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Abstract
Noise-induced transition in the solutions of the Kuramoto–Sivashinsky (K–S)
equation is investigated using the minimum action method derived from the
large deviation theory. This is then used as a starting point for exploring the
configuration space of the K–S equation. The particular example considered
here is the transition between a stable fixed point and a stable travelling wave.
Five saddle points, up to constants due to translational invariance, are identified
based on the information given by the minimum action path. Heteroclinic orbits
between the saddle points are identified. Relations between noise-induced
transitions and the saddle points are examined.

Mathematics Subject Classification: 82C35, 82C26, 34F05, 60H15

1. Introduction

Dynamical systems are often subject to random perturbations since noise is ubiquitous in nature.
Even though these random perturbations have a small amplitude, they can produce a profound
effect on the long time dynamics by inducing rare but important events. A large number of
interesting phenomena in physics, chemistry and biology such as phase transitions, biological
switches and chemical reactions are examples of such noise-induced rare events [1, 2].

The purpose of studying noise-induced transition is to answer questions such as how the
transitions occur and how frequent they are. The transition pathways between metastable
sets in a dynamical system often have a rather deterministic nature. As the noise amplitude
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decreases to zero, the distribution of the trajectories that make successful transitions between
metastable sets is often sharply peaked around a certain deterministic path or a set of paths: the
most probable transition paths or optimal transition paths. Special features of such paths tell us
crucial information about the mechanism of the transition. One class of examples that have been
well studied for a long time are the gradient systems, for which the vector field is the gradient
of a potential function. This subject is also associated with the exploration of the energy
landscape for such systems [3]. In gradient systems, the most probable transition path is the
minimum energy path (MEP). The MEP passes through the basin boundary between the stable
states at some saddle points with one-dimensional unstable manifold (we call them index-1
saddle points or first-order saddle point) and carry the least energy on the boundary [4, 5]. Such
index-1 saddles with least energy are also called ‘transition states’ in the chemical physics [3].

A large number of algorithms have been designed to find such transition states in gradient
systems. Some popular algorithms include the string method [6, 7], nudged elastic band
method [8], eigenvector-following-type method (e.g. [9]) as well as the dimer method [10]. As
an application, the string method was used in [11] to study the complex dynamics of thermally
activated switching of submicro-sized ferromagnetic elements. A network was obtained there
with the nodes being the stable states and the transition states and the edges being the MEPs.
The noise-induced transitions in the configuration space can be modelled as a Markov chain
on that network.

However, the understanding of transition events in non-gradient systems is much less
satisfactory. The configuration space may display a much more complicated structure, where
invariant sets can be fixed points, as well as limit cycles, tori or even chaotic strange attractors.
The same can be said about the transition states. We refer to [12, 13] for the study of a
prototypical system: the Lorenz system.

In this paper, we study the one-dimensional Kuramoto–Sivashinsky (K–S)
equation [14, 15], as an infinite dimensional example. This is one of the simplest spatially
extended nonlinear systems of physical interest. It was derived in 1970s by Kuramoto [14]
and Sivashinsky [15]. Holmes et al [16] provided a delightful discussion of why this system is a
good model problem for studying turbulence in the full-fledged Navier–Stokes boundary shear
flows. As the system size is increased, the solution of K–S equation undergoes a complex
bifurcation sequence including fixed points, travelling waves, invariant tori and homoclinic
orbits [17] on the route of transition to chaos. In this paper, we limit our effort to one relatively
simple case where one stable fixed point and one stable travelling wave coexist. We are going
to address the following questions.

(i) How does the transition occur between the stable fixed point and the stable travelling wave
if the K–S equation is randomly perturbed by weak additive white noise?

(ii) What are the saddle points or sets that might be involved in the transition, i.e. what are
the transition states?

(iii) How do these invariant sets connect to each other through their stable and unstable
manifolds?

Based on answers to the above questions, we construct a network (see figure 12) connected by
heteroclinic orbits to indicate the relationship between the attractors, transition states and other
saddle points, and thereby present a global optimal transition path between the two attractors.
Thus, we are able to capture part of the skeleton of the high dimensional dynamics.

The numerical tool used here is the minimum action method (MAM) originally proposed
in [18]. This numerical method roots in the rigorous mathematical theory, the Freidlin–
Wentzell large deviation theory [19] of random dynamical systems. The path in the phase
space given by the MAM is called the minimum action path (MAP) since it is the minimizer
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of the Freidlin–Wentzell action functional. In this paper, we use the adaptive version [20] of
the original MAM (aMAM). Although for the high dimensional, nonlinear and non-gradient
systems, the MAP obtained from the MAM can in principle be simply a local minimum of the
Freidlin–Wentzell action functional due to the existence of heteroclinic connections between
fixed points, the obtained MAP can still allow us to extract important information about the
phase space since it can provide information about the locations of saddle points. In addition,
the MAM can help to confirm or disprove the existence of heteroclinic orbits between known
saddle points.

The paper is organized as follows. The background about K–S equation and MAM is
reviewed in section 2. In section 3, we develop related numerical algorithms. Numerical
results are given in section 4, followed by a discussion in section 5.

2. Theoretical background

We consider a random process Xt = X(t) : R+ → R
d defined by the following stochastic

ordinary differential equation (SODE):

dXt = b(Xt) dt +
√

ε dWt, (1)

where Wt is a standard Wiener process in R
d . Let φ(t) ∈ R

d be an absolutely continuous
function defined on t ∈ [0, T ]. The Wentzell–Freidlin theory [19] tells us that the probability
of X(t) passing through the δ-tube about φ on [0, T ] is

Pr(ρ(X, φ) < δ) ≈ exp

(
− 1

ε
ST (φ)

)
, (2)

where ρ(φ, ϕ) = supt∈[0,T ] |φ(t) − ϕ(t)| and ST (φ) is the action functional of φ on [0, T ],
defined as

ST (φ) = 1

2

∫ T

0
‖φ̇ − b(φ)‖2 dt. (3)

In general, we have the following large deviation principle [19, 21]

lim
ε→0

ε log Pr(X ∈ A) = − min
φ∈A

ST (φ), (4)

where A is a particular set of random events. For example, A can be defined as

A = {X(0) = a1, X(T ) = a2}
if we are interested in the probability ofX(t) connecting one pointa1 and the other pointa2 in the
phase space. For such a problem, the minimizer φ∗, which satisfies ST (φ∗) = minφ∈A ST (φ),
is the most probable path for the transition from a1 to a2 in the sense that the probability of
the system taking all the other paths decays exponentially with respect to the noise amplitude
ε according to the large deviation principle. The minimizer φ∗ is also called the ‘minimum
action path’ (MAP).

In this work, we examine such a transition problem for the one-dimensional stochastic
K–S equation:{

ut + νuxxxx + uxx + 1
2 (ux)

2 = √
εẆ (x, t), (x, t) ∈ (0, L) × R+,

u(x, 0) = u0(x), u(x + L, t) = u(x, t),
(5)

where ν and ε are positive numbers, u0(x) is L-periodic and Ẇ (x, t) is a space-time Gaussian
white noise.
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2.1. Overview of the K–S equation

We first normalize the deterministic K–S equation as{
ut + 4uxxxx + α[uxx + 1

2 (ux)
2] = 0, (x, t) ∈ (0, 2π) × R+,

u(x, 0) = u0(x), u(x, t) = u(x + 2π, t),
(6)

where ν is set to 4, and the bifurcation parameter α = 4L̃2 with L̃ = L/(2π
√

ν). Equations (6)
are characterized by a second-order negative diffusion (due to the sign of the Laplacian), a
fourth-order stabilizing term and a quadratic nonlinear coupling term. For example, the trivial
solution u ≡ 0 is a global attractor when α � 4, and becomes unstable as soon as the bifurcation
parameter α is larger than 4. This is reflected in the spectrum of (6) linearized at u = 0, where
the eigen-functions are the exp(ikx), k ∈ Z, and the sequence of eigenvalues is

	k = αk2 − 4k4.

When α is large enough, the K–S equation will exhibit temporal chaos. On the other hand, the
existence of a unique compact inertial manifold was established in [22]. Thus, the solution
of the K–S equation is characterized by the coexistence of coherent spatial structures with
complex temporal dynamics. Since the mean mode

ū(t) = 1

2π

∫ 2π

0
u(x, t) dx

is unbounded, we consider the equation for v(x, t) = u(x, t) − ū(t) for convenience [17]:

vt + 4vxxxx + α[vxx + 1
2 (vx)

2] + ˙̄u(t) = √
εẆ , (7)

where

˙̄u(t) = −α

4π

∫ 2π

0
(ux)

2 dx = −α

4π

∫ 2π

0
(vx)

2 dx.

Due to the even-order spatial derivatives and quadratic nonlinearity, the K–S equation is
invariant with respect to translation and reflection. If v(x, t) is a solution, then τcv(x, t) =
v(x + c, t) with c ∈ [0, 2π) and Rv(x) = v(−x) are equivalent solutions. Given a solution
v(x, t), we denote its equivalent solutions due to translational invariance as

τ(v) = {τcv|0 � c < 2π}, (8)

and all its equivalent solutions as

G(v) = τ(v) ∪ {Rτcv|0 � c < 2π}. (9)

2.2. Transitions and the MAM

We assume there exist two stable states v+(x) and v−(x) in the phase space, which are not
equivalent solutions. Then, there is a finite probability in any time interval [0, T ] that the
system switches from G(v+) to G(v−) under the small white noise perturbation. From the
large deviation theory, the probability of transition satisfies

lim
ε→0

ε log Pr({ω : v switches from G(v+) to G(v−)}) = − min
T

min
v∈B

ST (v), (10)

where v ∈ B satisfies the following constraints

v(x, 0) ∈ G(v+), v(x, T ) ∈ G(v−), v(0, t) = v(L, t), (11)

and ST (v) is the corresponding action functional for the stochastic K–S equation (7), defined as

ST (v) = 1

2

∫ T

0

∫ L

0

(
vt + 4vxxxx + α

[
vxx +

1

2
(vx)

2

]
+ ˙̄u

)2

dx dt. (12)
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The MAP constrained by (11) is from one set to another set. Although each stable state in
G(v+) and G(v−) has their own basin of attraction, we are not interested in transitions within
G(v+) or G(v−). Note here that since both G(v+) and G(v−) are stable states, we can redefine
the problem on time interval (−∞, +∞) instead of [0, T ].

3. Numerical algorithms

3.1. Finite-dimensional approximation

We project v(x, t) onto a finite-dimensional subspace, BN , defined as

BN = span{einx ||n| � N/2}, dim(BN) = N + 1.

Let PN indicate the projection operator. With a Galerkin projection onto BN , equation (7)
corresponds to an ODE system

dṽ

dt
= PNL(ṽ) + PNN(ṽ, t), (13)

where ṽ ∈ C
N indicates the Fourier coefficients of v(x, t), PNL(ṽ) = (αk2 − 4k4)ṽk the

projection of the linear operator L(v) = −4vxxxx −αvxx and PNN(ṽ, t) the projection of the
nonlinear operator N(v) = −(α/2)v2

x − ˙̄u(t). We note that ṽ belongs to C
N instead of C

N+1

since we have subtracted the mean mode. Correspondingly, the translation operator is defined
as τc(ṽ) = diag(eikc)ṽ and the reflection operator as R(ṽ) = ¯̃v, i.e., the conjugate of ṽ.

Reference [17] shows that the finite-dimensional subspace BN with N � 32 can
successfully capture the dynamics of the K–S equation. In our work, we use N = 32. From
now on, we will study the following stochastic ODE system

dṽ = (PNL(ṽ) + PNN(ṽ, t)) dt +
√

ε dWt, (14)

where Wt ∈ R
n is a standard n-dimensional Wiener process. When necessary, equation (13)

will be solved using the exponential time differencing (ETD) method coupled with the fourth-
order Runge–Kutta scheme [23], see the appendix.

We note that if the pseudo-spectral method is employed, PNN(ṽ, t) can be approximated
as PNN(ṽ, t) ≈ F ((F −1(ikṽ))2 − (F −1(ikṽ))2) with F being the Fourier transform. Since
we are more interested in the geometry of the phase space instead of the efficiency of numerical
computation of PDE solver, we use the standard Galerkin projection of PNN(ṽ) whenever
needed in this paper, in other words, we derive PNN(ṽ) explicitly.

For numerical convenience, we will consider a vector consisting of real components.
Given ṽ, we have a corresponding expansion of v(x, t) in the form

v(x, t) ≈
N/2∑
k=1

ak cos(kx) + bk sin(kx).

Let v̂ = (a1, . . . , aN/2, b1, . . . , bN/2). There exists a one-to-one correspondence between v̂

and ṽ.

3.2. Parallel minimal action method

Corresponding to the SODE system (14), we obtain the following semi-discrete optimization
problem:

v̂∗(t) = min
v̂∈B

SN(v̂(t)) = min
v̂∈B

1

2

∫ +∞

−∞
‖ ˙̂v − PNL(v̂) − PNN(v̂)‖2

2 dt, (15)
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where v̂(t) ∈ B are R
N -valued continuous functions subject to the constraints

v̂(−∞) ∈ G(v̂+), v̂(+∞) ∈ G(v̂−). (16)

We employ the adaptive minimum action method (aMAM) [20] to solve the optimization
problem (15) numerically. We subsequently present the numerical method using the constraints

v̂(−∞) = v̂+, v̂(+∞) = v̂−, (17)

which is from one point to another one in the phase space. We will discuss the strategy for
equivalent solutions in section 3.3. For numerical computation, we need to replace the time
interval (−∞, +∞) with a finite one [0, T ]. It was shown in [20] that the numerical error of
MAP will decay fast (nearly exponentially) as T increases. We then use the midpoint rule to
discretize SN(v̂) for a temporal mesh of [0, T ]. To this end, given a temporal mesh

T := 0 = t0 < t1, . . . , < tn+1 = T ,

we define a discrete path in the phase space as

ˆ̂v = [v̂(t0), v̂(t1), . . . , v̂(tn), v̂(tn+1)] ∈ R
N×(n+2),

where v̂t0 = v̂+ and v̂tn+1 = v̂−. We then obtain the discrete form of SN(v̂(t)) as

SN(v̂(t)) ≈ SN( ˆ̂v) = 1

2

n+1∑
i=1

∥∥∥∥ v̂(ti) − v̂(ti−1)

�ti
− PNL(v̂(ti−1/2)) − PNN(v̂(ti−1/2))

∥∥∥∥
2

2

�ti,

where �ti = ti − ti−1 and v̂(ti−1/2) = (v̂(ti) + v̂(ti−1))/2.
The fully discrete optimization problem will be iterated by a preconditioned nonlinear

conjugate gradient (CG) method [24]:{ ˆ̂vk+1 = ˆ̂vk + αkdk,

dk+1 = Pgk + βkdk, d0 = −Pg0,
(18)

where the subscript k indicates the iteration step, the positive step size αk is obtained by a
line search algorithm, βk is the CG update parameter chosen as in [24] and gk = ∇SN( ˆ̂vk).
The preconditioner P is given by the inverse of the linear part of the Euler–Lagrange equation
corresponding to the action functional, i.e. (−∂2

t +α2∂4
x +8α∂6

x +16∂8
x )−1, which can be regarded

as an approximation of the Hessian matrix of the nonlinear function to be optimized. Due to
the midpoint finite difference used in temporal discretization and the Fourier expansion in
physical space, P −1 is a tridiagonal symmetric matrix.

To improve the accuracy, aMAM will check the quality of temporal mesh corresponding
to ˆ̂vk , and adjust the grids ti on-the-fly using a moving mesh technique when the quality
measure is larger than a prescribed threshold [20]. The final temporal mesh will result in
nearly equidistant grids with respect to the arc-length along the MAP. Corresponding to the
midpoint rule, second-order accuracy O(n−2) will be obtained, where n is the number of grids
points in the temporal mesh.

In particular, we develop a parallel aMAM to speed up the convergence. The main reason
for parallel computation is that the problem is ill-conditioned and a large number of iterations
are needed. It is not difficult to roughly estimate the condition number from the linear part
the Euler–Lagrange equation, which is O(108) if N = 32. The philosophy for parallelization
is simple. We only do the parallelization along the time direction. Suppose the number of
unknowns is N × n and the number of processors is m. We assign the temporal mesh T

(almost) evenly to the m processors. Each processor has about N × n
m

unknowns. Due to the
midpoint rule, the main communication between adjacent processors is the exchange of data
at the boundaries of local temporal mesh. Another operation affected by the parallelization is
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the computation of preconditioner, where we need to inverse a tridiagonal matrix. We employ
the functions pddttrf and pddttrs in the package ScaLAPACK to deal with such an issue.
Based on such a parallelization strategy, a good scalability is achieved.

3.3. The equivalent solutions

In (16), we constrain the MAP from one set G(v+) to another set G(v−) due to the symmetries
of the K–S equation. The reflection R is the discrete symmetry and we can treat v and Rv as
two separate states; the translational invariance is the continuous symmetry and we are faced
with a set τ(v) of states characterized by one continuous parameter c. Thus, for simplicity,
in this paper, we only consider the continuous symmetry and the transitions between two sets
of translational images. In other words, we need to integrate the description of a set into the
optimization algorithm. The constraints in equation (16) become

v̂(−∞) = τc+ v̂+ ∈ τ(v̂+), v̂(+∞) = τc− v̂− ∈ τ(v̂−). (19)

Since both τ(v̂+) and τ(v̂−) are one-parameter families of stable states, we only need to take
into account two parameters c+ and c−, in the translations between τc+ v̂+ and τc− v̂−. We treat
parameters c+ and c− as regular unknowns in the optimization algorithm, which results in
N × n + 2 unknowns. This is the general strategy to deal with MAPs from set to set with
continuous parameters.

We note that the Wentzell–Freidlin action functional (12) inherits the translational
invariance of the K–S equation because we impose the periodic boundary condition. Thus
the solutions corresponding to (19) also have translational invariance: if φ(x, t) is a MAP
from v+ to v−, then for any constant c, φ(x + c, t) is also a MAP, but from τcv+ to τcv−. The
simple way to eliminate this translational invariance of MAPs is just to fix one of the two free
parameters c+ or c−.

Equation (13) has two types of stable solutions: fixed points and periodic orbits. At
α = 52, the periodic orbit corresponds to a travelling wave. Assume v̂F(x) is a fixed point and
v̂TW(x) is one arbitrary point on a travelling wave. Then τcv̂F is also a fixed point and both
τ(v̂F) and τ(v̂TW) are invariant sets of equation (13). But the situation can be different if we
consider the existence of connecting orbits between any two points in τ(v̂F) or between any
two points in τ(v̂TW). If v̂F is stable, there does not exist dynamics between any two points in
the invariant set τ(v̂F). In other words, the action functional between any two points in τ(v̂F)

is not zero for any T > 0. However, if v̂F is of saddle type, there might exist homoclinic orbits
between v̂F and τcv̂F. Note that if both ends, v̂+ and v̂− are saddle points and there exists a
heteroclinic orbit from v̂+ to v̂−, the MAP should be exactly the heteroclinic orbit, along which
the action functional is zero.

For the travelling wave v̂TW, the situation is different. A spatial translation v((x +c)+cvt)

can be transformed to a temporal translation as v(x + cv(t + (c/cv))). Correspondingly, there
always exists a trajectory between v̂TW(T ) and τcv̂TW(T ) for any c, along which the action
functional is zero. Thus if we use the travelling wave as one end of the MAP, we can just pick
up one point on the periodic orbit of the travelling wave without including the extra degree of
freedom for the translational invariance.

In summary, for the transitions between τ(v̂F) and τ(v̂TW) treated here, we can consider
a simple strategy by looking for the MAP from any point τcv̂F to an arbitrary point on the
travelling wave. In this way, we are able to consider a MAP which is point to point instead of
set to set.

Remark 1. There are many ways to eliminate the symmetries of the K–S equation by choosing
a constrained subspace. However, the solutions in such subspaces are not necessarily generic
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Figure 1. Profiles of the attractors. Left: fixed point, vF(x); right: travelling wave, vTW(x + ct).

and any perturbation can move the solution out of these subspaces. We cannot guarantee
that the MAP also stays in the chosen subspace, and should consider the full space for the
optimization problem (15).

4. Numerical results

4.1. Two attractors at α = 52

According to the numerical study in [17], there exist two types of attractors when 50 � α � 54:
one is a fixed point vF(x) and the other one is a travelling wave vTW(x + ct). In this work, we
focus on the case when α = 52, and study the transition between these two types of attractors
induced by the small white noise perturbation. In particular we consider the optimization
problem (15) subject to the constraints

v̂(0) = τcv̂F ∈ τ(v̂F), v̂(T ) = v̂TW or v̂(0) = v̂TW, v̂(T ) = τcv̂F ∈ τ(v̂F),

where v̂TW is an arbitrary point on a well-developed travelling wave. If no a priori knowledge
is available about the MAP, the linear interpolation between v̂F and v̂TW defined on a uniform
temporal mesh will be used as the initial state of the MAP, i.e. if the MAP is from v̂F to v̂TW,
the initial path ˆ̂v0 = [v̂0(t1), . . . , v̂0(tn)] takes the form

v̂0(ti) = v̂F +
i

n + 1
(v̂TW − v̂F), ti = i

n + 1
T . (20)

When α = 52, it was reported in [17] that vF(x) has a trimodal form

vF(x) = 2.9817 cos(3x) + 0.3019 cos(6x) + 0.0190 cos(9x) + . . . ,

where coefficients for all the sine modes are zero. Profiles of vF(x) and vTW(x + ct) are shown
in figure 1. From now on, we use v̂F to indicate the trimodal form of the stable fixed point.

4.2. Experiment I—from vF to vTW

We first examine the transition from the stable fixed point to the stable travelling wave,
which means that the constraints for the optimization problem (15) are v̂(0) ∈ τ(v̂F) and
v̂(T ) ∈ τ(v̂TW). Assume that v̂F and v̂TW correspond to the profiles in figure 1. We implement
the strategy discussed in section 3.3 and consider the simplified constraints v̂(0) = v̂F and
v̂(T ) = v̂TW, which corresponds to a point-to-point MAP.



Noise-induced transition and the structure of the phase space for the K–S equation 483

–2
0

2

–1
0

1
2

3
–1

0

1

2

3

a1
a

2

a 3

Zone I

Zone IV

Zone III
Zone V

Zone II

Figure 2. MAP from v̂F to v̂TW discretized by 3000 points in time interval [0, 30].

We set N = 32 and use 3000 points to discretize the MAP in the time interval [0, T = 30].
Using the first three cosine modes, the obtained MAP v̂∗(t) is plotted in figure 2, where v̂F is the
top end. In figure 4, we plot the energy ‖v̂∗(s)‖2 on the right and ‖PNL(v̂(s)) + PNN(v̂(s))‖
and ‖ ˙̂v(s) − PNL(v̂(s)) − PNN(v̂(s))‖ on the left, along the MAP, where s indicates the
arc-length along the MAP.

The MAP provides the following information immediately.

(i) There may exist saddle points in the region where the value of ‖PNL(v̂(s))+PNN(v̂(s))‖
is close to zero. We identify and order such regions as zones I–V, which are marked by
ellipses in figure 4. Although it is difficult for the optimization algorithm to precisely locate
the fixed points, the points in zones I–V of MAP indeed provide good initial guesses for
fixed point finding algorithms such as the Newton–Raphson method to find fixed points
with a high accuracy. Such important local information about the locations of saddle points
is usually not easy to obtain in a high dimensional phase space. Due to the translational
invariance, all fixed points are up to a constant.

(ii) We note that the residual term (or noise momentum term ), ‖ ˙̂v(s) − PNL(v̂(s)) −
PNN(v̂(s))‖, is rather close to zero from zone III to zone V. It suggests that there is
no action for the MAP from zone III to zone V and thus heteroclinic orbits for the K–S
equation should exist from zone III to zone IV and from zone IV to zone V, if zones III–IV
correspond to some non-equivalent saddle points.

(iii) The ‘flat’ part in zone V, see the right plot in figure 4, might correspond to a homoclinic
orbit. The MAP in zone V is smooth, which implies that there exists dynamics. Only small
fluctuations exist in this region means that the dynamics happens close to the translationally
invariant set of saddle points.

We must mention that the obtained MAP is not accurate enough due to the complicated
dynamics. For example, after zone V, the MAP should be a landing path to the travelling wave,
which implies that the action in this part should be exactly zero. We have two problems here:
(1) we need to truncate the time interval from [−∞, +∞] to [0, T ]; (2) trajectories locking
onto the travelling wave are of infinite length, which implies that the MAP should also be of
infinite length. The small action after v̂V is mainly due to the second problem, which is still a
research topic, although enlarging T can improve the numerical results. However, such errors
do not affect qualitatively the information we are looking for.
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Table 1. Energy (E) and dimension (nu) of unstable manifold of the saddle points.

v̂I v̂II v̂III v̂IV v̂V

nu 1 2 6 4 2
E 8.9181 5.9922 0 7.6499 3.4640

We should also keep in mind that the obtained MAP may just correspond to a local
minimum instead of a global one. Thus, we need to examine the obtained MAP carefully. A
straightforward proposal consists of

• Locate the saddle points in zones I–V.
• Study the relations between those saddle points, i.e. we want to find out how their unstable

manifolds connect to other structures.
• Study the relations between the attractors and saddle points, i.e. we want to find out the

saddle points on the boundary of basin of attraction of the attractors, and identify the most
probable exit point.

Once we obtain a more detailed picture with the above information, we will be able to tell
whether the MAP we obtained is a local minimum or not. We will implement such a proposal
and investigate the observations (i)–(iii) subsequently.

4.2.1. Allocate saddle points. We use a Newton solver to search fixed points in zones I–V
using the points on the MAP as initial guesses. Five saddle points, up to a constant due to the
translational invariance, are found. We order them from v̂I to v̂V corresponding to zones I–V.
Note that v̂III is the trivial fixed point, which is not stable for α = 52 demonstrated previously by
the linear analysis. All saddle points have a centre manifold due to the translational invariance,
except the trivial one v̂III. For each saddle point, we implement linear analysis. In table 1
we give the energy ‖v̂i‖2, i = I, . . . , V , and the number of eigenvalues with a positive real
part. The saddle point v̂V takes a bimodal form, i.e. Fourier coefficients are nonzero only
for modes exp(ikx) with k being even. Such a bimodal fixed point is a global attractor when
22.50 � α � 43 [17]. v̂I, v̂II and v̂IV have components in all modes. The profiles of all saddle
points are given in figure 3. What we are interested in is that the effect of these saddle points
on the transition between the stable fixed points G(v̂F) and the travelling wave v̂TW.

4.2.2. Relations between saddle points v̂I − v̂V. It is seen in figure 4 that v̂I is located in
zone I, which is the first saddle point on the MAP starting from v̂F. This implies that the
saddle point v̂I might be of particular interest to the escape from the basin of attraction of
v̂F. Furthermore, we note, see table 1, that the energy, 8.9820, of the stable fixed point v̂F, is
only slightly different from the energy, 8.9181, of saddle point v̂I. It is shown in table 1 that
v̂I has one-dimensional unstable manifold. To characterize the unstable manifold of v̂I, we
look at the trajectories starting from around v̂I. We introduce a small perturbation δv̂I along
the tangent direction of the unstable manifold of v̂I, which corresponds to the eigenvector
associated with a positive eigenvalue, and compute the trajectories starting from v̂I + δv̂I and
v̂I −δv̂I. By varying the degree of perturbation (�1%), three types of trajectories are observed:
starting from v̂I − δv̂I, the trajectory goes back to v̂F; starting from v̂I + δv̂I, the trajectory
goes to another stable fixed point τcv̂F with c �= 0, or to the travelling wave, depending on the
size of δv̂. In figure 5, we plot three typical trajectories starting from around v̂I: the dotted,
dashed and solid lines indicate trajectories locking onto v̂F, τcv̂F and the travelling wave,
where c �= 0.
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Figure 3. Profiles of vI(x), vII(x), vIV(x) and vV(x). Note here that we shift all periodic solutions
along x-axis to make them even.
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Figure 4. Left: forces and residuals at each point along the MAP. Right: energy at each point along
the MAP.

(This figure is in colour only in the electronic version)

We now can conclude that the obtained MAP is indeed a local minimum. If we chop
off the original MAP from v̂F to v̂I and combine this piece with the trajectory from v̂I to the
travelling wave, which was found above by analysing the unstable manifold of v̂I, we obtain
a new MAP, starting from v̂F and ending at v̂TW. This new MAP has a much smaller action
than the original one, which is 0.2754 in contrast to 365.1478, the action associated with
the old MAP. Note here that numerical experiments show that the convergence of MAP to a
certain local minimum is mainly determined by the initial guess of MAP, not by the temporal
discretization in the aMAM.

The flat part in the left plot of figure 5 implies that trajectories from v̂I + δv̂I to τcv̂F or
v̂TW will stay for a long time around a state with energy 3.4640, before locking onto τcv̂F or
v̂TW. From table 1, we know that such a state corresponds to v̂V or its translational images
τcv̂V. The sensitivity of these trajectories to the initial conditions, as well as the long time
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Figure 5. Left: energy of trajectories starting from the vicinity of v̂I. The solid, dash and dotted
lines indicate the trajectories landing onto v̂TW, τcv̂F and v̂F, respectively; Right: a heteroclinic
orbit exists between saddle points v̂I and v̂V.

excursion at the energy level of v̂V, implies there may exist a heteroclinic orbit from v̂I to v̂V or
one of its translational images. It is usually not easy to obtain numerically such a heteroclinic
orbit by just testing different initial conditions around v̂I along its unstable manifold, since v̂V

is not stable. However, using the fact that the action functional along a heteroclinic orbit is
zero, we can use aMAM to test if the corresponding MAP has zero action. If so, the obtained
MAP must be the heteroclinic orbit we are looking for. Specifically, we solve the optimization
problem (15) subject to the following constraints

v̂(0) = v̂I, v̂(T ) = τcv̂V ∈ τ(v̂V),

where c is free and v̂V is a point given by the Newton solver. Note here that we need to use
τcv̂V as the endpoint of MAP to let the optimization algorithm also minimize c.

The initial guess of MAP for the above problem should be carefully chosen to avoid being
trapped in a local minimum. We can use the trajectory in the left plot of figure 5 which starts
from v̂I + δv̂I and makes excursion at the energy level of v̂V. We truncate this trajectory at
a point which has the closest energy to that of v̂V or the minimal distance to the set τ(v̂V).
The values of ‖PNL(v̂(s)) + PNN(v̂(s))‖ and ‖ ˙̂v(s) − PNL(v̂(s)) − PNN(v̂(s))‖ along the
obtained MAP for this case are given in the right plot of figure 5. The zero action from v̂I to
τcv̂V implies that the obtained MAP is indeed the heteroclinic orbit.

Another interesting observation in the left plot of figure 5 is that before eventually locking
onto the travelling wave, the trajectory first stays around τcv̂V, then bursts away and comes
back to the same energy level and then jumps back and forth to a state of constant energy.
This phenomenon was reported and discussed in [17], which confirmed that there exists a
homoclinic orbit from v̂V to τcv̂V. The observation is consistent with our conjecture (iii) (see
section 4.2) based on the information of the MAP. In figure 6, we give a schematic of the
unstable manifold of v̂I and v̂V. v̂I has one positive eigenvalue, and a heteroclinic orbit exists
from v̂I to v̂V. v̂V has two conjugate eigenvalues with a positive real part. Its unstable manifold
is connected to some translational images of v̂F, v̂V and the travelling wave.

It is clear that the original MAP in figure 4 tells us that there exists heteroclinic orbits
from v̂III to v̂IV and from v̂IV to v̂V due to the corresponding zero actions. However, the MAP
does not tell us much about the unstable manifold of v̂II. We subsequently examine v̂II. We
would like to use this case as an example to demonstrate that the MAM is a helpful technique
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Figure 7. Information of the MAP from v̂II to v̂I starting from a linear initial path. Left: force and
residual at each point along the MAP. Right: energy at each point along the MAP.

tool to study the phase space when a saddle point has a high dimensional unstable manifold.
Actually we will see later in figure 11 that the MAP from v̂TW to τcv̂F shows that there exists
a heteroclinic orbit from v̂II to v̂I. v̂II has two distinct positive eigenvalues. Let δ1v̂II and δ2v̂II

denote the perturbation along the corresponding eigenvectors, where the eigenvalue for δ1v̂II

is larger than that for δ2v̂II. Numerical experiments show that the trajectories starting from
v̂II ± δ1v̂II and v̂II − δ2v̂II go to the travelling wave and the trajectory starting from v̂II + δ2v̂II

goes to a stable fixed point. However, this means that if the initial condition changes gradually
from v̂II ± δ1v̂II or v̂II − δ2v̂II to v̂II + δ2v̂II along a circle around v̂II on its two-dimensional
unstable manifold, the solution will have to jump from the travelling wave to a stable fixed
point. Such a fundamental change in the solutions implies that a heteroclinic orbit should exist
from v̂II to a certain saddle point. To verify this, we need to look at the MAPs from v̂II to all
other saddle points. Although none of them give a MAP with zero action, in other words, a
global minimum is not obtained, the MAP from v̂II to v̂I shows properties consistent with the
above observations. In figure 7, we plot the information of the obtained MAP using the linear
path as an initial guess. In the left plot of figure 7, we see that there exist two caps in the curve
‖PNL(v̂(s)) + PNN(v̂(s))‖, and one fixed point connecting these two caps. According to the
energy curve, we know that such a fixed point is a stable one. Thus, the MAP is trapped to a
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Figure 8. Trajectories starting from points on the MAP, which are close to the saddle point v̂II.
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Figure 9. There exists a heteroclinic orbit from v̂II to τc(v̂I). Left: force and residual at each point
along the MAP. Right: energy at each point along the MAP.

stable fixed point before it goes to v̂I. We then use the points on the MAP, which are close to v̂II,
as initial conditions and track their evolution. In figure 8, we plot (part of) these trajectories,
where all the dotted trajectories will finally lock onto the travelling wave, and the two solid
trajectories go to stable fixed points. This exactly corresponds to what we have observed in
the perturbation analysis. We also observe that some trajectories go to v̂I first before they
make a sharp turn to diverge. We now know qualitatively that there exists a heteroclinic orbit
from v̂II to v̂I. However, to obtain this heteroclinic orbit, we need a better initial path, e.g.
part of the dotted trajectory which is closest to the solid ones in figure 8. In figure 9, we
give the information of the heteroclinic orbit from v̂II to τcv̂I. We see that the stable fixed
point disappears and the energy increases monotonically to that of v̂I. We note here that it is
important to use the points on the MAP as the initial conditions, since it is difficult to choose
a good initial MAP by sampling when the unstable manifold is high dimensional.

4.2.3. The transition from v̂F to v̂TW. We now summarize the transition from the stable fixed
point v̂F to the travelling wave v̂TW. The MAP given by the numerical optimization is

v̂F → τcv̂I → τcv̂II → τcv̂III → τcv̂IV → τcv̂V → v̂TW,
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Figure 10. Information of the MAP from ˜̂vF to v̂TW starting from a linear initial path. Left: force
and residual at each point along the MAP. Right: energy at each point along the MAP. The ordering
of the zones follows that in figure 4.

where c is a general constant. We know this is only a local minimum, and the most probable
transition path should be

v̂F → τcv̂I → τcv̂V → homoclinic orbit → v̂TW. (21)

Here, the ‘homoclinic orbit’ means the orbit connecting two equivalent solutions in the
set τ(v̂V).

Thus, v̂I is the most probable first exit point for the escape from the basin of attraction of
v̂F and the MAP from v̂F to v̂I is the most probable exit path. We note that any translational
image of v̂I, except itself, is not the most probable exit point which has the least action, for the
problem of escape from the basin of attraction of v̂F. To test this, we compute the MAP from
v̂F to τcv̂I for some c �= 0. Numerical results show that c = 0 is optimal, i.e. the action from
v̂F to v̂I is the smallest one.

As we remarked previously that if we translate the initial state to τcv̂F, the transition
pathway in (21) should be robust due to translational invariance of the K–S equation. As a
numerical verification, let ˜̂vF be a translational image of v̂F, such as the stable point that v̂I +δv̂I

converges to (see section 4.2.2). We calculate the MAP from ˜̂vF to v̂TW starting from a linear
initial path. Basically a similar story happens here. From figure 10, we see that the MAP
converges to a local minimum

˜̂vF → τcv̂I → τcv̂II → τcv̂IV → τcv̂III → τcv̂V → v̂TW,

where c is a general constant. The only difference from the MAP from v̂F to v̂TW is that τcv̂IV

and τcv̂III are switched with each other. It is seen that the most probable escape path from the
basin of attraction of ˜̂vF takes a saddle point τcv̂I which is just a translational image of the
original transition state v̂I. So, the transition pattern (21) is valid for all equivalent solutions
of v̂F. In addition, as a byproduct observed in figure 10, we note that the MAP from ˜̂vF to v̂TW

tells that there exists a heteroclinic orbit from v̂III and τcv̂V.

4.3. Experiment II—from v̂TW to G(v̂F)

To study the escape from the basin of attraction of v̂TW, we consider the constraints

v̂(0) = v̂TW, v̂(T ) = τcv̂F ∈ τ(v̂F).
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Figure 11. Information of the MAP from v̂TW to v̂F starting from a linear initial path. Left: forces
and residuals at each point along the MAP. Right: energy at each point along the MAP. The ordering
of the zones corresponds to that in figure 4.

for the optimization problem (15). The information of the obtained MAP is shown in figure 11.
We see that the MAP takes a transition pattern

v̂TW → τcv̂V → τcv̂III → τcv̂IV → τcv̂II → τcv̂I → τc(v̂F).

No new saddle points show up. The MAP implies that there exist heteroclinic orbits from
v̂III to v̂IV, from v̂IV to v̂II, and from v̂II to v̂I. However, if we zoom into the part of
MAP from v̂II to v̂I, we will see that the MAP will be trapped by a stable fixed point
before reaching v̂I as observed in figure 7. We summarize all known heteroclinic orbits in
figure 12.

It can be seen that all the saddle points are on the boundary of basin of attraction of the
travelling wave. Recall that the trajectories starting around v̂V can also go to G(v̂F). Starting
from any saddle point, a zero MAP can be constructed to either G(v̂F) or the travelling wave
using the heteroclinic orbits described in figure 12. In other words, all the saddle points can
be a possible choice for the escape from basin of attraction of the travelling wave. However,
among all five saddle points v̂i , i = I, . . . , V , only v̂I is of index-1 type, i.e. the unstable
manifold is one dimensional. Such a scenario is completely different from the gradient
dynamical systems. The MAM picks the saddle point τcv̂V, implying the transition pattern
should be

v̂TW → τcv̂V → G(v̂F).

Such a result can be further verified by computing the MAP between the travelling wave and
other saddle points and considering the relations between saddle points given in figure 12.
Numerical results are omitted here. The discovery that v̂V or its translational image is the
transition state may suggest that when one studies important unstable states or patterns on
the basin boundary in general non-gradient dynamical systems, such as the notion of ‘edge
state’ [25, 26] in the study of turbulence transition, one should also pay attention to fixed
points which are not a relative attractor, but have index number �2. Although all flows on
the basin boundary will eventually go to some relative attractors on the basin boundary, it is
possible that the noise-induced transition may select other types of fixed points as transition
states [27].
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Figure 12. Diagram for hetereclinic orbits between saddle points v̂I − v̂V, where the hetereclinic
orbits are indicated by directed solid lines.

5. Summary

The noise-induced transitions between a stable fixed point and a stable travelling wave are
studied for the stochastic K–S equation. Five saddle points on the basin boundary are found.
Not only their connections but also their roles in the noise-induced transitions are clarified.
Our approach relies on the framework of Wentzell–Freidlin large deviation principle and the
numerical tool of aMAM.

Compared with other similar work on breaking the complicated phase space into a few
‘low dimensional inertial manifold’, such as [28], our approach of the MAM has a few different
features. First, we only need the information of two attractors and no other prior information
or preprocessing (such as edge tracking to search along the basin boundary) is required. Most
optimization algorithms only guarantee to find a local minimum instead of the global one.
Nevertheless, the MAP we obtain does give us some fixed points or the region where the
dynamics |b| is slow. Thus, the information of the MAP directly provides us some very good
initial guesses for Newton-type algorithms to locate saddle points exactly. We should mention
that one single MAP typically finds most of the relevant saddle points, instead of searching
them one bye one in a very local way. Furthermore, by looking at the value of the Wentzell–
Freidlin action (also called quasi-potential or non-equilibrium potential in physical literature)
of different saddle fixed points, we can rigorously quantify the instability related to them when
the dynamical system is perturbed by a small noise and find the most probable exit point, i.e.
the one with the least action value on the basin boundary. Such a viewpoint can provide a
perspective to evaluate the importance of unstable solutions or patterns where the long time
dynamics is considered.

In this work, we focused on the search for unstable fixed points along the MAP. However,
limit cycles can also play an important role in transitions [12]. How to use the MAM to deal
with the case of limit cycles [29, 30] is also an interesting and important topic. The study in
this direction will be reported elsewhere.
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Appendix A. Numerical schemes for equation (13)

Let L̃ = PNL and Ñ = PNN . The ODE system (13) can be rewritten as

d(e−L̃t ṽ)

dt
= e−L̃tÑ(ṽ, t). (A.1)

Coupling the fourth-order Runge–Kutta scheme, the following ETD scheme was given in [31]:

ak = eL̃h/2ṽk + L̃−1(eL̃h/2 − I)Ñ(ṽk, tk),

bk = eL̃h/2ṽk + L̃−1(eL̃h/2 − I)Ñ(ak, tk + h/2),

ck = eL̃h/2ak + L̃−1(eL̃h/2 − I)(2Ñ(bk, tk + h/2) − Ñ(ṽk, tk)),

ṽk+1 = eL̃hṽk + h−2L̃−3{[−4 − L̃h + eL̃h(4 − 3L̃h + (L̃h)2)]Ñ(ṽk, tk)

+ 2[2 + L̃h + eL̃h(−2 + L̃h)](Ñ(ak, tk + h/2) + Ñ(bk, tk + h/2))

+ [−4 − 3L̃h − (L̃h)2 + eL̃h(4 − L̃h)]Ñ(ck, tk + h)}.
To enhance the robustness, g(L̃) = L̃−1(eL̃h/2 − I) is evaluated via an integral over a
contour � [23]:

g(L̃) = 1

2π i

∫
�

g(t)(tI − L̃)−1dt, (A.2)

where � can be any contour that encloses the eigenvalues of L̃.
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