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ABSTRACT: The PMTs of the CMS Hadron Forward calorimeter were found togenerate a large
size signal when their windows were traversed by energetic charged particles. This signal, which
is due toC̆erenkov light production at the PMT window, could interfere with the calorimeter signal
and mislead the measurements. In order to find a viable solution to this problem, the response of
four different types of PMTs to muons traversing their windows at different orientations is mea-
sured at the H2 beam-line at CERN. Certain kinds of PMTs with thinner windows show signifi-
cantly lower response to direct muon incidence. For the fouranode PMT, a simple and powerful
algorithm to identify such events and recover the PMT signalusing the signals of the quadrants
without window hits is also presented. For the measurement of PMT responses tŏCerenkov light,
the Hadron Forward calorimeter signal was mimicked by two different setups in electron beams
and the PMT performances were compared with each other. Superior performance of particular
PMTs was observed.
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1 Introduction

The Compact Muon Solenoid (CMS) [1] is a general-purpose detector designed to run at the highest
luminosity provided by the CERN Large Hadron Collider (LHC). Coverage between pseudorapidi-
ties of 3.0 and 5.0 is provided by the steel/quartz fiber Hadron Forward (HF) calorimeter. The front
face is located at 11.2 m from the interaction point and the depth of the absorber is 1.65 m. The
signal originates from̆Cerenkov light emitted in the quartz fibers, which is then channeled by the
fibers to photomultipliers. The absorber structure is created by machining 1 mm square grooves
into steel plates, which are then diffusion welded. The diameter of the quartz fibers is 0.6 mm and
they are placed 5 mm apart in a square grid. The quartz fibers, which run parallel to the beamline,
have two different lengths (1.43 m and 1.65 m) which are inserted into grooves, creating two effec-
tive longitudinal samplings. There are 13 towers inη , all with a size given by∆η ≈ 0.175, except
for the lowest-η tower with∆η ≈ 0.1 and the highest-η tower with∆η ≈ 0.3. Theφ segmentation
of all towers is 10◦, except for the highest-η one which has∆φ = 20◦. This leads to 900 towers and
1800 channels in the two HF modules [2]. Details of the HF design, together with test beam results
and calibration methods, can be found in [3].

In the framework of the Super LHC (SLHC) upgrade plans, one ofthe problems to be solved
is the large signal generated by the photomultiplier tubes (PMTs) of CMS HF calorimeters when
the PMT window is traversed by relativistic charged particles. The primary reason for this signal
is C̆erenkov light production at the PMT window, followed by theliberation of photoelectrons at
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Table 1. Typical properties of PMTs tested in this study. Information is obtained from Hamamatsu [4].
Detailed information about the HFPMT can be found in [5].

PMT Type PMT Type Photocathode Quantum Typical Window
Number Efficiency Gain Area

(max. %) (mm2) app.

Four Anode PMT R7600U-100-M4 Super Bialkali 35 1.3×106 324 (square)

Four Anode PMT R7600U-200-M4 Ultra Bialkali 43 1.3×106 324 (square)

Four Anode PMT R8900U-100-M4 Super Bialkali 35 1.0×106 324 (square)

Single Anode PMT R7600U-100 Super Bialkali 35 1.0×106 324 (square)

Single Anode PMT R7600U-200 Ultra Bialkali 43 1.0×106 324 (square)

miniPMT R9880U-110 Super Bialkali 40 2.0×106 50 (round)

HFPMT R7525 Bialkali 25 5.0×105 490 (round)

the photocathode of the PMT. The expected rate is around 0.1 %of the events at low luminosity
conditions of LHC. This would have impact on the hadronic energy measurements of HF and
missing transverse energy calculations, and could even result in fake triggers and mismeasured
online luminosities.

There have been a few studies to tag these events such as usinga scintillating crystal in front
of the PMT window to enhance the light production by the traversing particle while keeping the
light sensitivity of the PMT practically constant, utilizing a much smaller diameter round PMT
with a thinner window to reduce the rate of such events and using a veto counter possibly behind
the readout box.

In this study, we compare different types of candidate PMTs with the currently installed
PMT (hereon called HFPMT) for signal production at PMT window with the muon beam and
for C̆erenkov light detection with two different setups in electron showers. A simple and efficient
tagging and signal recovery algorithm for the PMT window events of the four anode PMT is also
discussed.

2 Experimental setup and data acquisition

Table1 summarizes typical properties of the PMTs used in this study. Three different kinds of
four anode PMTs (R7600U-100-M4, R7600U-200-M4 and R8900U-100-M4), two kinds of single
anode PMTs (R7600U-100 and R7600U-200) and miniPMT (R9880U-110) were tested for com-
parison with each other and the currently installed HFPMT (R7525). The candidate PMTs offer
superior performance over HFPMT due to their increased quantum efficiencies. Their geometrical
specifications predict a significant reduction in both rate and the amount of signal generation when
the PMT window is hit by a charged particle (HFPMT window is 2 mm thick at the center and gets
thicker towards the rim, single and four anode PMT windows are slightly less than 1 mm thick and
miniPMT window is around 0.5 mm thick).

The PMTs were tested with 150 GeV/c muon beam and 80 GeV/c electron beam of CERN H2
beam-line [6] in July 2009.

– 2 –
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(a) (b)

Figure 1. Sample layout of the PMT Box for front (a) and side (b) muon incidence. PMT bases are indicated
by three parallel lines (not to scale).

Figure 2. Quartz fiber calorimeter and fiber bundle test setups (not toscale).

As one of the four main test stations on the HF test table, two different setups were used to test
the muon response of the PMTs. In the first setup (figure1a), PMTs were lined one after the other
with their windows facing the same direction. In the second setup (figure1b), PMTs were placed
side by side, again with their windows facing the same direction. The first setup was used to study
the PMT response when the muon beam hits the PMT windows from the front and the second setup
was used to investigate the response when the beam hits sideways. Both PMT boxes were made
light-tight and they were placed in front of wire chamber E (WCE) as the first test apparatus on the
HF test table in order to perform precise position measurements with 1 mm resolution.

Two test stations were used to measure the differences in theresponse of the PMTs tŏCerenkov
light from electron showers (figure2). During the electron shower tests, a 5 cm thick steel absorber
was introduced upstream in order to instantiate the electromagnetic shower and produce a reason-
able amount of̆Cerenkov light for the two PMTs attached to the end of the HF fiber bundle. The
∼1 cm diameter bundle of regular HF quartz fibers (with 0.6 mm diameter) was placed in∼3 cm
diameter light guide. The bundle splits into two parts at thereadout end. The HFPMT was kept in
place at one end of the fiber bundle while the candidate PMTs were interchanged at the other end.
The possible signal difference between the two ends due to fiber mixing was also measured. The
portion of the fiber bundle that sees the beam was aligned to make∼45◦ with respect to the beam
direction in order to maximize thĕCerenkov light capture. The length of the bundle from the beam
interaction to readout was∼1.5 m. WCE was used to select events with electrons that pass through
the fiber bundle.

– 3 –
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Figure 3. Schematic of the end of H2 beam-line (not to scale) showing scintillation counters (SC1 and SC2)
and wire chambers D and E (WCD and WCE) together with the HF test table and the HCAL test wedge that
was in the beam-line for some of the runs.

The second test station for the electron showers was the quartz fiber calorimeter. It consisted
of an array of 6 mm diameter, 45 cm long steel rods in a 20 cm x 20 cm x 45 cm housing with
quartz fibers (0.3 mm core diameter, 65 cm long) inserted in between the rods. The fibers were
then bundled at the back of the calorimeter to form a single readout. The light guides at the readout
end were 20 cm long with the same reflective material as HF light guide.

The readout was performed by charge integration and encoding units (QIEs) [7] and the data
was stored in CMSSW (CMS SoftWare) [8] HCAL Test Beam raw data format. Each QIE channel
was readout in 20 time slices of 25 ns length each. A schematicof the end of H2 beam-line is
shown in figure3. The trigger was given by the coincidence of two scintillation counters of sizes
14 cm x 14 cm (SC1) and 4 cm x 4 cm (SC2). Therefore, a beam spot ofsize 4 cm x 4 cm is
anticipated. However, for some of the muon runs, HCAL beam test wedge was in front of the HF
test table, and for these runs a beam spot of at least 10 cm x 10 cm was recorded by WCE due to
multiple scattering of muons off the wedge. For some of the muon runs, wire chamber D (WCD)
was also utilized to track and veto muons with a high deviation from the original beam direction.
It was verified that this did not affect the results significantly since the PMT window size is small
compared to the size of the wire chambers.

3 Testing muon interactions with PMT windows

3.1 PMT response to front muon incidence

The setup shown in figure1a was exposed to muon beams both with/without the HCAL test wedge
in front. The results were compared and it was verified that the wire chamber utilization was
satisfactory for the selection of events in the region of interest. Figure4 shows the QIE charge
profile as a function of wire chamber coordinates for the HFPMT. Similar results were obtained
for all types of PMTs tested. Using these profiles, a positioncut with the correct dimensions at the
PMT window edges was applied to study only the events where the charged particles traversed the
PMT windows. The cut for the HFPMT window is shown in figure4.

Figure5 shows the responses of different types of PMTs when the muon beam hits the PMT
window from the front. All responses are normalized to the gain of the HFPMT. The charge for
the four anode PMT was calculated by adding the signals from the four channels that read out the
four quadrants of the PMT window after individual gain normalizations. Since HFPMT window
is much thicker than that of the other PMTs,C̆erenkov signal produced is much higher. It has a
signal magnitude that is more than a factor of two compared tothe single anode and four anode

– 4 –
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Figure 4. Integrated charge profile (in fC) as a function of WCE coordinates for HFPMT. The boundary of
the PMT window event selection is shown as a black ring.

Figure 5. Charge distributions of the four anode PMT (R7600U-200-M4), the single anode PMT (R7600U-
200), the miniPMT and the HFPMT produced by the front beam incidence.

PMTs and a much larger spread with a long tail in the high end ofthe spectrum. The four anode
and single anode PMTs both have ultra bialkali photocathodes and they exhibit the same behavior
in the overall picture. The miniPMT window produces the lowest magnitude of signal among all
because of its tiny window thickness and the response shows no tail in the larger signal region.
However, the width of the distribution is not improved as much.

With the PMT window cuts applied, PMT window event rates werealso measured as the ratio

– 5 –
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(a) (b)

Figure 6. (a) Charge distributions of the four anode PMT, the miniPMTand the HFPMT as produced by the
side beam incidence. (b) Charge profile (in fC) and selectionregion for four anode PMT (R8900U-100-M4).

of the number of events above pedestal to the total number of events: HFPMT 90%, four anode
PMT 69%, single anode PMT 64% and miniPMT 51%. As expected, the window event rates were
found to be correlated with the thicknesses of the PMT windows.

3.2 PMT response to side muon incidence

The responses of three PMTs with different window geometries for side beam incidence (figure1b)
are shown in figure6a. These distributions were obtained after carefully applying a position cut
on the PMT window. An example of such a cut is shown in figure6b. The pulse amplitudes
are 2-5 times larger when compared to the case where the beam hits the PMT window from the
front as the distance the particle travels inside the PMT window is much longer for side incidence.
Since the window thickness seen by the beam is not uniform forthe HFPMT and the miniPMT,
the distributions of these PMTs are suppressed towards lower values of charge. Single anode PMT
exhibits identical behavior as the four anode PMT, therefore its charge distribution was not shown
in figure6a.

3.3 Angular study of muon incidence on four anode PMT

One of the four anode PMTs (R8900U-100-M4) was used to study the dependence of the charge
distribution on the angle of incidence of the beam. The PMT was exposed to beam with its window
making an angle of 90◦ (front incidence), 70◦, 50◦, 30◦, 10◦ and 0◦ (side incidence) with respect
to the beam direction. Beam position cuts were applied around the PMT window using WCE
information for each orientation. Figure7a shows the charge distributions for 50◦, 10◦ and 0◦.
As the angle is reduced from 90◦, the thickness of the PMT window that is exposed to beam
increases leading to an increase in signal magnitude (figure7b). The results of the angular study
are consistent with the results presented in [9] for bialkali photocathodes.

– 6 –
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(a) (b)

Figure 7. (a) Charge distribution of the four anode PMT (R8900U-100-M4) for different angles of muon
beam incidence. (b) Mean charge at all angles studied.

4 TestingC̆erenkov response of PMTs

4.1 Tests with the fiber bundle

The setup is prepared by first introducing a 5 cm thick steel absorber in front of the fiber bundle
(see figure2). The bundle sees the beam at 45◦ angle.C̆erenkov light produced in the section of the
fiber bundle that is exposed to the initial electron shower propagates to the end where the bundle
splits into two light guides. Figure8 shows the charge distributions measured by a four anode PMT
when it was reading out from the two ends of the fiber bundle oneat a time. The distributions prove
that the mixing of the fibers is satisfactory enough so that both ends could be treated as identical
for the purpose of testing two different types of PMTs at once.

The fiber bundle was visualized using PMT charge profile for WCE coordinates. Since the
actual bundle was about 1 cm in diameter, a cut on the wire chamber coordinates was applied to
insure the measurement of the signal coming only from theC̆erenkov light production in the fiber
bundle. Figure9 shows the profile for the four anode PMT. The bundle is along the horizontal
direction. The size of the cut was kept slightly less than theactual size of the fiber that is exposed
to beam. Due to the small ratio of the selection area to the size of the beam and the moderate
efficiency of the wire chamber, the number of selected eventswere about 20% of the total number
of events recorded.

Figure10shows the charge distributions for the PMTs reading out the fiber bundle signal. The
distributions were normalized to the HFPMT gain. Single anode and four anode PMT signals both
have a mean∼1.5 times the HFPMT signal. The single anode PMT is of type R7600U-100 and
the four anode PMT is of type R7600U-100-M4 both with super bialkali photocathodes. Hence
their signals are comparable. Also shown are the Gaussian fits to the data. All distributions are
well described by the fits. Deviations from the fit are mainly due to the fluctuations in the charge
integration and encoding system.

– 7 –
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Figure 8. Charge distributions for a four anode PMT when it was reading out different ends of the fiber
bundle while all other parameters in the setup were kept constant.

Figure 9. Integrated charge profile (in fC) as a function of WCE coordinates for a four anode PMT (R7600U-
100-M4). Black rectangle shows the selection cut applied inorder to include the signal from the fiber bundle
only.

4.2 Tests with the quartz fiber calorimeter

The fiber calorimeter was placed behind the 5 cm thick steel absorber. The calorimeter was po-
sitioned so that the fibers were aligned along the beam direction and were bundled at the back of
the calorimeter (see figure2). Therefore, 80 GeV/c electrons reach the fiber calorimeteras a de-
veloping shower that reaches its maximum within the first quarter length of the calorimeter and the

– 8 –
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Figure 10. Fiber bundle charge distributions for the four anode PMT (R7600U-100-M4), the single anode
PMT (R7600U-100) and the HFPMT. Gaussian fits are also shown.

electromagnetic shower would be contained entirely. No cuts on the particle position are applied as
the main testing point is to obtain a sufficient amount of signal by collecting maximum̆Cerenkov
light out of the calorimeter fibers.

The charge distributions of the four anode PMT (R7600U-200-M4), the single anode PMT
(R7600U-200), the miniPMT and the HFPMT are shown in figure11. The four anode PMT and
the single anode PMT with ultra bialkali photocathodes readabout twice the magnitude of the
signal collected by the HFPMT. The distributions were normalized to the HFPMT gain. No PMT
window area corrections were applied since proper light guides were utilized for each PMT window
geometry. The miniPMT window area is smaller than the bundlecross-section area, hence its
charge distibution is presented only to show that more than one miniPMT per readout channel for
HF calorimeter would be necessary.

5 Selecting PMT window events and recovering the signal withfour anode PMT

A simple algorithm for identifying window events in the fouranode PMTs has been developed with
the assumption of using them in HF. The signal from the HF fibers should be shared almost equally
by the four channels while the window event signal emerges asa large deviation of one or more
quadrant signal from the average signal of the four quadrants. Figure12 shows the distribution of
the maximum deviation of any quadrant signal from the mean signal of the four quadrants both for
a window event sample and an electron shower sample with the HF fiber bundle. The deviation
for a real signal is within one mean whereas for the PMT windowevents, the deviation of a single
quadrant signal extends up to three times the average signal. The cut to distinguish the PMT
window events from the real signal is set at a maximum deviation of one mean from the average.
This introduces a systematic error of about 5% in the cut algorithm.

– 9 –
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Figure 11. Quartz fiber calorimeter charge distributions for four anode PMT (R7600U-200-M4), single
anode PMT (R7600U-200), miniPMT and HFPMT.

Figure 12. The distributions of maximum absolute deviation of singlequadrant signal from the average
signal of the four quadrants as multiples of mean signal (red: C̆erenkov signal; black: PMT window event
signal).

Once the PMT window event is identified, the PMT signal is recovered by averaging the
signals from the quadrants that do not show window event signature and multiplying that number
by four. The single quadrant PMT window event signature is determined as the ratio of the two
highest signals being greater than 20. Although this case constitutes the majority of all the window
events (about 80%), there is also multiple quadrant hit signatures in front muon incidence. When
the muon hit is close to the center of the PMT window, the produced C̆erenkov light is shared
(usually unequally) by the neighbor quadrants. This phenomenon can not be considered as crosstalk

– 10 –
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Figure 13. PMT window event selection and signal recovery for the fouranode PMT with front incidence
of muons. No pedestal subtraction was applied to the data. The blue, crossed area is the pedestal.

between the quadrants since the light incidence on the photocathode is not point-like. Rather, it is
about 1.3 mm diameter disc ofC̆erenkov light on the photocathode. The fraction of such events
is around 2.5%. This is consistent with the ratio of the central area to the whole PMT window
area (around 2.3%). Further selection is applied in order toreduce this effect: If one of the three
quadrants have more than 80% of the total signal (of the three), the event is assigned the double
quadrant hit signature. The recovery is performed using thetwo quadrants with the lowest signals.
The recovered signal for the remaining negligible fractionof events is calculated by multiplying
the smallest signal by four.

Figure13 shows the application of this PMT window event identification and signal recovery
algorithm to a set of front muon incidence data. No pedestal subtraction has been applied to the
data. The algorithm successfully selects the PMT window events and recovers the signal back.
The distribution is suppressed towards zero, slightly above pedestal - which is shown by the blue,
crossed distribution - except for the events with muon hits around the center of the PMT window
which correspond to∼2.5% of all the front-incident muon events.

Figure14 shows the results of the same algorithm applied to the side incidence data. PMT
window events are selected and the signal is recovered with more than 95% efficiency. Events
with muons that pass through the center of the four anode PMT generate a high signal in all four
quadrants, but the rate of such events is below 1% which is consistent with the fraction of the
central boundary area seen sideways (1.1%). Similar results are obtained for all different angles
that were tested. The algorithm is an efficient way of taggingand correcting for cosmic events.

The algorithm was also applied to the data from the HF fiber bundle. The result is shown
in figure 15a. The method is applied with no pedestal subtraction or gainnormalization. The
algorithm misidentifies about 6% of the signal events as PMT window events and reconstructs the
signal suppressing it towards zero. The misidentification is due to the algorithm itself; however, the
suppression towards zero is due to slight alignment variations that result in uneven illumination of
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Figure 14. PMT window event selection and signal recovery for the fouranode PMT with muons at side
incidence. No pedestal subtraction was applied to the data.

(a) (b)

Figure 15. (a) Charge distributions before and after the algorithm for selection of PMT window events and
signal recovery was applied to the four anode PMT of the HF fiber bundle. (b) “Before Selection” subtracted
from “After Selection”.

the quadrants or real interference from particles scattered towards the four anode PMT or cosmic
muons. Figure15b shows the difference between the “After Selection” and “Before Selection”
distributions of figure15a.

For some of the runs, the fiber calorimeter was rotated by 60◦ or 90◦ to allow the electron
shower to leak behind, and the fiber bundle PMTs were placed inthe beamline at the back of the
calorimeter. Although the probability for the PMTs to get real particle hits together with the bundle
signal is too low, the algorithm was tested with this setup for its effectiveness in selecting PMT
window events within a real signal. The result is shown in figure 16. In the low signal region
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Figure 16. The result of the application of selection and signal recovery algorithm to HF fiber bundle when
the PMTs were in the beamline.

of the spectrum, the signal is suppressed towards zero as in the case of the algorithm applied to
pure signal. However, in the mid- to high-signal regions of the spectrum, the signal is suppressed
towards slightly lower values indicating that efficient identification and signal recovery has been
performed. The most important aspect of this result is that the high tail in the original distribution,
which clearly comes from PMT window events, disappears after the utilization of the algorithm.

6 Conclusions

In the search for a new photomultiplier tube for the CMS forward hadron calorimeters, candidate
PMTs with different specifications were tested. The response of PMTs to relativistic charged par-
ticles traversing their windows at different incidence orientations was tested with 150 GeV/c muon
beam. The HF calorimeter signal was also mimicked with two test setups in 80 GeV/c electron
beam in order to compare PMT performances: around 1 cm-diameter bundle of HF quartz fibers
and a 20 cm x 20 cm x 45 cm steel rod calorimeter with quartz fibers placed in between and
alongside the rods. The fiber bundle was split into two at one end enabling two readout chan-
nels simultaneously. The difference between these two endsin terms of signal quality due to fiber
mixing, slight variations in light guide conditions, etc. is negligible.

At front incidence of muons on the PMT windows, the candidatePMTs exhibit significantly
better performance with their reduced response magnitude and spread, and PMT window event
rates. The miniPMT produces the lowest response to traversing particles since it has the thinnest
window among all PMTs under study. It is clearly observed that PMTs with the same type of
photocathode - hence same quantum efficiency - and gain have identical responses.

Side muon incidence response is higher and has a wider spectrum when compared to front
incidence response. This is due to the difference in the distance traveled by muons inside the
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PMT window. Measurements with various angles of muon incidence also prove that the response
becomes larger as the angle between the PMT window and the beam direction is decreased.

Fiber bundle data was first filtered for exact fiber location utilizing one of the wire chambers
in the beamline. Therefore, the response solely by theC̆erenkov radiation in the fibers was mea-
sured. Measurements show that the candidate PMTs have superior performance over the HFPMT
on detection ofC̆erenkov light as expected from their proposed quantum efficiencies. It is also
concluded that the four anode and single anode PMTs that havethe same kind of photocathode
material have identical responses.

Fiber calorimeter study is performed by reading out a singlePMT response from the back of
the calorimeter where the quartz fibers are bundled to form a single tower. The single anode and
four anode PMTs show significantly improved responses compared to the HFPMT. The miniPMT
does not constitute a strong competitor for the other types of PMTs as more than one miniPMT
would be required to read out the fiber bundle in the HF calorimeter towers.

For the four anode PMT, an effective and simple algorithm forselecting PMT window events
and recovering the signal from the quadrants that do not showPMT window event signature is
presented and implemented on front and side muon incidence data as well as the fiber bundle
data. This simple method proves to be an effective way of selecting PMT window events and
recovering the signal with available information. The method can be utilized both for refining
detector measurements and for the elimination of cosmic interference online or offline.
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