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Abstract

This paper presents the results of a study on improving the performance parameters such

as the impedance bandwidth, radiation gain and efficiency, as well as suppressing

substrate loss of an innovative antenna for on-chip implementation for millimetre-wave

and terahertz integrated-circuits. This was achieved by using the metamaterial and the

substrate-integrated waveguide (SIW) technologies. The on-chip antenna structure com-

prises five alternating layers of metallization and silicon. An array of circular radiation

patches with metamaterial-inspired crossed-shaped slots are etched on the top metalliza-

tion layer below which is a silicon layer whose bottom surface is metalized to create a

ground plane. Implemented in the silicon layer below is a cavity above which is no

ground plane. Underneath this silicon layer is where an open-ended microstrip feedline is

located which is used to excite the antenna. The feed mechanism is based on the coupling

of the electromagnetic energy from the bottom silicon layer to the top circular patches

through the cavity. To suppress surface waves and reduce substrate loss, the SIW concept

is applied at the top silicon layer by implementing the metallic via holes at the periphery

of the structure that connect the top layer to the ground plane. The proposed on-chip

antenna has an average measured radiation gain and efficiency of 6.9 dBi and 53%,

respectively, over its operational frequency range from 0.285–0.325 THz. The proposed

on-chip antenna has dimensions of 1.35 × 1 × 0.06 mm3. The antenna is shown to be

viable for applications in millimetre-waves and terahertz integrated-circuits.
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1 Introduction

This is an era of millimetre-wave (mm-wave) and terahertz (THz) wireless communications,

which is necessary to deliver multi-Gbps data rates using standard, low-cost integrated-circuit

technology. The THz regime of the electromagnetic spectrum is located between the micro-

wave and optical frequencies and normally defined as the band from 0.1 to 10 THz [1–3].

Currently, the industry is commercializing the unlicensed 60-GHz wireless band (e.g. IEEE

802.11ad/WiGig) for indoor short-range communication networks [1–5]. The atmo-

spheric attenuation property of 60 GHz was one of the driving forces for regulatory

agencies such as the U.S. FCC to unlicense the multi-GHz of bandwidth at 60 GHz

[6]. Beyond 60 GHz, more research is needed on how to design and develop THz on-

chip antennas [7–12].

Active components functioning at mm-wave and THz circuits are highly integrated except

for the antennas [13, 14]. Antenna integration is of great importance [15, 16]. At these

frequencies, the antennas need to be assembled using expensive high-frequency ground-

signal-ground (GSG) probes, bulky waveguides and horn antennas, which is not conducive

for mass production and future industrial application. For high-efficiency and gain, the off-chip

antenna in the package design is usually fabricated on either the printed circuit board (PCB)

[17], low-temperature cofired ceramic (LTCC) [15] or low-loss materials [17]. At mm-wave

and THz frequencies, the interconnect loss of the packaging is significant (~ 2 dB at 60 GHz)

because of the incompatibility of the antennas and the silicon-based active circuits [18–21].

In this paper, an on-chip antenna design is presented for millimetre-wave and THz

applications that is constructed from five alternating layers of metallization and silicon. The

antenna’s performance in terms of impedance bandwidth, radiation gain and efficiency is

enhanced by employing the metamaterial (MTM)-inspired technology [22–24]. Surface waves

and loss in the silicon substrate are mitigated using substrate-integrated waveguide (SIW)

technology [25, 26]. A simple method based on an open-ended microstrip line is employed to

excite the antenna. The next section describes the on-chip antenna structure design along with

the simulated and measured results, and the paper is finally concluded.

2 High-Performance on-Chip Antenna for Applications in mm-Wave
and THz Integrated Circuits

Configuration of the reference on-chip antenna in Fig. 1 comprises five layers consisting of

metallization-silicon-metallization-silicon-metallization. The silicon layers have a dielectric

constant of 11.7 and a loss tangent of 0.00025 [27]. The overall fabrication process used here

is based on CMOS technology. Fabricated in the top silicon layer are four conventional

circular radiation patches. The conductive material used for the radiation patches and the

ground plane is aluminium. A circular cavity is created in the bottom silicon layer under the

four circular patches, and the ground plane over this region is removed. The patches are

excited by an open-ended microstrip line in the form of a cross-shaped line that is constructed

on the backside of the bottom silicon layer. In this way, the four circular patches on the top

layer are aligned with the feedline to maximize coupling. The feeding mechanism is based on

coupling the electromagnetic energy from the bottom silicon layer to the top radiation patches

through the cavity whose dominant resonance mode is TEz

11δ. The proposed feed mechanism

improves the antenna’s impedance matching and consequently its impedance bandwidth and
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radiation characteristics. The periphery of the top silicon layer is punctuated with metallic via

holes to actualize substrate-integrated waveguide (SIW) and thereby suppress surface waves

and minimize substrate loss. The analysis showed that the radius of the metallic via holes and

their spacing from each other are very important to realize low substrate loss and suppress

surface waves. The radius of the via holes and their separation were 9.0 μm and 3.5 μm,

respectively.

To increase the performance of the antenna, its effective aperture area is enlarged without

affecting its physical size by applying the metamaterial concept, as illustrated in Fig. 2. In this

approach, an optimized cross-shaped slot is created inside each circular patch. The periodic

array of subwavelength slots act like resonators or scatters that exhibits metamaterial left-

handed properties (negative refractive index) when interacting with EM fields. The resulting

(a) 

(b)

(c) 

(d) 

(e)

Fig. 1 Configuration of the proposed reference on-chip antenna. a Top view. b Back view. c View showing

relative positions of the feeding line on the bottom layer, the radiation patches on the top layer and the cavity in

the bottom silicon substrate. The cross-shaped feedline is located under the radiation patches to maximize

coupling. d Cross-section view showing the various layers of the on-chip antenna structure. e Fabricated

prototype, top view (left side) and back view (right side)
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structure is referred to as a metasurface, which is a 2D form of a metamaterial [28–30]. The

effective permittivity (ε) and effective permeability (μ) of the metamaterials when analysed

using the retrieval extraction algorithm show the structure exhibits negative permittivity over

the frequency range of interest, which is a unique characteristic of metamaterials. The physical

parameters of the proposed on-chip antenna for optimum performances over 0.285 THz to

0.325 THz are tabulated in Table 1.

The proposed structure was modelled and simulated using CST microwave studio, which is

a 3D electromagnetic solver based on the finite integration technique. The antenna was then

fabricated to validate its performance. The antenna’s feedline was excited using WR3

(a)

(b)

Fig. 2 Proposed on-chip antenna with metamaterial-inspired crossed-shaped slot implemented on the radiation

patches. a Simulated layout (top view). b Fabricated prototype, top view (left side) and back view (right side)
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Table 1 Dimensions of structural parameters

On-chip antenna size 1350 × 1000 × 60 μm3

Thickness of top silicon 5 μm

Thickness of bottom silicon 50 μm

Thickness of GND 5 μm

Radius of cavity 400 μm

Radius of via holes 9 μm

Spacing between via holes 3.5 μm

Radius of circular patches 70 μm

Length of MTM slots 85 μm

Width of MTM slots 10 μm

Length of feeding line 1100 μm

Width of feeding line 100 μm

(a) 

(b) 

Fig. 3 Antipodal fin-line transition (a) consists of three sections: fin-line tapers L, balanced microstrip S and

microstrip line M. The antipodal fin-line transition is located at the centre line of the waveguide broad walls (b)
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transition using in-line fin-lines. By using antipodal fin-lines, shown in Fig. 3, a wide range of

impedance values can be realized. The impedance match can be accomplished by tuning the

fin-line dimensions (L and S) and by tapering the two fins to form a microstrip signal line and

ground plane, respectively. The tapered fins gradually allow a change from the rectangular

waveguide impedance to the microstrip impedance. Hence, the length and shape of the taper

determine reflection and operating bandwidth.

A 3D plot of the E-field relative to the transition mechanism of antipodal fin-line at 0.305

THz is shown in Fig. 4 highlighting the E-field intensity pattern in the three cascaded sections.

The waveguide TE10mode, coupled to the structure as its input, splits at the fin-line taper point

and finally converts into the microstrip line mode.

The simulated and measured reflection-coefficient response of the reference antenna with

noMTM and the proposed antenna with MTM-inspired cross-shaped slots are shown in Fig. 5.

It is evident that with MTM, the impedance match and impedance bandwidth are significantly

improved. The proposed structure is shown to effectively operate over the frequency range

from 0.285 to 0.325 THz for S11 < − 15 dB, which corresponds to a fractional bandwidth of

13.11%.

The simulated and measured radiation gain and efficiency performances of the reference

antenna with no MTM and the proposed antenna with MTM are shown in Fig. 6. It is evident

that the proposed antenna structure with MTM properties exhibits improvement in the

Fig. 4 E-field distribution at 0.305 THz. The TE10 mode entering the transition from left is split, rotated and

finally matched to the microstrip quasi-TEM mode

Fig. 5 Simulated (sim.) and experimental (exp.) reflection-coefficient responses of the reference antenna with no

MTM (WO) and proposed on-chip antennas with MTM (W)
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measured gain by 2.4 dBi and radiation efficiency by 14%, which is achieved with no increase

in the antenna’s physical dimensions. The measured average radiation gain and efficiency of

the proposed on-chip antenna operating between 0.285 THz and 0.325 THz are 6.9 dBi and

53%, respectively. The performance characteristics of the reference and proposed antenna are

(a)

(b)

Fig. 6 Simulated and measured

radiation gain and efficiency over

the operating frequency range of

the proposed on-chip antenna with

and without MTM properties. a

Radiation gain. b Radiation

efficiency

Table 2 Measured radiation gain and efficiency performance of the on-chip antennas with and without MTM-

inspired technology

Reference on-chip antenna without MTM properties

Min. gain & efficiency @ 0.325 THz 3.65 dBi & 33.12%

Max. gain & efficiency @ 0.305 THz 5.33 dBi & 46.43%

Ave. gain & efficiency (0.285 THz–0.325 THz) 4.5 dBi & 39%

Proposed on-chip antenna with MTM properties

Min. gain & efficiency @ 0.285 THz 5.86 dBi & 44.10%

Max. gain & efficiency @ 0.305 THz 8.05 dBi & 62.95%

Ave. gain & efficiency (0.285 THz–0.325 THz) 6.9 dBi & 53%

Improvements after applying MTM properties

Min. gain & efficiency 2.21 dBi & ~11%

Max. gain & efficiency 2.72 dBi & 16.52%

Ave. gain & efficiency 2.4 dBi & 14%
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summarized in Table 2. There is good coherence between the simulation and the measurement

in results presented in Figs. 5 and 6, and the discrepancy can be attributed to several factors,

(a)

(b)

(c)

Fig. 7 Simulated and measured E-plane and H-plane radiation patterns of the proposed metamaterial on-chip

antenna at various spot frequencies in the antenna’s operating frequency range. Solid lines represent co-

polarization, and dotted lines represent cross-polarization. a 0.285 THz. b 0.305 THz. c 0.325 THz

24 Journal of Infrared, Millimeter, and Terahertz Waves (2021) 42:17–28
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namely, imprecise simulation models at terahertz, fabrication tolerances and unwanted signal

reflections from surrounding objects during measurements.

The simulated and measured E-plane and H-plane radiation patterns of the proposed

metamaterial on-chip antenna at spot frequencies of 0.285, 0.305 and 0.325 THz are shown

in Fig. 7. This figure shows that in the E-plane, the 3-dB beamwidth narrows at the mid-band

frequency of 0.305 THz. It also shows the radiation in the E-plane rotates by 90° in the

clockwise direction from 0.285 to 0.305 THz, and again from 0.305 to 0.325 THz. In the H-

plane, the beamwidth narrows significantly in the mid-band frequency of 0.325 THz.

Table 3 compares the characteristics of the proposed on-chip antenna with other techniques.

With the proposed technique a better factional bandwidth can be achieved. The gain and

efficiency of the proposed antenna is comparable to other techniques and in some cases better.

In addition, compared to previously reported on-chip antenna designs, the proposed design is

of a simpler structure and easy to fabricate at low cost, which makes it viable for mass

production.

3 Conclusion

The feasibility of the proposed metamaterial-inspired antenna is demonstrated for on-chip

applications at the lower end of the THz region. The novelty introduced includes (i) the feed

mechanism for effective coupling of electromagnetic energy from the bottom layer to the top

radiation patches; (ii) combining metamaterial-inspired and SIW technologies to improve the

antenna’s performance parameters while preserving its physical dimensions and (iii) using

stacked layers to create a highly compact on-chip antenna structure. The proposed silicon-

based antenna structure provides low integration loss and is relatively simple to design and

fabricate and therefore a promising candidate in the millimetre-wave and terahertz integration

applications.
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