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Outline

I A model is proposed to investigate the relative effectiveness of
certain degree programs on the work path after graduation

I the approach is motivated by the availability of a dataset
about graduates from some universities in Milan for whom
some outcomes are repeatedly observed

I the type of degree program may be considered as a treatment
which is not controlled for (self assigned)

I the outcomes should be able to describe how much the
university degrees improve personal opportunities in the labor
market

I the treatment groups differ prior to treatment in a way that
can influence the outcomes and therefore bias may arise if
standard statistical tools are used for data analysis
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I We consider the work path of a graduate as the manifestation
of his/her Human Capital (HC) development

I HC is assumed to affect (and then it measured by) different
response variables; in the application we consider 3 ordinal
response variables observed for 4 quarters after graduation:

(i) employment contract type with categories: none (for
unemployed), temporary, and permanent

(ii) employment skill with categories: none, low/medium, and high

(iii) gross income in Euros with categories: none, ≤3,750, and
>3,750 (we consider the threshold of e15,000 yearly)

I the model we formulate takes into account:

� the latent nature of HC (the evolution of which is represented
by a sequences of latent variables or latent process)

� the multivariate and longitudinal nature of the response
variables

� the need to balance among groups according to background
covariates
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Causal latent Markov (LM) model

I Basic notation:

� n: number of subjects (e.g., graduates)

� T : number of periods of observation (e.g., 4 quarters after
graduation)

� r : number of response variables (e.g., 3 corresponding to
contract type, skill level, gross income)

� Yijt : response variable of type j for subject i at occasion t
(with cj categories)

� Yit = (Yi1t , . . . ,Yirt): response vector for unit i at occasion t

� Xi : column vector of the pretreatment covariates for subject i

� Zi : treatment indicator variable with l levels (e.g., 1 technical
degree, 2 architecture, 3 business, 4 humanistic, 5 scientific)
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Model formulation

I The key point of the proposed model is representing the HC
level at the different occasions by a sequence of discrete latent
variables:

Hi = (Hi1, . . . ,HiT )

where each Hit has support {1, . . . , k}
I to give a causal interpretation of the proposed model we also

consider
H

(z)
i = (H

(z)
i1 , . . . ,H

(z)
iT )

with H
(z)
it denoting the HC level for subject i at occasion t if

he/she has received treatment (e.g., degree) of type z

I each H
(z)
it is a sort of potential outcome in the terminology of

Rubin (1974, 2005), the main difference is that it is a
potential version of a variable that is not directly observable
even for the selected treatment
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Assumptions

A1: every latent process H
(z)
i is assumed to follow a first-order

homogeneous Markov chain with state space {1, . . . , k},
initial probabilities p(H

(z)
i1 = h), and transition probabilities

p(H
(z)
it = h|H(z)

i ,t−1 = h̄) suitably parametrized

� the initial probabilities are parametrized as:

log
p(H

(z)
i1 = h)

p(H
(z)
i1 = 1)

= αh + I (z > 1)βhz , h = 2, . . . , k

- I (·): indicator function

- αh: intercept (effect of the first treatment)

- βhz is average treatment effect (ATE) of the z-th treatment
(z > 1) with respect to the first treatment on the logit scale

- to make comparisons between treatments we can also consider

the difference p(H
(z)
i1 = h)− p(H

(1)
i1 = h)

Bolzano, March 25, 2014



Outline Causal latent Markov model Two-step maximum likelihood estimation Application Conclusions

� the transition probabilities are modeled as:

log
p(H

(z)
it = h|H(z)

i ,t−1 = h̄)

p(H
(z)
it = 1|H(z)

i ,t−1 = h̄)
= γh̄h + I (z > 1)δhz ,

for h̄, h = 1, . . . , k, h 6= h̄, t = 2, . . . ,T

- γh̄h: intercept (effect of the first treatment on the transition
probabilities)

- δhz : differential ATE for treatment z (z > 1) referred to the
transition from level h̄ to level h of HC measured on the logit
scale

- a differential ATE can also be directly measured on the
probability scale, that is, as difference between transition
probabilities
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A2: consistency: Hit = H
(zi )
it where zi is the observed treatment of

subject i , implying that

p(Hit = H
(zi )
it |Zi = zi ) = 1

for i = 1, . . . , n, t = 1, . . . ,T

A3: positivity: 0 < p(Zi = z |Xi = xi ) < 1 for z = 1, . . . , l and any
possible configuration xi of the pretreatment covariates

A4: absence of unobserved confounding: Zi ⊥⊥H
(z)
i |Xi ,

z = 1, . . . , l
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A5: local independence: every response variable Yijt is
conditionally independent of any other variable given Hit , for
i = 1, . . . , n, j = 1, . . . , r , and t = 1, . . . ,T

I the adopted parameters are:

φjy |h = p(Yijt = y |Hit = h),

for h = 1, . . . , k, i = 1, . . . , n, j = 1, . . . , r , t = 1, . . . ,T , and
y = 0, . . . , cj − 1; therefore:

p(Yit = y|Hit = h) =
r∏

j=1

φjyj |h,

where y = (y1, . . . , yr ) is a generic configuration of Yit
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Path diagram for the proposed causal LM model
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Two-step maximum likelihood estimation

I In order to estimate the proposed causal model, we follow a
two-step approach similar to that proposed by Lanza et al.
(2013) for a causal latent class model

I at the first step we estimate a weight for each subject
depending on the pretreatment covariates according to the
propensity score approach (Rosenbaum and Rubin, 1983)

I at the second step we maximize a weighted log-likelihood of
the LM model with weights computed at the first step

I propensity score is the probability that a unit takes a certain
treatment given the pretreatment covariates (standard tool of
causal inference with non-experimental studies)
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I The first step consists of estimating a multinomial logit model
based on the following parametrization:

log
p(Zi = z |Xi = xi )

p(Zi = 1|Xi = xi )
= ηz + x′iλz , z = 2, . . . , l

I the individual weights are then computed as

ŵi = n
1/p̂(Zi = zi |Xi = xi )∑n

m=1 1/p̂(Zm = zm|Xi = xi )
, i = 1, . . . , n

I at the second step we maximize the weighted log-likelihood

`(θ) =
n∑

i=1

ŵi log p(Y
(1)
i = y

(1)
i , . . . ,Y

(T )
i = y

(T )
i |Zi = zi ),

� θ: vector of all LM model parameters arranged in a suitable
way
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I The weighted log-likelihood is maximized with respect to θ by
the EM algorithm (Baum et al., 1970, Dempster et al., 1977)

I it is based on the complete data log-likelihood (that we could
compute if we knew the latent process of each subject):

`∗(θ) =
k∑

h=1

r∑
j=1

T∑
t=1

cj−1∑
y=0

ahjty log φjy|h +
k∑

h=1

n∑
i=1

ŵibhi1 log p(Hi1 = h|Zi = zi )

+
k∑

h̄=1

k∑
h=1

n∑
i=1

T∑
t=2

ŵibh̄hit log p(Hit = h|Hi,t−1 = h̄,Zi = zi )

� ajuty : weighted frequency of subjects responding by y to the
j-th response variable and belonging to latent state h at
occasion t

� bhit : indicator variable equal to 1 if subject i belongs to latent
class h at occasion t

� bh̄hit = bh̄i,t−1bhit : indicator variable equal to 1 if the same

subject moves from state h̄ to state h at occasion t
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I The EM algorithm consists of alternating two steps until
convergence in `(θ):
• E-step: compute the expected value of the complete data

log-likelihood given the current θ and the observed data

• M-step: maximize this expected value with respect to θ

I a nonparametric bootstrap procedure (Davison and Hynkley,
1997) is used to obtain standard errors for the estimates: we
repeatedly resample from the observed sample and compute
the maximum likelihood estimates for every bootstrap sample

I the number of latent classes (k) is selected according to
Bayesian Information Criteria (BIC) (Schwarz, 1978):

BIC = −2 ˆ̀+ log(n)#par

� ˆ̀: maximum of the log-likelihood
� #par: number of free parameters
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Application

I The application is based on data coming from the integration
of certain administrative archives:1

- archive of the federal observatory of the labour market in
Lombardy concerning the compulsory communications given by
employers from 2000 to nowadays, regarding activation and
termination of the employment relationship

- archive of the graduates of four universities in Milan,
concerning the academic performance for all students earning a
university degree between 2003 and 2008

- archive of the Italian office of revenues relative to the annual
gross earned income of all residents declaring income in
Lombardy (available years: 2007-2008 for residents in Milan)

- archive of the Milan’s City Hall recording annually the personal
information about citizens

1held by the Interuniversity Research Centre http://www.crisp-org.it/
Bolzano, March 25, 2014
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The data

I We choose the graduates in 2007 from four different
universities with five years of university education: (pre-reform
and post-reform only laurea magistralis)

I we exclude faculties such as Law and Health often
characterized by institutionalized stages for advancement in
the associated professional careers

I from the merging of the archives we obtain a dataset
concerning 1,624 graduates resident in the area surrounding
Milan who declared income in 2009: they have been followed
along four quarters after the graduation, covering one year
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Descriptive statistics

I Percentage of graduates for each type of treatment

Treatment (%)
Degree type technical 22.78

architecture 8.93
business 13.85
humanistic 41.26
science 13.18

I the available pretreatment covariates are: gender, district of
birth, family income, number of family members, final grade at
high school, type of high school, year of high school diploma
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University degree
Covariate techn. arch. econ. human. scien.
gender: male 0.802 0.483 0.547 0.202 0.577

female 0.198 0.517 0.453 0.798 0.423
district of birth: Milan 0.729 0.727 0.789 0.778 0.859

Lombardy 0.073 0.093 0.063 0.044 0.028
Italy 0.175 0.102 0.135 0.149 0.085
others 0.023 0.078 0.013 0.029 0.028

income of the family: 67.316 62.236 68.374 56.584 55.563
number of family members: 1 0.182 0.239 0.161 0.178 0.099

2 0.125 0.166 0.161 0.137 0.155
3 0.350 0.254 0.314 0.360 0.451
4 0.264 0.288 0.247 0.263 0.254
≥5 0.079 0.054 0.117 0.061 0.042

final score high school: 87.479 77.649 77.588 79.908 82.183
type of high school: lyceum 0.878 0.795 0.700 0.827 0.901

others 0.122 0.205 0.300 0.173 0.099
year of high school diploma: 1999 0.294 0.337 0.368 0.444 0.282

2000 0.106 0.220 0.363 0.292 0.197
2001 0.383 0.390 0.224 0.193 0.338
2002 0.218 0.054 0.045 0.070 0.183
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I Frequency distribution of the response variables

Quarter (t)
Contract type 1st 2nd 3rd 4th
none 61.58 53.51 50.68 47.23
temporary 26.72 31.53 31.83 33.44
permanent 11.70 14.96 17.49 19.33

Quarter (t)
Skill 1st 2nd 3rd 4th
none 61.58 53.51 50.68 47.23
medium/low 14.72 15.21 16.07 17.00
high 23.72 31.28 33.25 35.78

Quarter (t)
Gross Income 1st 2nd 3rd 4th
none 59.73 50.62 47.35 44.95
≤ 3750 31.28 29.74 27.34 25.31
> 3750 8.99 19.64 25.31 29.74
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First step (propensity score)

I A weight is associated to each student which is computed by
fitting a multinomial logit model based on a suitable selected
set of pretreatment covariates

Degree (vs technical)
arch. econ. human. scien

intercept 5.677∗∗ 6.061∗∗ 4.932∗∗ 2.074∗

final score: -0.083∗∗ -0.086∗∗ -0.076∗∗ -0.044∗∗

gender: female 1.878∗∗ 1.628∗∗ 3.156∗∗ 1.323∗∗

type of high school: others 0.799∗∗ 1.497∗∗ 0.694∗∗ -0.091
district of birth: Lombardy 0.139 -0.338 -0.762† -1.182

Italy -0.507† -0.311 -0.297 -0.867†

others 0.853 -1.299† -0.130 0.007

(†significant at 10%, ∗significant at 5%, ∗∗significant at 1%)

I we checked that there is a much higher balance between
groups corresponding to different treatment
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Second step (maximum likelihood estimation)

I According to the BIC index a suitable model for the data is
based on k = 4 latent states

I the maximum log-likelihood of the model is equal to
ˆ̀ =-5215.625 with 42 parameters; the corresponding value of
BIC is 10874.91

I interpretation of the latent classes is based on the conditional
response probabilities (φjy |h), whereas estimates of the
parameters βhz and δhz measure the causal effects of the
different treatments
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I Estimates of the conditional response probabilities:

Latent class (h)
Contract type (j = 1) 1 2 3 4

none 1.000 0.000 0.000 0.000
temporary 0.000 0.995 0.671 0.000
permanent 0.000 0.005 0.329 1.000

Latent class (h)
Skill (j = 2) 1 2 3 4

none 1.000 0.000 0.000 0.000
low/medium 0.000 0.040 1.000 0.000
high 0.000 0.996 0.000 1.000

Latent class (h)
Gross income (j = 3) 1 2 3 4

none 1.000 0.032 0.021 0.013
≤ 3750 0.000 0.652 0.563 0.265
>3750 0.000 0.316 0.416 0.721
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I According to the estimated conditional probabilities the latent
states are characterized as:

1. unemployed subjects who may have income from other sources
(lowest HC level)

2. employed graduates for whom there is prevalence of high skill

3. graduates with less level of skill compared with the previous
class but with more stable contracts and higher income levels

4. graduates with high quality jobs and more appropriate income
to the job qualification (highest HC level)
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I Estimates of the parameters affecting the initial probabilities
(ATE on the logit scale):

Latent class (h)

Treatment 2 3 4

technical (α̂h) -0.586∗∗ -0.988∗∗ -1.256∗∗

architecture vs. technical (β̂h2) -1.253∗∗ -1.092∗ -1.635

economic vs. technical (β̂h3) -0.216 0.292 -0.110

humanistic vs. technical (β̂h4) -0.766∗∗ -0.584† -2.107∗∗

scientific vs. technical (β̂h5) -0.975 -0.415 -1.153

economic vs. architecture (β̂h3 − β̂h2) 1.036∗∗ 1.384∗∗ 1.525

humanistic vs. architecture (β̂h4 − β̂h2) 0.486 0.508† -0.472

scientific vs. architecture (β̂h5 − β̂h2) 0.278 0.677 0.482

humanistic vs. economic (β̂h4 − β̂h3) -0.550† -0.876∗∗ -1.997∗∗

scientific vs. economic (β̂h5 − β̂h3) -0.758 -0.707† -1.043

scientific vs. humanistic (β̂h6 − β̂h3) -0.209 0.168 0.954
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I Estimated initial probabilities of the hidden Markov chain:

Latent class (h)

Treatment 1 2 3 4
technical 0.452 0.251 0.168 0.129
architecture 0.747 0.119 0.093 0.041
economic 0.454 0.203 0.226 0.116
humanistic 0.666 0.172 0.138 0.023
scientific 0.647 0.136 0.159 0.058

I At the beginning of the period, there is a statistical significant
difference of technical and economic degrees in terms of effect
on HC with respect to architecture and humanistic degrees

I significant differences are not observed between technical and
economic degrees and between architecture and humanistic
degrees, whereas scientific degrees seem to be a compromise

I based on both the first and the last class, we obtain the same
raking of the degree types in terms of effect on the initial HC
level
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I Estimates of the parameters affecting the transition
probabilities (ATE on the logit scale):

Latent class (h)

Treatment 2 3 4

technical h̄ = 1 (γ̂1h) -1.640∗∗ -2.257∗∗ -2.343∗∗

technical h̄ = 2 (γ̂2h) 2.163∗∗ -1.079∗ -0.246
technical h̄ = 3 (γ̂3h) -0.156 2.855∗∗ -0.015
technical h̄ = 2 (γ̂4h) -0.408 -0.494 5.376∗∗

architecture vs. technical (δ̂h2) -0.826∗∗ -1.015∗∗ -2.538∗∗

economic vs. technical (δ̂h3) -0.623∗ -0.504 -1.308∗∗

humanistic vs. technical (δ̂h4) -0.490∗ -0.928∗∗ -1.496∗∗

scientific vs. technical (δ̂h5) -0.743∗ -0.901∗ -1.077†

economic vs. architecture (δ̂h3 − δ̂h2) 0.203 0.511† 1.230∗

humanistic vs. architecture (δ̂h4 − δ̂h2) 0.337 0.086 1.042∗

scientific vs. architecture (δ̂h5 − δ̂h2) 0.083 0.113 1.461∗

humanistic vs. economic (δ̂h4 − δ̂h3) 0.134 -0.425 -0.188

scientific vs. economic (δ̂h5 − δ̂h3) -0.120 -0.398 0.231

scientific vs. humanistic (δ̂h5 − δ̂h4) -0.120 -0.398 0.231
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I Estimated transition probabilities of the hidden Markov chain:

Latent class (h)

Degree h̄ 1 2 3 4
technical 1 0.717 0.139 0.075 0.069

2 0.092 0.804 0.031 0.072
3 0.049 0.042 0.859 0.049
4 0.005 0.003 0.003 0.990

architecture 1 0.885 0.075 0.034 0.007
2 0.200 0.763 0.025 0.012
3 0.129 0.048 0.813 0.010
4 0.054 0.016 0.012 0.919

economic 1 0.838 0.087 0.053 0.021
2 0.164 0.767 0.034 0.035
3 0.082 0.037 0.859 0.023
4 0.017 0.006 0.005 0.971

humanistic 1 0.864 0.101 0.035 0.018
2 0.151 0.803 0.020 0.026
3 0.116 0.061 0.797 0.026
4 0.020 0.008 0.005 0.967

scientific 1 0.857 0.079 0.036 0.028
2 0.180 0.746 0.025 0.048
3 0.114 0.046 0.802 0.038
4 0.013 0.004 0.003 0.979
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I There are significant differences between technical degrees
and all the other types of degree during the period of
observation in favor of the first (evolution of HC)

I Statistically significant differences are also observed between
the degree in Architecture and the other degrees, with the
first having a worse impact on the evolution of the HC level

I Economic, humanistic, and scientific degrees give rise to a
group having an intermediate impact between technical
degrees and Architecture, with economic degrees performing
slightly better than the other two in the same group

I All transition probability matrices are characterized by a rather
high persistence, with elements in the main diagonal always
greater than 0.7, most of which are also greater than 0.8

I For technical degrees there is the lowest probability of
remaining in the first latent class (0.72) and the highest
probability of remaining in the last class (0.99)

Bolzano, March 25, 2014



Outline Causal latent Markov model Two-step maximum likelihood estimation Application Conclusions

Conclusions

I In terms of causal effects of the university degrees, a clear
ranking results:

1. Technical degrees: highest effect at the beginning and in terms
of evolution of HC level

2. Economic degrees: impact close to technical degrees at the
beginning and worse in terms of evolution

3. Scientific degrees: intermediate impact both at the beginning
and in the following

4. Humanistic degrees: significantly worse impact with respect to
technical and economic degrees

5. Architecture: impact on HC level similar to humanistic
degrees, but even worse
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