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Abstract
The relativistic motion of a charged particle in a

homogeneous constant magnetic field and a transverse
circularly polarized electric field is reduced to an integrable
form. Using canonical transformations, it is shown that
the equations of motion can be derived from a one degree
of freedom time-dependent Hamiltonian which has a first
integral. As a consequence the system can be shown to be
integrable. An equation governing the energy of the
particle is obtained. A simple approximate expression for
its maximum value is derived for the case when the
particle is initially resonant and at rest. This gives the
upper limit in frequency of the X-rays emitted when, for
instance, an electron hits a high-Z material.

The relativistic motion of an electron in a constant
homogeneous magnetic field and a transverse electric field
is studied. This problem has already been explored by
other authors[1,2]. One of the aims of this paper is to
bring some enlightenment to their discussion by using
the Hamiltonian formalism. Another aim is to derive a
simple approximate expression for the maximum energy
the particle can reach in the interesting physical situation,
when the electron is initially resonant and at rest.This
gives the upper limit in frequency of the X-rays emitted
when the particle hits a high-Z material.

Let us reduce the motion of an electron in an
homogeneous constant magnetic field and a transverse
circularly polarized electric field to a problem with a
single degree of freedom.
 The constant magnetic field is assumed to be along the z-
axis, and the electric field has the following components

Ex = E0 cosω0t,

Ey = E0 sinω0t,

Ez =0,

(1)

where E0 and ω0 are constants.

The following gauge is chosen for  the electromagnetic
field

A = - B0
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ω0
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2
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ω0
cos ω0t  ey. (2)

Assuming that the motion of an electron is in the x-y
plane, its relativistic Hamiltonian is

H = Px - eE0

ω0
sin ω0t - eB0
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2
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(3)

The Hamilton equations allow us to readily find two
constants of motion

C1 = Px + eB0

2
 y,

C2 = Py - eB0

2
 x.

(4)

Another constant of motion can be obtained by using
Noether's theorem[3,4]. It is simple to show that the
Lagrangian of the system is invariant  under the
following transformation

t → t - ε ω0
,

x → x + εy,

y → y - εx,

(5)

where ε is an infinitesimal quantity. Therefore, a third
first integral is

C3 = yPx - xPy + H ω0
. (6)

It can be noted that the two first constants are canonically
conjugated

C1 , C2

eB0

 = 1. (7)



This property can be used to reduce the dimension of the
problem by choosing the two constants as new
conjugated momentum and coordinate.
The following dimensionless variables and parameters are
introduced

x = x ω0

c
, y = y ω0

c
, Px,y = Px,y

mc
, t = ω0t, H = γ = H

mc2
,

a = eE0

mcω0
, Ω0 = eB0

mω0
,

where m is the mass of the charged particle.
A first canonical transformation is then introduced:

x, y, Px, Py  → x, y, Px, Py , given by the following type
2 generating function[3,5]

F2 = Px - Ω0

2
 y  x + Pyy. (8)

A second canonical transformation is introduced:

x, y, Px, Py  → Q1, Q2, P1, P2 , generated by

F2 = P2+ Ω0x  y + P1 x + P2

Ω0

. (9)

The product of the two transformations yield

x = Q1 - P2

Ω0

,

y = Q2 - P1

Ω0

,

Px = 1
2

Ω0Q2 + P1 ,

Py = 1
2

Ω0Q1 + P2 .

(10)

In the new variables, the Hamiltonian is

H =  P1 - asin t
2
 + Ω0Q1 + acos t

2
 + 1

1 2

. (11)

As expected P2 and Q2 are cyclic variables. The
Hamiltonian depends on time and has one degree of
freedom.
In these variables, the Hamilton equations are

P1 = - Ω0

γ
 Ω0Q1 + acos t ,

 Q1 = 1
γ

 P1 - asin t .  
(12)

The constant C3 becomes

I = H - P1
2

2Ω0

 - Ω0

2
 Q1

2. (13)

This constant allows to show that the Liouville theorem
still holds, and the problem is integrable[6,7].

The integrability of the motion can be shown in a
second manner. Introducing the variables

Q1 = Q1 + a Ω0
 cos t,

P1 = P1 - a sin t,        
(14)

and the complex quantity Z = P1 + i Ω0Q1, the Hamilton
equations (Eqs.(12)) are equivalent to the following
equation

Z = iΩ0Z

1 +  Z 2
 - a exp( it ), (15)

which is the equation of a nonlinear oscillator submitted
to an external force. The solution of this equation is

Z = A0 exp i σ( t )+ δ  - a exp i σ( t ) - σ( τ )+ τ  dτ
0

t

 ,

(16)
with

σ( t ) = Ω0 dτ
0

t

γ - 1( τ ). (17)

 A0 and δ are real constants.
Then

P1  = A0cos σ( t ) + δ  + a sin t - a cos σ( t ) - σ( τ )+ τ  dτ
0

t

,

Q1  = A0

Ω0

sin σ( t  ) + δ   - a

Ω0

 cos t - a

Ω0

sin σ( t  ) - σ( τ )+ τ  dτ.
0

t

(18)

The quantities A0 and δ are determined so that at t =  0 ,

A0
2 = γ0

2 - 1 = pxo
2
 + pyo

2
 and tanδ = py0 px0 (p = p mc). p is the

normalized particle momentum. The subscript 0 of

variables γ and p refers to their initial values .
Taking the derivative of Eq.(11) with respect to time, and
using Eqs. (18), we obtain

γ γ = -a A0cos σ( t ) -t + δ  - a cos σ( t ) - σ( τ )+ τ - t  dτ
0

t

.

(19)

This equation is multiplied by  Ω0 γ - 1 and integrated

between 0 and t . Then, this new expression is multiplied
by Ω0 γ - 1 and added to the equation obtained by
differentiating Eq.(19) with respect to time. The resulting

equation is multiplied by γγ and integrated between 0 and

t. In this way, the following differential equation for the
energy is derived



(γ)
2
 + 

γ2

4
 - Ω0γ + R0 - Γ0

γ
 - K0

γ2
 = 0, (20)

with

R0 =   aA0sin δ + Ω0
2
 + Ω0γ0 - 

γ0
2

2
 - a2, (21)

Γ0 =  2Ω0aA0sin δ + 2Ω0
2
γ0 - Ω0γ0

2, (22)
and

K0 =  a2A0
2cos2δ - Γ0γ0  + R0γ0

2 - Ω0γ0
3 + 

γ0
4

4
 . (23)

This result is in good agreement with the one obtained by
Roberts and Buchsbaum[1].
Equation (20) describes a motion in a one-dimensional
potential. It admits a solution in terms of elliptic
integrals[8]. Then, Eqs.(18) prove for a second time that
this problem is integrable.

Eq.(20) can also be written

γ2γ
2
 = a2(γ2 - 1) - aA0sin δ + (γ - γ0)

γ + γ0

2
 - Ω0

2

. (24)

Let us consider the interesting case when the particle is
initially resonant and at rest γ0 = Ω0 = 1 . Letting γ = 1+ µ,
Eq.(24) becomes

γ2γ
2
 = µ a2 µ + 2  - 

µ3

4
. (25)

As µ≥0, the sign of the third order polynomial

Q(µ) = a2 µ + 2  - µ3
4 has to be positive. When a < 27 2,

Q(µ) has only one real positive root. This implies that γ
oscillates between unity and 1 + µm  (µm is the positive
root  of Q(µ)).
Assuming that a is very small a << 1 , which is expe-
rimentally realistic, Eq.(25) yields

µm ≈ 2a2
3. (26)

In this situation γ0 = Ω0 = 1 , equation (20) was solved
numerically for different values of a. The maximum value
of γ reached by the particle is compared to the one
obtained through equation (26) on Fig.(1). A very good
agreement between the two results is observed.

In conclusion, using canonical transformations, we
have reduced the problem of relativistic motion of a
charged particle in a constant homogeneous magnetic field
and a transverse electric field to a time-dependent problem
with a single degree of freedom. Noether's theorem was
used to find a constant of motion for the system which
permits one to show that the problem is integrable. An
equation for the energy was derived. When the charged
particle is initially resonant and at rest, it shows that the
energy oscillates between two values. A tractable
approximate expression for the maximum attainable
energy was obtained for low values of a. This gives an
upper limit for the frequency, that the particle can emit by
Bremsstrahlung.

Figure 1 : Comparison between the maximum normalized
kinetic energy reached by the particle calculated through
Eq.(26) (full line) and Eq.(20) (full squares and dashed
line).
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