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Chapter 1

Introduction

In this Thesis we will theoretically address some issues concerning the
Physics of ultracold Fermi gases, all of them with experimental relevance.
The field of ultracold gases, and more recently of ultracold Fermi gases, is
gathering a lot of experimental and theoretical interest for two main reasons:
the great control on the relevant parameters of the problem and the relative
simplicity of the minimal theory which is able to correctly describe the
system. Building upon this solid background, ultracold gases provided an
ideal laboratory for testing more refined theories and also for addressing
fundamental issues of quantum mechanics as well as for simulating more
complex physical systems such as those encountered in condensed matter.

Even if the effective hamiltonian of ultracold gases can be simple, due
to the diluteness of the system and the low temperature, which imply low
energy physics, the solution of the quantum mechanic equations governing
the state of these systems is not always simple. For the static properties
usually mean-field solutions exist or perturbative expansions can be pro-
duced in some regimes. However Quantum Monte Carlo (QMC) techniques
provide more accurate results especially in the strongly interacting regimes.
For confined systems it is possible to use QMC only for a few particles, so
that, for large number of particles, a fruitful combined use of Density Func-
tional Theory (DFT) and QMC is necessary. The study of the dynamics
of ultracold gases has received little attention with QMC techniques, due
to the intrinsic computational difficulty of the many-body problem, so that
general hydrodynamic equations are often used for studying the propagation
of smoothly varying perturbations.

In this Thesis we use QMC techniques for studying the problem of fer-
romagnetism in repulsive or effectively repulsive ultracold gases without a
lattice and the problem of the Bardeen-Cooper-Schrieffer to Bose-Einstein-
Condensation (BCS-BEC) crossover in two dimensions. We use DFT in
the Local Density Approximation (LDA) for calculating the density profiles
of ultracold Fermi gases in harmonic magneto-optical traps, starting from
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QMC equations of state. We study the propagation of first and second
sound in ultracold Fermi gases in cylindrical geometry, using the hydrody-
namic equations of superfluids.

The first project, which we report in Chap. [3] concerns itinerant ferro-
magnetism in fermionic gases in three dimensions. We study a system with
two species of fermions with attractive interaction, but in an excited state
with effective repulsion between the fermions. These results are compared
to those obtained with a purely repulsive model. The aim of the research
is to find the critical interaction at which a ferromagnetic transition takes
place, even in the absence of a lattice (itinerant ferromagnetism). We study
the magnetic susceptibility with increasing interaction, up to the divergence,
signaling the quantum phase transition. We also characterize the polarized
system, introducing a polaronic picture for high polarization.

The results we obtain are relevant in the present experimental and the-
oretical research concerning magnetism and superfluidity in the field of ul-
tracold gases, but also in relation to solid state physics, where there is still
a debate concerning the role of the lattice in ferromagnetic phenomena.

The second project, which we report in Chap. [ concerns the study of
an attractive Fermi gas in two dimensions, with the change in strength of the
interaction. This system shows the crossover from a superfluid BCS regime
to a BEC of molecules. Using Diffusion Monte Carlo we calculate such
observables as the energy per particle and the gap in the excitation spectrum,
finding an accurate description in the strongly interacting regime; moreover
we verify a property concerning the short range nature of the interaction
(Tan’s relation).

This study is of relevance for ongoing and in-preparation experiments in-
volving ultracold gases optically trapped in planar geometry, and it addresses
the general topic of the interplay between geometry and superfluidity.

The third project, which we report in Chap. [ concerns the density
profiles of ultracold trapped Fermi gases with population imbalance in the
strongly interacting regime of the BCS-BEC crossover in three dimensions.
We use LDA and the equations of state of uniform polarized Fermi gases
found with QMC, to quantitatively characterize the various shapes of the
density profiles as a function of interaction and the global population imbal-
ance. We interpret the density jumps in the profiles as signals of a quantum
phase transition from a normal to a superfluid gas driven by population im-
balance (Chandrasekhar-Clogston limit), finding good agreement with ex-
periments.

This study is relevant in interpreting the results in experiments concern-
ing imbalanced Fermi gases and in validating both the LDA approach and
the QMC equations of state for this system.

The fourth project, which we report in Chap. [6] concerns the study
of cylindrically trapped strongly interacting Fermi gases. By using the hy-
drodynamic equations and LDA, we characterize the low frequency modes
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(sound) with the change of temperature and the phase of the system. We
find peculiar differences with respect to uniform systems, depending on the
role of the dissipative terms in the hydrodynamic equations.

This study is relevant for future experiments aiming at the characteri-
zation of second sound in ultracold Fermi gases; moreover it again focuses
on the interplay between viscosity and geometry.

The results in this Thesis are published in three papers [PBGT10, [BG09,
BPS10] and a preprint [BG10].

In the rest of this introduction we review some general facts and theories
concerning ultracold Fermi gases. In Chap. [2| we provide a self-contained
introduction to the Variational and Diffusion Monte Carlo methods we use.
In Chapters [3]- [6| we report and discuss the results concerning the previously
outlined problems. In Chap. [7| we draw the conclusions.

1.1 Ultracold gases

From the experimental point of view, the field of ultracold gases has prof-
ited from the research in optics and in atomic and molecular physics. Laser
cooling and optical and magnetic trapping allowed for the manipulation of
large numbers of atoms; the use of Feshbach resonances, for changing the ef-
fective interaction between atoms, allowed for the exploration of many-body
physics with a high degree of control.

From the theoretical point of view, ultracold gases allowed for the sim-
ulation of long standing models and the verification of theoretical predic-
tions which were pure speculation before, in particular related to the Bose-
Einstein condensation (BEC) of Bose gases [AEM™95, [BSTH95, [DMA ™95
and to the crossover from Bardeen-Cooper-Schrieffer to Bose-Einstein con-
densation (BCS-BEC) in Fermi gases [BART04, BKCT04, RGJ04], ZSS™04].

Excellent reviews, which we refer to for the rich bibliography related
to this growing field of research, introduce to experimental and theoretical
aspects of ultracold gases [PS02, [PS03, [BDZ08] and in particular to Bose
gases [DGS99, [Leg01] and to Fermi gases [GPS08| [KZ0§].

The physical regime of ultracold gases is characterized by diluteness and
low temperature, in terms of three length scales: the range of the interaction
R (we do not consider here long range interactions); the mean interparticle
distance [ &~ n~%, n being the particle density and d the dimensionality; the
thermal de Broglie wavelength A\ = \/h/2mmkpgT, kp being the Boltzmann
constant, m the mass of an atom and 7T the temperature. The condition
of diluteness is expressed by the inequality R < [, while the temperature
can be considered low if R < Ap: under these two conditions the scattering
of particles is universal, not depending on the details of the interatomic
potential, but only on the lowest angular momentum scattering length a. In
case of bosons or fermions of different species the s-wave scattering length is
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the only relevant interaction parameter. When theoretically treating these
systems, pseudo-potential methods have been widely used [HY57, [(OP01],
while in this Thesis, for the microscopic calculations at zero temperature,
we use short range interactions such as the square well, hard sphere or soft
sphere potentials, in the universal regime nR? < 1.

While for relatively high temperatures ultracold gases can be treated as
classical gases, for very low temperatures these systems enter the quantum
degeneracy regime, where the statistics of particles plays a relevant role.
This physically very interesting regime is characterized by the inequality
[ < Ap. Since Ap can be considered as the size of the wavepacket corre-
sponding to a particle, the previous inequality corresponds to the loss of
distinguishability of nearby particles.

Below the degeneracy temperature, depending on statistics, interactions,
dimensionality and population imbalance, ultracold gases can undergo a su-
perfluid phase transition. Superfluid systems show spectacular coherence
phenomena, which are described in the previously cited reviews. A complex
order parameter ¥ can be introduced, whose phase 6 is related to a macro-
scopic irrotational superfluid velocity vs o« V0. In case of bosons in the
weakly interacting regime, the order parameter obeys the Gross-Pitaevskii
equation [Pit61l, [Gro61] and its modulus square can be interpreted as the
density of the system. In case of weakly attractive fermions an analogous
role is played by the Bogoliubov-de Gennes equations [De 66]. The equa-
tions of hydrodynamics of superfluids [Kha65] are able to describe these
systems at a macroscopic level even in the strongly interacting regime, pro-
vided local thermal and mechanical equilibrium are achieved, that is only
when sufficiently smooth and slow perturbations in the density are consid-
ered; however a precise preliminary derivation of the equation of state at
equilibrium is required.

1.2 Bose-Einstein condensation and Cooper pair-
ing

The correlation functions of ultracold gases can be characterized by off-
diagonal long range order (ODLRO) [Yan62], a property which is related to
superfluidity and implies it. ODLRO is caused by a macroscopic occupancy
of single particle orbitals (in case of bosons) or two-particle orbitals (in case
of two species of fermions with attractive interaction). At zero temperature,
both in three and two dimensions, ODLRO in a bosonic (fermionic) system
manifests itself by a non vanishing value of the off-diagonal sector of the
one-body (two-body) density matrix. In case of bosons this phenomenon is
called Bose-Einstein condensation [Bos24l [Ein25], while in case of fermions
with attractive interaction it is called condensation of Cooper pairs (from
the Bardeen-Cooper-Schrieffer theory of superconductivity [BCS57]).
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Let us be more precise and introduce the relevant correlation functions
in the case of two species of fermions, where the spin degree of freedom o is
involved. The field operators are indicated by W, (r), ¥} (7). The correlation
functions at T' = 0 are expectation values of products of field operators, in
the ground state of the system (or in the state of interest). The one-body
density matrix (OBDM) is defined as:

G (ri 7)) = (Wl (7)) Uo(ri)) - (1.1)

The diagonal part of the OBDM is the density. In the case of an homoge-
neous system with density n, for the o particles, the OBDM depends only
on the distance r = |r; — r;|. It is convenient to introduce the normalized
version, which goes to 1 as r — 0:

ne(r) = G (0,7)/ny . (1.2)

The off-diagonal part indicates the overlap between the original state and
that obtained by moving a particle from position 4 to position j, at a distance
r: it therefore measures the single particle coherence of the original state. In
the case of bosons, the OBDM does not decrease to zero at infinity if there
is a BEC, but flattens to a constant ng/n, which is the condensate fraction.
In the case of an ideal gas of fermions, for the 3D and 2D case the OBDM
is, respectively:

ng(r) :kir[sin (kpr) — kprcos (kpr)] ; (1.3)
ng(r) :kir:]l(k‘pr) ; (1.4)

where .J; is the Bessel function of first kind and order 1 and kp is the Fermi
wavevector, related to the total density as n = k‘% /27 in two dimensions and
n = k%/37 in three dimensions. The Fourier transform of the OBDM is
the momentum distribution ng, which is a step function in the case of non
interacting fermions.

The two-body density matrix (TBDM) is defined as:

A

G2 (o1, T2 Tos, ors) = (B, (r) TL (r3) T (1) T (72)) (1.5)

Again, in case of homogeneous systems, one position dependence can be
shifted to zero and it is convenient to normalize G2 with the densities,
g((i), = Gg‘), /Nengr. Some specific sectors of this matrix are the most mean-
ingful: the pair distribution functions, and the off-diagonal TBDM. The pair
distribution functions indicate the probability of having a ¢’ particle at a

distance r from a o particle in position zero:

G(0,7450,7,0)

@
/ 1.
9o0' (1) p—— (1.6)
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Figure 1.1: Pictorial view of the crossover from BCS pairing to a BEC of molecules.
Red and blue particles indicate the two species of fermions.

Assuming a clustering property, which is valid in the mean-field regime and
is exact in the case of non interacting fermions, one can expand the two-
body parallel spin distribution functions in terms of the OBDM: g((,%,) (r) =
1 — ng(r)2. The static structure factor S,/ (k), which is relevant in spec-
troscopy measurements, is related to the Fourier transform of the two-body

distribution functions in the following way:

Soar () = 1t Vgt [ (g2 (r) ~ Ue™. (1.7)

The off-diagonal TBDM indicates the two-particle coherence of the orig-

inal state: @)
G/ (0,0;7rq, 7
r) = i (005 l), =1 (1.8)
nin|

g'(

it is useful for fermions in a condensate regime, since in that case at large dis-
tance it flattens to (ng/n)?, where ng/n can be considered as the condensate
fraction.

1.3 BCS-BEC crossover

In this Thesis we consider various problems related to the BCS-BEC
crossover. This quite general model has received increasing attention since
its introduction by Leggett [Leg80] because of its applicability in the context
of quantum gases, superfluid 3He, high temperature superconductors and
nuclear physics. The general idea is that a single theory should be able to
describe a system of attractively interacting fermions of two species, from the
weakly interacting limit, where many-body BCS correlations are dominant,
to the strongly interacting limit, where the system becomes a BEC of dimers
(Fig. . Actually Leggett showed that the BCS variational wavefunction

[Wpes) = [ [ (ur + vwily. al _,)l0) (1.9)
k
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a<0

Figure 1.2: Dependence of the scattering length a on the external magnetic field B
in three dimensions. Close to the resonance By the behavior of a can be approxi-

mated by the formula a = a4 (1 — BA_iléo), where ap, is the background scattering

length and AB and By depend on the atomic species under consideration (see
[TTHK99, GKG™04, [CGJTT0]).

can be extended from weak coupling to strong coupling, qualitatively recov-
ering the expected bosonic limit. Many theoretical efforts have been put in
solving this problem with higher precision, among which in three dimensions
Quantum Monte Carlo methods provided a valid benchmark [ABCGO04].

In the field of ultracold gases it was possible to realize the BCS-BEC
crossover in three dimensions thanks to the ability of tuning the effective
interaction using Feshbach resonances [MVA95, ICFHT98, TAST98|. By ap-
plying an external magnetic field it is possible to tune the effective scattering
length of the atoms (Fig. , from very small values to virtually infinite
values (unitarity limit in three dimensions).

1.4 Properties of short range interacting systems

When a gas is dilute and with short range interactions, some analytical
and universal properties can be derived. Recently a number of them was
put in a general framework by Tan [Tan08al, [Tan08b].

For such a system in three dimensions, the many-body wavefunction has
the following asymptotic behavior [BP35l [HY57]:

Ti—T;

( ! 1 >®[Ti+rj,{rk},k7éi,j . (1.10)

‘Ti—Tj| B asp 2
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valid for |r; —r;| > R, where R is the range of the potential and asp is the
scattering length. In two dimensions an analogous expansion reads:

\I/(Tl...Ti...Tj...TN)—>

ri—T;

log <|Tz' —Tj|> @ [m—;rj,{m},k?éivj , (L11)

a2p

where agp is the 2D scattering length.
From these properties, which are also called cusp conditions, one can
derive the asymptotic behavior of ny in a system of fermions for large k (see

also [WCI0]):

C
N1k kfoo Nk kfoo F s (1.12)

where again the limit £ — oo has to be considered as kr < k < 27/R or

equivalently R < r < [. The constant C' is called the “contact” parameter.

(2)

Analogously, for the pair distribution function gﬁ in three dimensions:

2

@ ~ (37

g/ () = e (%FT) ; (1.13)
and in two dimensions:
2

@) ~ < (210 (- 1.14
00) = (20 () (114
An interesting Tan’s relation concerning the energy density u = %n

relates the contact parameter to the equation of state. In three dimensions

du h’kp 3 C
= C=— — 1.15
d(—1/kpasp) _ dmm g "L (1.15)
where €p is the Fermi energy, while in two dimensions
du R? C
= Cc=2 — . 1.16
dlog (kpasp)  27m ner k% (1.16)

In our Monte Carlo simulations, we use equations as a check
of the calculations, since, given the interaction parameter, the contact C'
extracted from the equation of state can be considered more precise than
the same estimate of C' obtained from the correlation functions.



Chapter 2

Monte Carlo method

The Monte Carlo method is a numerical stochastic approach to the cal-
culation of multidimensional integrals or to the solution of differential equa-
tions of many variables (two problems which are equivalent in many relevant
situations). The original idea was introduced in Nuclear Physics by Fermi
and then studied by Metropolis and Ulam (see [MU49] for a general intro-
duction).

The essence of the method is to interpret multidimensional integrals as
expectation values of some functions (observables) of the multidimensional
configurations, which are distributed according to a probability distribution
function (pdf) that one is able to sample from. These expectation values
are therefore estimated by sampling a relevant population of points in con-
figuration space (walkers), which are distributed according to the given pdf,
and taking the average of the observables calculated on the sampled walkers.
An uncertainty in the estimated observables is intrinsic, given the numer-
ical and stochastic nature of the calculation, but it can be systematically
estimated and reduced with longer samplings or more efficient algorithms.

In the developing of the method the introduction of the Markov Chain
Metropolis-Hastings acceptance/rejection technique was crucial [MRR™53|
Has70], because it allowed the sampling of arbitrarily complex pdfs. Again,
it was first introduced in Physics and only after many years it arouse a
significant interest in the field of Statistics [CG95].

In the context of Quantum Physics, major developments were the Varia-
tional Monte Carlo, introduced by McMillan [McM65], the Green’s function
Monte Carlo, introduced by Kalos [Kal62, [Kal70] who also introduced im-
portance sampling, and the Diffusion Monte Carlo, introduced by Anderson
[And75] and refined by Reynolds, Ceperley and Alder [CA80) Rey82].

In this Chapter we will review some basic concepts about numerical
integration (Sec. , we will introduce the Markov Chain Monte Carlo
method (Sec. and its application in the Variational Monte Carlo method
(Sec. [2.3)); we will then introduce the Diffusion Monte Carlo method both for

9
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bosons (Sec. and with importance sampling (Sec. and for fermions
(Sec. [2.6); we will finally introduce the wavefunctions that we used (Sec.
[2.7), we will describe the calculation of correlation functions (Sec. and
we will discuss the issue of systematic errors (Sec. .

2.1 Integrals and Central limit theorem

In studying the properties of few- and many-body systems we are quite
often driven to the calculation of multidimensional integrals, either needed
for solving differential equations of motion, or involved in the evaluation
of expectation values or averages in certain quantum or statistical distribu-
tions.

Such integrals can be calculated analytically in few relevant cases, but
as soon as the number of degrees of freedom (DOF) is large most of the
problems need some simplifications in order to be analytically solved, thus
introducing some approximations, which are not always controllable. The
positive feature of analytical results is the closed form of the solutions: if
the problem depend on a set of parameters, a single analytical expression
contains all the dependence on them.

When exact analytical results are not available and there is need for
precise results, so that one wants to go beyond approximate analytical ex-
pressions, a possibility is to resort to numerical methods, which allow a more
and more accurate answer the more the algorithms are iterated by the com-
puter. The drawback of these methods is that the free parameters of the
problem have to be specified from the beginning for each simulation so that
the solution is known only in a discrete set of points in the parameter space,
and one has to resort to fitting methods in order to give a more exhaustive
answer.

The Monte Carlo methods are used to numerically calculate integrals
by using stochastic techniques; they are very competitive with respect to
other methods (see [KWO08] and [PTVE92]) if the number of DOF is very
large. Generally speaking, integration methods that calculate the values of
the integrand function on a grid of points for each dimension of integration
involve a number of operations which scales with a” where a is the num-
ber of operations needed for each dimension and N is the number of DOF,
while Monte Carlo methods scale as N, where b is some power depend-
ing on the algorithm; so for NV larger than some critical dimension Monte
Carlo methods are faster than any other integration method, given the same
accuracy.

We will profit of the close relation between integration and the calcu-
lation of expectation values in statistics. A general multivariate pdf in the
space RY is a function p(z) > 0 such that [p(z)dz = 1, where z is a
point in the space RY. The expectation value of an observable is defined
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as Elg(x)]l, = [g(z)p(z)dz. Particular cases are the mean value of z:

Elz ]|p [ xp(z )dm, and the variance of x, that is the second central
moment. 02 =E[(z — p)3l, = [(z — p)*p(z)dx.

Suppose that we want to numerically calculate the integral of a function

depending on one variable:
b
I:/ f(z)dz . (2.1)

Applying the Riemann definition of integrals we could simply partition the
support [a, b] into m segments [x;, z;11) and construct the sum

I=3" fla) (@i — i) ;
=1

if the partition is refined then the sum I converges to I. For definiteness let
us consider regular partitions such that

m

fzbiaZf(%');

m “
=1

in such way one obtains an estimate of I with an error that scales as 1/m? ;
extended summation rules can improve the scaling to 1/m* (see [PTVF92]).
The number of function evaluations is m so that the time for obtaining a
definite estimate of the error scales as a power of m. When considering mul-
tidimensional integrals, however, this power depends on the dimensionality,
so that the scaling is exponential on the number of DOF.

One can approach the issue of integration from another perspective, by
considering the integral as the expectation value of the function f(x),
with  being a random variable with uniform pdf (z) = u(z) = 1/(b—a), so
that

I = NE[f(@)]l (2.2)

where N = (b — a) is the normalization. It is possible to estimate this
mean value by sampling a large number of points from the uniform pdf and
summing over the values of f(z) in these points:

Bl @~ = = /(@)

The error on the estimate of the integral I can be evaluated by using the
central limit theorem. Actually the arithmetic average of m independent
and equally distributed random variables X = W is a random
variable whose distribution, in the large m limit, is a normal distribution
with mean px equal to the mean p, of the original random variables, and
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variance 0% equal to their variance divided by m, % = ¢2/m. This is valid
whatever the distribution of the original random variables is, under certain
regularity conditions which are not going to be discussed here (see [KWO0S]
for details). A good estimate for the variance of the variable f is

1 m

a?ms%:m ' (f (@) = f)?,

so that the error on our approximation of the integral I ~ A f can be

obtained as

(A1 = NP S (f ) = )P

One can reduce the variance of the result by using importance sampling.
This method is useful if one knows how to sample from a pdf(z) = g(z)
which has a shape similar to the integrand function f(z) so that their ratio
is smoother than the function f itself. One then rewrites the integral as:

I= /ab i]cégg(x)dm = NE [ﬁi” lg -

where the average is taken with the known distribution g. When approxi-
mating the integral with the sum I ~ N'L 3" f(x;)/g(;), with points ;
sampled from g(z), the variance of the estimated sum is smaller than in the
previous case, since f(z;)/g(z;) has fluctuations smaller than those of f(z;).

For some simple pdfs a direct sampling method is known. The uniform
distribution can be sampled by internal standard routines provided by any
compiler (in fact the sequence of numbers provided by these routines can
be considered pseudo-random numbers, in a sense discussed for example in
[PTVE92]). A probability distribution which will be useful in the following
is the Gaussian one, defined by:

1 _E-w?
e 202 ,with z € (—o0, 00) , (2.3)

9(x) = 2no

where p is the mean and o is the standard deviation; it can be sampled for
example by the Box-Muller algorithm [BM58]:

e Sample w1 and ue independently from the uniform distribution on the
interval [0, 1];

e calculate 1 = /—2loguy cos (2mug) and o = /—2log uy sin (27uy);

e x1 and xo are two independent Gaussian random variables, with u = 0
and o0 =1,

e for generic mean and variance one takes x; — ox; + u.
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2.2 Monte Carlo sampling with Markov Chains

When the probability distribution to be sampled is complicated and
possibly multivariate, a general Monte Carlo sampling method, relying on
Markov chains, can be used. Let us therefore introduce some basic concepts
about Markov chains (see [HPS72]).

Let us consider a sequence {X,,} of random variables, each of which is
distributed according to pdf(X,) = m,(X,). For simplicity let X,, belong
to some finite set, even if we will consider also the continuum case in the
following. Let us introduce a rule for getting 7, (X,,), once the past “history”
{Xo, X1+ X1} is given: this is called the conditional probability of X,.
The sequence {X,,} is called a Markov chain if the conditional probability
of X, for Vn, is conditioned only by the previous element in the sequence,
Xn,12

PX,=jlXn-1=1,Xpn20=k Xy 3=1,---)=

where the notation ¢ — j is a simple guide to the eye that means that ¢ is the
starting point and j is the final point. In general the conditional probability
could also depend on the iteration index n, but here we only consider time
homogeneous Markov chains.

By definition of probability,

P(i—j)=0; (2.5)
Zp(z' —j)=1,Vi. (2.6)

J

Then the evolution of the probability distribution can be described by the
equation:

(X, =j) = an,l(xn,l =i)P(i — j), (2.7)

and the conditional probability P(i — j) can be interpreted as a transition
operator, or matrix.

An important concept, which will be useful for the purpose of using
Markov chains to sample from generic distributions, is the stationary distri-
bution of a Markov chain, defined by the relation:

n(j) =Y w(@i)P(i — j); (2.8)

%

this means that the distribution 7(7) is invariant under the action of the tran-
sition matrix. The existence of such a stationary distribution is guaranteed
if each state j can be reached by any other state ¢ in a finite number of steps
(irreducibility); moreover each state ¢ must be positive recurrent, meaning
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that the average number of steps T; for the state to appear again in the
Markov chain must be finite. If moreover there is no characteristic period of
recurrence, the chain is called aperiodic, and the stationary distribution 7 is
also an equilibrium distribution, in the sense that for any initial distribution
m0(Xp), the recursive action of the transition matrix asymptotically drives
the chain to :
lim P(Xo =i, X, = §) = 7(Xn = j) (2.9)

The previous conditions for the existence of an equilibrium distribution are
necessary and sufficient and are equivalent to saying that the Markov chain
is ergodic.

If a Markov chain is reversible, detailed balance holds, which is expressed
by the following condition:

m(J)P(j — i) = 7w()P(i — j) ; (2.10)

this is a sufficient condition for 7 to be the equilibrium distribution, provided
P is irreducible. Actually one can simply sum the above equation over i to
obtain Eq. .

We can now introduce the Metropolis-Hastings algorithm [MRRT53,
Has70] for sampling a given probability distribution 7 (z) (where x can be a
vector, that is 7 can be multivariate). This algorithm exploits the proper-
ties of reversible Markov chains in order to asymptotically sample random
variables from their equilibrium distribution. The initial distribution 7wy can
be arbitrary, for example uniform on the space which is considered, and
is represented by a collection of points belonging to that space, which are
usually called walkers. Each walker, for example at position x, evolves in-
dependently thanks so the action of the transition matrix P(zx,y), which
consists in the sampling of another point y in space from the distribution
pdf (y) = P(x,y); y will be the new position of the walker. If the transition
matrix P(x,y) simply adds a random variable to z in order to obtain y then
the chain is called a random walk. One reaches the equilibrium distribution
after a transient, by iterating the application of the transition matrix P(z,y)
over the entire population. After the transient, averages can be taken using
all the walkers at subsequent times.

The transition matrix in the Metropolis-Hastings algorithm is produced
in the following way:

Plz—y) =T —-yAlz—y), z#y, (2.11)
Pz —2)=1-)Y T(x—yAx—y),
J#i

where T'(z — y) is an arbitrary conditional probability distribution from
which we are able to directly sample a proposed y, given the previous point
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x and A(zx — y) is the acceptance probability of the move proposed by
T. The acceptance probability is constructed in such a way that, even if T’
is arbitrary, P fulfills detailed balance and drives the Markov chain to the
equilibrium distribution. A suitable choice is

Az — y) = min (1, :W) . (2.12)

If T is symmetric under the exchange of x and y (for example it is a Gaussian
distribution of (z — y)), then the acceptance probability is simpler, because
it reduces to A(x — y) = min (1, %)

When calculating the expected value of a function, or observable, f(x)
in the pdf () = 7(x), one follows the following algorithm:

e Start from a population of m walkers randomly distributed in space.
e Start iteration iter: for each walker ipop at position x do:

— Sample a point 3/ from the distribution T'(x — ¥/).

_ Ty )T (y —z)
Calculate T Ta=y)

— If it is higher than 1 then accept the move: y = o/, else reject the
move: y = x.

Calculate fipop = f(y).

e If the transient is finished, calculate the partial sum fier = % Zipop fipop-
e Go to next iteration

e Theestimated E[f]|ris f = 1> where n is the number

of iterations after the transient.

iter>transient Jiter,

In general the sampling probability T can be arbitrary but in practice
the choice of T determines the length of the transient after which the sam-
pled distribution is w. Moreover, if for example T is a Gaussian distribution
of the variable (z — y), then a small variance of it will cause high accep-
tance ratio, but high correlation between the moves, while a big variance
will cause a small correlation of the moves, but a small acceptance ratio. A
good compromise is obtained with an acceptance ratio around 40% =+ 60%.
The issue of the correlation between the moves reflects itself in a high cor-
relation between subsequent values fise,, so that the central limit theorem
cannot immediately used to estimate the variance of f. One then divides
the calculation in nb blocks such that iterations from different blocks are
not correlated anymore; this is true if the length [b of a single block is
longer than the correlation time of the estimated quantity f. Therefore one
can sum the contributions to f coming from the iterations within a block
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fin = % > itercib fiter, and use their variance to estimate the variance of
F_ 1 £
f — nb Zib fzb~

1 1 - -
o}~ 5% = — (nb — > (- f)2> (2.13)

ib

Obviously a longer correlation time forces to use longer blocks and this
causes having less independent contributions for calculating the observable,
thus increasing the variance.

See Appendix [A] for details about the estimate of the correlation time
needed for this accurate estimate of the error.

2.3 Variational Monte Carlo

When studying such quantum many-body systems as those introduced
in Chapter [I}, Quantum Monte Carlo methods prove very useful, since they
allow the calculation of the expectation values of observables which require
integration over many variables, for example the energy or the correlation
functions. Usually these quantities need to be calculated in the ground state
or at thermal equilibrium. There have been many attempts of studying also
dynamical properties with Quantum Monte Carlo (for example [BC96]), but
they are not going to be discussed in this Thesis.

Let us now introduce the Variational Monte Carlo method (VMC); see
[McM65, [CCKT7] for studies of many bosons and fermions with VMC and
[Cep03] for a historical-pedagogical review.

The system under study is composed of N particles with same mass m
in dimension d, whose dynamics is governed by the Hamiltonian operator
H, which is the sum of kinetic energy and potential energy:

H=K+V=-DY Aj+)> V(i) (2.14)

i<j

where D = %, whereas in coordinate representation A; = Zi 92, is the
Laplacian for each particle and for simplicity we consider a system with
translational invariance, without an external potential. In this model the
many-body interacting potential is the sum of two-body potentials V(z, 7)-

A possible way of approximately solving this many-body problem at
zero temperature, in the sense of finding the ground state, is to restrict the
Hilbert space of the wavefunctions to some subset which can be parametrized
in terms of (hopefully few) variational parameters a. Then one looks for the
minimum of the expectation energy by varying the parameters:

Ey = min WIH|Y) , (2.15)

1)
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so that Ey > FEjy is an upper bound for the ground state energy and the
corresponding v, can be considered an approximation of the ground state.
The larger the space of parameters, the more accurate will be the upper
bound on energy and the ground state wavefunction. Evidently one has
to restrict the functional form of the wavefunctions so that this variational
search is computationally feasible: in the literature many different varia-
tional wavefunctions have been proposed which proved accurate for specific
problems and which are the basis for more refined methods.

A necessary step for applying Monte Carlo methods to many-body sys-
tems is to write the expectation values of the observables as mean values of
some functions weighted with a pdf, so that the techniques introduced in
Sec. can be used. Eq. can be rewritten, in first quantized form,
in the following way:

[Ya(R)(R | H | ¢).d
[4a(R)%dR = min / T4l R’ 2de

Ey = min E¢(R)IR,

(2.16)
where R is a collective variable representing a point in the configuration
space, E¢(R) = (R | H | ¥)a/va(R) is called the local energy and for
simplicity we have considered only real-valued wavefunctions (which is not
a limitation when considering the ground state of time-invariant hamiltoni-
ans). Now the energy expectation value appearing in the previous equation
is in the form E[E{(R)]|ye, where the probability distribution function to

be sampled is p®(R) = ffa( )2 -R- Notice that this probability distribution

is well defined (in the sense that it is positive and normalized) even if the
variational wavefunction is negative for some regions in configuration space,
due to the appearance of the square of the wavefunction. This is the case
for example of Fermi systems, which can be treated as well as Bose systems
with VMC.

Let us now specify how the Markov Chain Monte Carlo method is imple-
mented in VMC. The probability distribution to be sampled is essentially
the square of the variational wavefunction. A transition matrix which con-
verges to that probability distribution can be deduced accordingly to Eq.
, with the obvious extension to the continuum case. The transition
matrix of the proposed moves can be a Gaussian in configuration space, that
is

T(R— R') = (2.17)

|R— R'|?
2a ’

(2ma)aN/2 b [
where « is the variance. The acceptance probability has the form (2.12)),
but, due to the symmetry of the transition matrix, it reduces to

A(R — R’) = min < TZ‘;((R)) > (2.18)
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This algorithm requires the calculation of the square of the wavefunction at
each iteration, in order to perform the acceptance-rejection step. It is useful
to count the ratio of the accepted moves with respect to all the proposed
moves, which should be kept around 50% by tuning the parameter «. It is
worth emphasizing, however, that the correct sampling is obtained for any
a, its value influencing only the efficiency of the algorithm.

The optimization of the parameters is performed with standard meth-
ods [PTVE92]. In case of one single parameter we have used a simple grid
method, and a more refined version of the steepest descent method (intro-
duced by Sorella [Sor05]) in case of two parameters. The optimization of
more parameters at a time was beyond our capabilities, so that we simply
scanned a grid of points in the space of parameters.

There is a second way of estimating the energy, by using the force esti-
mator, which provides also a check for the stationarity of the distribution
to be sampled. This second estimator can be introduced by integrating by
parts the expectation value of the kinetic energy:

/w(R) (—DZ Ai + f/) Y(R)dR =
-D zp Zv V(R dR+/ (D Z(Vﬂb(R))QJrV(R)w(R)Z) dR =
Viap(R)\? _
/¢(R)2 (Dzi: <w(R)> + V(R)> dR = /¢(R)2EF(R)dR,

(2.19)

where the surface term |, 9o "+ vanishes due to the decay of the wavefunc-
tion and its derivatives at large interparticle distances (see also Sec2.9] con-
cerning the boundary conditions). The force estimator of the energy con-
tains two contributions, the force term and the potential term: Ep(R) =
23 Fi(R)? + V(R), where the so called quantum forces are defined as

——— = aai 10g W}<R)’2 : (220)

In general the force estimator of energy has a higher variance than the
estimator which involves the local energy. It is useful to accumulate both
the estimators in order to check the correctness of the implementation of
the VMC algorithm.

The calculation of other observables, such as the correlation functions,
will be discussed in Sec.
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2.3.1 Smart Monte Carlo

An improved transition matrix of the proposed moves can be introduced
by considering the analogy between VMC and Monte Carlo sampling in
classical statistical mechanics. In VMC the distribution to be sampled, ne-
glecting the normalization, is p = |+/|?, while in statistical mechanics the
distribution is the Boltzmann weight p = e =57, where £ is the inverse tem-
perature and F is the free energy. The equilibrium macro-state in statistical
mechanics is the one that minimizes F, and the Metropolis algorithm with
probability distribution e #% indeed favors configurations with small F.
Provided detailed balance is respected, one can accelerate the reaching of the
minimum by adding a force term to the moves of the walkers, proportional
to the negative gradient of the free energy, that is proportional to V(logp).
In VMC this force term exactly corresponds to the “quantum force” intro-
duced in Eq. , this correspondence explaining the name. The details
of this derivation can be found in [RDET7S8, [PRB7S8), I(CCKT77, [CKL&I].

By following the analogy, one introduces the transition matrix of the
proposed moves in the form of a drifted Gaussian distribution, the drift
given by the quantum force calculated in the initial point R:

_|R+tDF(R) - R'|?

A
TR = R) = sz P 4Dt ’

(2.21)

where, for later convenience, the constant D = % has been introduced so
that the arbitrary parameter ¢ has the dimension of inverse energy. The
acceptance probability has the form , where the transition matrices
T do not simplify, since they are no longer symmetric for exchange of the
initial and the final position. With respect to standard VMC the acceptance
is increased, so that a larger mean displacement can be used and one would
expect faster convergence, but one has also to consider the computational
cost of evaluating the forces for all the proposed moves, so that the preference
between VMC and Smart Monte Carlo depends on the specific problem (see
[CCKTT]).

2.4 Diffusion Monte Carlo

Variational Monte Carlo is a very efficient and fast algorithm. It proves
very useful when an accurate many-body wavefunction is known. It can
be also used to produce starting configurations for more refined methods,
such as Diffusion Monte Carlo (DMC). This method solves the many-body
Schroedinger equation in imaginary time. Actually the imaginary time evo-
lution projects the initial wavefunction to the ground state wavefunction
times an exponentially decaying factor, provided the initial wavefunction
has non-zero overlap with the ground state wavefunction, as we will show in
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the following discussion. The DMC algorithm was introduced by Anderson
[And76l [And75] and refined by Reynolds, Ceperley and Alder [Rey82]. For
general introductions see [Gua98| [HLR94!, Kos96, FMNROI, Bor02].

For problems in which the many-body ground state wavefunction is posi-
tive definite (for example, a system of bosons with time-reversal symmetry),
DMC is able to find the ground state energy exactly. This means that, given
an uncertainty €, it is possible to choose a sufficiently large number of iter-
ations M such that the energy estimated by DMC algorithm Fj; and the
energy of the ground state Ej respect the inequality |Eg — Ejs| < 2€ with a
probability of 95%.

The differential equation to solve, with the proper boundary condition,
has the form

_887—‘11(R’T) = (I;[(R) - E’r’ef)\Ij(R’ T) ;

U(R,7=0) = U;(R) ; (2.22)

where 7 = 4t/h is the imaginary time in units of inverse energy and E,.¢
is a reference energy which does not affect the eigenstates of the hamilto-
nian apart from tuning their exponential time dependence. Actually, given
the eigenstates ¢, (R), which obey the equation H(R)p,(R) = Enon(R),
the initial state can be decomposed as V;(R) = ) cppn(R), so that the

solution of (2.22)) is
V(R,7) =) cne " EnFretl o (R) —— coe " Fo=Frer gy (R) . (2.23)

n

So the imaginary time evolution consists of an exponential decay of each
component of the initial wavefunction (provided E,.y < E,, Vn), with the
interesting property that the longest-living component is the lowest energy
one, which is the ground state if the initial wavefunction has non-zero overlap
co with the ground state. One can estimate the transient time after which
only the ground state gives a significant contribution as 7 ~ ﬁ, that is
the inverse of the energy gap (which we assume to be different from zero).
The Monte Carlo method can be used in this case by rewriting the

Schroedinger equation in the following integral form

B

(2.24)
and interpreting the wavefunction as a probability density which evolves in
time according to the Green’s function of the original differential equation,
which is defined as

coe B0 Eres) o (RY) = /\Izi(R)GO(R ~ R, 7R, (r>

Go(R — R',7) = (R'|Go|R) = (R'|e " ~Erer)|R) | (2.25)

where Gy is the time evolution operator (or projector).
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The ground state wavefunction and the Green’s function have to be pos-
itive definite for them to be interpreted as a probability density and a prob-
ability transition matrix. The reason is that now we would like to sample
from p(R) = ¢o(R) and not from p(R) = |¥7(R)|? as in the VMC method.
Therefore special methods have to be used in order to treat fermions and
will be discussed in Sec.

Even if Eq. has some resemblance with the equation of a Markov
chain , there are two important differences: the probability distribution
function is not normalized the same way at different times, due to the expo-
nential decaying factors, and also the transition matrix is not normalized in
the sense of Eq. . This will be evident when performing a small-time
expansion. Moreover a major difference with VMC is that in this case the
evolution operator is in principle known (even if not for large time), while
the distribution to be sampled is not known. In VMC the situation is the
opposite, so that one introduces the detailed balance condition in order to
create a useful transition matrix. In spite of these considerations many au-
thors introduce a Metropolis accept-reject step even in DMC, in particular
when importance sampling is used, see appendix [B] for a discussion.

It is possible to simulate Eq. by means of stochastic processes;
actually it is identical to a classical diffusion equation for a density dis-
tribution, with a typical linear dependence on the time derivative and on
the Laplacian, with diffusive constant D = % and a further source term
(V — E,ef)¥ which can be interpreted as a birth-death term for classical
particles. Therefore, in the spirit of Monte Carlo sampling of integrals, one
sets up a population of points in configuration space (walkers) and then
moves them accordingly to the Green’s function of the problem, that is per-
forming a series of diffusion and birth-death processes. After the transient
time 7+ the population of walkers will represent the stationary distribution
corresponding to ¢g. The exponential dependence on time, in this perspec-
tive, corresponds to an exponential decay in the number of walkers, so that
suitable renormalizations of the population have to be introduced in order
to stabilize the algorithm, for example by periodically setting E,.; equal to
the average energy of the previous block.

The energy can then be estimated by the mixed estimator

p, — poldlor) [ REL(RYr(R)AR 5 or(Ri) B (R:)
{poltbr) [ ¢o(R)ér(R)dR SMyr(Ry)
(2.26)
where 17 is an arbitrary known trial wavefunction (in principle it could
even be 1y = 1 so that ET(R) = V(R)). The variance of the estimator
is reduced if ¥ is a good approximation of the ground state. Note that
the sums in the last passage of Eq. run over the whole population of
walkers at all times next to the transient 7.
In general, an explicit expression for the Green’s function is not
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known analytically, due to the presence of both a kinetic energy term and
an interaction term in the Hamiltonian, which do not commute. When a
short imaginary time dr is involved, however, one can perform a perturbative
expansion in terms of the small time step, so it is useful to split the evolution
operator in the following way:

o= g [on ()] oo

One then approximates Go (1) with the product on the rhs of the previous
equation, keeping a fixed large n, that is considering a small time step dr =
7/n. Each factor in the product can be expanded in the following way:

Go(dr) = e~ Ke=drV=Erep) 4 O[dr?] (2.28)

which is the Trotter formula (see [HS05]). The above approximation intro-
duces a systematic error in the Green’s function which is quadratic in the
time step, so that suitable extrapolations to dr — 0 have to be produced in
order to avoid a bias in the results of the simulation.

Eq. is very useful since the Green’s functions of a pure kinetic
term and a pure interaction term explicitly appear, which are analytically
known in many cases. The Green’s function of the kinetic part obeys the
following equation

9 / 2 ’
—EGK(RHR,T):KGK(RHR,T) ; (2.29)
Gxk(R— R ,0)=6(R—R'),

and, in systems with translational invariance, it has the expression

) A 1 ’ R _ R/ |2
/ . / drK e — s
Gx(R— R, dr) = (Rle™R) = 0 vy 5P [ ADdr |’

(2.30)
which, in terms of the final position R’, is a Gaussian distribution centered in

the initial position R and with variance 0> = 2Ddr = hi;fT. The interaction
potential term obeys the equation
0 .
_EGV(R — R'.7)=(V—=E..f)Gy(R— R',7) ; (2.31)

Gy(R— R, 0)=6(R-R);

for the simple but relevant case of an interaction potential diagonal in the
space of configurations the previous equation is a rate equation, whose so-
lution is

Gv(R — R',dr) = (R'|e~4"(V=Ere))|R) =
exp [~dr(V(R) — Eyep)]d(R— R') = Gy(R,dr)5(R— R') . (2.32)
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Therefore the approximate Green’s function reduces to

Go(R — R',dr) 0 Gk(R — R dr)Gy(R,dr) . (2.33)
It can be shown that a Green’s function with an error of order dr? will pro-
duce an estimated energy with a linear time-step dependence (heuristically,
it is so because E = —0G/07|;=0, see [Guadg]|).

The Green’s function is not normalized with respect to R’ because Gy, is
not. Indeed this is the factor which produces the change in the normalization
of the wavefunction. In the classical analogy introduced above, which allows
a stochastic process solution of the equation, the term G is used as a
conditional transition probability (similar to that introduced in VMC): given
a walker at position R, one draws a random number £ from the Gaussian
distribution and moves the walker to

R—R =R+¢. (2.34)

The term Gy, as told before, can be interpreted as a branching factor, that
is a probability for the creation or destruction of copies of the walker at
point R (or R/, at this order in d7 there is no difference). Operatively the
number of created walkers is taken to be

Neopy = Int[Gy (R, dT) + &'] , (2.35)

where Int[z] gives the biggest integer number smaller than z and ¢’ is a
random number uniformly distributed in the interval [0,1]. Another possi-
bility for the interpretation of Gy is to use it as a weight when accumulating
the observables, without changing the number of walkers. For example the
mixed estimator of energy would become

~ S Myr(R;) Gy (Ry, d7)ET (Ry) .
S r(Ry)Gy (Ry, dr)

It is clear that both the interpretations of Gy should produce the same
result, it has however been noticed that the branching technique gives a
lower variance for the observables than the weighting technique; moreover
the weighting technique tends to favor the dominance of a single walker
(see [ACKOQQ] for details). Figure pictorially represents the diffusion-
branching process.

(2.36)

2.5 Importance sampling

When some analytical information is known about the exact or mean-
field solution, it is very useful to introduce importance sampling in the DMC
algorithm (see Sec. and [KLV74,|[CCKT77]). Suppose that the best known
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Configuration space

"

Imaginary time

Figure 2.1: Pictorial view of the diffusion-branching process. The lines represent
the diffusion process governed by G, the red crosses the death of a walker, the
green stars the birth of new walkers, governed by G . The total number of walkers
can change in time. For large enough time the walkers are distributed as .

approximation to the ground state wavefunction is the trial wavefunction
1. Then instead of considering the wavefunction ¥ alone, we introduce
the function

f(R,7) =¢vr(R)¥Y(R,T) . (2.37)

If we multiply the Schroedinger equation (2.22) by ¢r(R), we set the initial
wavefunction ¥; equal to the trial wavefunction and rearrange all the terms,
we obtain an equation for the function f, which has the following form:

—%f = —DZAz‘f+DZVz' [Fif]+ [Er — Erey) f 5
f(R,7=0)=[Yr(R)*, (2.38)

where F' and E, are the quantum force and the local energy calculated from
the trial wavefunction ¥7 (see Sec. (2.3)) and, as in the previous Sections,
the index 7 represents the coordinates of all the particles. Eq. is very
similar to the original Schroedinger equation, with the formal replacement
V — Ep and the addition of a “drift” term, which pushes the system along
the gradient of the trial wavefunction. Without the branching term (Ep —
ER)f this equation would be formally identical to the Fokker-Plank equation
(see for example [CKL81]).
The corresponding integral equation is

FR,7) = / F(R,0)G(R— R, 7)dR., (2.39)
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where now G is the Green’s function of the importance sampled differential
equation. After a transient time f converges to ¥ryg.

As for DMC without importance sampling, it is convenient to iterate
the projector n times, with small time steps such that suitable approxi-
mations can be introduced. In this Section we introduce the first order
approximation, while in the next Section we will introduce the second order
approximation.

The first order approximation of the Green’s function now is

G(dr) = Gk (dr)Gp(dr)Gp(dr) + Oldr?] =

¢—drK g—drF —dr(EL—Ere) | O[dr?], (2.40)

where in coordinate representation one has Ff(R) = DY, V;[Fi(R) f(R)].
The expression for G has already been introduced, while that for Gp is
the same as for Gy, with the replacement V' — Ej. The Green’s function
G p obeys the following equation:

d
—5-Gp(R— R 7)=D Z Ve [Fi(R)Gp(R— R',7)]; (2.41)

Gp(R — R',O) = 5(R—R’) ,
which can be rewritten as

Gp(R — R',dr) = §(R(dT) — R’),
OR(T)
or
If the quantum force was a constant vector Fj, then the solution would

simply be the initial condition shifted with constant velocity F; (that is why
the quantum force is also called the drift velocity):

= DF(R(r)), R(0)=R. (2.42)

Gp(R— R',dr)=6(R+drDF — R') . (2.43)

We will retain this approximation, which is good provided dr is very small
and F; not too large. In fact when the trial wavefunction goes to zero, so
that F; diverges, this is a very bad approximation and suitable cut-offs have
to be artificially introduced, or more refined methods have to be used (see
for example [UNRO3] and references therein). Note that Gp is not diagonal
in coordinate representation, but it is a §-function so that the total Green’s
function to linear order is

G(R — R/ dr) ~
/ Gy (R, dr)Gp(R — Ry, dr)Gi(Ry — R, dr)dRy
Gx(R+drDF — R/, dr)Gy(R,dr) . (2.44)
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So the importance sampled algorithm consists in a drifted Gaussian and
a branching step, with the weight not given by the interacting potential
anymore, but by the local energy of the trial wavefunction. If ¢ is a good
approximation of the ground state, with this algorithm one has two benefits:
the drift accelerates the dynamics towards the ground state and the branch-
ing term becomes a very smooth factor. This is very useful especially when
one deals with interacting potentials which are unbounded (for example the
Coulomb potential). A part from the branching term, the transition ma-
trix @D is the same as the one used in the Smart Monte Carlo algorithm
(2.21)), with the difference that here dr is not an adjustable parameter, but a
time step. Again, the Green’s function is not normalized with respect
to the final configuration R’ so that the function f changes its normalization
with time, unless 7 is the exact ground state. As already mentioned, see
Appendix [B] for a discussion on the use of an accept-reject step in the DMC
algorithm.

2.5.1 Higher order algorithm

Many efforts have been produced in order to develop higher order al-
gorithms, which should allow the use of larger time steps, at the price of
calculating more intermediate quantities. Vrbik [VR86] and Chin [Chi90]
provided a set of quadratic algorithms which were used both for bosons
[BC94, IGBC99] and fermions [CBO00, [SBC02]. More recently fourth order
algorithms have been proposed and applied to bosonic systems [FCO1]. It is
important to stress that the correct approximation of the Green’s function
at the desired order is obtained only if the appropriate boundary contact
(cusp) conditions are enforced in the trial wavefunction, otherwise spurious
terms arise, even proportional to fractional powers of the time step (see the
above references).

Here we consider a possible quadratic algorithm (see [VR86, BC94]),
which we used to reproduce some of the results of [GBC99].

The short time Green’s function is approximated as

G(dr) = Gp(dr/2)Gp(dr/2)Gk (dr)Gp(dT/2)Gr(dr/2) + Oldr?] =
ede(ELfEref)/2edeF/2edef(edeFmede(EL7Eref)/2 + (’)[d73] . (2.45)

by formal expansion of the exponentials it is easy to check that this approx-
imation is correct to the second order.

The explicit expression of in coordinate space requires the ex-
pansion of the factorized elementary Green’s functions to the second order
in d7; moreover four intermediate integrations over the configuration space
have to be introduced. The branching terms G g are again diagonal in space
so that two integrations are eliminated by delta functions. The other two
integrations are eliminated by the drift terms Gp (see Eq. ), which,
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to second order, have the form:

D2%dr?

GD(R1 — RQ,dT) =4 <R1 + dTDF(R1) + F(Rl)VF(Rl) — Rg) ,

(2.46)
where VF(R;) formally represents the Hessian matrix of log |ir|? calcu-
lated in the initial point Ry. For avoiding the calculation of the Hessian
matrix, to the same order one can write the previous equation in the form:

Ddr

GD(Rl — RQ,dT) =4 <R1 +drDF |:R1 + F(Rl):| — R2> , (247)
that is using the first order expression with the “velocity” calculated in a
position which is drifted half a time step from the initial point. Putting this
expression in the expansion of the global Green’s function (2.45)), we obtain

G(R — R',dr) = Gy (R,dr/2) /dex

Dd Dd
G (R + TTF [R + LLTF(R)] - Rl,dr) x

Ddr Ddr
4

) <R1 + TF R, + F(Rl)} — R’) Gv(R',dr/2) + O[dr?] ,
(2.48)

where one integration and delta function have been kept in order to avoid the
introduction of a Jacobian in the final form of the equation. Indeed, keeping
in mind the stochastic process evaluation of this Green’s function, one can
exploit the delta function by performing the following two-step process:

e Start from old walker at position R.

e Draw a random displacement £ from a Gaussian distribution with zero
mean and with variance o2 = 2DdT:

e Calculate the first step R1 = R+ £ + %F [R+ %F(R)];

e Calculate the second step R’ = R; + %F [Rl + %F(Rl)].

This algorithm requires the calculation of the forces in four different
points, so it is computationally expensive. One could then directly substitute
the intermediate point R into the expression for the final point R’ and
retain terms up to order d7? (keeping in mind that the random displacement
¢ is of order dr'/ 2). Tt is then possible to formulate the following simplified
process, which requires the evaluation of the forces in only two different
points:

Ri=R+¢+DdrF(R);

R =R, + DTdT (F(R)) - F(R)) . (2.49)
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Figure 2.2: Time step dependence of the estimated energy per particle of a 3D gas of
N = 100 soft core bosons with radius R = 10a, at the density na® = 10~%. The time
step is measured in units of (%/2ma?)~!, while the energy in units of 107342 /2ma?.
The green circles have been obtained with the linear algorithm , while the
red squares have been obtained with the quadratic algorithm . The corre-
sponding lines are a linear and a quadratic fit respectively. For comparison, the
corresponding value, published in [GBC99] and obtained by simulating N = 500
bosons, is 1.303(1) x 1073. The discrepancy is due to finite size effects (checked
with an independent simulation with N = 500 bosons).

Results from the linear and the quadratic algorithm are reported in Fig.
they were obtained fixing an equal computational time. It is clear
that the time step dependence is almost canceled by using the quadratic
algorithm, so that one could simply retain the outcome of a simulation with
a relatively large time step, without performing an extrapolation to zero.
Unfortunately we were not able to obtain analogous good results in the
case of Fermi systems where spurious dependences on the time step arose,
probably due to the Fixed Node approximation which is described in the
next Section.

2.6 Diffusion Monte Carlo for fermions and Fixed
Node approximation

As already mentioned the DMC method is optimal for studying the
ground state wavefunction of bosonic systems, which can be taken real and
everywhere positive. In the case of fermionic systems, the antisymmetry of
the wavefunction imposes the presence of positive and negative regions in
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configuration space. The sign of the wavefunction has to be taken into ac-
count otherwise the DMC algorithm converges to the bosonic ground state.
One possible approach is to consider the sign of the wavefunction as a fac-
tor that multiplies the contribution of the single walker to the observables.
This has proven to result in a increasing fluctuation of the estimators of
the observables with increasing imaginary time, reducing the signal with
respect to the noise, so that a refined analysis has to be performed (see
[CA80, LSKC81, [CA84, [CB8g|). Many other approaches to the “sign prob-
lem” have been proposed, even if it has been demonstrated [TWO05] that
there is not a general solution, that is an algorithm both exact and conver-
gent in a time which is polynomial in the number of degrees of freedom.

In this Section we will therefore introduce an approximate solution which
has been proven to be very precise for the ground state of ultracold gases,
the Fixed Node approximation. This approximation strongly relies on im-
portance sampling and the use of a good trial function 4, which can usually
be constructed for dilute systems.

The “nodal surface” is the region in configuration space where a wave-
function is zero. A “nodal pocket” is instead a connected region in config-
uration space whose boundary is a part of the nodal surface. The problem
of fermionic wavefunctions (or excited states wavefunctions) is that the sign
of the wavefunction changes from a nodal pocket to the next one and the
position of the nodal surface is not known a priori. However some sym-
metry properties of the wavefunction are known if the state under study
is an eigenvector of an operator which commutes with the hamiltonian of
the problem. A major example regards the antisymmetry of all fermionic
wavefunctions with respect to an odd permutation of particles.

The essence of the Fixed Node approximation (FN) is to fix the nodal
surface of the studied wavefunction ¥ to be equal to that of a trial wave-
function 7, so that the nodal pockets of ¥ and vp coincide. Then the
importance sampling algorithm (Sec. is applied to the distribution
f = V¥ which turns to be everywhere positive, except on the nodal sur-
face, so that the usual bosonic algorithm can be applied, provided that the
nodal surface is never crossed. The FN constraint is equivalent to adding
an infinite repulsive potential on the nodal surface. This method was in-
troduced in [CA8(, Rey82], where it was also demonstrated that it provides
an upper bound for the energy of the lowest lying state with the same sym-
metries of the trial wavefunction. For example, if an antisymmetric trial
wavefunction is used, this method is able to “purify” the initial wavefunc-
tion from the bosonic component, so that an upper bound for the ground
state of the fermionic system is obtained.

Unfortunately, the Fixed Node approximation that we used prevented
us for achieving a quadratic behavior in the energy dependence on the time
step, even using an in principle quadratic algorithm, so that all the results
in this Thesis are obtained with a linear algorithm. See a discussion on
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this issue in [UNRO3]. However in literature there are claims of successful
quadratic algorithms for fermions [SBC02].

2.7 Wavefunctions

For dilute systems, the exact properties of the many-body wavefunction
introduced in Sec. [I.4] determine the main features of the equation of state.
Once embedded in the trial wavefunctions, these properties allow good VMC
results and even better DMC results. For bosons in the ground state, the Jas-
trow wavefunction [McMG65, [GBC99] was able to capture the few-body cor-
relations which dominate the dilute systems physics, while for fermions the
Slater [CCKT77] or BCS determinants [BGLSS|, [CCPS03, [ABCG04] proved
very accurate in describing the nodal surface.

It is a good practice to enforce the cusp conditions in the
trial wavefunction. This guarantees the exactness of the wavefunction at
the two-body level at short distances and results in a smoother sampling of
the local energy, so that the variance is greatly reduced. In literature some
major trial wavefunctions have been used which can easily respect the cusp
conditions: the Jastrow wavefunction for bosons and the Jastrow-Slater and
BCS wavefunction for fermions.

2.7.1 Jastrow wavefunction

The Jastrow wavefunction is a symmetrized product of few-body wave-
functions which respect the cusp conditions. The simplest form contains
only the two-body terms and reads W,;(R) = [];_; f(ri;), where the prod-
uct is extended over all the pairs of interacting particles and r;; = |r; — 7]
(in literature this function is often written as ¥;(R) = e2mi<i Uria)y | In
case of short range interactions the function f is taken to be a solution of the
two-body problem, so that the cusp conditions are automatically
implemented. In case one considers two species of particles (let us call them
up, T, and down, |), the general (two-body) Jastrow function is:

V;(R) = J11(R)J (R (R) = [ fr1(rip) T] F1ira an Tia)
1<J a<b
(2.50)
where the indexes i, j refer to the T particles and the indexes a,b refer to
the | particles. The quantum forces Fro where the index o = x,y, z refer
to the spatial coordinate, reduce to

Oa, 11 Da, f11(rij) fTT —q
Fe =2"""1 =2 : J = 2 (2.51)
e Ji ; fri(rig) ; frr(rig) - ri

for the 17 case and analogously for the other cases.
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The local kinetic energy of the Jastrow wavefunction is

K =
f Tz f ( ) 2
2 L (. T\ 49 ) I
> |efitra) + fﬁ ] S [ehra + (fu( ))
2
+2Z e%l(""ia (;ijg:zz;) E(FSFS_'_FAFA_'_?FSFA) ’

(2.52)

where the global force vectors are Fg = {F[},, F{|,} and Fa = {F7|;, F}|,}
and e = —(f" + (d —1)f'/r)/f is the the local kinetic energy of the two-
body problem in units of 2D. Note that the last term can be written as
%F - F where the scalar product is meant as a sum over the coordinates of
all the particles. Note also that in the case of one single T particle and one
single | particle the above expression is reduced to K = 2De%L as it should.
See Appendix [C] for the details of the calculation.

2.7.2 Slater Determinant

In the study of fermionic systems the Jastrow wavefunction cannot be
used alone, since it is symmetric in the exchange of particles. The simplest
antisymmetric wavefunction originates adiabatically from the wavefunction
of the non interacting Fermi Gas, which is a Slater determinant. As in Fermi
Liquid Theory [Lan57, [AK59, NP89] one assumes a one-to-one mapping be-
tween the low-energy excitations of the interacting liquid and those of the
non interacting gas. When performing a VMC calculation, the optimization
of the single particle orbitals appearing in the Slater determinant is crucial,
so that self-consistent mean-field calculations (Hartree-Fock), or backflow
correlations have been used; multi-determinant wavefunctions, which are
more accurate, but also more computationally expensive, have also been
considered (see [BMWS08]). Diffusion Monte Carlo instead only requires
a good nodal surface. In principle one should optimize the Slater determi-
nant orbitals in this case too, and this is necessary for high density systems
[GBCO02]. For dilute systems instead the non-interacting single particle or-
bitals proved good enough for comparing the results to experiments (see
[ABCG04, PGOS§]), so we used plane waves for the homogeneous systems we
considered.

A more refined wavefunction, which is able to account for more correla-
tions, is the Jastrow-Slater wavefunction. In case of two species of fermions
without spin-flip interactions, it can be written as a product of two different
Slater determinants and a Jastrow factor, in the following way:

U5 =U;D;D, (2.53)
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where the determinants are defined as follows:

Dy(Ry) = det Sppi = det [th, ()], Dy(R)) = det S|yq = det [, (1a)] -
(2.54)
The 1, and g, orbitals are single particle wavefunctions corresponding to
eigenvectors of momentum in a box with periodic boundary conditions. In
order to have a real wavefunction we used the cos (kr) and sin (kr) functions.
For the k vectors we choose the eigenvalues of momentum starting from the
zero vector up to the Fermi wavevector fixed by the number of particles and

the volume of the box (in the thermodynamic limit only by the density).
In the following we will derive all the properties for D¢, those of D| being
the same with a suitable change of indexes. It is convenient to introduce the

inverse Slater matrix, whose properties are:

Z SpiSiq = Zd’kp (ri)Sig = 0pq ; Z Squ/)kp Ti) Z SjipSpi = bij -

(2.55)
Since the iterative calculation of the determinant involves the cofactors A,
in the equation Dy = )", S;,Api, for any p, the inverse matrix is related to
the cofactors in the following way: S’pi = Api/D;. Two useful properties can
therefore be deduced, concerning the derivatives of the Slater determinant:

10Dy _ 4
D; 98, P
88, - -
= 2.
S = —8,:5, (2.56)

It is now possible to derive the quantum forces for the Slater determinant:

o 2 0D 08, -
F = E O, Dt = DT Z 5y, 86: = QZSpiacxiwkp (ri) . (2.57)
p

The local kinetic energy is:

K:_;;iy ZZ@,% [p@sm

op(p )

+ Zsma Ve, (T) ] = —DZZSIHC‘) ey (i) (2.58)

In the homogeneous system which we consider, the last expression simply

turns into K = D Zp 5 where k) is the modulus of the p — th eigenvector
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of momentum. Let us now consider the wavefunction and use the
superscript S, J for indicating the quantum forces and the kinetic energy
of the Slater determinants or the Jastrow factor respectively. The total
quantum forces are simply F = F”/ + FlS + FTS (where again the indexes
of these vectors correspond to the ordered coordinates of all the particles).
The total local kinetic energy results in:

KJS —

D

D
-9 > 00, Vs + Y 00, Vs | = KT+ K7 + KF - E(F‘]«FS) .
JS

[NeY a,o

(2.59)

Due to the calculation of a determinant, each update of the wavefunction
requires o< dof? steps.

2.7.3 BCS wavefunction

The nodal surface of a Slater determinant wavefunction is not able to
account for pairing effects, unless one performs a sum over many different de-
terminants, which is computationally very heavy. In this case a better nodal
surface is provided by the BC'S wavefunction. The latter was introduced
by Bardeen, Cooper and Schrieffer [BCS57] within the grand-canonical en-
semble, for a variational study of superconductivity in the weak coupling
regime. Later, Leggett [Leg80] extended it to the canonical ensemble and to
the intermediate and strong coupling regimes (BCS-BEC crossover). This
kind of wavefunction was proposed then for the study of >He and further
studied in [BGLS8S§]|. It has finally been used in the study of ultracold gases
in the BCS-BEC crossover [CCPS03, [ABCGO04].

In its canonical ensemble form, the BCS wavefunction in the singlet
channel reads:

Upcs = det[p(ri —7r4)] , (2.60)

where ¢ is a pair orbital. See [BMWS08| for extensions of this kind of
wavefunction, such as Geminal or Pfaffian wavefunctions. The pair orbital
can be any function of the coordinates of one T particle and one | particle,
provided it fulfills the boundary conditions, for example the bound state of
the two-body problem ;. It has been demonstrated [BGLS§| that if the pair
orbital is the sum of products of single particle plane waves up to the Fermi
surface, then the BCS wavefunction reduces to the product of two Slater
determinants as in (2.53)). In literature [CCPS03, [ABCG04] a combination
of the spherical and the single-particle originated orbitals have been used:

Pmax

o(ri —1a) = Bugpllri —ra) + Y Bpoxpliky(ri —ra)] . (261)
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where the parameters Bs, 3,, Pmaz have to be optimized. In the problem
considered in Chap. 4] we used the previous orbital with the assumption
Bp = B, Bs = /1 — (3? and Pz on the Fermi surface, but we found that
setting either 8 = 0 or B = 1 gave lower energy than 0 < § < 1.

Profiting of the properties of the determinants introduced in the previous
Section, we can now calculate the quantum forces and the kinetic energy
of the BCS wavefunction, considering the case of a spherically symmetric
orbital (5 = 0). Let us call the elements of the BCS matrix B;,, and those
of the inverse BCS matrix Bg;. The quantum forces are:

2 2 OVpes
o p— T\ =
! @i FBOS T Yps OBiq

Vpges
—ZZBng |r; — ra|)

80[1- Bia

|7 _Ta‘

—
F@ =-2) Baig'(|ri — ro|) ot —

7

m (2.62)

The kinetic energy is

i

_ [ZZ@O” (\PBCSZBM@%BW>

‘l’Bcs -
Z Z Do (‘I’Bcs Z BuiOa, Bia)
a « a

d
=—-D Z Z (BaiﬁiiBw + Baiaglan) =2D Z BaiEL(|’I“i - Ta|) y

ia o

(2.63)

where we have used the fact BgiBm = éﬁaBia and we have introduced
eh(r) = —¢"(r) = T2/ (r).

It can also be useful to use a more general wavefunction, containing both
the BCS determinant and a Jastrow factor ¥ ;¥ pgcg, in order to introduce
correlations within 17 and || pairs. The calculations of the forces and the
kinetic energy proceed in a similar way as in the previous Section.

2.7.4 Wavefunctions for the polarized case

When studying the case of two species of fermions, with Ny > N|, the
wavefunctions described in the previous Sections have to be generalized.
The Jastrow wavefunction is already capable of handling the polarized case,
the same is true for the product of two Slater determinants.
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For the BCS pairing determinant a generalization has been proposed in
the context of liquid *He [BGL8Y], and it has been successfully used for
studying ultracold gases [CCPS03, [PGO0§]. This wavefunction has the form
of an antisymmetrized product of V| two-particle orbitals and A = Ny — V|
single particle orbitals, for the excess | particles:

1) 9(12) o Q(IN) (1) - a(l)
o] PED D e GN) ) )
AT NN (V) e eV
(2.64)

The calculation of the forces and the kinetic energy is similar to that for
the previously introduced wavefunctions.

An even more general form, which we did not use, includes M < N, two-
particle orbitals, Ny — M single particle orbitals for the T excess particles,
N| — M single particle orbitals for the | excess particles.

2.8 Observables

In this Section we discuss about the calculation of correlation functions
within VMC and DMC. One can consider one- or many-body correlation
functions; in the case of dilute gases an important role is played by the one-
and two-body ones, since the probability of having three close particles is
very small. See Sec. for the definition of the one-body density ma-
trix (OBDM), the pair distribution functions and the off-diagonal two-body
density matrix (TBDM).

The estimators of the observables calculated with VMC are called vari-
ational estimators:

A (¥r|Olvr)
Oy =—"——"7, 2.65
(O (Yrldr) (2.65)
while those calculated with DMC are called mixed estimators:
A (¥r|Ol0)
@) = —" 2.66
O (Yr|wo) (2.66)

Only in the case of [O, H ] = 0 the corresponding mixed estimator can be
exact (for example in the case O=H ). In general the mixed estimator is an
approximation of the pure one (see [SBC02] for the direct calculation of pure
estimators in DMC). One can write @9 = ¥ + J¢ and the pure estimator
can be approximated with the extrapolated estimator:

o _ {20lOlpo) _ (1 +IOIYr +8¢) o a o a s
e = (poleoy (v + 0lvr + 6¢) ~ 2(0)m <O>V—<O>(;3(;7)
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provided 81 < 1.

In order to estimate the previously introduced correlation functions, it
is necessary to rewrite them in the first quantization form. Let us directly
consider the mixed estimators; the variational ones are simply obtained by
substituting ¢ — ¥r. Let us indicate all the coordinates with the symbol
R and all the coordinates except some, which are evident from the context,
with R.

For the OBDM one has:

ne(r) = o Grloo) : (2.68)

N — - —
1 = AIY,ZJT(’I"M' +7r, R)(po(’r‘m', R)dR
QO Zi:/dr

where an average over the o particles and over the solid angle corresponding
to r is taken; n, is the particle density of the n, particles and €2y is the
total solid angle in dimension d. Profiting of the homogeneity of the system
and introducing the DMC sampling probability one obtains

N, Yr(reitr, R) " R)VR
1 1 LY Yr(res, R) f(roi, R)

S =—S"— [a . 2.69
o (r) Ngz;gzd/ " [f(R)dR (2.69)

¢T(rai+7'lR)
Yr(rei,R) ’
culate with the wavefunctions described in the previous Section, since the

change of only one particle is involved. The average on the solid angle is
done by sampling M times the vector 7 in a uniform random way (so that
Q%i [df — & S™M). Then an histogram is produced which accumulates the
observable for bins with support [ry,r, + Ar), where Ar sets up the finest
scale that one wants to probe (the smaller Ar, the longer the computation
will have to be in order to get enough statistics). The use of a bin of width
Ar requires a further normalization 1/Ar.

The calculation of the two-particle distribution functions is easier, since
in a sense they are “diagonal”, that is they do not involve the change of
a particle position, since they measure the relative frequency of distances
between particles in the original state. The two-particle parallel spin distri-
bution function can be written as:

The quantity to accumulate is therefore which is easy to cal-

9
g3 (r) = X

T n2Qy
N, R R)dR
Z d’f‘f wT(Toiy Toj = Toi + 7, R)(pO(TUiv Toj = Tai +r, R)dR , (270)
— (Yrleo)

where the sum comes from acting with the field operators on the original
state and the factor 2 is inserted in order to count all the pairs. Again,
using the homogeneity one can integrate also over r; and r; keeping track of
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Figure 2.3: Periodic boundary conditions and closest replica.

their relation with a delta function §(rs; — 14 —7) = 8(r — [roj — 74| )0 (7 —
(roj — 7o)/, which eliminates the integration over the solid angle, but

introduces a factor r—%:
N -
2 S fo(r = |rej —76il) f(Toi, Toj, R)AR
(2) _ aj gl gty agjp . 271
Y50 (T) ncrNchde ; f f(R)dR ( )

Differently from the OBDM here the factor 24 is explicit, since there is no
need to sample the displacement 7.
In case of antiparallel spins, with similar reasoning, one has:

TSP Jo(r =Iria = riil) f(rii, 710, R)AR

2
= 2.72
ar N Qgr [f(R)dR (2.72)

Also in this case the results need to be presented in the form of an histogram.
The estimator of the off-diagonal TBDM can be deduced in the same
way as for the OBDM, and one obtains

Yr(ryitr, rio+r, R) B
9= o / i) vt B0 BAR
NN, <=0y [ f(R)dR

2.9 Boundary conditions, finite size scaling and
dependence on the number of walkers

Being interested in bulk properties, suitable and usual periodic boundary
conditions (PBC) can be used. The simulation cell is a dN— dimensional
hypercube with size L. The volume of the elementary d— dimensional cell
is fixed by the density and the number of particles so that L = N/n. The
implementation of PBC requires a regular behavior of the trial wavefunctions
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Figure 2.4: Example of the dependence of energy on the number of walkers W.

at the boundary of the simulation box: in the case of Slater determinants,
the single particle orbitals must have a period for which L is an integer
multiple; in the case of the Jastrow factors or the BCS spherical orbitals,
which are pair functions, one requires that at the distance r = L/2 the
function goes to a constant, its derivative going to zero. In the Monte Carlo
moves, every time a particle exits the elementary box, it is moved inside
the box subtracting or adding an integer number of times the length L.
Moreover, when calculating properties involving a pair of particles, one has
to consider the closest replica of the particles (see Fig. .

Since our simulations are done in the canonical ensemble, the fixed and
limited number of particles introduces finite size errors if the aim is calcu-
lating the properties of the system in the thermodynamic limit. In gen-
eral one expects a ¢/N” dependence on the number of particles, for large
N, with the exponent v and the coefficient ¢ depending on the observ-
able [LZCO1]. We have observed a different finite-size scaling of the various
wavefunctions we used. In the case of the BCS wavefunction, there was no
significant dependence on N, within the statistical errors. For the JS wave-
function we observed a dependence which is explainable in the framework
of Fermi liquid theory (See [LZCOI]). Actually one can assume that the
kinetic energy difference between the thermodynamic limit system and the
finite size system, in the interacting case, is proportional to the same differ-
ence calculated for the non-interacting system, due to the correspondence
between the excitations of a Fermi liquid and a Fermi gas. One then has
Ex ~ EnN + 5% (Koo — Kn); for the accuracy that we needed, we approxi-
mated the effective mass m* =~ m in the previous formula and this provided
a consistency of the results with different numbers of particles, within the
statistical uncertainty.
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Another source of systematic errors is the finite number W of walkers.
Due to the central limit theorem, for large W the deviation from the correct
result scales as 1/v/W. So one has to increase the number of walkers in
order to keep this error within the statistical uncertainty. In our simulations,
due to the dilute nature of the systems under consideration, W = 100 was
sufficient (see Fig. for an example).
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Chapter 3

Itinerant ferromagnetism in
a three dimensional repulsive
Fermi gas

In this Chapter we apply the VMC and DMC techniques to the prob-
lem of itinerant ferromagnetism in repulsive or effectively repulsive ultracold
Fermi gases. In condensed matter physics ferromagnetic phenomena have
been studied within lattice or continuum models and the role of the lat-
tice is still not completely clear. In this Chapter, which is based on the
published paper [PBGT10], we show evidence of a ferromagnetic quantum
phase transition even without a lattice, in the context of repulsive dilute
Fermi gases.

3.1 Introduction

Over the past decade there has been substantial progress in the exper-
imental realization of quantum degenerate atomic Fermi gases. A major
part of the activity carried out so far was devoted to the investigation of the
role of attractive interactions, with special emphasis on the onset of pairing
and superfluidity in the vicinity of a Feshbach resonance as well as in the
presence of spin imbalance [GPS08]. More recently attention was drawn
to repulsive interactions and the onset of magnetic behavior. This topic
is particularly important in optical lattices because of its connection with
the repulsive Hubbard model, a fundamental paradigm of condensed matter
physics with still many unanswered questions [Geo(7], but also for contin-
uous systems where a major recent achievement has been the observation
of itinerant ferromagnetism induced by repulsive forces in a two-component
Fermi gas |[JLCT09]. This experiment realizes the Stoner model, a textbook
Hamiltonian that aims to describe itinerant ferromagnetism in an electron
gas with screened Coulomb interaction [Sto33].
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On the theoretical side there have been a number of papers addressing
the problem of stability of a repulsive two-component Fermi gas [HEST97|
and of phase separation in harmonic trapped configurations within the local
density approximation [AMMT00, [SPPRO00, [LTBP09, [SY02]. These studies
are based on a simple mean-field description of interaction effects that is
valid to linear order in the scattering length. In homogeneous systems at
T = 0 they predict a second order phase transition to a magnetized state if
the interaction strength is larger than the critical value kpa > 7/2, where
a is the s-wave scattering length and kr = (372n)Y/? is the Fermi wave
vector in terms of the total particle density of the gas n = ny +n;. An
extension of this approach that includes next order corrections to the inter-
action energy was developed in Ref. [DM05] and predicts a smaller value of
the critical density (krpa > 1.054), as well as a discontinuous jump in the
magnetization. Low-energy theories of itinerant fermions also predict a first-
order transition [BKV99]. A recent non-perturbative quantum Monte Carlo
calculation, instead, suggests the existence of a textured magnetic phase at
the border of the ferromagnetic transition and yields the value kpa ~ 0.8
for the critical density [CGS09]. On the other hand, the existence of a fer-
romagnetic transition has been questioned in Ref. [Zha09] by arguing that
nonmagnetic states with strong short-ranged repulsive correlations could be
energetically favorable compared to ferromagnetic ones.

Various important issues concerning the regime of strong repulsion are
still open. In this Chapter we provide answer to some of them, in particular:

i) we calculate the equation of state of the Fermi gas using different
potentials to determine the regime of interaction strength kra where
universality in terms of just the s-wave scattering length a is lost and
other parameters of the interatomic potential become relevant;

ii) we study population imbalanced configurations and show that the
equation of state of the highly polarized gas can be described in terms
of a Fermi liquid of polarons, similarly to the well-established case of
attractive interactions [LRGS06 ISZST06, [PSO8, [SWSZ09, NNJ*10];

iii) we investigate the onset of ferromagnetism and show how the physics
of polarons is related to the stability of the ferromagnetic states;

iv we establish the phase diagram in the polarization/interaction plane
where we determine the borders of three phases: a uniformly polar-
ized phase and mixed phases consisting of partially or fully polarized
domains, as shown in Fig. B.I] Our analysis of the pure phases has
been limited to uniform magnetic orders.
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3.2 Method

To address these issues we perform quantum Monte Carlo (QMC) simu-
lations of Fermi systems characterized by a positive scattering length a > 0,
interacting through either purely repulsive or purely attractive forces. The
Hamiltonian of the Fermi gas is

e (M
H=-5- ;VHF;%' +§V(rii’)u (3.1)

where m denotes the mass of the atoms, 7, j, ... and 7/, j/, ... label, respectively,
spin-up and spin-down fermions with Ny + N; = N, N being the total
number of atoms. We model the interspecies interatomic interactions using
three different potentials:

i) a hard sphere (HS) potential, V(r) = 400 if » < a and zero otherwise,

ii) a repulsive soft sphere (SS) potential, V(r) = Vj if r < Ry and zero
otherwise,

iii) an attractive square well (SW) potential, V(r) = —Vp if r < Ry and
zero otherwise (Vy > 0).

The s-wave scattering length a coincides with the range of the potential
in the HS case and can readily be determined from the range Ry and the
strength V4 in the other two cases. For the SS potential a is always smaller
than the range Ry and we fix the height Vj such that a = Ry/2. In the case
of the SW potential instead, the scattering length diverges to =00 every time
a new bound state enters the well: we fix the range such that nRg =10"%in
terms of the particle density n and the depth V{ takes values corresponding
to the positive branch of a with a single bound state. The short-range SW
potential provides a realistic description of interatomic forces in ultracold
atoms.

In the case of purely repulsive interactions we use the fixed-node diffusion
Monte Carlo (FN-DMC) method (see Sec. [2.6). This variational method
yields an upper bound for the ground-state energy of the gas, sampling the
lowest-energy wave function whose many-body nodal surface is the same
as that of a trial wave function 7. FN-DMC can give the exact ground-
state energy, provided one knows the exact nodal surface, and in general
the energies have been found to be highly accurate even if nodes are only
approximate (for more details see e.g. [Rey82]). Our trial wave function is
of the Jastrow-Slater form

dr(R) = [ [ f(ri) Dy(N1)Dy(N)) (3:2)

IR
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Figure 3.1: Phase diagram of the HS gas in the interaction/polarization plane. The
green region corresponds to the homogeneous phase. The other regions correspond
to phase separated states with partially polarized domains (yellow) and fully fer-
romagnetic domains (pink). The (blue) symbols correspond to the minimum of
the curve E(P) and the solid/dashed line is the phase boundary determined from
the equilibrium condition for pressure and chemical potentials. The blue and red
arrows indicate the critical densities where x diverges and full ferromagnetism sets
in, respectively for the HS and SW potential.

where R = (ry,...,ry) is the spatial configuration vector of the N particles
and Dy(|) denotes the Slater determinant of plane waves in a cubic box of
size L with periodic boundary conditions, accommodating the Ny(|) particles
with up (down) spin. The Jastrow correlation term f(r) is obtained from
the solution of the two-body scattering problem with the potential V(r),
satisfying the boundary condition on its derivative f'(r = L/2) = 0. Since
f(r) > 0, the many-body nodal surface results only from the antisymmetric
character of 17 and coincides with that of a non interacting gas, thus cor-
rectly reproducing this limit. Another advantage is that the trial function
can be used to simulate both unpolarized (Nt = N|) and polarized
(N1 > N|) configurations.

Attractive interactions, as modeled by the SW potential, are more deli-
cate, because of the presence of bound states (molecules) in the true ground
state. The atomic Fermi gas of interest here is a meta-stable state consist-
ing of unbound fermionic atoms and no dimers or other bound molecules.
Since we are interested in a metastable excited state we cannot use the FN-
DMC method and resort to the variational Monte Carlo (VMC) calculation
that provides a stable estimate of the energy Exvc = (¢Yr|H Y1)/ (Yr|dr)
(see Sec. [2.3). The absence of molecular bound states can be readily im-
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plemented for two particles by choosing the Jastrow correlation term f(r)
to be the scattering solution of the SW potential corresponding to positive
energy, which by construction is orthogonal to the bound molecule. A many-
body wave function is then constructed using Eq. with this choice of
f(r), while f'(r = L/2) = 0 takes care of periodic boundary conditions
similarly to the purely repulsive case. For small scattering energies, corre-
sponding to large values of L, the Jastrow term f changes sign at r = a.
The larger the size of the simulation box the smaller is the overlap between
f and the bound-state wave function, and 7 provides an accurate descrip-
tion of the gas-like state in the very dilute regime, but in general exhibits a
non-zero overlap with the state where dimers are formed. The overlap with
states where three or more-body bound states are formed is suppressed if
the range Ry of the SW potential is small enough.

It is important to note that the repulsive HS and SS potential and the
attractive SW potential, even though they correspond to the same value of
a and consequently share a similar long-range behavior of the correlation
functions, exhibit completely different short-range correlations as explicitly
shown in the inset of Fig. where we report results on the anti-parallel
spin pair correlation function.
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Figure 3.2: Equation of state of the unpolarized gas. We show FN-DMC results for
the repulsive HS and SS potentials and VMC results for the attractive SW poten-
tial. VMC results for the HS gas are also shown for comparison. The perturbation
expansion Eq. is shown with the (black) dashed line, while the (green) hori-
zontal line corresponds to the energy of the fully ferromagnetic state. Inset: Pair
correlation function g1 (r) at kpa = 0.5. The range of the SS and SW potential is
respectively Ry = 2a and Ry = 0.06a. The minimum at r = a for the SW potential
corresponds to the node in the Jastrow correlation term f(r). VMC and DMC
results of gy (r) practically coincide for the HS and SS potential.
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Simulations are performed with a maximum number of atoms in a single
spin component Ny () = 33, corresponding to a closed shell in momentum
space. For most results we checked the influence of finite-size effects by re-
peating the calculations with Ny(|y = 81. For the results of the SW potential,
no appreciable change is found by reducing the potential range parameter
nR%.

The equation of state of the balanced, Ny = N|, gas of weakly repul-
sive fermions was calculated using perturbation theory to second order in a

[HY57, LY57):

E 3 10 4(11 — 21og 2)
Z_CEp 14 —kpa 4 2089
R T S A A Yy

(kpa)?| , (3.3)
where Fr = th% /2m is the Fermi energy. One should notice that higher
order terms in the above equation will depend not only on the scattering
length a, but also on other details of the interatomic potential. As can
be seen in Fig. |3.2l agreement between the QMC results and Eq.
is found for kra < 0.4, but significant deviations and a gradual loss of
universality become evident for larger values of the interaction strength. In
the figure we also show the energy of the fully ferromagnetic (FF) state
Epp = 3/5Ep2%/3 (Nt + N)) consisting of two spatially separated regions of
non-interacting spin-up and spin-down fermions. Any uniform mixture of
the two spin species whose energy exceeds the value Epp is clearly unstable
against phase separation.

In order to better characterize the critical behavior at the onset of ferro-
magnetic behavior, we calculate the equation of state of the gas as a function
of the system polarization P = (Nt — N|)/(Nt + N|) and then show that
for P < 1 it can be well described in terms of weakly interacting polarons.
Results for the HS potential are shown in Fig. An analogous study is
performed using the SW potential (not shown). Finite size effects are re-
duced by subtracting from the QMC results, the finite size corrections to
the ground state energy Eo(Ny, N|) — EJY(P) of non-interacting fermions
with the same number of particles and the same polarization P (TL refers
here to the thermodynamic limit). The validity of this method, that relies
on Fermi liquid theory, is discussed in Ref. [LZCOI1] where it is compared
with twist-averaged boundary conditions (see also Sec. .

3.3 Results

From the results at small polarization we extract the inverse magnetic
susceptibility 1/x using a quadratic fit: F(P) = E(P = 0) + NEF%%Q,
where xo = 3n/2Ep is the susceptibility of the non-interacting gas. The
results for both the HS and SW potential are shown in the inset of Fig. [3.4]

For kra > 0.6 we find a linear decrease of the inverse magnetic susceptibility
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with increasing interaction strength, showing that x diverges at the critical
densities kpa ~ 0.82 and kra ~ 0.86, respectively for the HS and the SW
potential. As seen in Fig. a minimum in E(P) at finite polarization P
appears when kpa > 0.82. This minimum corresponds to a thermodynami-
cally stable mixed state with partially polarized domains (see Fig. . For
P < P the system follows the coexistence line where, in the thermodynamic
limit, E(P) is the sum of energies of domains with polarization P and —P
whose relative volume changes with P. For P > P, on the other hand, a
uniform mixture of spin components can still survive.
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Figure 3.3: Energy of the HS gas as a function of polarization for different values
of kra. The symbols correspond to FN-DMC results, while the lines at small and
large P correspond, respectively, to the fitted quadratic law and polaron energy
functional of Eq. . The horizontal dotted line is the threshold energy Erp of
the fully ferromagnetic state.

For large values of P the QMC results are well fitted by the energy
functional of weakly interacting polarons

3
E(z) = 5NTEFT <1 + Az + %x‘r’/g + Fl’2> ; (3.4)

which results from an expansion in the small concentration x = N|/N;
of spin-down impurities in a Fermi sea of spin-up particles. Here Epy =
hzk%T/ 2m is the Fermi energy of the spin-up particles in terms of the cor-

responding wave vector kpp = (67r2nT)1/ 3. Furthermore, the quantities A,
m* and F', which are all functions of krja, denote respectively the chem-
ical potential at zero concentration, the effective mass and the interaction
parameter of the polaronic quasiparticles (see Ref. [LRGS06] for the similar
treatment of attractive polarons).
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Figure 3.4: Chemical potential at zero concentration of the repulsive polaron. We
show FN-DMC results for the repulsive HS and SS potentials and VMC results
for the attractive SW potential. VMC results for the HS gas are also shown for
comparison. The (blue) solid line is a fit to the HS results. The second-order
perturbation expansion is shown with the (black) dashed line, while the (green)
horizontal line corresponds to Epy. Inset: Inverse magnetic susceptibility 1/x for
the HS (blue circles) and SW (red squares) potential. The lines are linear fits to
the data.

The results for A as a function of the interaction strength are shown in
Fig. . The weak coupling result A = 2[4kpra/31 + 2(kpja)?/n?], calcu-
lated to second order in the scattering length [MCI0, [CZ10], is also shown
(A. Recati, private communication). This quantity is important in order to
understand the stability of the fully ferromagnetic phase: in fact, if A < Epy,
the fully polarized domain is unstable against mixing of spin-up and spin-
down particles resulting in a partially polarized state. This problem was
investigated using a single particle-hole wave function in Ref. [CZ10]. We
estimate that the FF state becomes unstable at kpra = 1.2 and kpra = 1.4,
respectively for the HS and SW potential. By imposing pressure and chem-
ical potential equilibrium between highly polarized states described by the
energy functional (3.4), we determine the critical polarization boundaries,
shown in the phase diagram of Fig. separating the homogeneous unbal-
anced mixture from the partially ferromagnetic state comprised of domains
with opposite critical polarization +P. This determination of the phase
boundaries is reliable at large total polarization P, where the energy func-
tional is valid, but becomes less accurate at intermediate values of
P (dashed line in Fig. and can not be applied at small polarization.
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Good agreement is found with the critical polarization as determined from
the minimum of the E(P) curve. The critical polarization has a sharp drop
to P = 0 close to the density where x diverges, not allowing for a clear
distinction of the order of the phase transition. The possible emergence of
new phases, such as the spin textured phase proposed in Ref. [CGS09], also
requires more detailed investigations.

3.4 Conclusion

In conclusion we calculate the equation of state of a repulsive gas of
fermions as a function of interaction strength and spin polarization. We de-
termine the critical density for the onset of ferromagnetic behavior and we
investigate the stability of the fully ferromagnetic state. While the qualita-
tive features of the phase diagram are well described by just the long-range
repulsive correlations induced by the positive s-wave scattering length, the
quantitative determination of the phase boundaries depends on the details
of the interaction potential.

We acknowledge discussions with A. Recati. This work was supported
by the Swiss National Science Foundation and by a grant from the Army
Research Office with funding from the DARPA OLE program. As part of
the European Science Foundation EUROCORES Program “EuroQUAM-
FerMix” it was supported by funds from the CNR and the EC Sixth Frame-
work Programmer.

A related work appeared [CRT10], with similar results as ours.
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Chapter 4

BCS-BEC crossover in a 2D
Fermi gas

In this Chapter we apply the DMC technique to the problem of the
crossover from Bardeen-Cooper-Schrieffer superfluidity to Bose Einstein con-
densation in a Fermi gas with purely attractive interactions in two dimen-
sions. We show the analogies and the differences with respect to the three
dimensional case. Due to the confined geometry, the role of two-body physics
is much increased. Many different experimental groups are going to study
this kind of problem in the context of ultracold gases. This Chapter shares
the main results with the preprint [BG10].

4.1 Introduction

Ultracold atomic Fermi gases have become an active and rich field of re-
search [GPS08]. Important areas of investigation include the BCS-BEC
crossover in a superfluid gas with resonantly enhanced interactions, the
Chandrasekhar-Clogston instability of the superfluid state when spin po-
larization is increased, the possible onset of itinerant ferromagnetism in a
gas with repulsive interactions [JLCT09] and the realization of the Hubbard
model for fermions loaded in optical lattices [BDZ0S].

Low dimensional configurations of degenerate Fermi gases have also been
the object of experimental and theoretical studies [GPS08, BDZ08]. In par-
ticular, a two-dimensional (2D) ultracold Fermi gas has been recently re-
alized using a highly anisotropic pancake-shaped potential and the density
profile of the cloud has been measured using in situ imaging [MMTI0].
On the theoretical side, the evolution from a superfluid state with large
Cooper pairs to one with tight molecules in a 2D system of attractive
fermions was first investigated by Miyake [Miy83] and later by Randeria
and coworkers [RDS89, RDS90] aiming to describe high-T, superconduc-
tors. More recent studies address the problem of the superfluid transi-

o1
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tion [PBS03], [ZLDO8D], of harmonic trapping [ZLD08al MT05] and of pop-
ulation and mass imbalance [CCS08|, [HZ08]. These studies are in general
based on perturbative or mean-field approaches that are suitable in the
regime of weak coupling, but are bound to break down when interactions
become stronger.

In this Chapter we provide the first determination using quantum Monte
Carlo methods of the equation of state at 7' = 0 of a homogeneous 2D Fermi
gas in the BCS-BEC crossover. We also obtain results for the pairing gap
and the contact parameter as a function of the interaction strength. In the
strong coupling regime all quantities exhibit large deviations compared to
mean-field predictions. A similar study carried out in 3D [ABCG04] has pro-
vided an important benchmark against which experimental determination
of the equation of state, using measurements of the dispersion of collective
modes [ARK™07] or of in situ density profiles [NNCSI0], have been success-
fully compared. Hopefully, the results reported in this work will stimulate
more experimental efforts towards the realization of a 2D Fermi gas in the
strong-coupling regime by means, for example, of a Feshbach resonance to
increase the interaction parameter [MMTT0]. In Sec. we will introduce
the microscopic model, starting from the two-body physics. In Sec.
we will review the mean-field and perturbative results for the many-body
problem, both for the weakly interacting limit and the strongly interacting
one. In Sec. we will discuss the QMC method we used and in Sec.
we will show our results, comparing them to the mean-field solution.

4.2 Model hamiltonian and two-body physics

We consider a homogeneous two-component Fermi gas described by the
Hamiltonian

2 [ 2 o 2
H=-o- ;vi+§vi/ +;V(Tii’)7 (4.1)

where m denotes the mass of the particles, i, 7,... and 4, j’,... label, re-
spectively, spin-up and spin-down particles and Ny = N| = N/2, N being
the total number of atoms. We model the interspecies interatomic inter-
actions using an attractive square-well (SW) potential: V(r) = —V} for
r < R (Vo > 0), and V(r) = 0 otherwise. In order to ensure that the
mean interparticle distance is much larger than the range of the potential
we use nR? = 107°, where n is the gas number density, or equivalently
kpR = 0.0025 in terms of the Fermi wave vector kr = v27n. In such a
regime there is a negligible dependence of the observables on the range of
the interaction, so that the SW potential can be considered universal.

We simulate a system that is strictly 2D, so we will now introduce some
quantities related to scattering in two dimensions, in particular the scat-
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tering length. In two dimensions the s-wave phase shift of the two-body
problem scales as the logarithm of the total energy when energy goes to
zero; actually it has the following asymptotic behavior:

7 cot do(e) = log (;) +0 (;) , (4.2)

where eg = h?/mR?, E, = 4h*/(me¥a3p), and v ~ 0.577 is Euler -
Mascheroni’s constant. F, is a typical energy scale. Note that Eq.
and the definition of F, unambiguously fix the value of the scattering length,
once one includes all the constant terms into the logarithm of Eq. (4.2). An-
other definition of asp includes the factor €7/2, such that E, = h? /m&%D.
In the case of the SW potential one has

asp = R eToR)/mIk) (4.3)

where Jy1)(z) are Bessel functions of the first kind and x = \/Vp/eg. This
definition of asp gives agp < R for a repulsive soft-disk potential (k pure
imaginary), the equality aop = R being reached for hard disks of diameter
R. The scattering length is non negative and diverges at x = 0 and
at the zeros of Ji, corresponding to the appearance of new two-body bound
states in the well. Close to these points the shallow dimers have size asp
and their binding energy is given by ¢, = —F,. The dependence of asp as
a function of the depth Vj in the region where the well supports only one
bound state is shown in the inset of Fig.

Compared to the 3D case the BCS-BEC crossover in 2D exhibits impor-
tant differences, mainly coming from different scattering properties:

e For a purely attractive potential a two-body bound state exists for
arbitrarily weak attractions, while in 3D one needs a strong enough
potential depth. This implies that the length aop diverges for a van-
ishingly small attraction.

e The 2D scattering amplitude of particles colliding at low energy ¢ =
h%k?/m is given by f(k) = 27 /[log(2/kaspe”) +in /2] [PSO1] and goes
to zero for k — 0, while in 3D one has f(k) = 1/[—1/asp — ik], which
goes to the constant —agp for k — 0.

e There is no finite value of the interaction potential strength for which
f (k) is independent of the scattering length. On the contrary in 3D it
is possible to have f(k) = 47 /ik at the threshold for the appearance
of the first bound state (unitary limit).

4.3 Many-body problem

In two-dimensions the energy per particle in the non-interacting case is

1R%k% 1
— == 4.4
2 2m 9t (4.4)

FG
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where €r is the Fermi energy.

Two regions are clearly identified by comparing asp with the mean in-
terparticle distance 1/kp: i) kpasp > 1 corresponds to the BCS regime
where interactions are weak and dimers are large and weakly bound, ii)
krasp < 1 corresponds instead to the BEC regime of tightly bound com-
posite bosons. The region krasp ~ 1 identifies the strong-coupling crossover
region between the BCS and the BEC regime (see inset of Fig. [4.1)).

4.3.1 BCS self-consistent theory

The mean-field BCS equations can be analytically solved [Miy83,[RDS90]
along the BCS-BEC crossover, in terms of the interaction coefficient z =
lev|/2ep. For the BCS order parameters one obtains A = 2ep+/z, while for
the energy per particle one obtains E/N = Erg(1—2x) and for the chemical
potential y = ep(1—2x). The interpretation is clear: for small binding energy
one recovers the non interacting limit; when x ~ 1, the chemical potential
becomes zero and then negative, so that the role of the dimers becomes more
important; for very strong binding the chemical potential of the fermions is
equivalent to half the binding energy of a molecule, so the system is made
of non interacting bosons.

Although very useful for providing a global self-consistent picture and
for setting a stringent variational upper bound to the energy per particle,
the BCS solution fails in various aspects. In the BCS regime it neglects the
Hartree-Fock contributions to energy, which are dominant, since the gap is
small. In the BEC regime it misses the correct interaction energy between
the bosons. In general it is not able to reproduce the logarithmic dependence
of energy on the density, which is typical of 2D.

4.3.2 Perturbative results in the BCS limit

In the weak coupling regime when the gap is small, a perturbative calcu-
lation starting from the non-interacting Fermi sphere, which is equivalent to
a normal Fermi liquid approach, is able to provide a better estimate of the
energy that the BCS theory. When the many-body problem is approached,
it is possible to introduce a mean-field coupling constant by considering
the scattering amplitude, provided the energy is small with respect to the
scale E, = |ep|. This causes an intrinsic ambiguity in two dimensions, since
one has to choose a reference energy to fix the coupling constant. Usu-
ally for Fermi systems, when there is a definite Fermi surface, one puts
€ = 2u = 2ep, so that the mean-field coupling constant can be written
as g = (47h?/m)/log(E,/2er) with logarithmic accuracy. Note that this
coupling constant becomes meaningless in the crossover region.

The equation of state of a Fermi gas with short range repulsive interac-
tion in two dimensions has first been studied by Bloom using perturbative
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Figure 4.1: Equation of state in the BCS-BEC crossover. Squares refer to the BCS
and circles to the JS wave function. The solid (red) line is a fit to the data, the
dotted (green) line is half of the molecular binding energy and the dashed (blue) line
is the prediction of mean-field theory. The horizontal dotted (black) line denotes
the energy per particle Frg of the non-interacting gas. Inset: 2D scattering length
asp as a function of the depth Vj for a SW potential of radius R. The BCS and
BEC regimes correspond, respectively, to krpasp > 1 and kpasp < 1.

theory [Blo75] and then by Randeria and coworkers in a series of subsequent
papers [ER92, [ERZ92], using diagrammatic techniques in the framework of
Fermi Liquid Theory. Beyond logarithmic accuracy Bloom found the ex-
pansion E/N = Epg(1 — 1/n+ 0.28/n?) in the interaction parameter 1 =
log(krazp), while Randeria found E/N = Epq (14 29 + (3 — 4log2)g?) in
terms of the previously introduced coupling constant. These two expressions
coincide up to the first logarithmic order. We remark here however that the
FE, introduced by Randeria has a factor 2 of difference with that introduced
by us; this affects the definition of g, so that the validity of the second order
coefficient is questionable.

4.3.3 Perturbative results in the BEC limit

The equation of state of a two dimensional Bose gas with short range
interaction has been calculated within quantum field theory in [Beal(]. Pre-
viously it was widely studied both analytically and with QMC techniques
(see [ABCT09, MC09|] and references therein).

Following Beane we introduce the running coupling gp(\) in terms of
the scattering length of the bosons ap and the particle density of the bosons
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np:
1

" log (npAr2e?va%)

9(\) = : (4.5)

where A is an arbitrary dimensionless cutoff parameter, which is present due
to the truncation in the perturbative expansion. In the following mp is the
mass of the bosons.

Up to the second order in the running coupling, one can express the
energy density in the following way

_ 27rh2n23

mp

£ g5(\) 1+QB()\)(log(7rgB()\))—log)\wz—F%) . (4.6)

It is evident from the above expression that fixing the scattering length
ap which appears in the definition of gg(\) is not sufficient for determining
the energy density if one does not declare its choice for A, that is the form
of the coupling constant. Note also that the coefficient of the second order
term does depend on the choice of A\. A convenient choice for simplifying
the expression is to set A = e~ /72, so that we can introduce the coupling
gs = —1/log (npa%) and we obtain

2,2
:27rhnB
mp

1
& ge|l+9B <log (mgB) + 2v + 5) . (4.7)

Now let us consider the case when the bosons are dimers, consisting of
two paired fermions with mass m = mp/2 and particle density n = 2np.
There must exist a regime where the binding is so tight that the EOS of such
composite bosons is the same as in the case of point-like bosons, with the
simple replacement ap — «asp, where asp is the scattering length of the
underlying fermions. Let us therefore introduce the dimensionless coupling
parameter of the fermions as 1 = log (krazp), where n = k% /2, so that
the composite bosons coupling turns to be gg = —1/log (na?a3,/2) =
1/(log 4w — 2n — 2log ). In such a situation the energy per fermion can be
written in the following way:

E € erl
£ _ el el

4.8
Nr 2 22 ’ (48)

1
1+gB <log (mgB) + 27 + 5)

where —|gp|/2 is the contribution from the binding energy of the dimers.

Note that Petrov and coworkers [PBS03] introduced a different defini-
tion of the coupling constant for the composite bosons, implying a different
choice of \. Namely the coupling constant (with dimension Energy x Area)
proposed by Petrov was:

B 27h? 1
= m log(2ﬁ26b)’

e?Ve

Im (4.9)
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Figure 4.2: Equation of state in the BCS-BEC crossover with ¢, /2 subtracted from
E/N. Symbols are as in Fig[f.]] The solid (red) line is a fit to the data, the
other dotted lines denote the equation of state of composite bosons and the
perturbation expansion holding in the BCS regime. The dashed (blue) line
shows the result of mean-field theory.

where 8 = 1.6 from foug—body calculations and € is a reference energy of the
order € &~ 2g,n, ~ anB, that is twice the chemical potential of a single
boson neglecting the logarithm. In the above formula the binding energy of

the dimer corresponds to €, = %e%, but one can introduce the reference
F
energy for two dimers as Ep = %ﬁ, which defines the scattering length
B
for the dimers as ap = agpe? /23, once one puts g, = %m The

proportionality factor between the scattering lengths of the fermions and the
bosons corresponds to ap = €7 /23 ~ 0.56. The argument of the logarithm
turns out to be 1/nBa2327re27, while with our choice of A = Ao = %27 one

mee
would have 1/nga%. This implies that in their case A = Ap = 2/, so that
the corresponding expression for the energy per particle, up to second order,
turns to be

E €p erl
__ll, el

1
Ny 5 t 5398|109 <log (9B) —log(2) + 2) ; (4.10)

where g5 = 1/(log 2 — 2y —2n—2log ap). As will be shown in the following,
we validate the value of the dimer scattering length provided by Petrov and
coworkers, even if we obtain that retaining the second order term in the
energy functional is crucial for a correct interpretation.
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4.4 Method

Simulations are carried out in a square box of area L? = N/n with
periodic boundary conditions, using the fixed-node diffusion Monte Carlo
(FN-DMC) method. This numerical technique yields an upper bound for
the ground-state energy of the gas resulting from an ansatz for the nodal
surface of the many-body wave function that is kept fixed during the calcu-
lation (see Chap. [2| for more details). The boundary condition is enforced
using a trial function that we choose of the general form [CPCS04, [ABCGO05]
Yr(R) = ®s(R)P4(R), where ®g is a positive function of the particle
coordinates R = (ry,...,ry) and is symmetric in the exchange of parti-
cles with equal spin, while ® 4 satisfies the fermionic antisymmetry con-
dition and determines the nodal surface of ¥r. The symmetric part is
chosen of the Jastrow form ®g(R) = [, fy|(ri), where two-body cor-
relation functions of the interparticle distance have been introduced for
antiparallel spins. The ®4 component is chosen as an antisymmetrized
product ®4(R) = A (¢(r11)p(ra2)...¢(rn, n,)) of pair-wise orbitals of the
form ¢(r) = By k. <k, ekaT 4 B.py(r), with B3+ 2 = 1. Here, ko =
27/ L(LazZ + Loyy) indicate the plane wave states in the box, with integers
¢’s summed up to the maximum value of the k-shell accommodating N/2
particles, and (3, is a variational parameter controlling the relative weight
of the plane-wave sum to the spherical symmetric component (7).
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Figure 4.3: Optimization of the parameter 8, at n = log(krpasp) = 2.64, with
VMC. The optimal value is chosen to be 3, = 0.6. A similar optimization was
performed for points in the range 0.5 < 1 < 4 and the resulting pair orbitals were
used for DMC simulations. In all the cases, due to large error bars, the obtained
energies were not better than those obtained with the 3, = 0 or 3, = 1 pair orbitals,
which we therefore report in Tab. @

Two important regimes are described by the above trial wave function:
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i) if fiy =1, B, = 0 and @s(r) = fp(r) is the molecular solution of the
two-body problem with the potential V' (r), the wave function p(R) de-
scribes a BCS state of bound molecules that is expected to be appropriate
in the deep BEC regime; ii) if instead §, = 1 and fy (r) = fp(r), the
antisymmetric component in the trial function coincides with the product
of the plane-wave Slater determinants for spin-up and spin-down particles
®4(R) = Dy(Ny)D)(N)) [BGL8S| and v is a typical Jastrow-Slater func-
tion of a normal Fermi liquid. This description is expected to hold in the
BCS regime of a weakly interacting gas where the effect of pairing on the
ground-state energy is negligible. The more general form of the trial wave
function written above provides a smooth interpolation between these two
regimes (see Fig. for more details). Note that all radially symmetric
two-body functions have zero derivative at r = L/2, to be consistent with
periodic boundary conditions.

4.5 Results

In Figs. and in Tab. we report the FN-DMC results for the
equation of state as a function of the interaction parameter in units of the
energy per particle of the non interacting gas Erg. Calculations are carried
out using ¢ of the BCS and JS form as described above. The BCS function
provides a lower energy for log(krasp) < 1, while the JS function is more
favorable for larger values of the interaction parameter. More sophisticated
forms of ¥, interpolating between the BCS and JS function, have been used
in the region log(krasp) ~ 1, but without a significant improvement of the
ground-state energy (see Fig. [4.3). The role of finite-size effects has been
investigated by carrying out calculations with N = 26 and N = 98. No
significant change is seen when using the BCS trial function and for the JS
function a large suppression of these effects is obtained by compensating for
the finite-size correction of noninteracting fermions with the same number
of particles (see Sec[2.9).

The result E/N = Epg + €3,/2 obtained from mean-field theory [Miy83),
RDS89, [RDS90] is shown in Figs. for comparison. The inadequacy of
the mean-field approach is best shown in Fig. where the molecular con-
tribution is subtracted from the energy per particle. In the BEC regime the
FN-DMC results are fitted with the equation of state of a gas of composite
bosons corresponding to hard disks of diameter agq

-+l
- IS —
N, P
2mh2ng 1 loglog(1/nqa%) logm + 2y +1/2
5|1 — 5 5 , (4.11)
ma Tog(i/ngad) |' " Tlog(t/na?) | log(1/naad)

where my = 2m is the mass of the dimer, while the number of dimers, and
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Table 4.1: Energy per particle and molecular binding energy in the BEC-BCS
crossover (energies are in units of Epg).

log(kFaQD) E/N 81,/2 E/N—Eb/Q
-2.00 -137.761(7) -137.832  0.070(7)
-1.50 -50.593(4)  -50.675 0.082(4)
-1.00 -18.532(4)  -18.637  0.105(4)
-0.50 -6.714(4)  -6.856 0.142(4)
0.00 -2.318(2)  -2.522 0.204(2)
0.25 -1.283(12)  -1.530  0.247(12)
0.50 -0.638(10)  -0.928  0.290(10)
0.75 -0.201(12)  -0.563  0.361(12)
1.44 0.349(6)  -0.143 0.492(6)
1.72 0.459(16)  -0.080  0.539(16)
2.15 0.552(2)  -0.034 0.587(2)
2.64 0.634(4)  -0.013 0.647(4)
3.34 0.706(2)  -0.003 0.709(2)
4.03 0.755(4) 0.000 0.755(4)
4.37 0.775(1) 0.000 0.775(1)
5.18 0.821(7) 0.000 0.821(7)

correspondingly their density ng, is half of the total number of fermions
Ny = N/2. The above expression, which is equivalent to Eq. , includes
beyond mean-field terms [ABCT09, IMCQ9, Beal(] and allows for a precise
determination of the dimer-dimer scattering length az. We obtain ag =
0.55(4)azp, in agreement with the four-body calculation in Ref. [PBS03]
(see Sec. [4.3.3).

In the opposite BCS regime, where the contribution of the pairing gap
can be neglected, the fermionic equation of state can be described in terms
of an attractive normal Fermi liquid (FL), as we mentioned in Sec. It
we set the beyond logarithmic accuracy expression

Epo(ile). )

we find the result A = 0.06(2) for the coefficient of the second order term
(See Fig. . Our value for A is not compatible with Bloom’s result
A = 0.28 while it is compatible with the result A = 3/4 — log?2 for the
coefficient of the second order term reported in Ref. [ERZ92]. However, we
disagree with Ref. [ERZ92] on the value of the constant in the definition of
7.

In Fig. [4.5| we show the results for the pairing gap Agap in the strong-
coupling regime. This quantity is defined from the difference of ground-state
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Figure 4.4: Energy per particle for a weakly attractive gas and a weakly interacting
gas in 2D. The red squares are DMC results with square well interaction and the
blue circles are obtained with soft disk interaction, with interaction range R = 2asp.
The black dashed line is the energy functional introduced in the text .

energy E(Np, N|) of systems with one and two more (less) particles Agap =
1/22E(N/2 £1,N/2) — E(N/2 £1,N/2 £ 1) — E(N/2,N/2)] [CCPS03].
At the level of mean-field theory [Miy83], [RDS89, [RDS90] the pairing gap
coincides with the result for the order parameter Aga, = A = /2ep|ep| if
lep| < 2ep, and is given by Aga, = ep + |ep|/2 for larger values of |ep|. In
the BEC regime the quantity Aga.p — |€p|/2 shown in the inset of Fig. is
determined by the repulsive interaction between unpaired fermionic atoms
and bosonic dimers. In fact, the energy of the system with one extra spin-up
particle can be written as the sum of the contribution of N/2 dimers
and the Fermi-Bose interaction energy: F(N/2+ 1, N/2) = E(N/2,N/2) +
gBFng, where gpp = 3wh?/[mlog(1/nqa?,;)] is the coupling constant fixed
by the atom-dimer reduced mass 2m/3 and the effective scattering length
aqq- By using the definition of Ag,, and the value ag = 0.55a2p for the
dimer-dimer scattering length in the energy functional , we find a,q =
1.7(1)azp from the best fit shown in the inset of Fig. [£.5] Unfortunately
to our knowledge there are no analytical results for the Bose-Fermi mixture
in 2D up to second order, so that we are forced to use only the first order
contribution: that is why we call a,q an effective scattering length. However
we can suppose that higher order contributions are very small, like in the
3D case (see [PGOS]|).

Finally, we calculate the contact parameter C' [Tan08al, [Tan08b] defined
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Figure 4.6: Contact parameter in the BCS-BEC crossover. The solid (red) line
corresponds to the calculation from the derivative of the equation of state reported
in Fig Inset: Contact parameter with the two-body contribution Cy subtracted.
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from the short-range behavior of the antiparallel pair distribution function
lim, 0 g1 (r) = 4C/k%1og?(r/azp) [WCIQ]. The limit r — 0 is intended
here as R < r < k;l (see Sec. . The contact parameter is also related
to the derivative of the equation of state with respect to the interaction
parameter C = (2rm/h%)d(nE/N)/d(logkrasp) [WCI0]. The results are
shown in Fig. [4.6] In the inset we show the quantity C' — Cy, where Cy =
(mm/h?)d(nep)/d(log krasp) is the contribution to the contact C' from the
molecular state. The comparison between the two determinations of C' is
a stringent consistency check of the theoretical approach. We find a good
agreement with Tan’s relation, apart from the region log(krasp) ~ 1 where
small deviations are visible, both with the JS and BCS-type wave function,
showing the need of a better optimization of .

4.6 Quasi-2D configuration

An important question relates to the relevance of these results for sys-
tems in harmonic traps. 2D configurations are realized if the transverse con-
finement is strong enough to reduce the kinematics to the zy-plane: Aw, >
er = hw VN, where we assumed isotropic trapping in the radial direction
wy = wy = w|. In these conditions the effective 2D scattering length can
be expressed in terms of agp and the transverse harmonic oscillator length
a, = y/h/mw, being given by asp = a,(2+/7/B/e?) exp(—+/7/2a./asp),
where B ~ 0.915 [PSOI]. For small, negative values of the 3D scattering
length asp the system is found in the BCS regime corresponding to an ex-
ponentially large aop. The BEC regime is reached if the absolute value of
asp is increased such that |asp| > a,/log(1/kra,). An additional require-
ment concerns the dimer state, which is well described by the 2D expression
only if |ep| < hw, [PSO1], or equivalently asp > a.. We believe that this lat-
ter condition can be relaxed if, in the comparison with the results reported
in this work, one considers quantities where the molecular contribution has
been subtracted out.

This work, as part of the European Science Foundation EUROCORES
Program “EuroQUAM-FerMix”, was supported by funds from the CNR and
the EC Sixth Framework Programme.
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Chapter 5

Density profiles of a three
dimensional trapped
imbalanced Fermi gas

In this Chapter we use Local Density Approximation and QMC based
equations of state to study the density profiles of mixtures of Fermi gases
in harmonic traps in three dimensions. We also compare our results with
experiments, finding good agreement. The experimental and theoretical
studies of spin imbalanced Fermi gases are relevant for addressing the issue
of the polarization driven superfluid transition at zero temperature. This
Chapter is based on the published paper [BG09].

5.1 Introduction

The field of ultracold two-component Fermi gases with population im-
balance is a very active area of research which in recent years has attracted
a great deal of interest both experimentally and theoretically [GPS0§|. The
experiments are carried out with clouds of atoms confined in harmonic
traps and the analysis of the measured density profiles is a key diagnostic
tool to investigate issues such as shell structures and the phase transition
from a superfluid to a normal state of the gas. Important achievements
of this technique have been the observation of phase separation between
a superfluid core and a normal external shell driven by the degree of po-
larization [ZSSKO06a, PLKT06], by the interaction strength tuned across
a Feshbach resonance |[SZST06, [SSSK08a] and by the temperature of the
gas [ZSSKO6D, [PLL™06, [SSSKOSD].

In the unitary limit, corresponding to a diverging scattering length be-
tween the spin-up and spin-down components of the fermionic mixture, the
density profiles of the polarized gas have been investigated in details in
Ref. [LRGS06, [RLS08]. This theoretical study is based on an accurate de-
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termination of the equation of state of the strongly-interacting normal gas
as a function of imbalance obtained using quantum Monte Carlo methods.
It provides predictions for the shape of the profiles, for the density jump at
the boundary of the superfluid core and for the critical polarization when
the system turns fully normal, which are in excellent agreement with the
experimental findings of the MIT group [SSSKO8b]. In the Bose-Einstein
condensate (BEC) limit of small and positive scattering lengths, the polar-
ized gas is predicted to behave like a mixture of composite bosons (the bound
dimer molecules) and fermions (the unpaired atoms) [PS06l [TGO07, ISO§].
The density profiles in this regime have been investigated theoretically in
Refs. [PS06], ISO8] and experimentally in the recent study by the MIT
group [SSSK08a], where the Bose-Fermi mixture model is quantitatively
tested at the level of mean-field theory, including also higher order cor-
rections. At finite temperature, the density profiles of a trapped polar-
ized Fermi gas have also been the object of theoretical investigations based
on self-consistent approaches both at unitarity [CCHLO07] and in the BEC
regime [ISO§].

The phase diagram of the uniform gas at zero temperature as a function
of polarization and interaction strength has been calculated using quantum
Monte Carlo (QMC) techniques in Ref. [PGO8]. This study provides a pre-
cise determination of the equation of state of four different phases competing
for the ground state of the system: (a) the unpolarized and (b) polarized
superfluid gas and (c) the fully and (d) partially polarized normal gas. The
quantum phase transition from the normal to the superfluid state is first or-
der and is accompanied by a region of phase separation where the two phases
coexist in equilibrium. Only in the deep BEC regime, where the Bose-Fermi
mixture model applies, the transition from a fully polarized Fermi gas to
a miscible mixture of few superfluid bosons in a Fermi sea becomes second
order.

In this Chapter we use the knowledge of the energy functionals of the
uniform phases (a)-(d) as a function of polarization and interaction strength
and using the local density approximation we calculate the phase diagram
of a trapped gas and the density profiles of both spin components. We
determine the conditions for the appearance of a superfluid unpolarized
core and of a jump in the density profile signaling the occurrence of the first
order quantum phase transition from superfluid to normal. The calculated
density profiles are compared with the experimental ones of Ref. [SSSK08al
for different values of the interaction strength, from the unitary to the BEC
limit, and for different values of the polarization. In Sec. [5.2] we introduce
the equations of state of the four uniform phases (a)-(d) and in Sec.
we discuss the equations of mechanical and chemical equilibrium when the
harmonic external potential is present. In Sec. we present the results for
the phase diagram, the density profiles and for the radii of the various shells
present in the cloud. Conclusions are drawn in Sec.
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Figure 5.1: Phase diagram for trapped atoms at zero temperature as a function
of polarization and interaction strength. The regions correspond to different shell
structures (see text). Inside the two (red) solid lines a jump in the density profile
marks the superfluid-normal first order phase transition. Above the (blue) dashed
line the unpolarized SFy superfluid inner core is absent. On the right of the dotted
line the polarized SFp superfluid phase is absent, while on the left the partially
polarized Npp normal phase is absent.

5.2 Uniform phases

In this Section we introduce the uniform phases considered in Ref. [PGO0S]
and we discuss their energy densities as a function of the concentration of
spin-down particles (the minority species) and of the interaction strength.
The natural unit of energy is provided by the Fermi energy of the spin-up
majority component

h2k12?T h2(6772m)2/3

2m

2m ’

(5.1)

where kp; is the Fermi wave vector of the spin-up particles fixed by their

particle density n;. For trapped systems, where the density varies with
position, the above equation defines the local Fermi energy.

(a) Unpolarized superfluid gas (SFg). In this phase the spin-up and spin-

down particle densities are equal ny = n| = n/2. For positive values of the
s-wave scattering length (a > 0) the energy density can be written in the
form

n 3
ESFO(H/Q) = 561, + (5nTEFT) QG(I/kFTa) . (5.2)
In the above equation ¢, denotes the binding energy of the molecule (g, =

—h? /ma? for a zero-range potential) and G(1/kpqa) is a dimensionless func-
tion of the interaction parameter 7 = 1/kpra. A suitable parametrization of
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Figure 5.2: Density (left column) and column density (right column) profiles at
P = 0.8 for different values of the interaction strength. Row (a) corresponds to
unitarity (1/1@%Ta =0), row (b) to 1/k%Ta = 0.4, row (c) to 1/kOFTa = 0.8, row (d)
to 1/k%a = 1.2 and row (e) to 1/k%,a = 1.7. The solid (green) lines refer to the
majority spin-up component, the dot-dashed (blue) lines to the minority spin-down
component and the dashed (black) lines to the density difference ny —n;. The
jump in the density n; of the minority component is shown with a vertical double
arrow. The reference density ng, column density n.y and radius Ry all refer to a
non-interacting Fermi gas with N; particles.
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G(n), which well reproduces the QMC results from the BEC to the unitary
limit (see Ref. [PGO8]), is provided by the following formula

ap + ag arctan(asgn)  (n < 0.699) ,

Gn) = { )+ %+ % (1> 0699, (5:3)

where we defined the function
e(n) = 5(0.60/n)/(187)[1 + 128(0.60/n)*2/(15V6r*/3)] ,  (5.4)
while the constants ag_4 have the following values: oy = 0.434, a3 =

—0.292, as = 2.90, ag = 0.0129 and a4 = —0.0100. The function G as
defined above is continuous at n = 0.699 with continuous first derivative.
For kpja < 1 it reduces to the function €(n), which corresponds to the en-
ergy, including the Lee-Huang-Yang (LHY) beyond mean-field correction,
of a gas of composite bosons interacting with the dimer-dimer scattering
length aqq = 0.60a.

(b) Polarized superfluid gas (SFp). This phase is characterized by a
density np = n| of pairs and a density ng = ny —n| of unpaired atoms,
such that n = 2np+mn4. The concentration of the minority atoms is denoted
by y = n|/ny. For 1/kpra > 0.5 an accurate parametrization of the equation
of state is provided by the following energy functional

5kprag
i y(l-y)| - (55)
s

The first term on the right hand side is the energy density of an unpo-
larized superfluid with density 2np. The other two terms correspond to the
kinetic energy of a gas with density n 4 of unpaired fermions and to the inter-
action energy, treated at the level of mean field, between unpaired and paired
atoms parametrized by the atom-dimer scattering length a,q = 1.18a. With
the above energy functional one recovers the Bose-Fermi mixture model in
the deep BEC limit corresponding to 1/kpta > 1.

(¢) Fully polarized normal gas (Npp). In this phase the density of spin-
down particles vanishes (n; = 0) and the energy density coincides with the
one of an ideal Fermi gas

3
SSFP = gSFo (np) =+ 5nTEFT (1 _ y)5/3 +

3
gNFP == 3”TEFT . (56)

(d) Partially polarized normal gas (Npp). This phase is characterized by
the concentration = n|/n; of the spin-down particles. For small concen-
trations (z < 1) the dependence on z of the energy functional can be written
in the form of the Landau-Pomeranchuk Hamiltonian of weakly interacting
fermionic quasiparticles [BP91, [LRGS06, RLS08, [Che06, BF07, [CRLCO7,
PGO8, [PSOS]

SNPP = gnTEFT (1 — Az + %xs’/g + FJZ2> , (57)



70

5. Density profiles

where A is the binding energy of a single spin-down quasiparticle in the
Fermi sea of spin-up particles, m* is its effective mass and F' represents
the interaction between quasiparticles. These quantities all depend on n =
1/kpra. We used the following parametrizations, which well reproduce the
QMC results when n > 0:

58(,

- + Bo + Bin + Bon® + Bsn® (5.8)
3Ep

An) =

where the first term on the right hand side is conveniently introduced in
analogy with (5.