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Abstract: Most of the tasks in wireless sensor networks (WSN) are requested to run in a real-time 
way. Neither EDF nor FIFO can ensure real-time scheduling in WSN. A real-time scheduling strategy 
(RTS) is proposed in this paper. All tasks are divided into two layers and endued diverse priorities. 
RTS utilizes a preemptive way to ensure hard real-time scheduling. The experimental results indicate 
that RTS has a good performance both in communication throughput and over-load. 
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1. Introduction 
 

1.1 Wireless Sensor Networks Operating System and 
TinyOS 

 
So far, a number of operating systems for WSN have 

been developed, such as MantisOS[1,2], SOS[3,4] and 
Contiki[5]. TinyOS[6,7] is an open-source OS that 
developed by UC Berkeley. Its basic feature is the use of 
component-based programming model to achieve a good 
cross-platform capability and efficiency, which is appli-
cable to hardware environment with very limited resources. 
Among these operating systems, the most widely used one is 
TinyOS. It was developed at UC Berkley relying on the 
Smart-dust projects. According to statistics, there are more 
than 500 companies or research institutions that are using 
TinyOS in academic research or commercial development. 
This is because it is open source and it has been suc-
cessfully transplanted to a lot of hardware platforms and is 
more sophisticated in using. Another reason is there is an 
active development group for the TinyOS. 

TinyOS is designed for Wireless Sensor Network, and it 
is a lightweight, low-power embedded operating system. 
The programming language of TinyOS is NesC with mo-
dular design method. The use of modular design makes it 
capable to adapt to the diversity of hardware and makes the 
applications reuse the general software services and 
abstract. TinyOS is a typical Wireless Sensor Network 
Operating System. Its structure, principles and implement-
tation methods is a good reflection of the WSN’s features. 

The following is an introduction of it, and the focus of 
analysis is its scheduling mechanism.  

 
1.2 System Architecture of TinyOS 

 
TinyOS is developed for the embedded System with 

high concurrency and scarce hardware resources. Its 
runtime environment is based on the components and is 
made in NesC language supporting the Wireless Sensor 
Network architecture. 

TinyOS runs on the sensor node “mote” primarily and 
the battery supplies power for the mote whose internal and 
external storage are limited. In order to achieve a higher 
concurrency in using limited memory and processing 
power, TinyOS introduces the mode of combining task 
with event, and have the following characteristics [25,26]; 

(1) The layer-component architecture, the so-called 
layer-component, divides the component into different layers 
according to the components’ correlation level to hardware. 
The bottom layer deals with hardware-related operation, 
the top layer is a user-defined component in application, 
and the mediate layer implements the abstract of hardware. 
In this sense, TinyOS provides an optional Component 
Library in fact.  

(2) TinyOS adopts event-based concurrency model. 
Event is corresponding to the emergency case such as 
external interrupts, and it can preempt tasks (task is the 
process of dealing with backstage computation), or other 
events and take preference to execute. So, from the 
macroscopic view, between task, and event (as well as 
between event and event) are moving forward simulta-
neously that is, achieving the concurrent of task and event 
(or different events). 

(3) TinyOS adopts the running mode based on Finite 
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State Automata. Each resource corresponds to each com-
ponent, which is just the description form of the Finite 
State Automata. Components migration rapidly between 
states by using command and event, and several Finite 
State Automata can share the same runtime environment. 
Another advantage of using Finite automata running mode 
is putting hardware running mode into software running 
mode very naturally. Just as components of hardware 
respond to the state changes of the pins, components in 
TinyOS respond to the commands and events (Event is 
equivalent to input, and the command is equivalent to the 
output). 

(4) In TinyOS there is a widespread use of phased-
operation, which is dividing the longer operation into some 
relatively short ones to avoid busy-waiting. The premise of 
this division is the beginning and end of the operation can 
be separated in time domain. 

The framework of TinyOS is shown in Fig 1, in order to 
providing favorable modular structure that supports the 
diversity in wireless sensor designing and application, the 
system is composed by component-based pattern, and pri-
marily consists of master components (including the sche-
duler), application components, system service components 
and hardware abstraction components.  

Hardware abstraction components implement the abst-
raction of wireless sensor hardware platform, including the 
sensor subsystem, the wireless communication subsystem, 
the input/output devices and the power control system on 
the bottom layer. These abstractions shield details of the 
underlying hardware for the upper layer, and simplify the 
system’s transplantation. System Services components are 
composed of three parts including communication services, 
sensor services and power management. In these three 
parts, the components of communication services support 
data transmission protocol and the control of wireless com-
munication module; the sensor service components support  

 

 

Fig. 1. the framework of TinyOS 

analog-digital conversion and data collection of various 
sensor modules; power management components support 
the power-state control of processor, wireless communi 
cation module, sensor module and other components. Appli-
cation components are defined by user in line with specific 
application, and fulfill specific application-related functions 
and strategies. The control components fulfill the control 
procedure of the whole operation system, and primarily 
carry on the wireless sensor’s initialization and the main-
tenance of system run time status. 

 
1.3 Analysis of the FIFO scheduling strategy in 

TinyOS 
 
TinyOS adopts the two-level concurrent models based 

on the combination of tasks and event-driven[8]. 
 
1.3.1 Task Mechanism of TinyOS 
(1) Tasks are equal and there is no concept of priority 

and no preemption between tasks. All tasks share one 
executing space, which saves the memory overhead in run 
time. 

(2) Tasks are managed by a circular task queue in system, 
and the task scheduling follows FIFO mode. Tasks are 
scheduled by the simple FIFO queue. Resources are 
distributed beforehand, and currently there can only be 
seven waiting tasks in the queue. The task-processing 
model is shown in Fig 2. The size of the task list in the 
figure is eight. There are three tasks in the queue. 

(3) If the task queue is null and there is no events 
occurring, then the processor will enter into SLEEP mode 
automatically, and will be woken up by hardware inter-
ruption event subsequently. This is conducive to saving 
energy of system. 

 

 
Fig. 2. the scheduling srategy of TinyOS 
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Task is defined by user application, and can be created 
by applications or event handlers. A task is created by the 
keyword “Task”, and the specific grammar of definition is: 
task void myTask( ){……}。After creating the task, it will 
be posted to the queue by the TOS_post function. The 
procedure is shown in Fig 3. The task scheduler in the core 
scheduling algorithm returns as soon as it puts the task into 
the task queue, and the task will be carried out. When the 
task queue is vacant, the task can be submitted. The 
submission is only inserting a function pointer into the 
queue. As shown in Fig 4, TOSH_run_next_task( ) 
function takes charge of taking out the task which the 
TOS_sched_full points to from the queue and carrying it 
out. Kernel calls TOSH_run_next_task() function in an 
infinite loop and carries out all the mission functions in 
sequence as long as the queue is not empty. 

 

 
Fig. 3. the function of TOS_post 

 
1.3.2 Event-driven Mechanism of TinyOS 
Events are generated by hardware interruption (MCU 

external interruptions, timer interruptions, etc) directly or 
indirectly. When receiving event, TinyOS will execute the 
event handler corresponding to the event immediately. 
Event can preempt the running task. It is an asynchronous, 
time response fast executive mode.  

In the TinyOS scheduling mechanism, the task  
mechanism is not a real-time one. It makes some more 
important or more real-time tasks not be completed before 
the deadline and leads to packet-loss, overload, decline of 
the throughput etc. So it is applicable to non-preemptive, 
non-time-critical application. Event handler can preempt 
the current running task and this can be applicable to time-
critical application. However, interruption sources that 
generate events are extremely limited, and unable to meet 
the multi-mission and real-time application.  
 

 
Fig. 4. the function of TOSH_run_next_task 

 
1.3.3 Disadvantage of FIFO Scheduling Mechanism in 

TinyOS 
Though TinyOS is widely used and receives consi-

derable recognition, it does not mean that TinyOS can 
apply to all WSN application. Practically, in some situa-
tions, TinyOS does not work very well and may present 
overload, causes the conditions of task-loss, communica-
tion throughput declining and can not guarantee real-time. 
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On the other hand, some of the WSN applications, such 
as forest fire alarm, automatic letter distribution system and 
multimedia WSN need real-time data transmission. To 
transfer data in time, we must schedule tasks in a real-time 
way.  

In WSN, the typical three missions for node are: 
receiving packets waiting to be forwarded, forwarding 
packets it receives, processing local sensing data and 
sending it out. The number of the node’s tasks depends on 
the node data-handling manner. If node just sends the raw 
data to the BS, most of the tasks will be communication 
routing mission; if node sends data to BS after collecting 
local data and processing the data, the local data-pro-
cessing tasks will be more. When the tasks to be processed 
exceed the node’s processing capacity, the overload will 
happen. For the former case, if the frequency of node 
sending data is excessive high, or network density is too 
large resulting in excessive communication tasks, overload 
may occur; for the latter, if the number of local data to be 
processed is excessive large, or the occurring frequency of 
local task is too high, it will also lead to overload. 

In addition, when the interruption occurs on a very high 
frequency, leading to that CPU is too busy in processing 
interruption to execute other tasks, there will also be an 
overload. When the processing speed of system tasks is 
lower than the frequency of tasks occurring, the task queue 
(Currently, only 7 tasks can be stored) will be stuffed up 
soon. It will lead to task losses. As for the local sensor 
acquisition rate, we can artificially control, for instance, 
decreasing the sampling frequency. However, for the 
happening of communication routing tasks, it is not easy to 
interfere artificially. At this time, if the overload occurs, it 
will result in the declining of packet throughput directly. 
Occurrence of this phenomenon is mainly due to that 
packet sending and receiving is restricted to the local tasks. 
When the occurring frequency of local task is too high, the 
task queue will be stuffed up soon, then tasks of trans-
mitting or receiving could be lost, resulting in packet loss. 
Moreover, if the local task’s running time is too long, tasks 
of transmitting or receiving packet have to wait a long time 
for processing, thereby reducing the communication rate. 

Additionally, the following occasions, TinyOS’s sche-
duling strategy may also lead to problems. 

(1) Certain tasks (such as encryption and decryption 
mission in security applications) have very long imple-
menting time. If some real-time missions enter the task 
queue after the task at this time, the real-time will be 
affected. For the receiving and transmitting of packets, the 
baud rate will be affected. 

(2) When the occurring frequency of local task is high, 
the task queue will be stuffed up at a short time, other tasks 

could be lost; besides, if there are many local tasks (such as 
several channels collect data at the same time, then there 
will be many local tasks), this will also affect the normal 
communications. 

(3) When a certain task in the queue is blocked or per-
forms abnormally because of suddenness, it will affect the 
subsequent task’s running, even cause the system go down. 

 
1.4 Analysis on Improved Scheduling Policies in 

WSNOS 
 
As analysis above, the simple queue scheduling policy 

adopted by TinyOS will result in overload, task loss, low 
packet throughput, etc, under certain circumstances. In 
addition, TinyOS merely builds fundamental scheduling 
framework, which only implements soft real time instead 
of hard real time and thus impedes the overall reliability of 
the embedded system. Meanwhile, there remains the need 
to design a multitasking system due to poor throughput and 
CPU utilization caused by the adoption of single task kernel.  

For example, in a multimedia WSN for forest fire 
monitoring, once a smoke and temperature sensing node 
reports alarm, video nodes are waked up. From then on, 
much data needs to be transferred in a hard real time way. 

In order to achieve real-time schedule, priority based 
preemptive scheduling policy is often used. According to 
application requirements many priority-based multitasking 
scheduling algorithms are put forward, one of which may 
be that, for example, each composing phase of the 
communication route should work timely to ensure other 
tasks finish properly. Equipping TinyOS with multitasking 
will enhance response speed. Analysis to several typical 
improvement strategies is shown below.  

Tasks scheduling strategy in WSN will decide whether 
the nodes finish the tasks in time or not. Nodes in WSN not 
only are necessary to sense and transmit data, but also to 
forward data for other nodes.  

Priority-based task scheduling strategy [9], which is 
designed to avoid important task to be lost in system, 
divides tasks into three types: sending data packet, 
transmitting data packet, and sensing local data according 
to the functions of different tasks in network. Therefore, it 
guarantees the more important task to be run in a priority 
way. Thus, throughput of the system is improved. 

This scheduling strategy does not behave well to meet 
the requirement of real-time. Firstly, it may drop the task 
before running because the task has exceeded the deadline; 
secondly, because of non-preemption, the short-time tasks 
may be blocked to wait for the long-time ones and it leads 
to the overload for short-time tasks. 

Philip Levis and Cory Sharp have implemented Earliest 
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Deadline First, EDF [10], which is widely used in real-time 
system. 

Preemptive EDF strategy is the most optimal scheduling 
for single processor scheduling strategy. That is, if 
preemptive EDF can’t schedule a set of tasks in single 
processor, other scheduling strategy can’t either. Substan-
tively, it is a dynamic process. The algorithm allows a 
relatively short task to be a preferential one, which makes 
the system flexible and real-time performance improved. 
However, the overload problem has become drawbacks of 
the algorithm, which limits the utility of the algorithm. 

Rate monotonic scheduling strategy-RM[11,12] is a kind 
of fixed-priority scheduling strategy. Once the priority of 
one task is identified according to its periodicity, it will not 
change with time. A task in smaller periodicity has higher 
priority. The author of [13] has proved the RM to be the 
best. And, RM can schedule tasks set while other fixed-
priority strategies can. 

Fixed-priority strategy is suitable for wireless sensor 
network operating system, because it needs to be scheduled 
one time before running. This fixed-priority will be able to 
ensure the cyclical behavior, and the tasks are scheduled 
only in one queue. RM's flaw is the lack of flexibility due 
to its unchanged in running time. Therefore it is not 
suitable for working during running. 

This paper proposes a real-time scheduling strategy for 
wireless sensor networks to enhance the communication 
throughput and reduce the overload. RTS adopts two-layer 
priority scheduling strategy according to the demand for 
real-time analysis, and solves the real-time task scheduling 
problems in WSN commendably. 

 
 

2. Real-time task scheduling and the two-layer priority 
 
In RTS, tasks are divided into two priorities, static 

priority and dynamic priority. To ensure real-time and 
major network packets in the wireless network transmitted 
reliably. First of all, in accordance with the function of task, 
it adopts the two relatively static level of priority, which 
will not change as the time passes, belonging to the fixed 
priority. Secondly, tasks deadline and run time are the two 
constraints of dynamic priority, which ensures the relia-
bility of real-time task. 

 
2.1 Determine the static priority 

 
In a sensor network, the number of tasks on a node 

depends on the node how to deal with data. If nodes only 
send raw data to the base station directly, most tasks are 
communication routing ones; If nodes sense and process 

data locally and then send them to base station, most tasks 
are the local data-processing ones. When the tasks waiting 
to be processed are more than node’s capacity, overload 
will happen. For the former, overload will happen if the 
frequency of node sending data is too high or the density of 
nodes in the network is too large; for the latter, it also will 
happen if local data waiting to be processed is excessive or 
the frequency of local tasks is too high. 

As shown in table 1, we divide the tasks into network 
communication routing tasks and local data processing 
tasks, and give the tasks two relatively static priorities, 
high and low. Network communication routing tasks is 
prior to local data processing tasks. 

 
Table 1. static priority of tasks 

Task classification Task function 
Static 

priority
Network 
communication 
routing tasks 

Sending, receiving and transferring
network data, or response to 
network command 

high 

Sensing and processing data low 

Complicated procedure in dealing 
with data, for example, coding 

low 

local data  
processing tasks 

Short, cycle system task low 

 
The static priority of tasks is in top-layer priority. Tasks 

in low or high static priority are set by different priorities 
in bottom-layer, as shown in Table 2. 

The tasks with high static priority in their top-layer 
priority have dynamic priority in their bottom-layer priority, 
but the ones with low static priority in their top level 
priority have fixed priority in their bottom-layer priority. 

 
Table 2. two- layer priority of tasks 

Task Top-layer priority Bottom-layer priority

Task1 High static priority Dynamic priority 

Task 2 Low static priority Fixed priority 

 
2.2 Determine the dynamic priority 

 
When new task comes, its attributes such as arriving 

time, running time and relative deadline will be submitted. 
We decide task’s dynamic priority by the attributes 
mentioned above. The determination of dynamic priority is 
shown in Table 3. 
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Table 3. the dynamic priority of tasks 

Task Running time Relative deadline Dynamic priority

Task1 Short Small Highest 

Task2 Long Small Higher 

Task3 Short Large Lower 

Task4 Long Large Lowest 

 
2.3 Determine the fixed priority 

 
We also divide different fixed priority according to 

arriving time, running time and relative deadline. What 
different from dynamic priority is the fixed priority is 
determined by execution periodicity and running time for 
periodic tasks. For non-periodic tasks, the fixed priority is 
determined by relative deadline and running time. Fixed 
priority is determined only when tasks are initialized. 

 
2.4 Schedulability analysis  

 
Tasks in system are triggered by events. Due to arriving 

time of task can not be predicted, the schedulability can 
only be dynamicly detected when task arrives. Assume that 
there is a set of dynamic tasks, T={t1，t2，…，tn }, 
ti=<arrive_timei, run_timei, periodi, Deadlinei, pri_statici, 
interruptedi，SPi>, which are schedulable, independent 
and preemptive and running on processor. They have been 
sorted by two-layer priority strategy. At one moment, a 
new task tnew reaches the system, let’s examine the 
schedulability of the new task set T’=T∪{tnew}. According 
to the definition of schedulability, if the new task set is 
schedulable, every task in the set must finish before its 
deadline, namely, satisfy the condition of finish_timei> 
deadlinei, where deadlinei=arrive_timei+deadlinei. Considering 
the randomness and preemptive, the finishing time ti of a 
task which could change along with arriving of new task is 
a function of time t, fi(t). The new task set is sorted by 
deadline in descending, T'={t1，t2，…，tj，tnew，tj+1， 
…，tn}. When new task arrived, it will not seize the 
execution of which has higher priority, but will affect the 
schedulability of task having lower priority. So, we just 
have to detect the schedulability of tnew and those behind it. 
Given at time r, the remaining time for each task is Ci(t), 
and the task’s completion time is the sum of computing 
time for all tasks having higher priority and its own 
computing time, as shown in formula (1) 

 

 
1

( ) ( )
i

i jf t C t= ∑
 

(1)

 
We can obtain the schedulability detecting theorem for 

dynamic task set: the new task set after new task arriving is 
schedulable, its necessary and sufficient condition is: for 
all tasks ti∈{tnew，tj+1，…，tn}, they have to satisfy 
formula (2) 

 

1

( ) ( ) _
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Considering formula (3), 
 

1( ) ( ) ( )i i if t f t C t−= +  (3)
 
Dynamic testing can be carried out on a rolling basis, 

which has computing complexity: O(n). If we use EDF to 
schedule periodic tasks, the necessary and sufficient con-
dition for schedulability is shown in formula (4). 

 

1

1
n

i

i

runtime
period

≤∑
 

(4)

 
This formula shows that U≈1 for EDF algorithm and the 

utilization ratio of processor is as high as 100%. EDF is the 
optimized dynamic, preemptive priority scheduling algorithm 
for single-processor real-time system, that is, for any real-
time task set, once there is a algorithm for scheduling, EDF 
will be there. It is worth nothing that, EDF will adjust the 
priority only when task instance is ready. Because in other 
moments, task instance sorted by deadline will not change, 
that is to say the arrangement between task’s priority is fixed. 

 
 

3. Scheduling strategy for real-time tasks 
 

3.1 Scheduling while task queue is vacant 
 
If there is more space, new task & task5 will be inserted 

to queue rear. We don’t think about the static priority and 
use fixed priority to guarantee the task with lower static 
priority. This schedule will ease the starving case in local 
data processing. The fixed priority for every task is shown 
in Table 4 and task queue with fixed priority is shown in 
Fig. 5. In the queue, fixed priority is sorted but static priority 
is not. &task2 arrives thirdly, and &task4 is the second. 
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Table 4. two-layer priority of tasks in the queue 

task Static priority Fixed priority 

&task2 1 2 

&task1 1 2 

&task4 0 3 

&task3 1 3 

&task5 0 4 

 

 
Fig. 5. tasks sorted by fixed priority in the queue 

 
3.2 Scheduling when task queue is full 

 
First of all, we need sort the task by static priority 

(steady sorting, in case to upset fixed priority sorting). In 
task queue, the two-layer priority for each task is shown in 
Table 5. The full task queue with sorted two-layer priority 
is shown in Fig. 6. 

Then we judge the static priority and fixed priority of 
current task and rear task separately. If the two-layer 
priority of current task is higher than the rear, exchange 
them. Then, insert the rear task into appropriate location of 
the queue. At last, abandon current task.  

 

 
Fig. 6. tasks sorted by two-layer priority while the queue is full 

Table 5. two-layer priority of tasks in the queue 

tasks Static priority Fixed priority 

&task2 1 2 

&task4 1 2 

&task3 1 2 

&task5 1 5 

&task8 1 4 

&task6 0 3 

&task7 0 6 

&task1 0 7 

 
 

4. Experiment and evaluation 
 
In this paper, the task scheduling strategy simulation is 

examined on TinyOS’s simulation platform --TOSSIM. 
In order to evaluate RTS task scheduling strategy, the 

algorithm is simulated on the following aspects, compared 
with TinyOS’s own task scheduling strategy FIFO and task 
scheduling algorithm EDF proposed by Levis. 

(1) Communication throughput: communication through-
put is the node capacity to send, receive and transmit 
packets. 

(2) Dropping ratio of overtime task: the main study is 
the evaluation of RTS on scheduling performance in the 
events of instantaneous overload.  

(3) Response time: response time is the time span from 
submitting task to completing task. In this paper, the real-
time performance of RTS is evaluated through the average 
response time for different types of task. Then it is 
compared with FIFO and EDF on the average response 
time of the same tasks. 

In this paper, 100 nodes are deployed randomly in the 
250m×250m monitoring area and BS is located at (45, 45).  

 
4.1 Evaluation of communication throughput 

 
The throughput results of sending packets after using 

FIFO, EDF and RTS three task-scheduling strategies are 
shown in Fig. 7. 

It can be concluded that with the implementation time of 
local task increasing, the number of packets sent per 
second declines sharply for FIFO strategy. Finally, only 
one packet per second and at this point most tasks in task 
queue are local data-processing tasks. The performance is 
improved significantly for EDF scheduling algorithm. The  
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Fig. 7. throughput for sending packets under 8Hz local 

task/local task runtime 
 
average number of packets is larger than four, implement-
ting preferentially the sending task whose deadline is 
relatively early in task queue. Compared with EDF sche-
duling strategy, the number of packets sent per second is 
basically steady and is improved obviously, which is at 
least 6. This type of task is implemented before local tasks, 
regardless of whether the tasks of sending packets are prior, 
which makes it sure that the sending throughput is im-
proved efficiently. 
 
4.2 Dropping ratio of overtime task  

 
As shown in Fig. 8, FIFO has bad performance in real-

time aspect, whose rate uncommonly rises along with 
utilization rate of processor. Fortunately, EDF scheduling 
strategy has been improved in real-time aspect, but when 
utilization rate goes up to a certain level, instantaneous 
overload problems will rise and cause the rate to increase 
obviously. Although RTS adopts preemptive EDF to solve  
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Fig. 8. dropping ratio of overtime task 

high static priority tasks, the most dropped tasks caused by 
instantaneous overload are those in lower priority. Tasks in 
lower priority use monotonous task scheduling strategy in 
fixed priority. It can ease instantaneous overload phenol-
menon effectively. Thus, in RTS, task set’s dropping rate 
doesn’t go up obviously though the utilization rate of 
processor rising. Miss rate about overtime task is always 
under 10% during the entire testing process, in other words, 
90% tasks can execute before their deadline. 
 
4.3 Response time 

 
As shown in Fig. 9, four classes of tasks, which use EDF 

scheduling strategy, have a little shorter average response  
time than those who use FIFO. This can’t show that EDF 
has any superiority in responding real-time task. However,  
when using RTS scheduling strategy, sending and 
transferring tasks which have higher static priority will be 
handled firstly, so they can be responded in time; sensing 
data and complicated handling which have lower static 
priority will also run orderly according to fixed priority. 
These two aspects reduce the response time extremely than 
other two scheduling strategies. To sum up, RTS guaran-
tees the system good real-time performance. 
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Fig. 9. the average response time of different tasks 

 
 

5. Conclusion 
 
RTS scheduling strategy proposed in this paper reserves 

the advantage of high utilization ratio of processor in EDF 
scheduling strategy. According to RTS, the task with high 
static priority will be responded and executed prior to other 
task. At the same time, RTS absorbs the high efficiency of 
RM in dealing with instantaneous overload problem. 
Therefore instantaneous overload, which is often happened 
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to low-priority tasks, is solved in RTS.  
Through analysis of the experimental results, RTS 

scheduling strategy has good performance in communi-
cation throughout, dropping ratio of overtime task, and 
response to real-time task. It is valuable in the field of task 
scheduling in wireless sensor network OS. It is an 
exploration for WSN real-time research. 
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