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Study of the variation of the optical 
properties of calcite with applied 
stress, useful for specific rock 
and material mechanics
Gianfranco Ulian & Giovanni Valdrè  *

Calcite (CaCO3, trigonal crystal system, space group R3c ) is a ubiquitous carbonate phase commonly 
found on the Earth’s crust that finds many useful applications in both scientific (mineralogy, petrology, 
geology) and technological fields (optics, sensors, materials technology) because of its peculiar 
anisotropic physical properties. Among them, photoelasticity, i.e., the variation of the optical 
properties of the mineral (including birefringence) with the applied stress, could find usefulness 
in determining the stress state of a rock sample containing calcite by employing simple optical 
measurements. However, the photoelastic tensor is not easily available from experiments, and 
affected by high uncertainties. Here we present a theoretical Density Functional Theory approach to 
obtain both elastic and photoelastic properties of calcite, considering realistic experimental conditions 
(298 K, 1 atm). The results were compared with those available in literature, further extending the 
knowledge of the photoelasticity of calcite, and clarifying an experimental discrepancy in the sign of 
the p41 photoelastic tensor component measured in past investigations. The methods here described 
and applied to a well-known crystalline material can be used to obtain the photoelastic properties of 
other minerals and/or materials at desired pressure and temperature conditions.

From the mineralogical perspective, calcite (CaCO3, space group R3c , rhombohedral-I class) is an anisotropic 
crystalline phase formed by layers of CO2−

3  anions, with covalent C–O bonds, alternately stacked to layers of Ca2+ 
ions held together by ionic interactions1. In addition, this mineral can be considered a model of heterodesmic 
structure, because it presents different types of bonds between the atoms and/or atomic groups. A graphical 
representation of the crystal structure of calcite is presented in Fig. 1.

Due to its structural, elastic, and optical properties, calcite is an important mineral in the scientific and tech-
nological fields, with wide applications in mineralogy, geology, chemistry, materials science, optics, and instru-
mentation engineering2–4. Calcite is one of the most birefringent materials (δ = 0.172, with δ being birefringence), 
where its transparent variety is known as Iceland spar. In general, birefringence derives from the anisotropic 
refractive indexes of the mineral, which in turn are related to its dielectric (second-rank) tensor. When a crystal 
is deformed by a stress (described with a second-rank tensor), its optical properties change according to the 
photoelastic (or elasto-optics, p) and piezo-optics (π) fourth-rank tensors, which correlate the variations of the 
inverse of the dielectric tensor with the applied deformation. The relationship between the second-rank stress 
tensor σ to the second-rank pure strain tensor η is given by the generalized Hooke’s law,

and

where Cijkl and Sijkl are the components of the fourth-rank stiffness and compliance tensors C and S, respectively, 
with S = C–1. The indexes i, j, k and l represent Cartesian directions x, y and z. Both stress and strain tensors are 
symmetric, hence their independent components are 6 and the 81 elastic components reduces to 36. By using 
the Voigt’s notation, pairs of Cartesian indexes can be mapped by a single index, so that just two indexes v, u = 1, 

(1)σij = Cijklηkl

(2)ηij = Sijklσkl
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…, 6 can be used, where 1 = xx, 2 = yy, 3 = zz, 4 = yz, 5 = xz and 6 = xy5. With this notation, the fourth-rank elastic 
tensor C is represented by a symmetric 6 × 6 matrix and the stress–strain relation can be rewritten as σv = Cvuηu 
and ηv = Svuσu . In terms of crystal lattice, the components of the stiffness matrix are defined as

with Ω the unit cell volume and E the energy of the system. This relationship shows that the terms Cvu and Cuv 
are equivalent, resulting in the symmetry of the C and S matrices and in the further reduction from 36 to 21 
independent elastic components.

For all but isotropic (cubic) crystalline materials, the dielectric constants are described by a second-rank 
tensor ǫ , which determines the optical indicatrix of the system. In the case of calcite, the optical indicatrix is 
negative, because the extraordinary refractive index, nε, is lower than the ordinary one, nω. When the crystal is 
strained, the variation of the inverse dielectric tensor ǫ−1 can be related to the amount of induced strain by means 
of the fourth-rank photoelastic (Pöckels’) tensor p, whose components are known as elasto-optic or strain-optical 
coefficients. Hence, the elasto-optic constants can be calculated as

where �ǫ−1
ij  are the differences between the strained and unstrained inverse dielectric tensor. As in the case of the 

elastic tensor, it is possible to reduce the fourth-rank Pöckels’ tensor to a 6 × 6 matrix, where pvu = ∂�ǫ−1
v

/

∂ηu . 

(3)Cvu =
(

∂2E
/

∂ηv∂ηu
)

�−1

(4)pijkl = ∂�ǫ−1
ij

/

∂ηkl

Figure 1.   Rhombohedral cell of calcite, viewed along two crystallographic directions, [100] and [001] in the 
upper and lower panels, respectively. In the upper panel, the stacking of CO2−

3
 and Ca2+ layers are clearly visible, 

whereas in the lower panel, the polyhedrons indicate the octahedral coordination of the Ca2+ ions in between 
the oxygen belonging to the carbonate groups.
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Given the stress–strain relationship previously introduced, the piezo-optic tensor π, i.e., the fourth-rank tensor 
whose πvu components correlate the �ǫ−1

v  variations with the stress σu, can be obtained with

and

It is worth mentioning that, although the elastic tensor of a material is symmetric, the photoelastic one is 
generally not, thus pvu ≠ puv and πvu ≠ πuv and both p and π have 36 independent components. This knowledge 
finds its usefulness in the determination of the stress state of rocks and materials and/or for the analysis of frac-
tures in rock samples containing calcite, if the photoelastic and/or piezo-optic properties are accurate enough6,7.

The photoelasticity of calcite was experimentally determined and widely published in the past literature, where 
we observed and reviewed quite scattered results, with the same photoelastic tensor component showing high 
variation up to about 200%, leaving the reader doubtful and confused (see for instance refs8–12). This wide range 
and scattering of results is associated to the experimental methods employed to characterize photoelasticity and 
piezo-optics of materials, which are complex and involve the measurements of different quantities, e.g., elastic 
properties and refractive indexes, on specifically cut and prepared samples13–15. It must be also emphasized that 
the just cited properties were determined in several studies carried out by various researchers, who performed 
the measurements in different experimental conditions and instrumental setups, resulting in scattered data 
with different accuracies16. For example, the calcite photoelasticity was measured by variations of refractive 
index8,9, Brillouin scattering10 and analysis of Raman spectral intensities12, where each technique presented dif-
ferent degrees of accuracy. In fact, as also discussed by Andrushchak and co-workers17, some of the employed 
experimental means (e.g., Brillouin scattering techniques) are accompanied by very high uncertainties, which 
often lead to ill-defined photoelastic/piezo-optic constants, in particular on their sign. Indeed, this is the case 
of the photoelastic tensor component p41 of calcite, whose sign disagrees between the different experiments as 
reported in the references10,18.

Here, we propose a theoretical (Density Functional Theory, DFT) investigation of the photoelastic and piezo-
optic properties of calcite to further extend the knowledge of the optical properties of this material, and to aid 
answering the above cited uncertainties and cross-correlating the simulated and experimental data. This work 
aims also at showing the interested reader a possible way to calculate and model this physical property for other 
minerals and/or materials of interest for both mineralogical, geological and materials science applications.

Structural and dielectric properties of calcite.  We performed first-principle DFT simulations to cal-
culate the photoelastic properties of calcite, both at absolute zero (standard DFT settings) and in typical experi-
mental conditions (298 K, 1 atm), using two well-known approaches, PBE-D2 and B3LYP-D*, which include the 
effects of long-range interactions (see the Methods section for details).

The necessary starting point to calculate the photoelastic properties of calcite is given by a good description of 
both the crystal structure and the dielectric properties. The simulation results related to the equilibrium geometry 
of calcite are reported in Table 1. It can be noted that the inclusion of long-range interactions via a semi-empirical 
scheme produced a unit cell that is closer to the X-ray diffraction refinement found in literature19 and reported in 
Table 1. At 298 K and with the inclusion of van der Waals correction, the unit cell volume is in line with that of the 
XRD refinement at the same conditions, with only a slight overestimation for both functionals (ΔΩPBE-D2 =  + 2.0%,  

(5)π = pS

(6)p = πC.

Table 1.   Calculated structure (unit cell parameters a and c, volume Ω, C–O bond distance dC–O and Ca–O 
interaction distance dCa–O), dielectric tensor components (static ǫ0 and high-frequency ǫ∞ ), refractive index 
(ordinary nω and extraordinary nε) and birefringence (δ) of calcite, obtained at DFT level with PBE-D2 
and B3LYP-D* functionals corrected for long-range interactions in static condition (0 K) and at 298 K (at 
1 atm = 0.0001 GPa). a 19; b24; c20; dPresent work (0 K); ePresent work (298 K).

Experimental PBEc PBE-D2d PBE-D2e B3LYPc B3LYP-D* d B3LYP-D*e

a (Å) 4.991a 5.039 5.020 5.032 5.037 5.028 5.041

c (Å) 17.062a 17.402 16.955 17.118 17.330 16.968 17.116

Ω (Å3) 368.1a 382.7 370.1 375.4 380.8 371.5 376.7

ΔΩ (%) 0a + 4.0 + 0.5 + 2.0 + 3.5 + 0.9 + 2.3

dC–O (Å) 1.2840a 1.2978 1.2952 1.2963 1.2878 1.2860 1.2870

dCa–O (Å) 2.3590a 2.3900 2.3607 2.3733 2.3907 2.3695 2.3818

ǫ0xx 8.5b – 11.26 10.53 7.8 8.54 8.40

ǫ0zz 8.0b – 9.15 8.11 6.4 7.50 7.00

ǫ∞xx 2.7b – 2.80 2.78 2.6 2.59 2.57

ǫ∞zz 2.2b – 2.20 2.19 2.1 2.08 2.06

nω 1.640–1.660b – 1.674 1.668 – 1.609 1.603

nε 1.486b – 1.483 1.479 – 1.441 1.437

Δ 0.1540–0.1740b – 0.191 0.189 – 0.168 0.166
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ΔΩB3LYP-D* =  + 2.3%). To our knowledge, this is the first time that a proper treatment for long-range interactions 
is included in the calculation of the total DFT energy for calcite at room temperature. As expected, because of 
the heterodesmic nature of calcite, the dispersive forces are more effective on the c lattice parameter than on the 
a = b one, since in the trigonal unit cell of the mineral there are layers of Ca2+ ions alternately stacked (along the 
z direction) with layers of CO3

2– anions (see Fig. 1). In this regard, the proposed approach including the disper-
sive forces correctly describes the Ca2+–O2– attractive interactions, resulting in an optimized distance between 
the layers, and gives a correct description of the unit cell of a crystal, which is mandatory for obtaining reliable 
structure-dependent properties, such as vibrational20,21, elastic22 and photoelastic ones23.

Table 1 reports also the static and high-frequency dielectric constants ( ǫ0 and ǫ∞ , respectively), the refractive 
index n and the birefringence δ. At ambient conditions (298 K, 1 atm), the components of the static dielectric 
tensor along the xx and zz directions are in good agreement with the experimental and theoretical ones tabulated 
in literature ( ǫ0xx = 8.5, ǫ0zz = 8.0)24,25. In general, PBE-D2 data are slightly higher than those calculated at B3LYP-
D* level, with the maximum difference of ca. + 18% on ǫ0xx.

Elastic and photoelastic properties of calcite.  We report in Table 2 the elastic (Cvu), photoelastic (pvu) 
and piezo-optic (πvu) constants calculated at PBE-D2 and B3LYP-D* level of theory. Let us discuss first the elastic 
moduli, where it can be noted that at 298 K both functionals corrected for the long-range interactions provide 
a good description of the stiffness tensor components, with respect to the experimental results of Dandekar26 
and Chen and co-workers27, with values slightly increased by about 10%. In fact, it is well-known that, even by 
including the thermal effects, there is a small overestimation of the elastic moduli because of the Pulay stress, i.e., 
an effect due to the incompleteness of the basis sets. This effect occurs during the derivation of the basis sets with 
respect to the position of the atoms and slightly increases the values of the elastic tensor components.

The elastic constants C11, C33, C44 and C66 obtained with the hybrid B3LYP functional are about 2–6% higher 
than those calculated with PBE, while the other stiffness components show an underestimation of about 1%. This 
is a common figure of the two approaches because the standard generalized-gradient approximation functional 
is associated to both underbinding between atoms and underestimated bulk moduli for ionic compounds, as 
recently shown by Zhang and co-workers28. For solids as calcite, the use of hybrid functionals that include a 
fraction of exact Fock exchange is preferred because they are more accurate in the simultaneous description of 
both structural (lattice) and energy (e.g., cohesive) properties22,28,29.

The photoelastic pvu and piezo-optic πvu components obtained from our DFT simulations (at 0 K and 298 K) 
for ω = 0 are reported in Table 2, together with those obtained by different experimental measurements9–12. In 

Table 2.   Calcite elastic (Cvu, GPa), photoelastic (pvu, dimensionless) and piezo-optic (πvu, TPa–1) components 
of the corresponding fourth-rank tensors, expressed in Voigt’s notation. a 26, b27, c10, d9, e11, calculated using 
results from Nelson et al.10.

Elastic constants

C11 C33 C12 C13 C14 C44 C66

PBE-D2 (0 K) 161.47 84.01 66.09 59.75 – 20.80 35.64 47.69

PBE-D2 (298 K) 154.06 80.92 61.56 55.29 – 19.02 33.48 46.25

B3LYP-D* (0 K) 163.94 89.65 63.75 59.43 – 20.60 37.35 50.09

B3LYP-D* (298 K) 156.47 86.03 59.85 55.13 – 18.86 35.24 48.31

Experimental (298 K)a 146.3 85.3 59.7 50.8 – 20.8 34.0 43.3

Experimental (298 K)b 149.4 85.2 57.9 53.5 – 20.0 34.1 45.8

Photoelastic constants

p11 p12 p13 p14 p31 p33 p41 p44

PBE-D2 (0 K) 0.100 0.180 0.215 – 0.026 0.267 0.159 – 0.052 – 0.054

PBE-D2 (298 K) 0.104 0.179 0.215 – 0.026 0.269 0.159 – 0.058 – 0.052

B3LYP-D* (0 K) 0.113 0.190 0.224 – 0.018 0.266 0.169 – 0.050 – 0.053

B3LYP-D* (298 K) 0.116 0.190 0.225 – 0.022 0.267 0.170 – 0.054 – 0.051

Experimental (296 K)c 0.062 0.147 0.186 – 0.011 0.241 0.139 – 0.036 – 0.058

Experimental (298 K)d 0.095 0.189 0.215 – 0.006 0.309 0.178 0.010 –0.09

Experimental (298 K)e - - 0.346 – 0.011 0.113 0.224 – 0.002 – 0.058

Piezo-optic constants

π11 π12 π13 π14 π31 π33 π41 π44

PBE-D2 (0 K) – 0.861 0.685 2.683 – 1.628 1.082 0.349 – 1.181 – 2.895

PBE-D2 (298 K) – 0.784 0.705 2.716 – 1.636 1.145 0.400 – 1.230 – 2.949

B3LYP-D* (0 K) – 0.606 0.649 2.473 – 1.184 1.034 0.515 – 1.027 – 2.562

B3LYP-D* (298 K) – 0.577 0.701 2.537 – 1.322 1.088 0.585 – 1.064 – 2.584

Experimental (296 K)c – 0.85 0.65 2.30 – 1.29 1.14 0.18 – 1.10 – 3.18

Experimental (298 K)d – 0.60 0.90 2.48 – 1.09 1.55 0.44 – 0.66 – 3.40
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the next paragraphs, we discuss the present simulation results with those experimentally derived by Pöckels9 
and Nelson et al.10.

Our theoretical study suggests that the p41 photoelastic constant is negative in the selected crystal orientation 
(crystallographic a-axis and c-axis parallel to the – x and z Cartesian directions, respectively). As also suggested 
by Erba and Dovesi23, this discrepancy on the sign of the photoelastic component could arise from the finite wave-
length of the laser sources used in the different experimental studies. Indeed, our theoretical photoelastic and 
piezo-optic constants of calcite reported in Table 2 were obtained at zero electric field frequency (ω = 0, λ = ∞), 
but it is known that the experiments generally employ monochromatic lasers centred at a specific wavelength, 
hence the experimentally derived photoelasticity does not correspond to that of the static limit. To check if the 
finite wavelength could be the same source of discrepancy experimentally observed in calcite, and at the same 
time to show how it affects the pvu components, we calculated the fourth-rank tensor p at different λ between 300 
and 1000 nm (hence, at electric field frequency ω ≠ 0) at the PBE-D2 level of theory, both at room temperature 
(298 K) and in static conditions (0 K). The results are graphically reported in Fig. 2, showing that all but the p14 
tensor component have a dependence on the wavelength λ.

In detail, there is a strong variation of the strain-optical components for 300 nm < λ < 500 nm, then the 
pvu tensor components asymptotically reach the value calculated at the λ = ∞ limit, with a trend of the form 
pvu(�) = −k

/

�+ pvu(∞) within the 300 nm–1000 nm range. The p41 value as a function of λ is always lower 
than zero (Fig. 2b), and no change of sign in the explored wavelength range was observed. Hence, this analysis 
showed that for calcite the experimental ambiguity of the sign of the p41 photoelastic component is not related to 
the laser source employed in the experiments, but it could be related to some instrumental uncertainties or in the 
orientation of the crystal during the measurements carried out by Pöckels9. Similar discussions were proposed 
in a relatively recent review by Mytsyk30, who explained that for some crystal classes (such as 3m ) the choice of 
the reference system can influence the sign of shifting and rotating piezo-optic components.

Most of the pvu components show a variation between the values calculated at room and absolute zero tem-
peratures, Δpvu = pvu(298 K) – pvu(0 K) (Fig. 2c,d), which asymptotically reaches zero as a function of λ. The 
calculated Δpvu are in absolute terms higher for λ < 500 nm. The exceptions to this trend are given by the p14 and 
p44 components, whose temperature differences are almost constants (Fig. 2d).

Our work provides the first ab initio determination of the photoelastic and piezo-optic tensor components 
at 0 K and at 298 K of calcite, together with their related quantities (crystal structure, optical and elastic proper-
ties), showing the relevancy of the use of quantum mechanical methods in this research field. The p and π ten-
sors are very stable with respect to internal DFT parameters, meaning that theoretical simulations performed 
within this framework are suitable for this kind of characterization. This work further extends the knowledge 
of important physical properties of anisotropic and heterodesmic crystals, providing a complete description as 
a function of λ of the photoelastic (strain dependent) and piezo-optical (stress dependent) response of calcite, 
which can be employed to analyse the state of stress and strain within a geological sample and/or a material and 
envisage other possible applications. In addition to being useful to clarify potential ambiguities in the sign of 
photoelastic/piezo-optic constants determined experimentally, the theoretical approach here exploited is indeed 
extremely convenient and useful to cross-check the data, because experimental acousto-optical techniques are 
cumbersome and complex. In fact, Andrushchak and collaborators16 showed that with optical interferometry 57 
measurements on 16 specifically cut samples are necessary to obtain the 36 independent photoelastic constants, 
and, for a trigonal crystal of the 3m class, 11 measurements on 2 samples are still needed. The present approach 
could be extremely useful also to model the photoelastic and piezo-optic behaviour of other anisotropic crystals, 
such as those recently developed by Tear and co-workers31,32.

Methods
Computational approach.  In the present work, the investigation of the photoelasticity of calcite was con-
ducted within the Density Functional Theory (DFT) framework, employing the CRYSTAL17 code33. Regarding 
the Hamiltonian, we used both the standard generalized gradient approximation (GGA) functional developed 
by Perdew–Burke–Ernzerhof (PBE)34, and the hybrid B3LYP35,36. We studied the effects of different DFT func-
tionals on the calculated properties of the material and, in this case, both PBE and B3LYP are well-established 
functionals for solid state physics applications. However, a typical drawback of the selected Hamiltonians is the 
lack of adequate treatment of long-range interactions, which we here accounted for by means of the DFT-D2 
scheme37. To this purpose, we employed a specific parametrization of the selected correction for dispersive forces 
for B3LYP, labelled as B3LYP-D*38. The multi-electron wave function was constructed using a linear combina-
tion of atomic orbitals, which in turn are described as Gaussian-type functions. We employed for calcite a basis 
set that was optimized in the previous work of Valenzano and co-workers20, more specifically the one labelled as 
BSD (basis set D) in the cited work. The total energy was calculated by sampling the First Brillouin zone with a 
6 × 6 × 6 Monkhorst–Pack mesh (32 irreducible k-points), setting the tolerances for the self-consistent field loop 
to 10–8 Ha.

Dielectric tensor.  The electronic dielectric tensors at equilibrium, �ǫ(0) , and at each deformation step, �ǫ(η) , 
were calculated according to the following expression reported by Erba and Dovesi23:

with �α and Ω being the electronic polarizability tensor and the unit cell volume, respectively. The polarizability 
is evaluated analytically with a coupled-perturbed Hartree–Fock/Kohn–Sham (CPHF/KS) approach adapted 
for solid systems as described by Ferrero and co-workers39–42. It is a self-consistent, perturbative method that 

(7)�ǫ = 1+
4π

�
�α
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Figure 2.   The independent Pöckels’ tensor components of calcite calculated at finite wavelengths λ at the DFT/
PBE-D2 level of theory, (a) p11, (b) p12 and p13, (c) p31 and p13 and (d) p44, p14, p41. The lines connecting the points 
are meant as a guide for the eye, whereas the dashed vertical line is the λ = 514 nm used in the experiments of 
Pöckels9 and Nelson et al.10, whose respective data at such wavelength are reported together with the theoretical 
ones. The black symbols are the photoelastic constants calculated in our simulations in static limit (λ = ∞). 
Panels (e) and (f) report the differences Δpvu between the calculated room temperature and 0 K photoelastic 
constants as a function of λ.
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describes the relaxation of the crystalline orbitals when affected by an external electric field �E . Taking the elec-
tronic charge as e = – 1 a.u., and as indicated by Gu et al.43, the general expression of the Hamiltonian Ĥ from 
this approach is given by:

where Ĥ0 and Ĥ ′ are the unperturbed and perturbed Hamiltonian operators, respectively, the latter being the 
sum of the static electric field, �Est (frequency ω = 0, wavelength λ = ∞), and the frequency-dependent one, whose 
amplitude and frequency of oscillation are �Eω  and ω, respectively. �r is the electron position vector in real space. 
However, the scalar potential operator Ĥ ′ = �E · �r is unbounded and breaks the translational symmetry, hence, 
for periodic structures, it is replaced by the following formula, as suggested by Maschio et al.44:

with �k indicating a reciprocal space vector, Eb(t) and ĥ(Eb(t)) being the b component of the applied electric field 
and of the gradient vector, respectively. The total energy of the system, Etot, under the effect of the electric field 
perturbation can then be expressed in terms of a perturbative series of the field components, indicated with the 
indexes i, j and k:

where E(0)tot  is the unperturbed total energy and the tensors of increasing rank μ, α and β are the permanent elec-
tric dipole moment, the polarizability and the hyperpolarizability, respectively, as reported by Ferrero et al.45. 
The interested reader can find in dedicated literature43–46 all the information related to CPHF/KS approach for 
periodic systems, and the detail of its implementation in the CRYSTAL code39–42, which allows calculating the 
electronic contribution to the dielectric tensor for both static (frequency ω = 0, wavelength λ = ∞) and frequency-
dependent (ω ≠ 0, λ ≠ ∞) electric fields.

Elastic and photoelastic constants.  The elastic moduli Cvu and photoelastic pvu constants were calcu-
lated using the following three independent strains of the unit cell, i.e., η1 = η2, η3 and η4 = η5 = η6, which were 
sufficient to obtain each independent elastic and photoelastic component for a rhombohedral-I crystal class23,47:

For each independent strain, we employed 5 deformations with strain amplitude δ ± 0.010 Å (step of 0.005 Å). 
The internal geometry (atomic positions) was optimized at fixed lattice parameters to include the nuclear relaxa-
tion, and then it was calculated the electronic dielectric tensors at both equilibrium, and strained configuration, 
�ǫ(0) and �ǫ(η) , respectively23.

The crystallographic axes of calcite were oriented with the crystallographic a-axis and c-axis parallel to the 
– x and z Cartesian directions, respectively. Within this convention, and according to Nye5, the independent and 
non-zero components of the stiffness tensor C for a crystal of rhombohedral-I class are:

where the dots in the 6 × 6 matrix are null elements and with C66 = (C11 – C12)/2. Similarly, we can define the 
photoelastic (Pöckels’) tensor p as:

where p66 = (p11 – p12)/2. By previous definition, the piezo-optic tensor π has the same structure as that of the 
photoelastic components:

(8)Ĥ = Ĥ0 + Ĥ ′ = Ĥ0 + �E · �r = Ĥ0 +
(

�Est + 2�Eω cosmωt
)

· �r

(9)Ĥ ′ = i�E · ei
�k·�r �∇ke

−i�k·�r =
∑

b

Eb(t)ĥ
(Eb(t))(�k)

(10)Etot = E
(0)
tot −

∑

i
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As shown in the above formulation, the piezo-optic matrix π can be subdivided in four 3 × 3 sub-matrices A, B, 
C and D. When the indexes v, u = 1, 2, 3, the πvu components are called the principal coefficients, which describe 
the relation between the principal refractive indexes and the normal stresses (sub-matrix A). For v = 1, 2, 3 and 
u = 4, 5, 6 (sub-matrix B), the piezo-optic components are referred as the shifting coefficients, connecting the 
variations of the principal refractive indexes with shear stresses. Sub-matrices C (v = 4, 5, 6 and u = 1, 2, 3) and 
D (v, u = 4, 5, 6) contain the so-called rotating and rotating-shifting piezo-optic components, which describe the 
rotation of the optical indicatrix under the effect of normal and shear stresses, respectively17.

The calculation of the structural, dielectric and (photo)elastic properties were conducted both in static con-
ditions, i.e., at 0 K without any thermal contribution, and at room temperature (298 K) at a pressure of 1 atm 
(= 0.0001 GPa). For the latter, we employed the quasi-harmonic approximation to introduce the temperature 
effect on the cited properties, as described in previous literature48–50. Five unit cell volumes, the equilibrium one, 
two compressed and two expanded, were used for the quasi-harmonic approximation. Finally, we employed the 
so-called “quasi-static approximation (QSA)” to describe the thermo-elasticity of calcite, which assumes that 
the stiffness depends only on the thermal expansion of the crystal as suggested by Destefanis et al.51, where, as 
explained, it was shown that QSA provides a qualitatively good description of the thermo-elastic constants.
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