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Abstract: From the perspective of the production–living–ecological space, this paper reclassifies the
land-use categories in the central and southern Liaoning urban agglomeration in the years 1990,
2000, 2010 and 2018. It then quantitatively analyzes the spatiotemporal evolution characteristics
of land-use transitions by adopting the land-use transfer matrix and other methods. This paper
further uses the eco-environmental quality index and ecological contribution rate to explore the
eco-environmental effects of the land-use transition. Finally, it identifies the influencing factors of the
eco-environmental effect and the spatial differentiation law of the effect in the study area through the
multi-scale geographically weighted regression (MGWR) model. The main conclusions reached are
as follows: (1) During the study period, a slow increase was seen in the ecological land of the central
and southern Liaoning urban agglomeration. A sharp decline occurred in the production land, and a
rapid rise was found in the living land. (2) From 1990 to 2018, the eco-environmental quality index in
the study region showed significant spatial differentiation, with the distribution characteristics being
high in the east and low in the west. The areas have expanded and spread along the Shenyang-Dalian
axis to form medium-low quality agglomerations. The encroachment of agricultural production land
and urban and rural living land on forest ecological land is the main contributor to the deterioration
of the eco-environmental quality during the study period. (3) Compared with the geographically
weighted regression model and the ordinary least squares model, a remarkable advancement can
be seen in the MGWR model, which is more suitable for research on the influencing factors of eco-
environmental quality. In addition, different influencing factors have significant spatial differences in
the degree and scale of impact.

Keywords: production–living–ecological space (PLES); land-use transition; eco-environmental effect;
multi-scale geographically weighted regression (MGWR); the central and southern Liaoning urban
agglomeration (Liaoning Province, China)

1. Introduction

Land-use transition is a major contributor to numerous ecological and environmental
issues such as climate warming, loss of biodiversity and a decrease in forest resources [1,2].
For example, the increase in global food demand as a result of population growth is enhanc-
ing the human pressure on the global land [3–5]. Cultivated land grabbing has occurred
in many countries, and part of the grabbed land was the result of intense deforestation
and land-use change [6,7]. The disordered transition and the unreasonable use of land
have led to a tremendous decrease in forests and a series of environmental problems [8]. In
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addition, land-use transitions have a significant influence on the global carbon cycle [9].
With the rapid advance of urbanization and industrialization, human activities are causing
unprecedented levels of human-induced land degradation [10]. A 2019 Intergovernmental
Panel on Climate Change (IPCC) special report indicated that some important carbon sink
regions [11], such as the Amazon rainforest, are becoming net emitters of carbon as land
degradation advances. These factors have a serious impact on human survival and develop-
ment and have gradually become the focus of attention in a variety of disciplines [12–16]. At
present, the existing research on land-use transition centers on four aspects: spatiotemporal
patterns and processes [17,18], driving forces and driving mechanisms [19–22], simulated
predictions and sustainable development [23], and eco-environmental effects [24]. The re-
search scales are mainly at the global, national, river basin, provincial and municipal levels.
The consistent increase in the number of studies related to the protection of the environment
and ecosystem has been seen since 2007, possibly due to the influence of the Millennium
Ecosystem Assessment (MA) and The Economics of Ecosystems Biodiversity (TEEB) initia-
tive [25]. Land-use transition is a significant factor that triggers changes in the ecological
environment. The optimal allocation and effective management of land resources are con-
ducive to the improvement of the ecological environment and promote the sustainable use
of land [26]. Considering the global effort to achieve the Sustainable Development Goals
(SDGs) related to life on land [27], further research into the eco-environmental effect of land-
use transition and its formation mechanism at the regional level can provide sound support
for effective management of land [28]. This is significant to the guidance and coordinated
development of regional land resource development and eco-environmental protection.

Extensive research has been conducted on the ecological and environmental effects
of land-use transitions. The research perspectives mainly cover the following three types.
First, from the perspective of habitat fragmentation [29], efforts are made to analyze the
evolution of landscape patterns triggered by land-use changes and their impact on the
biological habitat of organisms. Second, from the perspective of environmental quality
evolution, efforts are made to analyze the impact of land-use changes on the value of
ecosystem services [30–32]. Third, from the perspective of production–living–ecological
spaces (PLES) [33], the land-use types are classified according to production, living and
ecological functions. Efforts are then made to probe into the changes in the regional
ecological and environmental quality generated by the dominant land function transition.
The production–living–ecological space division method coincides with the sustainable
development three-pillar concept [34]. Land-use transitions can be linked with regional
development transformation, which is becoming an important entry point for studying
land-use transitions [35]. In China and some developing countries, rapid urbanization and
rapid economic development have brought about huge changes in PLES [36]. The PLES
imbalance is the main cause of environmental pollution, excessive consumption of energy
resources and ecological system degradation [37]. Therefore, the construction of the PLES
classification system is of great significance for measuring the level of regional development
coordination, identifying land-use conflicts and exploring sustainable development paths.

In terms of research methods, numerous explorations have been made by researchers.
The main methods used for the comprehensive measurement of the ecological effects of
land-use transitions include the landscape ecological risk index [38–41], ecosystem service
value model and eco-environmental quality index [42], of which the eco-environmental
quality index establishes the correlation between land-use cover change and environmental
quality through ecological assignment. The eco-environmental quality index can more
accurately depict the spatial evolution characteristics of the eco-environmental effect of
regional land-use transition and has been widely applied since its introduction [43–45]. The
main methods for studying the driving mechanism of eco-environmental quality include
the geographically weighted regression (GWR) model [12,46], the partial least squares
regression method [47], spatial principal component analysis [48–50] and the geographic
detector [51–54]. However, the amount of related research is limited and uses relatively
simple methods. At present, the measurement methods for the ecological effects of land-use
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transitions have become relatively mature, but the research scales are mostly at the national,
provincial, municipal, and river basins levels, which lack research on urban agglomerations.
In addition, the focus of existing research stresses the functional structure of PLES and
the spatial-temporal evolution characteristics of eco-environmental effects. This lacks
sufficient discussion on the driving mechanism and the relatively simple research methods
of influencing factors, which leads to the incomplete and superficial discussion of results.
Different factors impact the eco-environmental quality at different scales [25]. However,
previous theoretical methods and model applications often ignore the spatial scale of the
influencing factors. These factors can have an adverse impact on research accuracy.

The central and southern Liaoning urban agglomeration is a region in China that
enjoyed an earlier industrial start and possesses a higher level of urbanization [55]. During
the development process, land-use transitions in this area had a significant impact on the
ecological environment. Therefore, it is of great practical significance to use this area as a re-
search object. However, there is little related research on this area. In view of this deficiency,
this paper takes the central and southern Liaoning urban agglomeration as the research
object. Specifically, our objectives are to (1) quantify the spatiotemporal changes in land-use
categories from the perspective of PLES in the central and southern Liaoning urban ag-
glomeration between 1990 and 2018; (2) analyze the dynamics of eco-environmental quality
by constructing an evaluation index, and then study the ecological contribution of land-use
transitions; and (3) examine the degree and scale of impact of different influencing factors
on the eco-environmental quality index using the multi-scale geographically weighted
regression (MGWR) model. This can provide solid theoretical support for the coordinated
development of production–living–ecological spaces in the central and southern Liaoning
urban agglomeration and for the formulation of differentiated ecological protection policies
at the regional level.

2. Materials and Methods
2.1. Study Area

The central and southern Liaoning urban agglomeration is located in the southern
area of Northeast China along the coast of the Bohai Sea in Liaoning Province. Together
with the Beijing–Tianjin–Hebei metropolitan circle and the Shandong Peninsula urban
agglomeration, it forms the Bohai Rim Economic Circle. The distribution of landform
types is mountainous and hilly in the eastern region, with the Liaohe Plain in the central
and western regions. It is composed of the two deputy provincial-level cities of Shenyang
and Dalian, as well as the eight prefecture-level cities of Anshan, Fushun, Benxi, Yingkou,
Liaoyang, Tieling, Panjin and Dandong (Figure 1), covering an area of about 97,638 square
kilometers [56]. As the largest heavy industry base in China, the central and southern
Liaoning urban agglomeration is the main driver for economic growth and revitalization in
Northeast China and plays a major role in promoting “Belt and Road” construction, boost-
ing new urbanization and bolstering the overall revitalization of Northeast China [57,58].
Over the years, with the rapid advance of urbanization and large-scale industrialization, a
substantial change has been seen in the dominant function of land use. The study of eco-
environmental response patterns of land-use transitions and its influencing factors in the
central and southern Liaoning urban agglomeration is of practical guiding significance in
conducting spatial planning and control, as well as regional ecological and environmental
protection, in the future.
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Figure 1. Location of the study area in Liaoning Province, China.

2.2. Data Sources and Processing

The research data includes information such as land-use remote sensing monitoring
data and spatial distribution network data sets for population and GDP. The descriptions of
the data are shown in Table 1. The technical process of this paper is as follows: (1) The GIS
reclassification method is used to reclassify remote sensing monitoring data land-use types
and obtain a PLES land-use type diagram. (2) The ArcGIS 10.3 software area tabulation tool
is used to perform a cross-analysis of the reclassified PLES land-use type diagram in the
study area for the years 1990, 2000, 2010 and 2018. After that, the Excel pivot table function
is used to handle the exported data and establish the land-use function transfer matrix.
Based on this data, a Sankey diagram is drawn using Origin 2022. (3) The area weighting
method is used to assign the eco-environmental quality value to secondary PLES land types.
Then the GIS fishnet method is used to create 1 km × 1 km fishnet grids, and the zonal
statistical tabulation method is used to count the PLES land-use types in each grid. Based
on this, the eco-environmental quality value of each gird is calculated using the GIS map
algebra method and the eco-environmental quality index of the study area is determined
using the interpolation method. The ecological contribution rate is calculated in Excel using
the above results. (4) GIS spatial analysis methods such as the proximity analysis method
and zoning statistical tabulation method are adopted to obtain slope, land-use intensity
and other independent variable indicators. Then the collinearity test is conducted for each
indicator variable using SPSS 25.0 software to select the main influencing factors of the
eco-environmental quality index. The ordinary least squares (OLS), GWR and MGWR
models are used for the variable regression analysis based on the MGWR 2.2 software, and
the results are compared.
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Table 1. Data sources and descriptions.

Data Types Data Descriptions Time Data Sources

LULCC 1

Remote sensing monitoring and interpretation
data of land use with 30 m spatial resolution

[59] can achieve an accuracy of over 90%.
Land-use types cover six first-level land types
(cultivated land, forest land, grassland, water
area, construction land and unused land) and

25 s-level land types.

1990–2018
http://www.resdc.cn

(accessed on
1 September 2021)

DEM 2 1 km spatial resolution digital elevation model 2010
http://www.gscloud.cn/

(accessed on
1 September 2021)

Meteorological
monitoring data

The 1 km spatial resolution is based on the
spatial interpolation data set of annual average
temperature and annual average precipitation
generated from the observation data of more
than 2400 meteorological stations in China

2010
http://www.resdc.cn

(accessed on
1 September 2021)

Population and GDP
spatial distribution

kilometer grid data set

1 km spatial resolution, combined with the
spatial interaction law of land-use data,

nighttime light data, residential density data,
and the spatial interaction pattern of

population and GDP [60–62]

2010
http://www.resdc.cn

(accessed on
5 September 2021)

City-level administrative
center data

Used to calculate the distance from city-level
administrative centers 2010

http://www.ngcc.cn/ngcc/
(accessed on

5 September 2021)

Administrative
boundary data Used to extract administrative boundaries 2018

http://www.ngcc.cn/ngcc/
(accessed on

10 September 2021)
1 Land use and land cover change. 2 Digital elevation model.

2.3. Methodology
2.3.1. Establishment of the PLES Classification System

Land is a multi-functional complex in which production, living and ecological func-
tions intersect and are unified. However, due to different land-use patterns, intensities
and related users, land can exhibit the primary and secondary functions of the above
three functions [63,64]. In other words, land often has a dominant function, despite its
multiple functions. Based on the dominant function of land use, land can be divided into
production, living and ecological spaces [65]. Production land refers to land for agricultural,
industrial and commercial activities that is used to obtain products and supply functions.
Living land refers to that which carries and protects human settlements, and ecological
land is that which regulates, maintains and protects the function of ecological security. The
construction of the PLES classification system is of great significance for measuring the
coordination levels of regional development, identifying land-use conflicts and exploring
sustainable development paths. At present, there are two main PLES classification methods:
one based on land function index system scores [66] and the other based on land dominant
functions [15]. According to the diversity of land functions, the former uses multi-source
data to construct an evaluation index system, quantitatively calculates the PLE scores of
the land and determines the PLES. The latter determines the dominant function of the
land based on the subjective land-use intention of the actor, thereby dividing the land-use
types into production space, living space and ecological space. For example, cultivated
land is not only able to produce food, but also able to regulate the ecology. However,
the main purpose of people’s use of cultivated land is to produce food. Therefore, it is
classified as production land. This method is based on the dominant function of land
use and directly combines land-use types. The operation is simple, and the classification

http://www.resdc.cn
http://www.gscloud.cn/
http://www.resdc.cn
http://www.resdc.cn
http://www.ngcc.cn/ngcc/
http://www.ngcc.cn/ngcc/
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standards are unified, which is more suitable for regional-scale analysis. Therefore, this
paper refers to this method and combines the characteristics of land use in the study area
to construct a classification system of PLES in the study area based on the principle of
combining scientificity and practicability. In addition, with reference to the research results
of Li et al. and Cui et al. [67,68], the eco-environmental quality value is determined for
each secondary land type of the land-use classification system. The area weighting method
is used to gain the eco-environmental quality value for each secondary land type of the
dominant PLES land-use classification, as shown in the following table (Table 2).

Table 2. Land-use classification for production–living–ecological land use and the eco-environmental
quality index.

Dominant Function Classification of PLES Land Use Land-Use Classification System
Secondary Land Type

Eco-Environmental
Quality IndexPrimary Land Type Secondary Land Type

Production land
11 agricultural production land Paddy field, dry farmland 0.260

12 industrial and mining
production land

Industrial and transport
construction land 0.150

Living land
21 urban living land Urban land 0.200

22 rural living land Rural residential land 0.200

Ecological land

31 forest ecological land
Forest land, shrub forest
land, sparse forest land,

and other forest land
0.930

32 grassland ecological land
High coverage grassland,

medium coverage grassland,
low coverage grassland

0.570

33 water ecological land Rivers, canals, lakes, reservoirs,
ponds, tidal flats, and shoals 0.560

34 other ecological land
Sandy land, saline-alkali land,

swampland, bare land,
and bare rocky land

0.620

2.3.2. PLES Transition Analysis

The functional structure transformation of production–living–ecological space (PLES)
is achieved through the use of the Sankey diagram and land-use transfer matrix model. The
Sankey diagram exhibits a visual display of the transition of land-use function structure in
the form of energy flow. The transfer matrix refers to the arrangement of the transfer area
of land-use changes in the form of a matrix, which not only demonstrates the specific quan-
titative change of land use, but also presents the PLES transfer direction. The mathematical
formula is as follows:

Sij =

∣∣∣∣∣∣∣∣
S11 S12 · · · S1n
S21 S22 · · · S2n
· · · · · · · · · · · ·
Sn1 Sn2 · · · Snn

∣∣∣∣∣∣∣∣ (1)

In the formula, S represents the area, i and j represent the land-use types at the early
and late stages of the study, and n represents the number of land-use types.

2.3.3. Eco-Environmental Quality Index

The eco-environmental quality index is based on the land-use cover change data
interpreted by remote sensing, where the ecological quality and structural proportion of
land use in PLES in the evaluation units are taken into full consideration to determine the
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eco-environmental quality [65,69]. The expression of the eco-environmental quality index
of each evaluation unit is as follows:

EVi =
N

∑
i=1

Aki
Ak

Ri (2)

In the equation, EVi represents the eco-environmental quality index of the i-th eco-
logical unit; Ri refers to the eco-environmental quality index of the i-th type of land use;
Aki is the area of the land-use type i in the k-th ecological unit; Ak is the area of the k-th
ecological unit; and N indicates the number of land-use types. The study area is sampled at
equal intervals using a 1 km square, and the regional eco-environmental quality index is
obtained through the interpolation analysis of the eco-environmental quality index of each
evaluation unit.

2.3.4. Ecological Contribution Rate of Land-Use Transitions

The ecological contribution rate of land-use transitions refers to any change in regional
ecological quality triggered by the change of a land-use type [70], which can be expressed as:

LEI = (LEt+1 − LEt)
LA
TA

(3)

In the formula, LEI represents the ecological contribution rate of the land-use function
transition; LEt and LEt+1 are the ecological quality indexes of the land-use type at the early
and late stages of the change reflected by a certain land-use change type, respectively; LA
stands for the area of the change type; and TA represents the total area of the region.

2.3.5. Multi-Scale Geographically Weighted Regression (MGWR) Model

Compared with the GWR model, the MGWR model does not perform the regression
analysis based on a fixed bandwidth but instead takes into account the scale differences of
spatial heterogeneity of various influencing factors, allowing each variable to have its own
different spatial smoothing level. This multi-bandwidth method can help establish a more
realistic and useful spatial process model, thus making the regression results more stable.
The specific bandwidth of each variable can be used as a measurable indicator of the spatial
scale at which each spatial process acts [71]. The model calculation formula is as follows:

yi = β0(ui, vi) +
k

∑
j=1

βbwj(ui, vi)xi j + εi (4)

In the formula, yi represents the eco-environmental quality of the sample area i;
bwj represents the bandwidth used by the j-th variable regression coefficient; βbwj(ui,vi)
represents the regression coefficient of the j-th variable of the sample area i; and β0(ui,vi)
and εi represent the intercept and error term of the model at sample area i, respectively.
A Gaussian function and AICc criterion are adopted for this model.

Each regression coefficient βbwj of the MGWR model is obtained based on the local
regression, and its bandwidth is specific. This is the greatest difference between the MGWR
model and the GWR model. A commonly used Gaussian Bi-square kernel function and
AICc criterion are adopted for this model. There are generally two options for defining
the algorithm used to select an optimal bandwidth when calibrating the MGWR model:
(1) golden-section or (2) interval search. The golden-section search method is used to
select an optimal bandwidth in the model. The algorithm finds the optimal value for the
bandwidth by successively narrowing the range of values inside which the optimal value
exists and comparing the optimization score of the model for each. It then returns the value
that has the lowest score [72].

The eco-environmental quality is subject to numerous influencing factors such as natu-
ral, socio-economic and policy factors [53]. Natural factors constitute the background for
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the formation of the ecological environment quality pattern, while socio-economic factors
are the main factors driving its changes [73,74]. Therefore, this paper selects nine indicators
as influencing factors from the two aspects of natural and socio-economic factors. Due to
the difficulty of quantifying certain influencing factors, such as policy factors, these factors
are not included in the MGWR model. The selection and calculation methods of indicators
are shown below (Table 3). Within natural environment factors, topographic and climatic
factors have a significant impact on land-use change in large-scale and long-term sequences.
They are also the decisive factors for the formation and evolution of the temporal-spatial
pattern of eco-environmental quality [75]. Therefore, this study uses relief and slope to
characterize the impact of terrain factors on the eco-environmental quality. Annual average
precipitation and annual average temperature were selected to characterize the driving
influence of climatic factors on the evolution of the eco-environmental quality. Population
and economic development are the most dynamic influencing factors in the evolution
of eco-environmental quality [76]. Within a certain range, an increase in population and
economic level will be accompanied by dramatic changes in land use, which will affect eco-
environmental quality. Therefore, this study selects population density and GDP to reflect
the impact of socio-economic activities. In addition, land-use changes are direct influencing
factors for the evolution of eco-environmental quality. Land-use intensity and diversity can
effectively reflect the degree of human activity disturbance to land use [77]. The location
factor is also an important factor affecting the evolution of eco-environmental quality.
In this study, the distance from the nearest prefecture-level city is selected to represent the
location factor. In view of the small number of prefecture-level cities and large number of
townships in the study area, as well as the difficulty of data collection, 72 counties (districts)
are used as empirical units to study the influencing factors of eco-environmental quality.
Due to the convergence of the effects and difficulty of data collection, only the year 2010 is
used to study the influencing factors of eco-environmental quality.

Table 3. The index system for the multi-scale geographically weighted regression (MGWR) model.

Category Index Meaning Calculation Method

Natural environment factors

Slope Indicates the impact of terrain
factors on the distribution pattern of

eco-environmental quality

Obtained by using the Slope tool and
Zonal Statistics as Table tool in ArcGIS 10.3

Relief Obtained by using the Block Statistics tool in
ArcGIS 10.3

Annual average
precipitation Indicates the driving influence of

climatic factors on the evolution of
eco-environmental quality

Obtained by using the Zonal Statistics
as Table tool in ArcGIS 10.3

Annual average
temperature

Obtained by using the Zonal Statistics
as Table tool in ArcGIS 10.3

Socio-economic factors

Population density Indicates the impact of social and
economic activities on

eco-environmental quality

Obtained by using the Zonal Statistics
as Table tool in ArcGIS 10.3

GDP 1 Obtained by using the Zonal Statistics
as Table tool in ArcGIS 10.3

Land-use intensity Indicates the impact of human
activities on land use, which in turn

leads to the evolution of
eco-environmental quality

The Shannon–Wiener index is used
to measure the richness, complexity

and order of land use in China

Land-use diversity Calculated based on Shannon’s
diversity index

Distance from the nearest
prefecture-level city

Indicates the impact of location
factors on

eco-environmental quality

Obtained by using the Near, Kriging, and
Zonal Statistics as Table tools in ArcGIS 10.3

1 Gross domestic product.
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3. Results
3.1. Analysis of PLES Land-Use Transition Characteristics
3.1.1. Spatiotemporal Pattern Characteristics of Land-Use Transition

From 1990 to 2018, the ecological land in the central and southern Liaoning urban
agglomeration demonstrated the widest distribution. It was concentrated in the eastern
Changbai Mountains and the central and southern region of the province, representing an
increase of 37.353 km2. The living land was scattered in the central and southern coastal
areas and continued to expand, showing an increase of 2360.472 km2 over the 28-year
period. The production land was mainly distributed in the central and western Liaohe
Plain and southern coastal areas and presented a declining trend, dropping by 2147.784 km2

during the study period. It also presented a spatial distribution characteristic that was
dense in the northwest and sparse in the southeast (Figure 2, Table 4).
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Table 4. Area and changes of land-use types in the central and southern Liaoning urban agglomera-
tion 1990–2018 (km2).

Year 11 12 21 22 31 32 33 34

1990 38,637.564 721.323 1066.308 3986.671 43,742.959 1226.825 2926.835 1053.212
2000 39,345.779 775.773 1211.973 4124.860 42,756.808 1162.134 2997.694 1005.206
2010 38,261.168 1181.968 1753.572 4967.955 42,539.679 682.178 3196.583 1015.568
2018 36,088.797 1122.306 2346.507 5066.944 43,764.486 636.056 3302.532 1284.110

1990–2000 708.215 54.450 145.665 138.190 −986.152 −64.691 70.859 −48.006
2000–2010 −1084.611 406.195 541.598 843.095 −217.129 −479.957 198.889 10.362
2010–2018 −2172.371 −59.662 592.935 98.989 1224.807 −46.121 105.949 268.542
1990–2018 −2548.768 400.983 1280.199 1080.274 21.527 −590.769 375.697 230.898

According to the secondary classifications, the forest ecological land, urban living land
and agricultural production land presented a wider distribution, which basically has the
same spatial distribution pattern as the corresponding first-level land types. In general, the
ecological protection projects have had a significant impact on the land-use transition of the
central and southern Liaoning urban agglomeration. In the central and southern Liaoning
urban agglomeration in the 1990s, there was the Northeast Phenomenon, which featured
stagnant urban development and slow urban and rural living land growth [78]. After 2000,
the Northeast Revitalization Strategy and the policy of returning farmland to forests have
contributed to a remarkable increase in urban and rural living land, a significant decrease
of 3256.982 km2 in agricultural production land and a gradual recovery in forest ecological
land [79].

3.1.2. Transformation Characteristics of Land-Use Function Structure

In order to further explore the quantity and direction of the mutual transition between
the secondary land types in the production–living–ecological space, the land-use transfer
matrix (Table 5) was established, and a Sankey diagram was drawn (Figure 3). According
to the results, from 1990 to 2018, the amount of agricultural production land converted
into forest ecological land ranked first, with a total area of 3847.734 km2, followed by the
land changed into urban and rural living land. The largest transfer area was agricultural
production land transferred from forest ecological land, totaling 3599.112 km2.

Table 5. Transition matrix of land-use types in the central and southern Liaoning urban agglomeration
1990–2018 (km2).

1990
2018

11 12 21 22 31 32 33 34 Summary in 1990

11 30,289.171 407.218 856.832 2028.064 3847.734 214.143 811.455 179.932 38,634.548
12 25.344 258.377 107.645 15.189 15.994 9.812 278.249 9.758 720.368
21 44.383 10.412 909.734 85.852 9.859 1.080 4.631 0.191 1066.140
22 1036.152 39.373 228.617 2465.793 155.615 16.997 31.837 11.843 3986.228
31 3599.112 156.891 167.376 374.318 38,987.637 235.337 159.639 59.089 43,739.399
32 360.001 15.333 22.189 52.894 599.206 125.940 23.337 27.559 1226.458
33 468.257 109.973 39.235 30.545 129.662 12.607 1732.819 394.072 2917.170
34 264.631 23.382 10.450 13.145 15.343 19.921 104.671 601.595 1053.138

Summary in 2018 36,087.050 1020.958 2342.077 5065.800 43,761.050 635.837 3146.638 1284.038

From 1990 to 2000, the increased area of agricultural production land mainly came from
forest ecological land, which shows that there was serious deforestation and reclamation
in the central and southern Liaoning urban agglomeration during this period. From 2000
to 2018, the scale of mutual conversion between forest ecological land and agricultural
production land was the largest, and the phenomenon of simultaneous governance and
destruction was present. The gradual implementation of ecological protection projects has
helped to reverse the trend of decreasing forest land. The area of agricultural production
land transferred into forest ecological land was gradually greater than the occupation
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area of agricultural production land. This has triggered a positive effect on ecological
functions such as wind and sand control and water conservation. However, the region
is still confronted with the conflict between food security and ecological protection. The
area of agricultural production land converted into urban and rural living land was the
second largest. This means that the implementation of the Northeast Revitalization Strategy,
accelerated urbanization, and large-scale urban and rural construction have contributed
to a remarkable decline in cultivated land. Although land consolidation activities are
continuously conducted to achieve a dynamic balance in the total area of agricultural
production land, reversing the overall decreasing trend in the total area of cultivated land
remains a difficult task [80].
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3.2. Eco-Environmental Effects of PLES Land-Use Transitions
3.2.1. Spatial Distribution Characteristics of the Eco-Environmental Quality Index

From 1990 to 2018, the eco-environmental quality index in the study area presented a
trend of first decreasing and then increasing (Table 6). The eco-environmental quality index
is marked with significant spatial differentiation, depicting the distribution characteristics
of being high in the east and low in the west. The cities of Benxi, Fushun and Dandong in
the east have played a core role in forming high-quality eco-environmental agglomerations.
The cities of Shenyang and Dalian in the west feature a relatively higher level of urbaniza-
tion, where the rapid expansion of construction land during urban expansion has had a
serious impact on the regional eco-environmental quality. As a result, medium-low quality
agglomerations have formed along the Shenyang-Dalian axis (Figure 4).

Table 6. Eco-environmental quality index 1990–2018.

Year 1990 2000 2010 2018

The mean value of the
eco-environmental quality index 0.575 0.568 0.565 0.574
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3.2.2. Ecological Contribution Rate Generating an Impact on the Eco-Environmental
Quality Index

In order to reveal the impact of each land-use transition on the regional eco-environmental
quality, changes were measured in the eco-environmental quality index during the three time
periods (Figure 5). The ecological contribution rate of each land-use transition was also
measured (Figure 6). According to the results, from 1990 to 2018, there was a gradual increase
in the area with an improved ecological environment. The improvement of the ecological
environment was mainly due to the gradual implementation of the returning farmland to
forest policy. In addition, the proportion of the ecological contribution rate of agricultural
production land converted to forest ecological land continued to increase, peaking at
76.497%. After the Northeast Revitalization Strategy was introduced in 2004, the ecological
environment of land along the Shenyang-Dalian development axis continued to deteriorate
due to rapid urban expansion. The ecological contribution ratio of forest ecological land
converted to urban and rural living land climbed from 2.811% in the previous period to
9.155% in the current period. In general, the ecological environment of the central and
southern Liaoning urban agglomeration first deteriorated and then improved, but the
overall eco-environmental quality in 2018 remained worse than that of 1990. Therefore, the
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protection of the ecological environment should not be ignored when relevant policies and
plans are developed in the central and southern Liaoning urban agglomeration. Additional
efforts should be made to adjust the structure and layout of land use in a timely manner for
the sake of the continuous improvement of the ecological environment. In addition, the
strictest cultivated land protection system should be implemented to prevent a continuous
or substantial decrease in the area of cultivated land.
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3.3. Analysis of Influencing Factors on the Eco-Environmental Quality Index
3.3.1. Identification of Influencing Factors and the Comparative Analysis of Models

Firstly, a global spatial autocorrelation analysis was conducted for the county (district)
level eco-environmental quality in the central and southern Liaoning urban agglomeration.
At the 1% significance level, Moran’s I index was 0.584, and the Z value of the normal
statistic was 3.153, far beyond the critical value of 2.580. This shows that there is a significant
spatial autocorrelation in the county (district) level eco-environmental quality index for
the central and southern Liaoning urban agglomeration. Secondly, to avoid a deviation in
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the estimated results caused by a mutual influence between the indicators, the collinearity
test was conducted for each indicator variable. The test results show that the only factor
greater than five was the variance inflation factor (VIF) value of the relief index, which
was removed. There was no significant cross collinearity between other variables that
could be used for the model fitting analysis. Therefore, the OLS, GWR and MGWR models
were used for the variable analysis based on the MGWR 2.2 software, and the results were
compared as follows (Table 7). Table 7 indicates that the MGWR goodness-of-fit R2 is
higher than that of the classic GWR and OLS models, and the Akaike information criterion
(AICc) value and residual squared are much lower. This shows that the fitting results of the
MGWR model in this study are better than those of the first two models.

Table 7. Comparison of fitting results for OLS, GWR and MGWR models.

Model Indicators OLS 1 GWR 2 MGWR

AICc 63.790 58.277 44.770
R-squared 0.898 0.934 0.948

Residual sum of squares 7.366 4.721 3.763
1 Ordinary least squares. 2 Geographically weighted regression.

3.3.2. Scale Analysis of Influencing Factors Based on the MGWR Model

The bandwidth of the variables in the GWR model is fixed and can only reflect the
average value of each variable’s action scale. The bandwidth of each variable in the MGWR
model is variable and can directly reflect the difference in the action scale of different
variables [81]. This means that the influence of the independent variable on the ecological
environment quality index is basically the same within the bandwidth range, and once the
scale is exceeded, the regression coefficient will change drastically.

The bandwidths of the respective variables in the regression results of the MGWR
and GWR models are summarized below (Table 8). It can be seen from Table 8 that the
optimal bandwidth of the variables in the GWR model is 63.000. However, the optimal
bandwidth of each variable in the MGWR model differs from variable to variable, indicating
that there are certain differences in the effect scales of different influencing factors on
each eco-environmental quality index in the study area. The bandwidth of variables in
natural environment factors is generally slightly lower than that of variables in socio-
economic factors, indicating that the regression coefficients of variables in socio-economic
factors are relatively more stable in space. The minimum action scale of annual average
precipitation is 43.000, indicating that the eco-environmental quality index is more sensitive
to annual average precipitation and will vary greatly in space with the changes in annual
average precipitation. In general, the action scales of all variables are small, indicating that
there is obvious spatial heterogeneity in the relationship and structure of the independent
variables affecting the eco-environmental quality index in the central and southern Liaoning
urban agglomeration.

Table 8. Variable bandwidth for GWR and MGWR models.

Variable Bandwidth of
GWR Model

Bandwidth of
MGWR Model

Slope 63.000 44.000
Annual average temperature 63.000 46.000
Annual average precipitation 63.000 43.000

Population density 63.000 71.000
GDP 63.000 71.000

Land-use identity 63.000 71.000
Land-use diversity 63.000 71.000

Distance from the nearest prefecture-level city 63.000 63.000
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3.3.3. Regression Coefficients Analysis of Influencing Factors Based on the MGWR Model

The average values of the regression coefficients of the respective variables are sum-
marized in the regression results of the MGWR model (Table 9). The ArcGIS 10.3 software
natural breakpoint method is used to visualize the standardized residuals and the coef-
ficients of the respective variables (Figure 7). The results indicate that the range of the
standardized residual values stands between (−2.5, 2.5) and that the model has a better
general effect (Figure 7a). As for the influencing factors on eco-environmental quality, the
descending order of the factors is the slope, annual average precipitation, annual average
temperature, land-use intensity, population density, GDP, land-use diversity and distance
from the nearest prefecture-level city (Table 9).

Table 9. Statistical description of MGWR coefficient means.

Variable Slope
Annual
Average

Temperature

Annual
Average

Precipitation

Population
Density GDP Land-Use

Identity
Land-Use
Diversity

Distance from
the Nearest

Prefecture-Level City

coefficient 0.722 −0.176 0.254 −0.069 −0.062 −0.132 −0.028 0.025
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From the perspective of spatial distribution, the eight independent variables show
significant spatial differences in the degree of impact on the eco-environmental quality
index in the study area. The absolute value distribution of the regression coefficients
of the slope, annual average temperature and annual average precipitation presents a
circular increase pattern from east to west (Figure 7b–d). Those areas with a lower degree
of slope impact, annual average temperature and annual average precipitation basically
have the same distribution pattern as the eastern dense forest area. The degree of impact
of GDP, land-use intensity and land-use diversity on eco-environmental quality in the
southern coastal area is higher than that in the other areas. This is due to the fact that
the southern coastal area has a relatively developed economy, with a higher level of land
development and a higher degree of disturbance by human activities on land. These factors
are more likely to boost the formation of production and living spaces, thereby worsening
the quality of the ecological environment (Figure 7f–h). The absolute value distribution of
the regression coefficient of population density presents a circular increase pattern from
southeast to northwest, which indicates that the impact degree of population density on
the quality of the ecological environment in the northwest is higher than in the southeast.
This is due to the fact that the natural conditions of Shenyang and Panjin in the northwest
are worse than in other cities in Liaoning Province. This then leads to a lower regional
ecological environment recovery capability compared with the eastern region and a higher
sensitivity to human disturbance (Figure 7e) [82].

4. Discussion
4.1. Research Significance

Previous studies have focused on the measurement methods of different ecological
effects of land-use transitions but failed to connect land-use transitions and the development
stage of regional transitions [17]. Land use is divided according to production, living and
ecological spaces, which can connect land-use transformation with regional transformation
and development. This division method has become a research area that coincides with the
three-pillar concept of sustainable land use: production, living and ecology [34]. This serves
as an important entry point for land-use transformation. The urban agglomeration in central
and southern Liaoning is an important heavy industry base and major grain-producing area
in China [57]. Due to the influence of policies and its own positioning, it has undergone
a number of developments such as the Northeast Phenomenon, Northeast Revitalization,
and New Northeast Phenomenon in the past 30 years [80]. This study found that with the
different development in urbanization and economy, the spatial structure of production-
living-ecology in the study area has also undergone significant changes. Its transition
characteristics match up with different development stages. At the same time, this leads
to differences in the spatial and temporal changes in the regional ecological environment
quality. However, during the study period, the overall ecological environment quality of the
study area changed little. This was due to the two trends of deterioration and improvement,
which offset each other to a certain extent. The mutual transformation of agricultural
production land, forest land, ecological land and urban and rural residential land is the
main conflict of land use in this region, threatening both food security and ecological
security. At different stages of development, the different transformation structures among
the three led to changes in the quality of the ecological environment. In the future, during
the formulation of territorial space optimization strategies and planning, it is necessary
to comprehensively consider the social development stage, regional development goal
orientation and ecological protection principles [80]. The results of this paper based on
the PLES concept demonstrate that the characteristics of land-use transitions in the study
area in each period are compatible with the regional economic and social transition stages.
This causes changes in the quality of the ecological environment and shows significant
policy-led characteristics that are important for regional policy regulation. It is of great
significance to explore sustainable development paths. This further verifies the advantages
and necessity of research from this perspective.
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Previous studies have placed a greater focus on the temporal and spatial evolution
characteristics of land-use transitions and their eco-environmental effects [4,48,52]. How-
ever, there is insufficient discussion on the influencing factors of eco-environmental effects,
and the research methods are singular and lack innovation. Moreover, the quality of the
ecological environment is usually determined by the spatial processes of multiple influenc-
ing factors at different scales, and the scale analysis of the influencing factors is particularly
important [25]. However, the previous theoretical methods and model applications often
ignore the spatial scale of the influencing factors [51–54]. This, in turn, will cause the re-
gression results to be unstable. In this paper, the MGWR model is used to analyze the scale
and degree of influence of different variables on the quality of the ecological environment
to compensate for the shortcomings in this research field. The research results show that
the quality of the ecological environment has an obvious spatial correlation, and there are
differences in the scale and degree of influence of different variables on the quality of the
ecological environment. As far as the scale of action is concerned, the scale of action of nat-
ural environment elements on the quality of the ecological environment is smaller because
the natural environment within the study area is complex [82]. The degree of influence of
natural environment elements on the quality of the ecological environment is also more
spatially heterogeneous. In terms of the degree of influence, the slope has the greatest
positive impact on the eco-environmental quality index. This is because natural factors
such as slope often determine the basic pattern of regional land use, which in turn affects
the quality of the ecological environment [54]. The Liaohe Plain, with gentle slopes in the
central and western parts of the study area, is easy to develop into production and living
land, and the eco-environmental quality index is low. In contrast, in the mountainous areas
with steeper slopes in the east, the local climate is complex, and it is easy to form woodland
ecological land [46]. As a result, the eco-environmental quality index is relatively high. In
addition to the natural environmental factors, the land-use intensity has the greatest impact
on the eco-environmental quality index. Among them, the impact of land-use intensity on
the southern coastal areas is higher than in other areas. This is because excessive land-use
intensity is more likely to lead to the degradation of coastal tidal flat wetlands, which
in turn affects the quality of the ecological environment [76]. In the future regulation of
territorial space, attention should be paid to regional differences in the improvement of
ecological protection policies.

The research in this paper applies the MGWR model with statistical inference to the
empirical research on the influencing factors of eco-environmental effects. The research
results show that the MGWR model results are greatly improved compared with the
previous GWR and OLS models. In addition, unlike the GWR model, the MGWR model
can reflect the scale of the impact of different variables on the dependent variable, making
the regression results more reliable. The research in this paper demonstrates that MGWR is
more suitable for related research on the influencing factors of eco-environmental quality,
proving a theoretical and empirical basis for the further application of the MGWR model in
this field.

4.2. Limiting Factors

This paper still contains some deficiencies, which will be further studied, including
the following:

(1) This paper conducts an analysis of the effects of natural environmental factors and
socio-economic factors in identifying the influencing factors of eco-environmental
quality. Due to the availability of data and the limited measurement of indicators,
this paper lacks in-depth discussions on the invisible forms of land use (soil quality,
price, etc.) and non-quantifiable policy factors [83], which may lead to some devi-
ation in the model. In future studies, the impact of natural factors, socio-economic
factors, policy factors and dominant and invisible changes in the forms of land use
on eco-environmental quality shall be taken into full consideration to enhance the
research accuracy;
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(2) Due to the huge computational volume of the MGWR model, regression analysis
cannot be performed at a scale of 1 km spatial resolution of the data. In this paper,
counties (districts) are taken as the research unit for the influencing factors of eco-
environmental quality, and the selected sample size is relatively smaller, which may
result in some errors [81,84]. It is hoped that the improvement of computational
methods and computer performance in the future can allow regression analysis to be
conducted on a more refined scale.

5. Conclusions

From the perspective of production–living–ecological spaces, this paper takes the
remote sensing monitoring data of land use status and adopts such methods as the land use
transfer matrix, the eco-environmental quality index, and the ecological contribution rate of
land-use transitions to quantitatively analyze the spatiotemporal evolution characteristics
and ecological environment effects of land-use transitions in the central and southern
Liaoning urban agglomeration from 1990 to 2018. It also identifies the influencing factors
of the eco-environmental effect and the spatial differentiation law of the effect in the study
area through the use of the MGWR model. The main conclusions reached are as follows:

(1) From 1990 to 2018, a continuous increase was seen in the ecological land and living
land in the central and southern Liaoning urban agglomeration, while a constant de-
crease was found in production land, with a sharp decline of 2147.784 km2. According
to the secondary classification, the scale of mutual conversion between agricultural
production land and forest ecological land was the largest during the study period.
Ecological land experienced a shift from slow land degradation to restoration and
improvement during the period. However, the region was still confronted with a con-
flict between food security and ecological protection. The characteristics of land-use
transitions in each period are in line with the stage of regional economic and social
transformation, presenting prominent policy-dominated characteristics;

(2) During the study period, the eco-environmental quality index of the central and south-
ern Liaoning urban agglomeration demonstrated significant spatial differentiation,
with the distribution characteristics being high in the east and low in the west. The
cities of Benxi, Fushun and Dandong in the east created a core that formed high-
quality eco-environmental agglomerations. The areas expanded and spread along
the Shenyang-Dalian axis to form medium-low quality agglomerations. The overall
ecological environment of the region presented the trend of deterioration followed by
improvement, but the ending value of the index was still lower than the starting value.
The encroachment of agricultural production land and urban and rural living land on
forest ecological land is the main contributor to the deterioration of eco-environmental
quality during the study period.

(3) Compared with the GWR model and the OLS model, remarkable advancement can be
found in the MGWR model, which is more suitable for research on influencing factors
of eco-environmental quality. Regarding these factors, the descending order of the
factors is as follows: slope, annual average precipitation, annual average temperature,
land-use intensity, population density, GDP, land-use diversity and distance from
the nearest prefecture-level city. Different factors have significant spatial differences
in the degree of impact and action scale. The impact of population density on the
quality of the ecological environment in the northwest is larger than in the southeast.
Additionally, the impact of factors such as GDP, land-use intensity and land-use
diversity on the eco-environmental quality in the southern coastal area is greater than
in other regions.
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