan( —a (§+C)):|
m(a? — c?)
JZ a2
+3|a—c—+/c2—a2tan 5 (‘g‘—l—C)
By using of the (96) and Family 2, 3 and S respectively get to
m?+1)
LG o {2a> — 4b% + 6bc — 2¢* —6(a+b—¢)
/a2 T2 —
x |:a + /2% + b2 — 2 tanh (erc(s + C)):| (98)
2
[T o2
+3 |:a+b—c+ a2 + b2 —c%anh(a_"zbc(s +C))i| ,
2 /a2
w@ = "D o2 42 6atb)|a+ a1 b2 tanh +b° YT 40
m(a2 + b?) 2

2
/2
+3|:a+b+\/a2+b2tanh( 2+b(S+C)):| ,
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NS)
us(§) = (T * )) ‘—4b2+6bc—2c2—6(b—c) [mtanh(bzc(g_i_c))}

2
/b2 — 2
|: —c—l—\/bz—cztanh( 5 (“;‘+C))i|
By using of the (96) and Family 6 we get
(m?+1) 1 ePETO 1 2ebE+O
ug (&) = —m —4 — 6tan 3 arctan HEFO 11 o2bEF0 1
1 DEHO) _ | 9ebGHO) :
+3 (14 tan 5 arctan HETO 11 ET0 1] . 99)
By using of the (96) and Family 10, 11, 12, 13 and 14 respectively can be written as

2
(m2 +1) eka(6+C) eka(6+C)
W = O PmEe R eeo | [

(m2+41) | 6ab—2a2 —4b%2  6(b —a) (a + b)ePE+O — 1
ug(§) = -

b2 b (a—b)et¢+O — 1

2
3(b — a)? (a+b)ePE+0 |
+ b2 ~ (a—Db)ebE+O — | ’

u(§) =

m2+1) [6c—4b  6(b—c) (b+c)ebE+O 41
b b (b—c)ebE+tO —

2
3(b—c)? ) (b + ¢)ePE+0 41
R b_odEo_1| [

m>+1) [ 4b+6a 6(b+a)b+2a)ePE+0O L p—a
ujo(§) = - -

m b b? ePE+0 —p—a

2
3(b + a)? ePE+0 L p—a
* b2 ebE+0) —b—a '

up(§) =

a2 a2 ceaE+0) _ 1

2
12¢? ae?¢+0
T |:1  cer@+0 ' (1

m2+ 1) [ 222 — 1262 12c(a —2c) aerE+0

—(m2+1)

a21bl—c2 (x —mt).

where & =
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1 m2 + 1 —6(m%+1)(a—c)(b—-c)
= =4 T Ag= 101
m=m, u m  Zrmoa M m@ + b2 — ) , (101)

g, 2@—09@+b—om’+D o —12@-cm’+1D)
'= m(aZ +b? — c2) T Tm@ b — )

-1
u€) =Ag+ By |:1 + tan (?)] + B> |:1 + tan ((bf)

Set II:

, A1=0, Ay=0,

-2
)] , (102)

where a, b and c are arbitrary constants. By using of the (102) and Family 1, 4 respectively
get to

(m? + 1) a
1112(~§)=m[—6(a—C)(b—c)+12(&1—C)(a—|—b—c)[l—i——b_C
2 _ 12 _ a2 N ) 1-1
_«/C bz —a tan(‘/c b? —a ($+C)) ~12(a— ) |:1+ a
b—c 2 b—oc
(103)
1-2
P ) 212 .2
e tan(‘/c roe (s+c>) ,
b—c 2
2 V)
ui3(§) = % [6(a —c)c+ 12(a—c)(a—c) |:1 - % Lye-a

-1
/o2 _ 92

-2
2 _ 52 /o2 _ a2
—12(a—c)2|:1—2+ CC 4 tan( S ($+C))}

2

By using of the (102) and Family 2, 3 and 5 respectively get to

(m2+1) a
ujg(§) = m{—6(a—c)(b—C)+12(3—0)(a+b—0) 1+m
Vi -2 (V- -
+ b—ec tanh 7 E+0
C2a—o?| 1+ a +m
b—c b—c¢
T o2 -2
cam (Vo) ]
-1
(m? + 1) a  Nalfb? VaZ + b2
uisé) = m@ oY) l—6ab+12a(a+b) |:1+b+ 5 tanh( 5 (§+C))}
PR T2 -2
4 3a2 |:1+;+«/a b+b tanh(«/a 2+b (§+C))i| l
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241 (VR =2 -1
uie(§) = % [6c(b—c)—12c(b—c) |:1+ch6 tanh(J 2 < (S—I—C))}

-2
—12¢2 [1 + b -c tanh(M($ + C))} ] . (104)

b—c 2

By using of the (102) and Family 13 and 14 respectively can be written as

-1
(m?+1) | 12a@a+b) 24a(b+2a) PO +b—a
u7(§) = - + TEO o
b2 b2 ePEH0 b —a
48a> ePC+0O tb—a -
- + : (105)
b2 ebé+0) _p— g
-1
_m*+1) | 12ca—c) | 12(a—c)(a—2c) ae? 1)
() = 2 a2  cetE+0) 1

2
12(a —¢)? |: aed¢+0 :|

a? - cetE+O

1 [—(m2+1
where & = azi”t"ztc)z (x — mt).

Set III:
1 m2+1 2(m? + 1)(a% + 3ab — 3ac+b%+2c2—3bc)
m=m, pu=t—[—5——5—7, Ao = 2 12 2 )
m\ a2 +b%—c m(a‘ 4+ b* —c?)
(106)
12(a — b— 241 12(a — ¢)*(m? + 1
B — (a—c)a+b—c)(m” + ), B,— (a—c)"(m” + )’ Al=0. Ay =0,

m(a2 + b2 —c?) m(a2 4+ b2 —c2?)

-1 -2
u(E) = Ag + By [l—l—tan(q)%a)] + B> |:1+tan (%5))] . (107)

where a, b and ¢ are arbitrary constants. By using of the (107) and Family 1, 4 respectively
get to

2(m2 + 1
uro(€) = (m” + )2) {a% + 3ab — 3ac + b* +2¢? — 3bc — 6(a —c)(a +b —¢)

m(a2 +b2 —¢

2 JIv—a [(JI v —a? B
xl—i—b tan E+0O

—c b—c 2
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-2

2 _12 _ 42 712 _ 2

—|—6(a—c)2 |:l+ba —\/C b 2 tan(JC b : (§+C)):| )
—cC b—c 2

(&) = fw [a2 —3ac+2c2 — 6(a—¢)(a —c) [1 - g n 7‘:2; ©
xtan(cz_a2($ —i—C)):|l +6(a —c)? |:1 _ay vet-at
2 ¢ c
x tan('czz_az(s + C)):| N . (108)
By using of the (107) and Family 2, 3 and 5 respectively get to
uy(§) = Hm {a® + 3ab — 3ac + b? + 2¢* — 3bc — 6(a —c)(a+b —¢)
x [1 + o - - W tanh(“/ahrzb—z_cz(s + C))i|l
+6(a—c)2 |:1 i bic + Vaz:_bi_ c2
X tanh(W(S -i-C)):|_2 ,
upné) = m [a2 + 3ab + b%> + —6a(a + b) [1 + % + #
X tanh(az;—bz(g + C)):|_1
+6a2 [1 +2 azb“’z tanh(@(%‘ +0) r ,
w3 () = m [b2 +2¢% —3bc+6¢(b—c) |1+ 7‘32__;2
X tanh(b22_02(§ + C)):|_1
+6c2 [1 + EQ__CCZ tanh( v b22— <+ C))} - . (109)
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By using of the (107) and Family 7 we get

-1
2(m2 +1 1 2ea(6+C) e2a(6+C) _
up4(§) = R 1—6|1+tan 3 arctan G0 11’ RGO 1]

| 2030 2a+0 _ 1T\ 72
+6|1+tan 3 arctan G0 11’ BETO 11 . (110)

By using of the (107) and Family 13 and 14 respectively can be written as

—1
_ 2(m?4+1) | b*+6ab+6a’> 12a(b+ 2a) e"tO +b—a
24a% RGN
T hET0O _p_q ’
-1
_2(m?+1) |a®—6ac+6c2  12(a—c)(a—2c) ae?¢+0)
ux(§) = ") - a2 ceaE+0) — 1
-2
12(a — 2 a(s+0)
et am
ce —1
2
where & = %,/azf:bi;_lcz(x — mt).
Conclusion

In the present work, we successfully obtained the exact solutions of the (2+1)-dimensional
Zoomeron equation, the Duffing equation and the SRLW equation with the improved
tan (® (&) /2)-expansion method. By new scheme we established solitary solutions are include
four type namely, triangular functions solutions, exponential solutions and rational solutions.
The applied method will be used in further works to establish more entirely new solutions for
the (2+1)-dimensional Zoomeron equation, the Duffing equation and the SRLW equation.
This paper has shown the new method is sufficient incentive to seek more new exact soliton
solutions of NEEs in mathematical physical. We found in this work the obtained results for
the nonlinear aforementioned equations give very good results even very further of applied
method in [5]. It can be concluded that this method is a very powerful and efficient technique
in finding exact solutions for wide classes of problems. The performance of this method is
reliable and effective and gives more solutions.
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