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Abstract 

The present study aimed to assess the drying kinetics of black rice and fit different mathematical models 

(empirical and diffusive) to the experimental data, and evaluate the effect of drying air temperature on the 

physical-chemical and bioactive compounds quality of black rice. Drying air temperatures ranged from 40 to 80 

ºC and the drying air speed was 1.5 m/s. Physical-chemical characterization of the product was based on the 

following parameters: moisture, water activity, ashes, total protein content, pH, total acidity, lipids, total 

carbohydrates, total anthocyanins, flavonoids, total phenolic compounds and antioxidant activity. Among the 

empirical models, Page showed the lowest mean squared deviations (MSD) and highest coefficients of 

determination (R2). For the diffusion model, the values of effective mass diffusivity and convective heat transfer 

coefficient increased with increasing drying air temperature, and the Biot number indicated that the first-type 

boundary condition would also describe well the drying process. Physical-chemical parameters and bioactive 

compounds differed between the temperatures used, and the temperature of 60 ºC led to the best relationship 

between drying time and preservation of product characteristics. 

Keywords: bioactive compounds, diffusivity, grains, quality  

1. Introduction 

Rice (Oryza sativa L.) is considered a staple food by a significant part of the world’s population (Papillo et al., 

2018). In the last years, grains of pigmented rice, such as black rice, have gained attention because this type of 

rice has benefits to health, due to bioactive pigments located in its bran layer, which contains higher content of 

phenolic compounds (Paiva et al., 2014; Vargas et al., 2018). In addition to γ-oryzodiol and vitamin C, there are 

also some water-soluble pigments which are responsible for its color and antioxidant properties (Hou et al., 2013; 

Norkaew et al., 2017). Black rice also contains a higher lipid content than non-pigmented and red rice, which 

makes it more palatable and attractive (Choi et al., 2019).  

According to Ding et al. (2018), the enzymatic activity may increase and accelerate lipid degradation during 

storage, in addition to reducing the sensory quality of rice. Therefore, post-harvest techniques such as the drying 

process, which involves the reduction of seed moisture content to a safe level, can be applied to guarantee the 

preservation of physiological and physical-chemical quality of the product to be stored during a long period of 

time (Sousa et al., 2016). However, many of the properties of agricultural products are affected by the drying 

conditions (Dehghannya et al., 2016). 

According to Silva et al. (2018), through the drying kinetics it is possible to determine the behavior of the dried 

material, representing it by drying curves and drying rates (Menezes et al., 2013). Several mathematical models 

have been used to describe the drying process of agricultural products and to determine process information 

which can be used in future equipment designs (Meneghetti et al., 2012). Under certain conditions (spherical or 

cylindrical geometries, infinite slabs and constant thermal-physical parameters and volume), the diffusion 

equation has an analytical solution (Luikov, 1968; Crank, 1992). These solutions are used to describe the 

thin-layer drying of various agricultural products, besides determining the effective mass flow diffusivity and 

convective mass transfer coefficient (Silva et al., 2010). 
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The fitting of each model was evaluated based on the coefficient of determination (R²) and Mean Squared 

Deviation (MSD), calculated by Equation (2): 

 2

exp pre
RX RX

MSD
N




 

(2)

where, RXexp = moisture content ratio (dimensionless moisture content) obtained experimentally; RXpre = 

moisture content ratio predicted by the mathematical model; N = number of observations along the drying 

kinetics. 

2.3 Diffusion Equation 

The diffusion equation which describes the drying of a product in the form of an infinite cylinder can be written 

for the dimensionless moisture content as: 

1RX RX
rD

t r r r

  


  
 
 
   

(3)

where, D is the effective mass diffusivity and r defines a position inside the cylinder relative to its axial axis. 

Since RX is the moisture ratio, it should be noted that its initial value is 1 and the equilibrium value is zero. In 

the present study, an analytical solution of Equation (3) was used to describe moisture diffusion in cylindrical 

bodies. 

2.4 Analytical Solution for the Convective Boundary Condition 

The third-type boundary condition, or the Cauchy boundary condition, is expressed by the imposition of equal 

internal diffusive flow at the limit of the infinite cylinder and external convective flow close to this limit, given 

by Equation (4), 

   ,
,

r R

r R

RX r t
D h RX r t

r 



 


 

(4)

where, h is the convective transfer coefficient; RX(r, t) is the moisture ratio at the radial position r and time t; and 

R is the radius of the infinite cylinder. 

The average moisture ratio for a cylindrical solid at time t is given, for the first 16 terms of the series (rather than 

infinite terms), by (Luikov, 1968; Crank, 1992), 
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where, the parameter Bn is given by, 
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where, Bi is the Biot number, given by, 

hR
Bi

D


 
(7)

where, h is the convective mass transfer coefficient; R is the cylinder radius; D is the effective mass diffusivity. 

In Equation 6, μn represents the roots of the transcendental equation, 

 
 

0

1

n
n

n

J μ μ
J μ Bi

  (8)

where, J0 is the first-type zero-order Bessel function and J1 is the first-type first-order Bessel function. 

To obtain the analytical solution, the process was optimized using the program “Convective” (F. A. S. Silva & C. 

A. V. Silva, 2008). The program Convective is used to study water diffusion processes with known experimental 

data, for the following geometries: infinite slab, infinite cylinder, sphere, finite cylinder and parallelepiped. 
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2.5 Physical-Chemical and Bioactive Compounds Characterization of Fresh and Dehydrated Grains  

Black rice grains, both fresh and after each drying process, were characterized for physical-chemical parameters 

and bioactive compounds based on: moisture content, determined by drying in oven at 105 ºC until constant 

weight; water activity (Aw), determined using a Decagon® Aqualab CX-2T device at 25 °C; ashes, determined 

by incineration in muffle furnace; total protein content, quantified by the Micro-Kjeldahl method, which 

consisted in determining total nitrogen and converting the result into protein using the 5.95 factor, recommended 

for cereal proteins, according to the methodology described by Brasil (2008); pH, determined by direct reading 

in a digital pH meter; total acidity, determined by titrimetry, according to Brasil (2008); and lipids, determined 

by the method of Bligh and Dyer (1959). The total carbohydrate content was calculated by difference to obtain 

100% of the total composition (FAO, 2003). 

The contents of total anthocyanins and flavonoids were determined by the single pH method described by 

Francis (1982). This method consists in a quantitative transfer of an aliquot of the concentrated extract to a 

container and, subsequently, diluting this aliquot in a quantity of Ethanol—HCl at 1.5 mol L-1, thus creating a 

diluted volume of extract. Total phenolic compounds were quantified by the Folin-Ciocalteau method described 

by Waterhouse (2006), using gallic acid as standard. The calculations performed to determine the phenolic 

compounds were based on a standard curve of gallic acid, and the readings were taken in spectrophotometer at 

765 nm, with the results expressed in mg 100 g-1 of gallic acid equivalent. Antioxidant activity was determined 

using the method proposed by Re et al. (1999), with modifications made by Rufino et al. (2007).  

2.6 Statistical Analysis 

The experimental data were analyzed in triplicate and the results were subjected to single-factor analysis of 

variance (ANOVA) at 0.05 probability level, and the significant qualitative responses were subjected to Tukey 

test also at 0.05 probability level. All statistical analyses were carried out using the program Assistat 7.7 (Silva & 

Azevedo, 2016). 

3. Results and Discussion 

It is interesting to observe that temperatures above 70 ºC caused cracks in the grains. On the other hand, the 

drying time decreased proportionally to the increase in drying air temperature, ranging from 450 to 810 minutes, 

which were respectively found at the temperatures of 80 and 40 °C. Such behavior occurs because the highest 

rates of water removal from the product occur at the highest temperatures, which consequently reduces the 

drying time. Table 2 presents the values obtained for the fitting parameters of the drying kinetics and it can be 

observed that for Page, Henderson and Pabis and Parry models, the drying constant (k) increased with the drying 

temperature. For these same models, the parameters “a” and “n” were not influenced by the temperature, but for 

Parry model, like the drying constant (k), the parameter “c” was influenced by the temperature, showing direct 

relationship with the increase in temperature. 

It can be observed that all models showed coefficients of determination (R2) above 98%, but only the coefficients 

higher than 99% were considered as satisfactory fits. Therefore, the mathematical model of Page had high values 

of coefficient of determination (R2) at all drying temperatures, ranging from 0.99665 (40 °C) to 0.99904 (80 °C). 

The mean squared deviation (MSD) varied from 0.01291 to 0.04495, but the mathematical model which showed 

the lowest and best values was the Page model, which obtained MSD from 0.01291(80 °C) to 0.03227 (40 °C). 

Lang et al. (2018) studied the drying kinetics of black rice using fixed-bed dryer with air speed of 0.5 m/s and 

also concluded that the Page model was the best one to describe the drying kinetics. 
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Table 3. Results obtained by optimization using the analytical solution 

Temperature (°C) (Def × 109 m2 min-1) (h × 105 m min-1) Biot Number 

40 2.24 3.75 29 

50 2.75 7.65 50 

60 3.14 7.82 42 

70 4.62 19.9 77.5 

80 5.21 60.8 200 

 

According to Lang et al. (2018), diffusivity corresponds to the magnitudes of the drying rates affected by the 

drying temperature. Thus, the highest drying rates showed the highest values of diffusivity. Silva et al. (2014), 

evaluating the diffusivity of pigeon pea grains at temperatures from 40 to 70 °C, found values ranging from 2.1 

to 6.8 × 10-10 m2 s-1. For red rice grains, Sousa et al. (2016) obtained values which varied from 2.33 to 6.45 × 

10-11 m2 s-1. 

However, the higher the value of diffusivity, the higher the facility for water molecules to be removed from the 

product, causing water to be more bound to the molecules constituting the dry mass. High values of heat transfer 

coefficient tend to lead to shorter time to reach equilibrium moisture. Johann et al. (2015) in studies with the 

thin-layer drying of grape grains at temperatures from 50 to 80 °C, obtained convective heat transfer coefficients 

from 4.11 to 21.54 × 10-5 m min-1. 

The results obtained in the characterization physical-chemical parameters and bioactive compounds of black rice 

grains before the drying process are described in Table 4. 

 

Table 4. Physical-chemical and bioactive characterization of black rice grains before drying 

Parameters  Mean and Standard deviation 

Moisture (%, w.b.)1 12.75±0.63 

Water activity (Aw) 0.648±0.02 

pH 6.50±0.07 

Total acidity (%) 0.030±0.01 

Ashes (%) 1.97±0.15 

Proteins (%) 8.66±0.12 

Lipids (%) 2.93±0.06 

Carbohydrates (%) 73.69±0.30 

Total anthocyanins (mg 100 g-1) 70.20±0.69  

Flavonoids (mg 100 g-1) 38.48±0.84 

Total phenolic compounds (mg GAE 100 g-1) 289.93±1.12 

Antioxidant activity2 (µmol Trolox g-1) 209.20±0.98  

Note. 1wet basis. 2ABTS+. 

 

The black rice showed moisture content of (12.75%), which is close to the value found by Ziegler et al. (2017) 

for black rice (13.7%) and higher than the value found by Becker-algeri et al. (2017) for whole rice (10.7%). 

According to Matos (2014), pigmented rice grains tend to show different characteristics from those of 

non-pigmented rice, such as higher contents of moisture and protein. In addition, water activity in the present 

study was 0.648, which characterizes the grains as of intermediate moisture. Oliveira (2016) classifies as 

products of intermediate moisture those which have water activity between 0.6 and 0.85. 

Similar values of pH (6.67) and total acidity (0.05%) were verified by Alencar et al. (2017), characterizing black 

rice grains. For ash content, Marquez (2013) obtained values between 1.5 and 1.8% in black rice grains and 

between 1.3 and 1.7% in red rice grains, but the ash contents considering both types of pigmentation were 

similar to those found in the present study. 

Based on the values of proteins, lipids and carbohydrates, as observed in Table 4, black rice grains can be 

considered as of high protein content, with value close to those found also in black rice by Paiva et al. (2014) and 

Ziegler et al. (2017), respectively 8% and 9.8%. Ziegler et al. (2017), also evaluating lipid and carbohydrate 

contents in black rice grains, obtained higher lipid content (4.4%) than that of the present study and lower 
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carbohydrate content (70.5%), but also close to the one found in the present study, thus demonstrating that black 

rice grains are highly rich in total fibers, since the analysis of total carbohydrate includes the contents of fiber. 

The content of total anthocyanins was (70.2 mg 100 g-1) and that of flavonoids was (38.38 mg 100 g-1). 

Abdel-Aal et al. (2018) studied purple wheat grains and obtained a variation of 13.7-57.4 mg 100 g-1 for 

anthocyanin contents, evidencing the technological potential of black rice grains. 

Black rice grains had phenolic compounds content of (289.93 mg GAE 100 g-1) and antioxidant activity of 

(209.20 µmol Trolox g-1). These values of total phenolic compounds were similar to those found by Min et al. 

(2012) (240 to 540 mg GAE 100 g-1) and lower than those reported by Chen et al. (2012) (400 to 650 mg GAE 

100 g-1), both for black rice grains. However, these variations may be related to differences in grain cultivation 

and extraction methods. The results obtained in the present study demonstrate that black rice grains have 

significant contents of total phenolic compounds with high antioxidant activity. 

According to Braga (2013), quality parameters undergo changes during the drying process. Drying with hot air 

leads to reduction in nutritional values, besides altering texture, color and causing a slow or incomplete 

dehydration of the material (Nascimento et al., 2018). The results of physical-chemical and bioactive analyses at 

drying air temperatures of 40, 50, 60, 70 and 80 ºC are presented in Table 5. 

 

Table 5. Physical-chemical and bioactive characterization of black rice grains after each drying process 

Parameters 
Drying temperatures 

40 ºC 50 ºC 60 ºC 70 ºC 80 ºC 

Moisture (% w.b.) 11.55 a 8.17 b 6.54 c 4.68 d 3.23 e 

Water activity (Aw) 0.321 a 0.183 b 0.165 c 0.156 d 0.121 e 

pH 6.69 b 6.70 ab 6.72 a 6.70 ab 6.70 ab 

Total acidity (%) 0.029 a 0.027 a 0.028 a 0.028 a 0.029 a 

Ashes (%) 3.83 d 4.64 c 5.68 b 6.51 a 6.88 a 

Proteins (%) 7.35 a 6.99 a 5.87 b 4.67 c 3.21 d 

Lipids (%) 2.95 d 3.05 d 3.22 c 3.61 b 3.89 a 

Carbohydrates (%) 74.32 e 77.15 d 78.69 c 80.53 b 82.79 a 

Anthocyanins (mg 100 g-1)  67.19 a 65.62 b 64.33 c 63.19 d 62.01 e 

Flavonoids (mg 100 g-1) 29.98 a 29.66 b 29. 42 c 29.29 d 29.14 e 

Total phenolic compounds (mg GAE 100 g-1) 268.55a 258.87 b 244.23 c 233. 67 d 231.14 d 

Antioxidant activity2 (µmol Trolox g-1) 178.80 a 142.16 b  117.12 c 73.32 d  50.92 e  

Note. Equal lowercase letters in the same row do not differ significantly between the studied temperatures by 

Tukey test at 0.05 probability level. 1wet basis. 2ABTS+. 

 

There was a clear reduction in the moisture content of black rice grains as the temperature increased, which was 

expected because free water evaporated as the grains were subjected to heat, with variation from 11.55 (40 ºC) to 

3.23 (80 ºC). This same parameter shows significant statistical difference when its values are compared between 

the different drying temperatures. In order to ensure the time of preservation and guarantee quality, it is 

necessary to know the water activity. In black rice grains, its behavior was similar to that of moisture contents, 

showing significant difference, with highest value (0.321) for the temperature of 40 ºC and lowest value (0.121) 

for the temperature of 80 ºC. 

The values obtained for pH are close to neutrality (pH = 7.00) and ranged between 6.60 and 6.72. Significant 

statistical difference in pH values was observed between the temperatures of 40 and 60 ºC, but there was no 

statistical difference between the temperatures of 50, 70 and 80 ºC at 0.05 probability level. For total acidity, the 

values obtained for all temperatures did not differ significantly; there was a small variation of up to 0.002% 

between treatments, with no influence of temperature on this parameter. 

The ash contents did not differ significantly between the temperatures of 70 and 80 ºC. Its increase was 

proportional to the increase of temperature, and the sample subjected to drying at 80 ºC had the largest amount of 

ashes (6.88%). By comparing the ash contents in fresh grains (Table 4) and in dehydrated grains (Table 5), it was 

possible to note a 4.91% gain of mineral salts. However, the opposite was observed in the protein content, where 

the increase of temperature led to protein degradation; grains subjected to temperatures of 40 and 50 ºC did not 
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differ statistically, but those dried at 60, 70 and 80 ºC were statistically different at 0.05 probability level. 

Consequently, the lowest protein content was obtained in grains subjected to drying at 80 ºC (3.21%), showing a 

reduction of 5.45% compared to grains not subjected to the drying process.  

The same pattern observed for ash content occurred for lipid content but, as the drying temperature increased, 

there was a slight increase of lipid content in the grains. According to Table 5, there was no difference between 

the drying temperatures of 40 and 50 ºC but, as the temperature increased, there was an increase of up to 0.96% 

in the lipid content of the grains, compared to those presented in Table 4. Carbohydrates were determined by 

difference based on the other constituents and, therefore, the reduction of moisture automatically led to an 

increase of up to 8.47% in carbohydrate content between the applied temperatures. Nevertheless, the values 

obtained for each treatment were significantly different from one another. 

In relation to the contents of anthocyanins and flavonoids, there was significant difference between the 

temperatures applied, and these pigments decreased by up to 5.18 mg 100 g-1 and 0.84 mg 100 g-1, respectively. 

According to Modesto Júnior et al. (2016), several factors interfere with anthocyanin stability, including pH, 

action of oxygen, enzymes, temperature variation and light incidence. 

The contents of total phenolic compounds in the grains did not differ significantly between the drying 

temperatures of 70 and 80 ºC, but differed from those found in grains subjected to temperatures of 40, 50 and 60 

ºC. This parameter varied from 231.14 to 268.55 mg GAE 100 g-1 and these values were respectively found at 

temperatures of 80 and 40 ºC. 

For antioxidant activity, it can be observed that the different temperatures applied led to degradation of 

antioxidant compounds, which, for being unstable natural compounds, underwent significant alterations. The 

antioxidant activity of black rice grains decreased as the drying air temperature increased, and there was a 

reduction of up to 158.91 µmol Trolox.g-1 at the temperature of 60 ºC, compared to the antioxidant activity of 

fresh grains (Table 4). 

4. Conclusion 

The study on the drying kinetics of black rice demonstrated that increasing temperature led to reduction in drying 

time, and temperatures above 70 ºC caused cracks in the grains. In the fitting of mathematical models to the 

experimental data, as a function of moisture content, the Page model showed the lowest values of MSD and 

highest coefficients of determination (R2). Obtaining the results of the diffusion equation by optimization 

through an analytical solution allowed observing that the highest values of diffusivity and convective heat 

transfer coefficient occurred at the temperature of 80 ºC, indicating higher facility for water molecules to be 

removed from the grains. The Biot number indicated that the first-type boundary condition would also describe 

well the drying process. There was a significant difference between the temperatures used with respect to the 

physical-chemical parameters and bioactive compounds, and the temperature of 60 ºC led to the best relationship 

between drying time and preservation of the characteristics of black rice grains. 
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