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Abstract—Based on the eigenvalue equations of vector fields �E and
�H by extending Bloch theorem to the vector field Maxwell equations,
the characteristics of 2-D dielectric rod array with square cross-section
elements arranged in square lattice is analyzed in detail. From
the numerical results, empirical expressions for both the relative
bandwidth of frequency band gap and the midgap frequency with
respect to the average permittivity, under the optimal filling fraction
of dielectric/air in cross-section for wider bandwidth, are formulated
by means of data fit.
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1. INTRODUCTION

The photonic band gap material consisting of dielectric structures with
a periodic index of refraction has been investigated for more than a
decade, in which the propagation of electromagnetic waves is forbidden.
This kind of structure has been used to suppress spontaneous emission
or to form a special waveguide, whose frequency range is located in the
band gap.

After E. Yablonovitch and S. John reported their pioneer research
in experiments [1–3], many others published their theoretical analyses,
concerned with 3-D structures [4–9] or 2-D ones [10–23]. In classical
analysis of a dielectric periodic structure, the eigenvalue equations
are formulated by means of the plane wave expansion method of
scalar field [5, 12] or vector field [4, 6–11, 13–23]. In numerical analysis,
FDTD method is the first choice to carry out the wide-band frequency
response of the periodic structure [24]. Transfer-matrix method is
said to be a hybrid of time and frequency domain method, by which
transmission spectrum can be retrieved directly [25, 26]. On the other
hand, the task of engineers is to design the geometric parameters
of the structure to satisfy a desired frequency response, rather than
calculating the response from a given structure. In this article the
simple formulation for relative bandwidth of frequency band-gap and
the midgap frequency are provided, it must be a powerful tool in
designing the PBG devices.
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2. EIGENVALUE EQUATIONS FOR �E AND �H

The study of waves in periodic structures makes use of a single physical
principle proposed by Floquet in 1884. Later extension of the theorem
by Bloch covers multidimensional periodic structures in his treatment
of electrons in a crystal and is referred to as the Bloch expansion.
It describes the characteristics of the state function satisfying scalar
Schrödinger equation for an electron in a periodic potential formed
by the atom lattice. Bloch Theorem states that [31]: The eigenstate
ψ of the one-electron Hamiltonian H = −h̄2∇2/2m + U (�r), where
U

(
�r + �R

)
= U (�r) for all �R in a Bravais lattice, can be chosen to have

the form of a plane wave times a function with the periodicity of the
Bravais lattice

ψ
n�k

(�r) = ej
�k·�ru

n�k
(�r) = ej

�k·�ru
n�k

(
�r + �R

)
(1)

For the Maxwell’s equations of vector fields �E and �H, the plane
wave expansion method was also employed in several references [3–
22]. However, a rigorous derivation of Bloch theorem for vector
fields satisfying Maxwell’s equations had not been found yet to the
authors’ knowledge. The authors think that the derivation is necessary
since there are so many differences between Schrödinger equation and
Maxwell’s equations. After an extensive study, it turns out that anyone
can finish this work as long as he follows the steps presented in Solid
State Physics [31] and it is too straightforward to be listed here. From
now on, we’ll directly employ Bloch Theorem on �E, �H, �D and �B in a
periodic structure.

Assuming that the non-magnetic dielectric material under consid-
eration is lossless, linear, anisotropic and periodically inhomogeneous.
The relative permittivity in Maxwell equations is a dyadic (simply the
subscript “r” is omitted)

ε (�r) = ε
(
�r + �R

)
(2)

where �R is Bravais lattice vector.

2.1. Eigenvalue Equation for Vector Field �E

The electric field �E satisfies the following vector wave equation:

∇×∇× �E (�r)− ω2

c2
ε (�r) · �E (�r) = �0 (3)
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where ω is angular frequency, c is the velocity of light in free space.
�E (�r) can be expressed in Bloch waves:

�E (�r) =
∑
�G

�E �G e
j(�k+ �G)·�r (4)

where �G are reciprocal lattice vectors and �k locates in the irreducible
zone of the first Brillouin zone in reciprocal lattice space. ε (�r) can be
expressed in Fourier series as

ε (�r) =
∑
�G

ε �G e
j �G·�r (5)

where
ε �G =

1
V

∫
WS Cell

ε (�r) e−j �G·�r dV (6)

whose integral region is a Wigner-Seit cell (simply, WS Cell) with
volume V . Substituting Eq. (4) and Eq. (5) into Eq. (3), the eigenvalue
equation for electric field �E has a form:(
�k + �G

)
×

(
�k + �G

)
× �E�k+ �G

+
ω2

c2

∑
�G′

ε �G− �G′ · �E�k+ �G′ = �0, for each �G (7)

2.2. Eigenvalue Equation for Vector Field �H

The magnetic field �H (�r) satisfies the following wave equation:

∇×
[
η (�r) ·

(
∇× �H (�r)

)]
=
ω2

c2
�H (�r) (8)

where η (�r) = ε (�r)−1 is also a dyadic with the same periodicity as ε (�r).
By expanding �H (�r) in terms of Bloch waves as

�H (�r) =
∑
�G

�H �G e
j(�k+ �G)·�r (9)

and using the Fourier expansion for η (�r),

η (�r) =
∑
�G

η �G e
j �G·�r (10)

with its expansion coefficients

η �G =
1
V

∫
WS Cell

η (�r) e−j �G·�r dV (11)
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one can get the following eigenvalue equation in reciprocal lattice space
for vector field �H(�r):(
�k + �G

)
×

∑
�G′

η �G− �G′ ·
[(
�k + �G′

)
× �H�k+ �G′

]
+
ω2

c2
�H�k+ �G

= �0, for each �G

(12)

3. MODELING FOR COMPUTATION

3.1. Eigenvalue Equations in Matrix Form

The eigenvalue equation (7) of �E can be simplified as (see Appendix
A):

A �G · �E�k+ �G
=
ω2

c2

∑
�G′

ε �G− �G′ · �E�k+ �G′ , for each �G (13)

where A �G =
∣∣∣�k + �G

∣∣∣2 I − (
�k + �G

) (
�k + �G

)
, I is an identity dyadic.

Denoting

A =


A �G1

0 · · · 0
0 A �G2

· · · 0
...

...
. . .

...
0 0 · · · A �GN



B =


ε �G1− �G1

ε �G1− �G2
· · · ε �G1− �GN

ε �G2− �G1
ε �G2− �G2

· · · ε �G2− �GN
...

...
. . .

...
ε �GN− �G1

ε �GN− �G2
· · · ε �GN− �GN


X =

[
�E�k+ �G1

�E�k+ �G2

�E�k+ �G3
· · · �E�k+ �GN

]T
where superscript “T” means transpose, N is the truncated number
of reciprocal lattice points involved (i.e., the truncated number of the
Fourier expansion terms), and 0 is a zero dyadic. Then Eq. (13) can
be rewritten as:

A ·X =
ω2

c2
B ·X (14)

where “·” represents the dot-product operation between the elements
of two matrices. This is the matrix form of the �E eigenvalue equation,
or say a generalized eigenvalue matrix equation.
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The eigenvalue equation (12) of �H can be rewritten as (see
Appendix B):∑

�G′

Y �G− �G′ · �H�k+ �G′ = −ω
2

c2
�H�k+ �G

for each �G (15)

where Y �G− �G′ =
(
�k + �G

)
× η �G− �G′ ×

(
�k + �G′

)
.

Denoting

Z =
[
�H�k+ �G1

�H�k+ �G2
· · · �H�k+ �GN

]T
,

Y =


Y �G1− �G1

Y �G1− �G2
· · · Y �G1− �GN

Y �G2− �G1
Y �G2− �G2

· · · Y �G2− �GN
...

...
. . .

...
Y �GN− �G1

Y �GN− �G2
· · · Y �GN− �GN

 ,

then Eq. (15) has the form:

Y · Z = −ω
2

c2
Z (16)

This is the matrix form of the �H eigenvalue equation, i.e., an eigenvalue
matrix equation.

By solving the above eigenvalue Eq. (14) or (16), the dispersive
relation �k-ω may be abstracted.

3.2. Reciprocal Lattice Vector �G

In order to calculate the reciprocal lattice vector �G in Eqs. (14)
and (16), expanding it in terms of three basis vectors �b1, �b2, �b3 as
�G = m�b1 + n�b2 + l�b3 (where m, n, l are independent integers), and
employing these bases as

�b1 = 2π
�a2 × �a3

�a1 · (�a2 × �a3)
, �b2 = 2π

�a3 × �a1

�a1 · (�a2 × �a3)
, �b3 = 2π

�a1 × �a2

�a1 · (�a2 × �a3)
(17)

where �a1, �a2, �a3 are the basis vectors of the direct geometric lattice
[31].

In 2-D �k space the basis vectors �b1 and �b2 can be expressed in
form of �a1 and �a2 as

�b1 =
2π
A
�a2 × ẑ
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�b2 =
2π
A
ẑ × �a1 (18)

where A is the area of a WS Cell and ẑ is the unit vector parallel to
the axis of the rods.

3.3. The Fourier Coefficients of ε (�r) and η (�r)

Furthermore, the integrals of the Fourier coefficients ε �G of ε (�r) in
expansion (6), and η �G of η (�r) in (11) must be estimated for Eqs. (14)
and (16), respectively. Let ξ (�r) represents ε (�r) or η (�r), and using
subscripts “a” and “b” represent the inclusion and the host materials of
the PBG structure, respectively, then the dyadic ξ (�r) can be expressed
for any field point �r and each lattice vector �R as:

ξ (�r) = ξb +
(
ξa − ξb

) ∑
�R

u
(
�r − �R

)
(19)

where the 3-D step-function

u
(
�r − �R

)
=

 0, when
(
�r − �R

)
lies in the host material

1, when
(
�r − �R

)
lies in the inclusion material

Hence expressions (6) or Eq. (11) becomes

ξ �G =
1
V

∫
WS Cell

ξ (�r)e−j �G·�r dV

=
1
V

∫
WS Cell

ξb +
(
ξa − ξb

) ∑
�R

u
(
�r − �R

)e−j �G·�r dV
=


ξb + β

(
ξa − ξb

)
, when �G = �0

1
V

(
ξa − ξb

) ∫
inclusion

e−j
�G·�r dV, when �G �= �0

(20)

where β = Va/V is defined as “filling fraction”, Va is the volume of
inclusion in a WS cell and the integral on WS cell is zero for �G �= �0.
In the case of isotropic material as εi = εi I (where i = a or b) for
�E-equation; or ηi = ε−1

i I (where i = a or b) for �H-equation, ξ can be
degenerated appropriately and the characteristics of the PBG structure
with respect to dyadic permittivity will be associated with the scalar
dielectric constants εa and εb.
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3.4. Notes about �E and �H Equations

Strictly speaking, only one matrix equation, Eq. (14) for electric field
�E or Eq. (16) for magnetic field �H is necessary for the problem, the size
of the matrix is changeable in different cases. Generally, the plane wave
may be decomposited into TM and TE wave with respect to a specific
vector. For 2-D rod structure, TM and TE wave are with respect to
the axis of the rod. When Eq. (14) is employed, the matrix size will be
3N×3N due to three components of �E in 3-D case, or 2N×2N due to
two components of �E in 2-D case with TE wave propagation, or N×N
due to one component of �E in 2-D case with TM wave propagation.
On the other hand, when Eq. (16) is employed, the matrix size will
also be N ×N due to one component of �H in 2-D case with TE wave.
The benefit from employing both �E and �H equations is that fields for
TM and TE waves can be calculated independently from the matrix
equation with same size of N × N . This will significantly reduce the
computing time.

4. DISPERSION OF 2-D PBG STRUCTURE

In Eq. (14) or (16), vector �k behaves as a parameter. For a given �k,
a set of eigen frequencies can be obtained after solving this eigenvalue
matrix equation. When �k changes smoothly in one way or another,
the eigen frequencies obtained will also change smoothly. For a
homogeneous dielectric medium, all the frequencies should merge into
one continuous band. For a PBG structure, however, due to its
periodical inhomogeneity, the frequencies are grouped into separated
bands. When the gap between two frequency bands appears for all the
�k within the first Brillouin zone and all the polarizations of the vector
field ( �E or �H), it is called an absolute (complete) band gap. Absolute
band gaps are more likely present in 3-D periodic structure [3–9]. In
2-D case, the larger band gaps with respect to a single polarization
(TE or TM) are present for all the �k within the first Brillouin zone,
but they do not overlap each other. Researches intend to realize the
overlap of the band gaps of different polarizations [18–20], and to find
their engineering applications [21–23]. In this article, a 2-D structure
with square lattice of square rods is fully analyzed.
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Figure 1. PBG structure with rectangular lattice of rectangular rods
(a) in direct lattice (�r-) space; (b) in reciprocal lattice (�k-) space.

4.1. PBG Structure with Rectangular Lattice of
Rectangular Rods

Fig. 1(a) shows the cross section of 2-D rectangular dielectric rods
(W1 ×W2 in size) arranged in a rectangular lattice (basis vectors are
�a1 and �a2). The relative permittivities of rod and background are εa
and εb, respectively. The Wigner-Seit Cell is also shown. Fig. 1(b)
shows the correspondent reciprocal lattice (its basis vectors are �b1 and
�b2) and the first Brillouin zone. In this zone, point Γ means �k = �0
corresponding to the low frequency limit, point X means �k = 0.5�b1,
point M means �k = 0.5�b1+0.5�b2. The vector �k changes magnitude but
keeps its direction in �b1 along segment ΓX, changes both magnitude
and direction from vector ΓX to ΓM along segment XM , and changes
magnitude but keeps its direction in (�b1 + �b2) along segment ΓM .
Thus the �k-ω relation within the triangular area (�ΓXM) indicates
the complete dispersion characteristics of the structure, due to the
geometric symmetry of the first Brillouin zone.

Define refraction index ratio α as:

α = ε>/ε< (21)

where ε> = max(εa, εb), and ε< = min(εa,εb) for future use.
For rods of rectangular cross section arranged in rectangular



92 Zheng and Zhang

Γ

M

X

Fr
eq

ue
nc

y(
G

H
z)

Γ X MM

f

f
2

1

0

5

10

15

20

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

5

10

15

20

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

5

10

15

20

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
0

5

10

15

20

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 2. �k-ω curves for square rods (W = 0.0048 m, εa = 10.2)
arranged in square lattice in the air (a = 0.012 m, εb = 1.0, N =
11 × 11) from �E equation with TM wave. The inset shows the first
Brillouin zone.

lattice, the Fourier coefficients in Eq. (20) can be further evolved as:

ξ �G=


ξb + β

(
ξa − ξb

)
, when �G = �0

β
(
ξa−ξb

)
[sin(GxW1/2)/(GxW1/2)]

· [sin(GyW2/2)/(GyW2/2)] , when �G �= �0

(22)

where the filling fraction β = W1W2/a1a2.

4.2. The �k-ω Relation

The PBG structure with square lattice of square rods is defined as
�a1 = ax̂, �a2 = aŷ and W1 = W2 = W . Let N = N1 ×N2, where N is
the truncated number of the Fourier expansion terms or the truncated
number of the reciprocal lattice points involved which can be divided
into N1 columns and N2 rows.

The dispersion curves shown in Fig. 2 for the case of dielectric
rods (a = 0.012 m, W = 0.0048 m, εb = 1.0, εa = 10.2 and N = 121)
is calculated from the �E equation (14) with TM wave, in which band
gaps are outlined as the shadow strips. The lower and upper limits of
the first gap are f1 = 7.1418 GHz and f2 = 10.009 GHz, respectively.
The dispersiveness with respect to the filling fraction β or refraction
index ratio α will be focused at these two frequencies. Here the filling
fraction is β = 0.16, the bandwidth of the gap for arbitrary propagation
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Figure 3. �k-ω curves for square air rods (W = 0.01 m, εa = 1.0)
arranged in square lattice in a host (a = 0.012 m, εb = 10.2, N =
29×29) from �H equation with TE wave propagation. The inset shows
the first Brillouin zone.

is ∆f = 2.8672 GHz, the midgap Frequency is f0 = 8.5754 GHz, and
the relative bandwidth of the gap is ∆f/f0 = 0.334. The result shows
good agreement with that in [23]. However, no gap was found for TE
wave inside the same structure.

The dispersion curve shown in Fig. 3 for the case of air rods
(a = 0.012 m, W = 0.01 m, εb = 10.2, εa = 1.0, N = 841) is calculated
from the �H equation (16) with TE wave, in which the first gap is
outlined as shadow strip too. The lower and upper limits of this gap
are f1 = 8.7754 GHz and f2 = 10.953 GHz, respectively. Here the
filling fraction β = 0.694, the bandwidth of this gap ∆f = 2.1776 GHz,
the midgap frequency f0 = 9.8642 GHz, and the relative bandwidth
∆f/f0 = 0.2207. For TM wave propagation, there is only a very
narrow band gap ∆f ≈ 0.102 GHz exists inside the same structure.

4.3. Convergence Discussion

The plane wave expansion is a classical method for analysis of the
characteristics of photonic crystal. It is also well known for its poor
convergence, so the number of the expansion terms must be large
enough in order to give out a reasonable result. In order to learn about
the effect of the term number to the accuracy of the band gap, two cases
are considered here: square lattice of square air rods/dielectric host and
square lattice of square dielectric rods/air background, and different
equations (14) and (16) are employed simultaneously for TE or TM
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Table 1. Convergence calculations for square lattice (a = 0.012 m,
εb = 1.0) of square dielectric rods (W = 0.0048 m, εa = 10.2) using
TM wave �E equation.

N1 ×N2 = N 11×11=121 15×15=225 21×21=441 29×29=841

f1 (GHz) 7.1438 7.1429 7.1426 7.1424

f2 (GHz) 10.009 10.007 10.005 10.005

∆f = f2 − f1 (GHz) 2.8672 2.8641 2.8624 2.8626

f0 =(f2+f1)/2 (GHz) 8.5754 8.5750 8.5738 8.5737

∆f/f0 0.3344 0.3340 0.3339 0.3339

Table 2. Convergence calculations for square lattice (a = 0.012 m,
εb = 1.0) of square dielectric rods (W = 0.0048 m, εa = 10.2) using
TM wave �H equation.

N1 ×N2 = N 11×11=121 15×15=225 21×21=441 29×29=841

f1 (GHz) 7.5618 7.4535 7.3538 7.2967

f2 (GHz) 10.739 10.531 10.381 10.276

∆f = f2 − f1 (GHz) 3.1772 3.0775 3.0272 2.9793

f0 =(f2+f1)/2 (GHz) 9.1504 8.9923 8.8674 8.7864

∆f/f0 0.3472 0.3422 0.3414 0.3391

wave propagation respectively at different total cutoff N (N = N1×N2,
N1 and N2 are cutoffs along the individual lattice base).

(1) TM wave in square lattice of square dielectric rods using �E and
�H equations respectively

Table 1 presents the data calculated for the structure in Fig. 2:
a = 0.012 m, W = 0.0048 m, εb = 1.0 , εa = 10.2, by using �E equation
with TM wave. Frequencies f1 and f2 are also defined in Fig. 2.

Table 2 presents the data calculated for the same structure defined
in Fig. 2 from �H equation with the same TM wave.

The convergence trend of f1 or f2 in Table 2 is different from
that in Table 1. It seems that for square lattice of dielectric rods,
a reasonable result can be obtained in a relatively less terms of the
expansion from solving �E equation than from solving �H equation with
the same TM wave. The frequencies computed using MPB ([30])
for the same structure are: f1 = 7.1499 GHz, f2 = 10.0157 GHz,
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Table 3. Convergence calculations for square lattice (a = 0.012 m,
εb = 10.2) of square air rods (W = 0.01 m, εa = 1.0) from solving TE

wave �E equation.

N1 ×N2 = N 11×11=121 15×15=225 21×21=441 29×29=841

f1 (GHz) 8.442 8.452 8.462 8.468

f2 (GHz) 10.443 10.583 10.629 10.692

∆f = f2 − f1 (GHz) 2.001 2.131 2.167 2.224

f0 =(f2+f1)/2 (GHz) 9.443 9.518 9.546 9.58

∆f/f0 0.222 0.224 0.227 0.232

Table 4. Convergence calculations for square lattice (a = 0.012 m,
εb = 10.2) of square air rods (W = 0.01 m, εa = 1.0) from solving �H
equation with TE wave.

N1 ×N2 = N 11×11=121 15×15=225 21×21=441 29×29=841

f1 (GHz) 9.486 9.038 8.958 8.775

f2 (GHz) 11.205 11.087 10.991 10.953

∆f = f2 − f1 (GHz) 1.719 2.049 2.033 2.178

f0 =(f2+f1)/2 (GHz) 10.346 10.063 9.975 9.864

∆f/f0 0.166 0.204 0.204 0.221

f0 = 8.5828 GHz, ∆f/f0 = 0.333893. A difference of 2% for ∆f/f0

using �H equation (N1 × N2 = 441) will be introduced, compared to
the MPB result.

(2) TE wave in square lattice of air rods using �E and �H equations
respectively

Table 3 presents the data calculated for the structure defined in
Fig. 3: a = 0.012 m, W = 0.01 m, εb = 10.2 , εa = 1.0, by solving �E
equation with TE wave. Frequencies f1 and f2 were defined in Fig. 3.

Table 4 presents the data calculated for the same structure defined
in Fig. 3 by solving �H equation with TE wave. Frequency f1 or f2

increases in Table 3 and decreases in Table 4 when N increases. This
is due to the fact that, in �E equation (14), the expansion term and the
eigenvalue term happen to be on the same side and in �H equation (24),
they are on the different side and the truncating effect of the expansion
will affect the eigenvalues in an opposite way. When N is large enough,
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they (f1 in Table 3 and Table 4, for example) should converge to the
true value. One can find that �E equation is more attractive than �H
equation with both TM and TE wave. This is not strange because if
we rebuild ε (�r) using Eq. (5) as well as η (�r) using Eq. (10), we will
find that the cutoff has less influence to ε (�r) due to its large peak
value (not small than 1.0) than to η (�r) due to its small valley value
(not great than 1.0) [8]. The only way to improve the convergence is
to employ terms in Eq. (5) and Eq. (10) as many as possible. This
can only be done by using iterative eigenvalue solver where no explicit
matrix storage is necessary [27–29]. The frequencies computed by using
MPB for the same structure are: f1 = 8.4194 GHz, f2 = 10.7212 GHz,
∆f/f0 = 0.2405. A difference of −3.3% for ∆f/f0 using �E equation
(N1 ×N2 = 841) or −8.2% using �H equation(N1 ×N2 = 841) will be
introduced, compared to the MPB result.

5. THE BANDWIDTH OF THE GAP AND THE
MIDGAP FREQUENCY

As well known that the frequency band gap is caused by the periodic
dielectric structure in certain state, there will not be any band gap
if no periodicity (i.e., εa = εb) presents. Nevertheless, how to choose
the refraction index ratio α and the filling fraction β to maximize the
gap bandwidth as well as how to predict the mid-gap frequency are
interesting topics for engineering application of PBG structure.

5.1. The Relative Bandwidth of a Gap

Firstly, a review of notation in [8] is presented. The space-averaged
permittivity ε of the structure had been proposed:

ε = εb + (εa − εb)β (23)

By rewriting ε (�r) in the form of

ε (�r) = ε [1 + ε∆ (�r)] (24)

it is obvious that no variation of ε (�r) (ε∆ (�r) = 0) presents, no band
gap will appear. Defining norm operation as

‖ε (�r)‖2 =
1

Vcell

∫
WS cell

d�r |ε (�r)|2
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Table 5. Numerical results for the square lattice (a = 0.012 m)
of square dielectric rods at different refraction index ratio using �E
equation with TM wave (N = 21× 21).

α = εa/εb 3 4 5 6 7 8 9 10 11
βmax (calculated) 0.242 0.213 0.191 0.174 0.160 0.147 0.131 0.128 0.119

βopt (according to Eq. (25)) 0.250 0.200 0.167 0.143 0.125 0.122 0.100 0.091 0.083
∆f/f0|max (calculated) -0.0035 0.0826 0.148 0.200 0.243 0.279 0.311 0.339 0.363
∆f/f0|opt (calculated) -0.0036 0.0823 0.145 0.194 0.234 0.274 0.295 0.318 0.343
relative difference(%) -2.8 0.36 2.0 3.0 3.8 1.8 5.3 6.4 5.7

βmax (fitted using (28)) 0.248 0.211 0.186 0.168 0.155 0.145 0.137 0.130 0.124
∆f/f0|max (fitted using (29)) -0.022 0.088 0.162 0.214 0.254 0.284 0.309 0.329 0.345
∆f/f0|opt (fitted using (27) 0.000 0.100 0.167 0.214 0.250 0.278 0.300 0.318 0.333

The optimal value of filling fraction βopt in the sense of maximizing the
norm of ε∆ (�r) was derived as

βopt =
εb

εb + εa
=


1

1 + α
, α =

εa
εb

> 1

α

1 + α
, α =

εb
εa

> 1
(25)

and the space-averaged permittivity ε became

ε|βopt =
2εbεa
εb + εa

=


εb

2α
1 + α

, α =
εa
εb

> 1

εa
2α

1 + α
, α =

εb
εa

> 1
(26)

for given εa and εb of materials [8].
Secondly, denoting ∆f/f0|opt as the relative gap bandwidth at

βopt, and ∆f/f0|max as the maximum relative gap bandwidth at βmax
for given εa and εb. In order to find out the relationship among
∆f/f0|max, ∆f/f0|opt and ε|βopt as well as the relation between βopt
and βmax, extensive computation were made.

5.1.1. Square Lattice of Square Dielectric Rods

In the upper part of Table 5 the data were obtained by solving
TM wave �E equation at a set of values of the filling fraction β for
given refraction index ratio α. The difference between ∆f/f0|max
and ∆f/f0|opt is very small and one can use ∆f/f0|opt to predict
∆f/f0|max without significant accuracy loss. The most important
discovery is that the curve of the normalized and shifted space-averaged
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Figure 4. Relationship between the relative bandwidth of the first gap
and the space-averaged permittivity for square dielectric rods arranged
in square lattice in the air (a = 0.012 m, εb = 1.0). The solid curve
stands for ε|βopt /εb. The dotted curve stands for ε|βopt /εb

∣∣∣
shifted

. The

diamond points stand for the calculated ∆f/f0|opt data at βopt.

permittivity
ε|βopt
εb

∣∣∣∣
shifted

is nearly identical to that of ∆f/f0|opt (See

Fig. 4) and can be written in the mathematic expression:

∆f

f0

∣∣∣∣
opt

∼=
ε|βopt
εb

∣∣∣∣∣
shifted

=
ε|βopt
εb
− 1.5 =

2α
(1 + α)

− 1.5 (27)

where α = εa/εb > 1.
Using this expression, one can predict the relative bandwidth of

the first gap for square lattice of square rods for given εa and εb directly.
Furthermore, from a least square fit of the data, one can obtain

fitting formulae for βmax and ∆f/f0|max:

βmax ∼= 0.746
1

1 + α
+ 0.0619 (28)

∆f

f0

∣∣∣∣
max

∼= 1.102
2α

1 + α
− 1.675 (29)

where α = εa/εb > 1. These formulae are based on the expression
of βopt and ε|βopt , respectively. The data calculated from expressions
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Table 6. Numerical results by solving TE wave �H equation for square
lattice (a = 0.012 m) of square air rods (N = 21× 21).

α = εb/εa 5 6 7 8 9 10 11
βmax (calculated) 0.510 0.568 0.600 0.606 0.614 0.619 0.627

βopt (from Exp. (25)) 0.833 0.857 0.875 0.888 0.900 0.909 0.917
∆f/f0|max(calculated) 0.018 0.070 0.118 0.160 0.197 0.230 0.261

βmax (fitted from Exp. (30)) 0.531 0.562 0.585 0.603 0.618 0.630 0.640
∆f/f0|max (fitted from Exp. (31)) 0.006 0.0754 0.128 0.168 0.200 0.227 0.249

difference between 4th and 6th row (%) - -7.43 -8.13 -4.88 -1.5 1.3 4.71

(27), (28) and (29) are also presented in the lower part of Table 5 for
comparison purpose.

5.1.2. Square Lattice of Square Air Rods

For Square lattice of square air rods, α is defined as: α = εb/εa > 1.
In this case, the filling fraction βmax with respect to the maximum
gap bandwidth ∆f/f0|max is not coincided with βopt. To make things
worse, at βopt , there is no all direction band gap for every α. Data in
Table 6 are obtained by solving TE wave �H equation for square lattice
(a = 0.012 m, N = 21 × 21 = 441) of square air rods at a set of β
values.

Again from a least square fit of the data, one can obtain the
following fitting formulae:

βmax ∼= 1.41βopt − 0.65 = 1.41
α

1 + α
− 0.65 (30)

∆f

f0

∣∣∣∣
max

∼= 1.46
ε|βopt
εa
− 2.42 = 1.46

2α
1 + α

− 2.42 (31)

where α = εb/εa > 1. The data calculated from expressions (30) and
(31) are also presented in the second part of Table 6 for comparison.

With expressions pair (25) and (27) or (28) and (29) or (30) and
(31), one can readily predict the maximum relative gap bandwidth for
dielectric rods or air rods when refraction index ratio α > 1 is given.

5.2. The Wavelength of the Midgap Frequency in Free Space

In the same way, we can obtain a fit formula for the wavelength of the
midgap frequency in free space.
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Table 7. Normalized wavelength of the midgap frequency in free space
(calculated and fitted) when εb = 1.0, a = 0.006 m for square lattice of
square dielectric rods.

εa 3 4 5 6 7 8 9 10 11

α = εa
εb

3 4 5 6 7 8 9 10 11

λ0/a|βopt (calculated) 2.194 2.296 2.363 2.409 2.444 2.471 2.492 2.510 2.524

λ0/a|βopt (fitted) 2.200 2.300 2.367 2.414 2.450 2.478 2.500 2.518 2.533

relative difference (%) 0.6 0.17 0.17 0.2 0.24 0.28 0.32 0.32 0.36

λ0/a|βmax (calculated) 2.194 2.332 2.419 2.511 2.581 2.633 2.668 2.689 2.754

λ0/a|βmax (fitted) 2.161 2.333 2.448 2.530 2.592 2.640 2.678 2.709 2.736

relative difference (%) 1.5 0.0 -1.2 -0.8 -0.4 -0.3 -0.4 -0.7 0.7

5.2.1. Square Lattice of Square Dielectric Rods

For square lattice of square dielectric rods, the fit formula for the
wavelength of the midgap frequency in free space at βopt is:

λ0

a

∣∣∣∣
βopt

∼= √εb
(
ε|βopt
εb

+ 0.7

)
=
√
εb

(
2α

α+ 1
+ 0.7

)
(32)

where α = εa
εb
> 1 and the fit formula for the wavelength of the midgap

frequency in free space at βmax is:

λ0

a

∣∣∣∣
βmax

∼= √εb
(

1.725
ε|βopt
εb
− 0.427

)
=
√
εb

(
1.725

2α
α+ 1

− 0.427
)

(33)
Table 7 shows the difference between the calculated and fitted

wavelength of the midgap frequency at βopt and βmax when εb = 1.0,
a = 0.006 m.

Table 8 shows the difference between the calculated and fitted
wavelength of the midgap frequency at βopt and βmax when εb = 3.0,
a = 0.036 m.

5.2.2. Square Lattice of Square Air Rods

The fit formula for the wavelength of the midgap frequency in free
space is:

λ0

a

∣∣∣∣
βmax

∼= √εa
(

1.73
2α

α+ 1
− 0.43

)
(34)

where α = εb
εa
> 1.
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Table 8. Normalized wavelength of the midgap frequency in free space
(calculated and fitted) when εb = 3.0, a = 0.036 m for square lattice of
square dielectric rods.

εa 9 23 15 18 21 24 27 30 33
α = εa/εb (εb=3.0) 3 4 5 6 7 8 9 10 11

λ0/a|βopt (calculated) 3.801 3.977 4.092 4.173 4.233 4.280 4.317 4.347 4.372

λ0/a|βopt (fitted) 3.811 3.984 4.099 4.182 4.244 4.292 4.330 4.362 4.388

relative difference (%) 0.26 0.18 0.17 0.21 0.26 0.28 0.3 0.34 0.36

λ0/a|βmax (calculated) 3.734 4.037 4.209 4.349 4.449 4.554 4.632 4.687 4.776
λ0/a|βmax (fitted) 3.743 4.041 4.240 4.382 4.489 4.573 4.638 4.692 4.739

relative difference (%) -0.3 -0.1 -1.0 -1.1 -1.3 -0.6 -0.2 -0.2 1.1

Table 9. Normalized wavelength of the midgap frequency in free space
(calculated and fitted) when εa = 1.0, a = 0.012 m for square lattice of
square air rods.

εb 5 6 7 8 9 10 11

α(εa = 1.0) 5 6 7 8 9 10 11

λ0/a|βmax(calculated) 2.47 2.52 2.54 2.59 2.67 2.70 2.77

λ0/a|βmax(fitted) 2.44 2.52 2.58 2.63 2.67 2.70 2.73

relative difference(%) 1.2 0.0 -1.6 -1.5 0.0 0.0 1.5

Table 10. Normalized wavelength of the midgap frequency in free
space (calculated and fitted) when εa = 3.0, a = 0.036 m for square
lattice of square air rods.

εb 15 18 21 24 27 30 33

α(εa = 3.0) 5 6 7 8 9 10 11

λ0/a|βmax(calculated) 4.247 4.365 4.403 4.533 4.614 4.677 4.788

λ0/a|βmax(fitted) 4.249 4.392 4.499 4.582 4.649 4.703 4.749

relative difference(%) -0.04 -0.61 -2.2 -1.1 -0.8 -0.6 0.8

Table 9 shows the difference between the calculated and fitted
wavelength of the midgap frequency at βmax when εa = 1.0, a =
0.012 m.

Table 10 shows the difference between the calculated and fitted
wavelength of the midgap frequency at βmax when εa = 3.0, a =
0.036 m.
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5.3. New Concept in Designing 2-D Dielectric PBG
Structure

By means of the fitting formulae (27)–(34) mentioned above, for 2-D
PBG structure of square dielectric rods arranged in square lattice , it is
not necessary to solve eigenvalue equation, or do complicated numerical
computation for designing its structure parameters. A programmable
calculator is powerful enough to finish the task in the following steps:

(1) To determine the index ratio α = ε>/ε< by using Eq. (27) or (29)
or (31) for a desired (maximum) gap bandwidth ∆f/f0.

(2) To determine the lattice parameters a, εb and εa by using Eq. (32)
or (34) for a desired midgap wavelength λ0 in free space.

(3) To determine the cross section size of the rods W by using Eq. (25)
or (28) or (30).

These procedures can be followed for other PBG structure as long
as the relations similar to (27)–(34) are established.

6. CONCLUSION

Plane wave expansion is a powerful method to analyze dielectric PBG
structure. By extending Bloch theorem to Electromagnetic wave
case, not only do we establish a solid theoretical foundation, but
also provide two general eigenvalue equations, which can be used to
analyze linear, lossless, anisotropic, multi-dimensional, dielectric PBG
structure. Numerical analysis of 2-D dielectric PBG material shows
that simple relationships exist between the bandwidth of the gap or
midgap frequency and the parameters of the structure (filling fraction,
refraction index ratio, periodicity, space average permittivity, etc.). It
is also found that the structure of the square lattice of square dielectric
rods possesses larger maximum bandwidth of the first gap than that
of the square lattice of square air rods at the same given refraction
index ratio. Future work will be carried out on other geometry in 2-D
structure (circular or other shape of the rod cross section, other lattice
geometry) and also in 3-D structure.

APPENDIX A. THE SIMPLIFICATION OF
TRI-VECTOR CROSS PRODUCT

�w× �w× �E=

∣∣∣∣∣∣
x̂ ŷ ẑ
wx wy wz

wyEz − wzEy wzEx − wxEz wxEy − wyEx

∣∣∣∣∣∣
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=
x̂

(
wywxEy − w2

yEx − w2
zEx + wxwzEz

)
−ŷ

(
w2
xEy − wxwyEx + w2

zEy − wywzEz
)

+ẑ
(
wxwzEx − w2

xEz − w2
yEz + wzwyEy

)
=

x̂[(−w2
y − w2

z)x̂+ wywxŷ + wxwz ẑ] · (Exx̂+ Eyŷ + Ez ẑ)
+ŷ[wxwyx̂+ (−w2

x − w2
z)ŷ + wywz ẑ] · (Exx̂+ Eyŷ + Ez ẑ)

+ẑ[wxwzx̂+ wzwyŷ + (−w2
x − w2

y)ẑ] · (Exx̂+ Eyŷ + Ez ẑ)

=


−(w2

x + w2
y + w2

z)(x̂x̂+ ŷŷ + ẑẑ)
+w2

xx̂x̂+ wywxx̂ŷ + wxwzx̂ẑ
+wxwyŷx̂+ w2

y ŷŷ + wywz ŷẑ
+wxwz ẑx̂+ wzwy ẑŷ + w2

z ẑẑ

 · (Exx̂+ Eyŷ + Ez ẑ)

=
(
− |�w|2 I + �w�w

)
· �E (A1)

APPENDIX B. SIMPLIFICATION OF THE
VECTOR-DYADIC EXPRESSION

By using dyadic identity:

A ·
(
�a×�b

)
=

(
A× �a

)
·�b

�a×
(
A ·�b

)
=

(
�a×A

)
·�b

We have:

�w ×
[
η ·

(
�w′ × �H

)]
= �w ×

[(
η × �w′

)
· �H

]
(B1)

=
(
�w × η × �w′

)
· �H

REFERENCES

1. Yablonovitch, E., “Inhibited spontaneous emission in solid-state
physics and electronics,” Phys. Rev. Lett., Vol. 58, No. 2, 2059–
2062, 1987.

2. John, S., “Strong localization of photons in certain disordered
dielectric superlattice,” Phys. Rev. Lett., Vol. 58, 2486, 1987.

3. Yablonovitch, E. and T. J. Gmitter, “Photonic band structure:
The face-centered-cubic case,” Phys. Rev. Lett., Vol. 63, 1950,
1989.

4. Leung, K. M. and Y. F. Liu, “Full vector wave calculation of
photonic band structures in face-centered-cubic dielectric media,”
Phys. Rev. Lett., Vol. 65, No. 21, 2646–2649, 1990.



104 Zheng and Zhang

5. Satpathy, S. and Z. Zhang, “Theory of photon bands in three-
dimensional periodic dielectric structures,” Phys. Rev. Lett.,
Vol. 64, No. 11, 1239–1242, 1990.

6. Zhang, Z. and S. Satpathy, “Electromagnetic wave propagation in
periodic structures: Bloch wave solution of Maxwell’s equations,”
Phys. Rev. Lett., Vol. 65, No. 21, 2650–2653, 1990.

7. Ho, K. M., C. T. Chan, and C. M. Soukoulis, “Existence of a
photonic gap in periodic dielectric structures,” Phys. Rev. Lett.,
Vol. 65, No. 25, 3152–3155, 1990.
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