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Abstract

This note is concerned with establishing existence theory of solutions to a class of

implicit fractional differential equations (FODEs) involving nonsingular derivative. By

using usual classical fixed point theorems of Banach and Krasnoselskii, we develop

sufficient conditions for the existence of at least one solution and its uniqueness.

Further, some results about Ulam–Hyers stability and its generalization are also

discussed. Two suitable examples are given to demonstrate the results.
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1 Introduction

FODEs have many applications in real world problems; see [1–3]. The concerned area

has been investigated from different aspects in the last several years. These investiga-

tions include the existence theory of solutions by the fixed point theory, numerical analysis

and stability theory by taking Hadamard, Riemann–Liouville, Caputo, etc., type fractional

derivatives (for details, see [4–7]). But recently another form of derivative, called nonsin-

gular type, has attracted much attention from the researchers. The existence theory, to-

gether with stability results, has been very well investigated for other FODEs; for details,

see [8–10]. The considered differential operator has been introduced in 2015 by Caputo

and Fabrizio [11] (in short, we write it as (CFFD)), which replaces the singular kernel by a

nonsingular kernel of exponential type. In this research work, we establish the existence

theory for the following class of fractional differential equations involving the CFFD:

{

CF
0 D

θ
xu(x) = f (x,u(x),CF0 D

θ
xu(x)), x ∈ [0,T] = J ,

u(0) = u0, u0 ∈R,
(1)

where θ ∈ (0, 1], f : J × R × R → R. The considered differential operator replaces the

singular kernel by a nonsingular kernel of exponential type in (1). Thementioned operator

has been observed to bemore practical than the usual Caputo operator in some problems;

for details, see [12–15].
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So in this paper, we are using the fixed point theory to obtain some results for the exis-

tence and uniqueness of a solution to the considered problem (1). Also the stability theory

of Ulam–Hyers type has been properly investigated for ordinary FODEs. Some results in

this regards can be traced back in [16–19]. In recent years some remarkable work has been

carried out about the mentioend FODEs; see [20–24] Therefore in this article, we also de-

veloped some results about the stability for the proposed problem. Two proper examples

are also given in the end.

2 Backgroundmaterials

Some basic notions and results are provided bellow.

Definition 1 ([25, 26]) Letting u ∈ H1(J ), where H1(0,T) is a Hilbert space, we define

the nonsingular derivatives for θ ∈ (0, 1] as

CF
0 D

θ
xu(x) =

M(θ )

1 – θ

∫ x

0

u′(η) exp

(

–θ (x – η)

1 – θ

)

dη, (2)

provided the integral on the right-hand side of (2) converges on (0,∞), where M(θ ) is a

normalization function with M(0) =M(1) = 1. Further, if u does not exist in H1(J ), then

the listed derivative of fractional order is defined as

CF
0 D

θ
xu(x) =

M(θ )

1 – θ

∫ x

0

(

u(x) – u(η)
)

exp

(

–θ (x – η)

1 – θ

)

dη, (3)

provided that the integral on the right-hand side of (3) converges on (0,∞). Further, let

λ = 1–θ
θ
, θ ∈ [0, 1], λ ∈ [0,∞], and then

lim
λ→0

1

λ
exp

(

–
x – η

λ

)

= δ(x – η).

Further,

lim
θ→1

[

CF
0 D

θ
xu(x)

]

= lim
θ→1

M(θ )

1 – θ

∫ x

0

u′(η) exp

(

–θ (x – η)

1 – θ

)

dη

= lim
λ→0

θN(θ )

λ

∫ x

0

u′(η) exp

(

–
x – η

λ

)

dη

= u(x),

where N(θ ) is the corresponding normalization term of M(θ ) with the property N(0) =

N(∞) = 1.

Definition 2 ([25, 26]) The nonsingular kernel type fractional integral is given by

CF
0 I

θ
xu(x) =

(1 – θ )

M(θ )
u(x) +

θ

M(θ )

∫ x

0

u(η)dη, (4)

provided that the integral on right-hand side converges on (0,∞). Further, if we set θ = 1,

thenM(θ ) = 1 in (4), and we get the following classical integral:

lim
θ→1

[CF

0
I
θ
xu(x)

]

= lim
θ→1

[

(1 – θ )

M(θ )
u(x) +

θ

M(θ )

∫ x

0

u(η)dη

]

=

∫ x

0

u(η)dη.
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Lemma 1 ([11]) Let y ∈ C[0,T], then the solution of FODE (5)

CF
0 D

θ
xu(x) = y(x), x ∈ [0,T], 0 < θ ≤ 1,

u(0) = u0, u0 ∈R

(5)

is given as

u(x) = u0 +Dθ

[

y(x) – y0
]

+ D̄θ

∫ t

0

y(η)dη, (6)

where Dθ =
(1–θ )
M(θ )

, D̄θ =
θ

M(θ )
.

Proof Using the definition of CF0 I
θ
x , (5) implies that

u(x) = c +Dθy(x) + D̄θ

∫ x

0

y(η)dη, c ∈R. (7)

Using the initial condition u(0) = u0 and y(0) = y0 ∈ R, from (7), we get c = u0 – Dθy0.

Hence by plugging the value of c in (7), we get (6). �

Remark 1 Henceforth, for simplicity, we use CF
0 D

θ
xu(x) = hu(x) for the implicit term in our

analysis. Further, for simplicity, we use f (0,u(0),hū(0)) = f0.

3 Main work

Lemma 2 Under the conditions of Lemma 1, the solution of (1) is given by

u(x) = u0 +Dθ

[

f
(

x,u(x),hu(x)
)

– f0
]

+ D̄θ

∫ t

0

f
(

η,u(η),hu(η)
)

dη. (8)

To proceed further, we assume that

(C1) There exist Lf > 0 and 0 <Mf < 1 such that

∣

∣f (x,u,hu) – f (x, ū,hū)
∣

∣ ≤ Lf |u – ū| +Mf |hu – hū|

for all u, ū,hu,hū ∈R.

Let X = C(J ) be a Banach space with norm ‖x‖ = maxx∈J |u(x)|.

Theorem 1 Under the assumption (C1), if the condition (Dθ + D̄θT)
Lf

1–Mf
< 1 holds, then

the considered problem (1) has a unique solution.

Proof Define an operator S : X → X by using (8) as

Su(x) = u0 +Dθ

[

f
(

x,u(x),hu(x)
)

– f0
]

+ D̄θ

∫ x

0

f
(

η,u(η),hu(η)
)

dη. (9)

Then for any u, ū ∈ X, from (9), we have

‖Su – Sū‖ = max
x∈J

∣

∣Su(x) – Sū(x)
∣

∣

= max
x∈J

∣

∣

∣

∣

Dθ

[

f
(

x,u(x),hu(x)
)

– f
(

x, ū(x),hū(x)
)]
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+Dθ

∫ x

0

[

f
(

η,u(η),hu(η)
)

– f
(

η, ū(η),hū(η)
)]

dη

∣

∣

∣

∣

≤ Dθ

(

Lf

1 –Mf

)

‖u – ū‖ + D̄θ

(

TLf

1 –Mf

)

‖u – ū‖

= [Dθ + D̄θT]
Lf

1 –Mf

‖u – ū‖.

Hence S is a contraction, therefore S has a unique fixed point. Hence the corresponding

problem (1) has a unique solution. �

Theorem 2 ([27]) Let E ⊂ X be a closed, convex, and nonempty subset of X, and suppose

there exist two operators S1, S2 such that

1. S1u1 + S2u2 ∈ E for all u1,u2 ∈ E;

2. S1 is a contraction and S2 is compact and continuous.

Then there exists at least one solution u ∈ E to the operator equation S1u + S2u = u.

For further analysis, let the given assumption hold:

(C2) There exist constants af ,bf , cf > 0 with 0 < cf < 1 such that

∣

∣f (x,u, v)
∣

∣ ≤ af + bf |u| + cf |v|.

Theorem 3 Under the assumption (C2), if 0 <Dθ

Lf
1–Mf

< 1 holds, then the considered prob-

lem (1) has at least one solution.

Proof Let us define two operators from (8) as

S1u(x) = u0 +Dθ

[

f
(

x,u(x),hu(x)
)

– f0
]

(10)

and

S2u(x) = D̄θ

∫ x

0

f
(

η,u(η),hū(η)
)

. (11)

Let us define a set E = {u ∈ X : ‖u‖ ≤ r}. Since f is continuous, so is S1, and letting u, ū ∈ E,

from (10), we have

‖S1u – S1ū‖ = max
x∈J

∣

∣Dθ

(

f
(

x,u(x),hu(x)
)

– f
(

x, ū(x),hū(x)
))

∣

∣

≤
DθLf

1 –Mf

‖u – ū‖.

Hence S1 is a contraction. Next to prove that S2 is compact and continuous, for any u ∈ E,

we have from (11)

‖S2u‖ = max
x∈J

∣

∣S2u(x)
∣

∣ = max
x∈J

∣

∣

∣

∣

D̄θ

∫ x

0

f
(

η,u(η),hu(η)
)

dη

∣

∣

∣

∣

≤
D̄θ (af + bf r)

1 – cf
= A,
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which implies that ‖S2u‖ ≤ A. Thus S2 is bounded. Next, letting x1 < x2 in J , we have

∣

∣S2u(x2) – S2u(x1)
∣

∣ =

∣

∣

∣

∣

D̄θ

∫ x2

0

f
(

η,u(η),hu(η)
)

dη – D̄θ

∫ x1

0

f
(

η,u(η),hu(η)
)

dη

∣

∣

∣

∣

≤ D̄θ

∫ x2

0

∣

∣f
(

η,u(η),hu(η)
)
∣

∣dη + D̄θ

∫ x1

0

∣

∣f
(

η,u(η),hu(η)
)
∣

∣dη

≤ D̄θ

∫ x2

0

(af + bf r)

1 – cf
dη + D̄θ

∫ x1

0

(af + bf r)

1 – cf
dη,

which implies that

∣

∣S2u(x2) – S2u(x1)
∣

∣ ≤ D̄θ

(

af + bf r

1 – cf

)

(x2 – x1). (12)

From (12), we see that if x1 → x2, then the right-hand side of (12) goes to zero, so |S2u(x2)–

S2u(x1)| → 0 as x1 → x2. Thus the operator defined in (11), S2, is continuous. Also S2(E)⊂

E, therefore S2 is compact and, due to Arzelá–Ascoli theorem, S has at least one fixed

point. Hence the corresponding problem has at least one solution. �

4 Stability theory

In this section, we establish some results regarding stability of Ulam type. Before proceed-

ing further, we give some notion and a definition:

Definition 3 The considered problem (1) is Ulam–Hyers stable if for any ε > 0 such that

the inequality

∣

∣

CF
0 D

θ
xu(x) – f

(

x,u(x),CF0 D
θ
xu(x)

)
∣

∣ < ε, ∀x ∈ J ,

holds, there exists a unique solution ū with a constant Cf such that

∣

∣u(x) – ū(x)
∣

∣ ≤ Cf ε, ∀x ∈ J .

Further the mentioned problem will be generalized Ulam–Hyers stable if there exists a

nondecreasing function ϑ : (0, 1) → (0,∞) such that

∣

∣u(x) – ū(x)
∣

∣ ≤ Cf ϑ(ε), ∀x ∈ J

with ϑ(0) = 0.

Also we state an important remark.

Remark 2 There exists a function ℓ(x) depending on u ∈ X with ℓ(0) = 0 and such that

1. |ℓ(x)| ≤ ε, ∀x ∈ J ;

2. CF
0 D

θ
xu(x) = f (x,u(x),hu(x)) + ℓ(x), ∀x ∈ J .

Lemma 3 The solution of the given perturbed problem

CF
0 D

θ
xu(t) = f

(

x,u(x),hu(x)
)

+ ℓ(x), ∀x ∈ J ,

u(0) = u0
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is given as

u(x) = u0 +Dθ

[

f
(

x,u(x),hu(x)
)

– f0
]

+ D̄θ

∫ x

0

f
(

η,u(η),hu(η)
)

dη

+Dθℓ(x) + D̄θ

∫ x

0

ℓ(η)dη, ∀x ∈ J . (13)

Moreover, the solution satisfies the following inequality:

∣

∣

∣

∣

u(x) –

[

u0 +Dθ

[

f
(

x,u(x),hu(x)
)

– f0
]

+ D̄θ

∫ x

0

f
(

η,u(η),hu(η)
)

dη

]
∣

∣

∣

∣

≤ Ωε, ∀x ∈ J , (14)

where Ω =Dθ + D̄θT .

Proof The solution (13) can be obtained easily by using Lemma 2. From it, it is obvious

how to get result (14) using Remark 2. �

Theorem4 Under the assumptions of Lemma 3, the solution of the considered problem (1)

is Ulam–Hyers stable and also generalized Ulam–Hyers stable if
Lf Ω

1–Mf
< 1.

Proof Let u ∈ X be any solution of problem (1) and ū ∈ X be the unique solution of the

considered problem. Then take

‖u – ū‖ = max
x∈J

∣

∣

∣

∣

u –

[

u0 +Dθ

[

f
(

x, ū(x),hū(x)
)

– f0
]

+ D̄θ

∫ x

0

f
(

η, ū(η),hū(η)
)

dη

]∣

∣

∣

∣

≤ max
x∈J

∣

∣

∣

∣

u –

[

u0 +Dθ

[

f
(

x,u(x),hu(x)
)

– f0
]

+ D̄θ

∫ x

0

f
(

η,u(η),hu(η)
)

dη

]
∣

∣

∣

∣

+ max
x∈J

∣

∣Dθ

[

f
(

x,u(x),hu(x)
)

– f
(

x, ū(x),hū(x)
)]

∣

∣

+ max
x∈J

D̄θ

∫ x

0

∣

∣f
(

η,u(η),hu(η)
)

– f
(

η, ū(η),hū(η)
)
∣

∣dη

≤ Ωε +
ΩLf

1 –Mf

‖u – ū‖. (15)

Hence from (15), we have

‖u – ū‖ ≤
Ω

1 –
Lf Ω

1–Mf

ε. (16)

Hence (16) yields that the solution is Ulam–Hyers stable. Further let Cf =
Ω

1–
Lf Ω

1–Mf

and sup-

pose there exists a nondecreasing function ϑ ∈ C((0, 1), (0,∞)). Then from (16) we can

write

‖u – ū‖ ≤ Cf ϑ(ε), with ϑ(0) = 0. (17)

Therefore (17) implies that the solution is also generalized Ulam–Hyers stable. �
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5 Application of our analysis

In this part of the paper, we test our obtained results on some problems given bellow.

Example 1 Take an implicit-type problem

⎧

⎨

⎩

CF
0 D

1
2
x u(x) =

x2

10
+

sin |u(x)|+sin |CF0 D

1
2
x u(x)|

50+x2
, x ∈ [0, 1],

u(0) = 0.
(18)

Clearly, from (18), T = 1 and

f (x,u,hu) =
x2

10
+

sin |u(x)| + sin |CF0 D

1
2
x u(x)|

50 + x2

is continuous for all x ∈ [0, 1]. Further, let u, ũ,hu,hũ ∈R, then one has

∣

∣f (x,u,hu) – f (x, ũ,hũ)
∣

∣ ≤
1

50
|u – ũ| +

1

50
|hu – hũ|. (19)

From (19), one has Lf =
1
50
,Mf =

1
50
, θ = 1

2
. Also

∣

∣f
(

x,u(x),hu(x)
)
∣

∣ ≤
1

10
+

1

50

∣

∣u(x)
∣

∣ +
1

50

∣

∣hu(x)
∣

∣.

Thus af =
1
10
, bf = cf =

1
50
, and then Dθ =

1
2
, D̄θ =

1
2
, T = 1, and (Dθ + D̄θT)

Lf
1–Mf

= 1
49

< 1.

Hence the conditions of Theorem 1 are satisfied, so (18) has a unique solution. Further,
DθLf
1–Mf

= 1
98

< 1, therefore the conditions of Theorem 3 also hold. Thus the results of Theo-

rem 3 hold. Further, to verify Theorem 4, we see that Ω = 1, Ω
Lf

1–Mf
= 0.0204 < 1. Hence

the solution of the given problem is Ulam– Hyers stable and, consequently, generalized

Ulam–Hyers stable.

Example 2 Here to strengthen our analysis, we investigate another problem:

⎧

⎪

⎨

⎪

⎩

CF
0 D

99
100
x u(x) = 1

80+x4
+ u(x)

1+|CF0 D

99
100
x u(x)|

+
exp(–3x) cos |CF0 D

99
100
x |

200+4x2
, x ∈ [0, 1],

u(0) = 1.

(20)

Clearly, from (20), we have T = 1 and

f
(

x,u(x),hu(x)
)

=
1

80 + x4
+

u(x)

1 + |CF0 D

99
100
x u(x)|

+
exp(–3x) cos |CF0 D

99
100
x |

200 + 4x2

is continuous for all x ∈ [0, 1]. Further, for u, ũ,hu,hũ ∈ R, one has

∣

∣f (x,u,hu) – f (x, ũ,hũ)
∣

∣ ≤
1

120
|u – ũ| +

1

200
|hu – hũ|. (21)

From (21), we take Lf =
1

120
,Mf =

1
200

, θ = 99
100

. Also

∣

∣f
(

x,u(x),hu(x)
)
∣

∣ ≤
1

80
+

1

120

∣

∣u(x)
∣

∣ +
1

200

∣

∣hu(x)
∣

∣.
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Thus af =
1
80
, bf =

1
120

, cf =
1

200
, and then Dθ = 1

100
, D̄θ = 99

100
with T = 1, and (Dθ +

D̄θT)
Lf

1–Mf
= 99

5970
< 1. Hence the conditions of Theorem 1 are satisfied, so (20) has a unique

solution. Further,
DθLf
1–Mf

= 1
11940

< 1. Therefore the conditions of Theorem 3 also hold.

Thus the results of Theorem 3 hold. Further, to verify Theorem 4, we see that Ω = 1,

Ω
Lf

1–Mf
= 0.0083752 < 1. Hence the solution of the given problem is Ulam–Hyers stable

and, consequently, generalized Ulam–Hyers stable.

6 Conclusion

The existence theory of solutions to nonsingular kernel-type FODEs has been framed. For

the said theory, we have applied the usual Banach and Krasnoselskii fixed point theorems.

Also some appropriate results about Ulam–Hyers and generalized Ulam–Hyers stability

have been established by using the tools of nonlinear analysis. The obtained results have

been testified by two interesting examples. To the best of our knowledge, the said results

are new for FODEs involving CFFD. In the future, the above theory and analysis can be

extended to more complicated and applicable problems of FODEs involving CFFD.
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