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Abstract: Marine protected areas (MPAs) are designated to protect marine ecosystems and, among
other things, to monitor climate variability, which in turn affects aquatic species. The aim of this
study is to examine the contribution of remotely sensed data as an indication of Holothuria abundance,
by investigating the spatiotemporal variability of physicochemical parameters. The study area is in
the National Marine Park of Alonissos Northern Sporades, which is included in the NATURA 2000
network. Firstly, the abundance of Holothuria species was measured by scuba diving. At the same
time, depth profiles of five physicochemical parameters (temperature, salinity, pH, dissolved oxygen
and Chl-a) were recorded by CTD (conductivity, temperature, depth), a primary instrument used to
determine the essential physical and chemicals properties of seawater column profiles in the coastal
zone. The physicochemical variables examined are the most common environmental parameters with
the highest impact on growth, reproduction, productivity and survival rate of sea cucumber species,
affecting the availability of food sources. Analysis of this data allows us to identify parameters which
are essential for their existence. The analysis showed that only temperature and Chlorophyll-a (Chl-a)
could be useful for identifying the abundance. These two parameters are readily available from
satellite data. Additionally, particulate organic carbon (POC) is essential for Holothuria’s existence.
Consequently, a time series of satellite data products from Terra/MODIS sensor were utilized from
2000 to 2020 for sea surface temperature (SST), Chl-a and POC. The monthly temporal trend shows
that the abundance could be justified in areas where the Holothuria presence has been established.
Monthly spatiotemporal analysis shows that SST, Chl-a and POC availability, could be an indication
of the differences in abundance recorded.

Keywords: MODIS; sea cucumbers; remote sensing; GIS; NATURA 2000

1. Introduction

According to the definition given by the International Union for Conservation of Na-
ture (IUCN), as a protected area is defined “a recognized and clearly defined geographical
area for where a conservation commitment exists and managed through legal or other
effective means, in order to achieve long-term conservation and nature protection, with
its related ecosystem services and cultural values” [1]. They are the cornerstone of biodi-
versity conservation, an essential tool for safeguarding biodiversity from natural disasters,
providing global food security and maintaining water quality. The global network of
protected areas is estimated to store at least 15% of the global terrestrial carbon, pointing
out its significance in relation to climate change [2]. This definition also applies to marine
protected areas (MPAs).

Apart from the geographical cover, an MPA includes the airspace above the sea
surface, the sea surface itself, its overlying water column, depth and subsoil, flora, fauna,
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and historical and cultural features of all the enclosed environment. In other words, MPA
“is defined as an area designated and effectively managed to protect marine ecosystems”,
which contributes to the replenishment of natural resources and to social, economic and
cultural enrichment. They are categorized according to the management objectives by the
IUCN. The MPAs are recognized by many national governments and organizations as the
global standard for biodiversity protection, gradually being incorporated into government
legislation [3]. MPAs with the highest level of protection increase the whole fish biomass
from 343% to 670% [4]. In this way, an MPA is a well-protected area with no exogenous
factors, which makes it an ideal place for study.

The observation and monitoring of the earth from space has today become a very im-
portant tool for the study of the natural environment and understanding the complexity of
the earth ecosystem. The information gathered by the satellites on a regular basis is of ben-
efit to the study of environmental conditions affecting marine biodiversity. The utilization
of this information finds application in various scientific fields, such as oceanography, by
monitoring parameters such as POC [5], sea surface temperature [6–8] (for understanding
the climate change and predicting climate variations), chlorophyll concentration (due to its
importance to photosynthesis process) [9,10] and provides better emergency management
and disaster recovery. Furthermore, satellite remote sensing contributes to the detection of
mechanisms of spatiotemporal variations of POC [11] and adverse environmental phenom-
ena such as eutrophication which plays a key role in environmental biology and the carbon
cycle balance [12–17].

Marine environment and aquatic biodiversity are threatened by a variety of anthro-
pogenic stressors and human activities such as petroleum oil spills, which can be monitored
using satellite remote sensing [18–21], deteriorating the negative impact on marine species
and wildlife. As the biodiversity and the balance of marine ecosystems are threatened
by human activities [22,23], satellite monitoring of the coastal front provides valuable
information on the structure of pelagic bio-communities, improving their relationship with
human societies.

Holothuria (sea cucumber) is an ecological important benthic species, as they are
bioindicators of pollution in marine environments due to their ability to collect sediment
particles and organic matter [24–26]. They are considered to be among the best biotur-
bators and deposit feeders. Although it is very difficult to gather enough information
about the benthic systems through satellite data only, it can still assist the examination
of the environmental conditions in a marine environment, which in turn could affect the
benthic organisms.

This work is based on the in-situ measurements in a MPA to define the key factors
affecting the abundance of Holothurians. Furthermore, it examines the spatial variability
of sea surface temperature (SST), Chl-a and particulate organic carbon (POC) based on
satellite data for a time span of twenty years and explores how they could be connected to
the abundance of Holothuria.

2. Materials and Methods
2.1. Study Area

The study area is an MPA included in the Natura 2000 network, belonging, adminis-
tratively, to the region of Thessaly with Region Code GR1430004, named “National Marine
Park of Alonissos—Northern Sporades, Eastern Skopelos” (NMPANS). The National Ma-
rine Park of Alonissos and Northern Sporades was the first MPA established in Greece
and is currently the largest MPA in Europe, covering a surface area of 2500 km2 with
93.19% being a marine area (European Environmental Agency). The site has been desig-
nated as Special Areas of Conservation (SAC) since 2011. The NMPANS includes, besides
Alonissos, the uninhabited islands of Kyra Panagia, Pappous, Gioura, Psathoura, Piperi,
Peristera and Skantzoura, as well as 22 uninhabited islets and rocky outcrops (Figure 1).
It is an ecologically sensitive area of international importance due to its unique natural
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features and is characterized by an exceptionally unique dynamics in natural and cultural
environment [27].
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Figure 1. The study area is in the Aegean Sea, Greece and is part of the network of protected areas
established by the EU, NATURA 2000 with site code GR1430004. Includes the National Marine Park
of Alonissos and Northern Sporades.

The MPA is a natural habitat according to the Regional Unit of Magnesia and Sporades
signed on 31 August 1986. It is considered an ideal place for study as it is geographically
isolated, human interventions are minimal and it is a refuge for one of the most endangered
marine species, the Mediterranean monk seal Monachus monachus [28]. Ministerial decisions
were followed to protect the local natural reserve and in 1992 the area was declared as a
National Marine Park. As of 25 May 2022 the National Marine Park of Alonissos Northern
Sporades’ main goal is to combine the conservation of biodiversity, the management of
climate crisis, the protection of ecosystems and to preserve its natural resources with
the rise of socioeconomic growth and cohesion according to the principles of sustainable
development and the surveillance of the entire area of the park on a daily basis, recording
the environment conditions and controlling the activities in the area [29–31]. The climate is
Mediterranean with very strong, dry, seasonal north winds called meltemia, which take
place mostly in August, decreasing the summer temperatures, providing great visibility,
causing turbulence in the sea and prevailing the limestone rocks [32,33].

2.2. In Situ Data

Remote sensing is an essential tool and offers several unique advantages, but also has
some limitations. Although the spatial, temporal and spectral resolution of satellite sensors
have been significantly improved, the mapping of benthic communities is limited by the
penetration of radiation only into the visible region of the electromagnetic spectrum and
the de facto spectral resolution, making benthic marine species segregation difficult [34,35].

In the marine environment, access and collection of data is a difficult task. A bet-
ter study of in situ physical, chemical, and biological properties is often provided using
conductivity temperature depth (CTD), achieving a more accurate perception of benthic
communities. CTD nowadays offers unique capabilities to the scientific community. It
is excessively used to investigate how physicochemical parameters and biological pro-
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cesses are related to the observed distribution and variation of ocean species and benefit
ecological study.

Moreover, it provides high-resolution and very accurate data, while it can be used
at depths up to several thousand meters. The limitation of CTD sampling is that only a
point can be measured each time, and many casts, which are costly and time-consuming,
are needed to acquire a broad picture of the marine environment of interest [36]. A series
of in situ measurements were carried out inside and close to the study area (Figure 2).
Vertical profiles of five physicochemical parameters of the sea water column (temperature,
salinity, pH, dissolved oxygen, Chl-a) were considered and included in the analysis, having
been measured by CTD at various depths, from the surface to the seafloor, at 21 sampling
locations, between 20 and 22 May 2019. The abundance of Holothuria was counted with
diving in the sampling points where CTD measurements were taken.
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Figure 2. Map showing the limits of the marine park and the sampling stations used to measure the
abundance of Holothuria species and physicochemical parameters.

2.3. Satellite Database

Many global processes such as climate change, detection of biodiversity, eutrophica-
tion levels and water quality are based on sea surface temperature (SST) variability [37].
The SST is studied with the highest frequency of all other parameters and is one of the
most critical and important indicators of physical, chemical and biological processes in
the water column [38]. Chl-a is characterized as the “blood” of the plants, being directly
involved in photosynthesis and one of the most important metabolic processes in the
biosphere [39]. Observing Chl-a concentration provides vital information for studying
and estimating water quality and its parameters, which is essential for marine ecosys-
tems [40,41] and is systematically monitored by remotely sensed data [42,43]. Chl-a is
used for determining marine primary production related to fisheries [44,45] and water
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resources management [46]. Particulate organic carbon (POC) is an important matter found
in the ocean, contributing significantly to the marine carbon cycle [47–49] and playing
a key role in the function of aquatic ecosystems [50,51]. It could be a good indicator of
fish farming [52,53] and biological productivity in eutrophic [54] and euphotic zones of
marine environments [55,56]. The biotic and detritus components of POC could be used as
indicators of pollution [57–59].

SST, Chl-a and POC data from the moderate resolution imaging spectroradiometer
(MODIS) of the Terra satellite were obtained from the official website of National Aero-
nautics and Space Administration [NASA] and Ocean Color Web (https://oceancolor.
gsfc.nasa.gov/cgi/l3, 10 October 2021). These data are managed by the Ocean Biol-
ogy Processing Group (OBPG) of the Goddard Space Flight Center (GSFC). MODIS
combines satisfactory spectral, spatial, temporal and radiometric resolution and, gen-
erally, provides high-quality products of geophysical parameters which are produced by
applying appropriate algorithms [60]. The time series utilized covered a period from
1 March 2000 to 29 February 2020 on a monthly basis since the launch of the satellite.
Both daytime and night-time SSTs were considered in this work. The data at level 3
SMI (standard mapped image) products downloaded in netCDF (network common data
form) (https://oceancolor.gsfc.nasa.gov/docs/technical/ocean_level3_smi_products.pdf,
3 November 2021).

All data have a spatial resolution of 4 km. The estimation of SST is based on the
wavelength 11 µm and 12 µm used during daytime (from 31 to 32 channels) and night-time
3.9 µm and 4 µm (from 20, 22 and 23 channels). SST values are expressed in degrees Celsius
(◦C) and Chl-a and POC in mg/m3. A total of 960 Level-3 (SMI) products (240 for SST
daytime, 240 for SST night-time, 240 for Chl-a and 240 for POC, each one representing
a month for the 20-year period), were used for monthly SST, Chl-a and POC. Data were
retrieved for the 128 pixels, enclosed by the polygon corresponding to the study area,
excluding any terrestrial section, for all the parameters. The image processing was carried
out with the SeaDAS 7.5.3 software. Further analysis and maps were created using the open
source QGIS. The polygon that defines the study area was obtained from the official web-
site of Natura 2000 network (Data Access–Natura 2000–Nature–Environment–European
Commission (europa.eu, 8 September 2021)).

3. Results
3.1. Species Abundance

The total number of locations sampled was 25, including 12 within the limits of the
MPA (Figure 2), to estimate the abundance (number of animals over large areas). Two
species of Holothuria were identified during the sampling carried out in the marine park,
viz. Holothuria poli and Holothuria tubulosa. In this study, emphasis was given to the
12 sampling stations. Holothuria poli (Delle Chiaje, 1824), also known as the white spot
cucumber, are members of the class Holothuroidea and are Mediterranean Sea cucumbers,
benthic species, living within a depth range of 0 to 250 m [61]. The species occur in
tropical and temperate regions, and are highly commercially important to Asian markets
due to increased demand of consumption [62–64]. The reproductive cycle begins in July
and is completed in September. During October and November there is no reproductive
activity [65]. There are no scientific studies on the biology of the species and the available
information is limited to its distribution in various areas of the Greek seas.

Evidence of fishery biology exists from the Turkish Aegean coast, where it is intensively
fished and where it is probably the most densely populated species as it accounts for about
80% of total fishery production [66]. Holothuria tubulosa (Gmelin, 1788) is considered to be
one of the most known Holothuria species and like all Holothuroidea family, it is a common
benthic species of the Aegean coast, extending depth-wise from the upper sub-coastal zone,
while its bathymetric distribution reaches 100 m depth [67] with a high abundance and
distribution in the Atlantic Ocean and Eastern Mediterranean [68].

https://oceancolor.gsfc.nasa.gov/cgi/l3
https://oceancolor.gsfc.nasa.gov/cgi/l3
https://oceancolor.gsfc.nasa.gov/docs/technical/ocean_level3_smi_products.pdf
europa.eu
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It lives on mobile substrates (phanerogamous grasslands, sandy, muddy and crumbly
bottoms). Biology of these species has been extensively studied in populations of the Adri-
atic and Western Mediterranean basins, while corresponding information from the Aegean
coast is limited [69]. The body size also shows a similar correlation. It is a gonochoristic
species, without obvious sexual dimorphism, as only the examination of gonads is used
to determine the sex of these organisms with a sex ratio ranging approximately 1:1. The
species presented an annual reproductive cycle, with synchronous gonad development
which begins in late spring peaking in summer. Its reproductive pattern shows a high
correlation with water temperature [70,71]. Spawning occurs at the end of the summer
season. More specifically, it begins in July and extends up to September. Between October
and January, the species enter the resting phase [72]. In general, a total of 717 individual
sea cucumbers were identified, with the most abundant being Holothuria poli (603) and the
least Holothuria tubulosa (114) (Figure 3).
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Figure 3. Abundance of the Holothuria species as identified in the sampling location. Two Holothuria
species were recorded: Holothuria poli and Holothuria tubulosa.

3.2. Physicochemical Parameters

In Figure 3, the values are organized into two groups. From Figure 4a–i the parameters
correspond to locations where Holothuria species are found, while from Figure 4b–j where
species were not identified. The analysis showed that in stations where sea cucumbers were
noticed, temperature changes most rapidly near the surface. The highest peak observed
at the surface decreases rapidly up to 10 to 15 m, where in most cases is stabilized. More
specifically, at stations S7 and S14, temperature started to decline below 15 m while in other
stations the decline started at ~10 m. Chl-a concentration showed a significant increase
at station S7 where the most Holothuria were observed. Oxygen concentration showed a
slight increase at station S14, compared to other stations. Values of salinity showed the
same increased pattern with no major changes at all stations. As for pH, the variation was
almost identical at all stations.

In stations where sea cucumbers were absent, the physical parameters showed a
variation according to depth. Temperature showed minimum changes at stations S6 and
S13 compared to other stations. On the other hand, Chl-a concentration increased rapidly
at station S16 below 30 m, in contrast to other stations. Oxygen values remained almost the
same at all stations. Salinity concentration increased rapidly over 38.5 psu in station S6,
while at station S5 the recorded values of salinity were below 38 psu. At all other stations,
there were not recorded any significant changes according to depth at salinity values. As
for pH, no change was recorded whatsoever.
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Figure 4. Depth profiles of five physicochemical parameters: temperature (a), Chl-a (c), oxygen (e)
salinity (g) and pH (i), concentrations in the stations where sea cucumbers were found and depth
profiles of temperature (b), Chl-a (d), oxygen (f), salinity (h) and pH (j), concentrations in the stations
where sea cucumbers were absent.

3.3. Spatiotemporal Variati Ons of SST, Chl-a and Particulate Organic Carbon [POC]

Based on the satellite products, the monthly time series was extracted. Firstly, the
average values for the study area were estimated. The highest average daytime monthly
SST value is observed in August (~28 ◦C) and the lowest during February (~11 ◦C). From
the night-time dataset, the lowest SST is in March (12.8 ◦C) and the highest during August
(~26.6 ◦C). In general, during the twenty-year time series, the maximum daytime SST values
are mostly observed in August, during the warm period of July and August, while the
lowest values are in February and March, for both daytime and night-time (Figure 5a,b). The
mean monthly values of Chl-a concentration range between 0.092 mg/m3 and 0.879 mg/m3,
during July 2001 and May 2011, respectively (Figure 5c). POC ranged from 42.184 mg/m3

to 186.044 mg/m3, following almost the same monthly pattern as for Chl-a. The highest
concentration of POC was recorded in January 2014 and the lowest in June 2002 (Figure 5d).

As a second step, the slopes for the time series are estimated for each pixel of the MPA
and for each parameter. The slope was averaged over the entire study area for SST daytime,
SST night-time, Chl-a and POC. In all cases a positive trend (Figure 5) is observed. The
linear trends, for the whole time series, are 0.029 ± 0.007 ◦C/year and 0.030 ± 0.007 ◦C/year
during daytime and night-time, respectively (Figure 5a,b). For Chl-a, the linear trend is
0.000076 ± 0.00014 mg/m3/year (Figure 5c) and for POC 0.029 ± 0.038 mg/m3/year
(Figure 5d). All the trends provided are statistically significant at the 95% level [p ≤ 0.05].
Table 1 shows the increased min and max values during the twenty years. Figure 6 shows
the spatial distribution of the slope for the four parameters. Each dot corresponds to the
center of the pixel. The mean SST slope for daytime, of the entire study region, reveals
a clear increasing trend in the north-western part of the MPA while the same increasing
trend is observed in night-time as well. However, the increasing SST trend is stronger
during night-time compared to daytime. Meanwhile, the Chl-a slope distribution shows an
increasing trend in the southwest part of the MPA (Figure 6c). POC slope concentration is
increased in north-eastern and southern part of the MPA during the whole time series.
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Figure 5. Variability of satellite products average data from 2000 to 2020 of annual trend and slope
for (a) SST daytime, (b) SST night-time, (c) Chl-a and (d) POC.
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Table 1. Monthly average minimum and maximum slope for physicochemical variables, as extracted
by the satellite products, for the whole study area and their corresponding increase during the
twenty years.

SST [Daytime] SST [Night-Time] Chl-a POC

Per Month ◦C Per Month ◦C Per Month Mg/m3 Per Month Mg/m3

min 0.002 0.47 0.0040 0.96 0.000027 0.0064 0.0035 0.8

max 0.005 1.09 0.0053 1.28 0.000138 0.0331 0.0722 17

The average monthly SST slope during daytime shows that lowest values usually
occur during the cold season (winter–autumn), while in warm season (summer–spring) it
the highest values of SST slope are observed, especially in the northwest part of the MPA.
For the whole time series, the highest increase of the SST slope is observed in the western
and north-western part of the MPA. Spatially, Chl-a concentration is increased mainly in
the south-western part of the MPA, while there are some regions at the center of the study
area where high increases are observed during the whole time series. The POC slope shows
its highest peak in the southeastern and north-eastern part of the marine park (Figure 6d).

In Figure 7, the time series for each month are separated. For SST the variation does
not exhibit any extreme values between the months for all the years. For Chl-a and POC,
the values vary significantly according to the month and among the years. For example,
the Chl-a for May is much greater than any other month and for one year exceeds any other
month. Only for July, August and September the variations are low compared to the other
months for both Chl-a and POC. Although this refers to the averaged values for the whole
study area, it implies a considerable variation among months, which should be considered.
The study, therefore, carries on examining trends for all parameters on a monthly basis,
resulting in Figures 8–11. From these Figures, the values of slopes are different from those of
the entire time series, for all parameters. For example, the diversification between regions,
as shown in Figures 6 and 11, exhibits a different pattern.

The monthly SST slope in night-time shows an overall greater increase compared
to daytime during the 20-year study period (Figures 8 and 9). The Chl-a slope shows a
difference between the cold and warm season. Specifically, during September, October and
February there was a decrease in values in the whole study area, while for the rest of the
months there was an increasing trend, especially in the north and northwest areas, with
an exception for December, where the highest peak was observed in southeast part of the
MPA (Figure 10).

The monthly POC slope shows a negative increase during August and September,
while a greater increasing trend is observed especially in December, January, November
and May, mostly in the northeast part of the study area. In February, there is a negative
increase in the northwest part, in March a negative increase in north and east part, while in
April there is a negative increase in the whole east part of the MPA (Figure 11).
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4. Discussion

MPAs are ideal places for studying sea cucumbers, as their diversity is higher due
to lack of human activity [73]. There are specific species that show more abundance, as
they are perfectly adapted to some habitats, preventing other species from living there
and enhancing their reproduction rate [74]. Although the maturity of sea cucumbers is
affected by environmental conditions, the relationship between multiple oceanographic
factors does not cause any impact on the reproduction rate [75]. Multiple factors could play
an influential role in the growth and survival of juvenile sea cucumbers. Depth and ocean
acidification can decrease the population of Holothuria [76,77]. On the contrary, different
types of reefs may constitute an ideal place for their growth [78]. The mass of sea cucumbers
is increased by depth [79]. The salinity may be affected by atmospheric evaporation and
freshwater influxes, at the same time. The relationships among all these variables may be
impacted by other factors as well, as they are not exclusive to each other.
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“Increasing air temperature will increase water temperature and deteriorate water
quality conditions by accelerating the eutrophication process in water bodies, which in
turn could cause environmental and health related issues” [80]. Moreover, the interaction
between oceanic variables could have a direct impact on aquatic organisms, e.g., the SST
and Chl-a presented an opposite correlation [81]. All these conditions create a complex
environment for the planning of sampling and monitoring, especially for benthic species.
Thus, it is important for a marine biologist to be able to identify candidate areas for studying,
especially in the face of climate change. As the development and spread of species is not
an “instantaneous” situation, but the result of a long process, it was chosen to study the
trend of oceanic physicochemical parameters extracted from satellite data. This study was
organized within and around an MPA, where in situ measurements (CTD and diving) were
performed in the water column, important parameters for the existence of sea cucumbers
were recognized, and, finally, the use of satellite products over a twenty-year period were
examined in terms of the species abundance. This gives us a “superficial” indication of what
prevails in the benthic substrate. During the diving process, no Holothuria was recorded
for most sampling stations. In a few sampling stations two species were recorded, viz.
Holothuria poli and Holothuria tubulosa. The growth rate of Holothuria tubulosa is increased
under low water turbulence environments [82] and its population can be developed where
organic accumulation is increased [83].

Water temperature plays a fundamental role in the growth of some Holothuria species
(the higher the temperature, the greater the growth) rather than their survival [84]. For
some other sea cucumber species (Apostichopus japonicus) the high-water temperatures
(>20 ◦C) negatively affect their feeding and growth. At this higher temperature, they enter
the aestivating phase, while the ideal temperature for these organisms to be maintained
ranges between 14 ◦C and 15 ◦C [85]. Spawning (the process where the eggs and sperm
are deposited into water) in some Holothuria (Holothuria arguinensis) can be provoked
during periods of high temperature while gametogenesis (the process by which germ
cells are produced in an organism) occurred in periods of low range of temperature [86].
For other species (e.g., Australostichopus mollis), temperatures higher than 24 ◦C can be
lethal, negatively affecting growth and feeding rates [87]. In the study area, the CTD
measurements range between ~17 ◦C–~19 ◦C in both cases and below 15 m the values are
“stabilized” at ~14 ◦C. For each station, where Holothuria were found, there is a different
degree of temperature reduction (thermocline). Salinity is one of the most important
environmental factors with a tremendous impact on sea cucumbers, affecting their feeding,
growth, survival and their abundance in general [88,89]. Salinity at 30 and 45 ppt has a
negative impact on growth of Holothuria tubulosa, while Holothuria poli presents an increase
in growth rate during summer and winter. At a temperature of 15 ◦C and salinity of 30
and 45 ppt the juveniles entered the aestivation phase and there is a decline in their mass.
The highest specific growth and survival rate are obtained at salinity of 38 ppt in winter
conditions [15 ◦C] for both species, while a temperature of 25 ◦C and a salinity in the
range of 38–45 ppt for Holothuria poli and 38 ppt for Holothuria tubulosa during summer are
considered as optimum values. A salinity of 25 ppt turns out to be deadly for both species,
but such values were not recorded in the sampling area. Holothuria poli juveniles can adapt
better in higher salinities than Holothuria tubulosa, increasing its survival rate [90].

Salinity did not increase over 38 pst in S7, where the highest abundance of Holothuria
was recorded, as it is the optimal level for these species. For all the sample stations the
vertical values of salinity were very similar in the range 38–39 ppt, indicating that there is no
negative influence on the abundance. In terms of salinity, the conditions are more favorable
for Holothuria poli, but this does not seem to influence significantly in this study area. At the
sea surface there are variations of salinity that might be affected by the evaporation, as SST
is increased. Therefore, there is no further need for using satellite data related to salinity.

Regarding the SST, as one of the key factors, satellite data is analyzed for the whole
time series and for each month individually. On average, the SST trend of each pixel
throughout the study area, from daytime and night-time satellite images, shows that the
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trend maintains its positive sign in the 20-year period, which generally implies an increase
of SST. This is in accordance with an SST rise observed in the whole Mediterranean Sea
during the last decades [91–95]. For the whole time series, a higher increase is observed in
SST values during daytime in the western to northern parts, compared to the rest of the
MPA; generally, there is a greater increase during night-time compared to daytime.

Studying the monthly trend of SST, during daytime, the trend of SST shows greater
increase especially in May in the Northeast part of the MPA and in June in the western part.
On the other hand, during night-time, an increasing trend is observed, except from October,
in few areas in the eastern region and in small areas southeast in September. The highest
increase is observed during May in the northeast part of the MPA and in June throughout
the whole region. The SST slope shows significant seasonal variability. The highest increase
for the whole time series, for both daytime and night-time, occurs during September, while
the lowest is during October. A possible cause could be the weakening of the summer
Etesian winds over the eastern Mediterranean [96–98], along with the sea heat capacity. For
Holothuria tubulosa, feeding activity is increased during summer temperatures and is more
energetic during night-time [99]. The higher increase occurs in night-time during their
feeding activity and the higher trend is during May and June. This might be an indication
that the feeding activity is moving to the end of spring and beginning of summer.

Sea cucumbers consume a high amount of oxygen, needed during reproduction [100].
Similar studies showed that pH and Chl-a increased due to the presence of sea cucumbers,
while it was observed that low levels of dissolved oxygen consumptions were probably
caused by the decomposition of organic matter. Furthermore, it was noted that sea cu-
cumbers caused the increase of oxygen during their feeding. Chl-a showed an increase
in oligotrophic environments [101]. In the study area, the vertical profile of pH values is
similar for all the sampling stations. However, this is not the case for Chl-a, where there
are variations. At S7, where most Holothuria species were recorded, Chl-a concentration
increased rapidly five times up to 15 m, compared to other stations, where no significant
changes were noticed. Below 15 m there is an increase of Chl-a in higher depths [>30 m],
but in an area where no Holothuria were found. This can be justified since sea cucumbers
need a lot of organic matter for their feeding activity and growth.

For Chl-a concentration, as recorded by the satellite data, there was a slight increase
from 2000 to 2020, especially in western and south-western part of the MPA and close to
the areas with abundance as well. The average monthly distribution of Chl-a shows high
peaks in May reaching, in a case, over 0.5 mg/m3 and for the following months there is a
decline. High concentrations are observed from November to April and the lowest value
is shown in June. Therefore, during spring and winter periods the trend of concentration
of Chl-a is at its highest level. The monthly slope of Chl-a indicates the highest increase
mainly during May following with “patches” during June and winter months.

Similar results of another research on Holothuria tubulosa showed the effects of oceano-
graphic parameters. More specifically, for temperature, the best specific growth rate (SGR)
was recorded at 25 ◦C, while the lowest SGR at 30 ◦C and the negative SGR at 15 ◦C,
because at these specific temperatures, sea cucumbers start to aestivate and hibernate, re-
spectively. As for pH, this was between 7–7.8, which is optimum for breeding. Meanwhile,
oxygen values ranged from 7.2 to 8.5 mg/L. Salinity concentration was increased due to
evaporation [102]. POC is a food source for aquatic organisms. The POC concentration
increases when sea cucumbers are in the state of low metabolic process (aestivation in
summer and hibernation in winter period) and decreases in the feeding periods, show-
ing that sea cucumbers successfully absorb nutrients (such as macroalgae), from organic
matters in benthic environments, as they constitute important substances for their growth
and enhancement [103,104]. The study of average monthly variations showed that the
highest peak was observed during January and November with over 180 mg/m3 and
160 mg/m3, respectively, followed by May, while the minimum monthly average value
is noticed in June. In areas where the sea cucumbers are recorded, the trend of POC is
medium to low. The highest abundance was found on the center and northern part of the
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Kyra Panagia Island, at the S7 and S8, where POC has not shown a significant increase. In
general, POC concentration indicates a noticeably larger increase compared to Chl-a during
the twenty-year time, especially in the northeastern and southern part of the MPA during
the whole time series. The same pattern is observed in areas close to where Holothuria was
found. The monthly slope pattern indicates, in general, an increase during January, April,
May and June, close to areas where Holothuria are spotted. This is an indication for POC
availability for feeding.

5. Conclusions

Extensive studies of physicochemical parameters could improve our knowledge on
marine biodiversity and its dependence on environmental factors. The use of satellite
data could contribute significantly to the study of the interaction between oceanographic
parameters and the biology of benthic species (Holothuria) in coastal environments. Among
the parameters, which are vital to Holothuria, some are already available as products from
satellite data (such as SST, Chl-a and POC), providing information about their trend for a
long-term period. Examining only the average values for the whole study area and annual
variations of the parameters did not show any specific indication about the abundance.
Their spatiotemporal variability is of great importance for the environmental biology
of the benthic species. In order to identify areas with higher abundance, the study is
focused on monthly variations on a pixel basis. Areas where there is an increasing trend in
concentration of POC, are places for the development of sea cucumber species. The rise
of SST, in the long term, due to climate change, could create a warmer environment and
probably negatively affect the activities of sea cucumbers. This analysis could be the basis
for comparative studies in the future.
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102. Günay, D.; Emiroğlu, D.; Tolon, T.; Özden, O.; Saygi, H. Growth and Survival Rate of Juvenile Sea Cucumbers (Holothuria
Tubulosa, Gmelin, 1788) at Various Temperatures. Turk. J. Fish. Aquat. Sci. 2015, 15, 533–541. [CrossRef]

103. Gao, Q.F.; Wang, Y.; Dong, S.; Sun, Z.; Wang, F. Absorption of different food sources by sea cucumber Apostichopus japonicus
(Selenka) (Echinodermata: Holothuroidea): Evidence from carbon stable isotope. Aquaculture 2011, 319, 272–276. [CrossRef]

104. Ren, Y.; Dong, S.; Wang, F.; Gao, Q.; Tian, X.; Liu, F. Sedimentation and sediment characteristics in sea cucumber Apostichopus
japonicus (Selenka) culture ponds. Aquac. Res. 2010, 42, 14–21. [CrossRef]

http://doi.org/10.1111/j.1365-2109.2005.01325.x
http://doi.org/10.1016/j.fishres.2017.03.007
http://doi.org/10.1016/j.aquaculture.2012.06.024
http://doi.org/10.1007/s00382-019-04661-z
http://doi.org/10.1109/IGARSS.2006.287
http://doi.org/10.3390/rs12010132
http://doi.org/10.3390/rs12172687
http://doi.org/10.1007/s00024-017-1739-z
http://doi.org/10.1175/JAS-D-13-035.1
http://doi.org/10.1007/s00704-011-0443-7
http://doi.org/10.1007/s00382-013-1936-0
http://doi.org/10.3354/meps092201
http://doi.org/10.3389/fphys.2020.00283
http://www.ncbi.nlm.nih.gov/pubmed/32300308
http://doi.org/10.4194/1303-2712-v15_2_41
http://doi.org/10.1016/j.aquaculture.2011.06.051
http://doi.org/10.1111/j.1365-2109.2010.02483.x

	Introduction 
	Materials and Methods 
	Study Area 
	In Situ Data 
	Satellite Database 

	Results 
	Species Abundance 
	Physicochemical Parameters 
	Spatiotemporal Variati Ons of SST, Chl-a and Particulate Organic Carbon [POC] 

	Discussion 
	Conclusions 
	References

