
 Journal of Information Processing Systems, Vol.5, No.3, September 2009 135

Study on Preemptive Real-Time Scheduling Strategy for
Wireless Sensor Networks

ZHAO Zhi-bin* and GAO Fuxiang*

Abstract: Most of the tasks in wireless sensor networks (WSN) are requested to run in a real-time
way. Neither EDF nor FIFO can ensure real-time scheduling in WSN. A real-time scheduling strategy
(RTS) is proposed in this paper. All tasks are divided into two layers and endued diverse priorities.
RTS utilizes a preemptive way to ensure hard real-time scheduling. The experimental results indicate
that RTS has a good performance both in communication throughput and over-load.

Keywords: real-time schedule; wireless sensor networks; two-level priority; TinyOS; dynamic schedule

1. Introduction

1.1 Wireless Sensor Networks Operating System and
TinyOS

So far, a number of operating systems for WSN have

been developed, such as MantisOS[1,2], SOS[3,4] and
Contiki[5]. TinyOS[6,7] is an open-source OS that
developed by UC Berkeley. Its basic feature is the use of
component-based programming model to achieve a good
cross-platform capability and efficiency, which is appli-
cable to hardware environment with very limited resources.
Among these operating systems, the most widely used one is
TinyOS. It was developed at UC Berkley relying on the
Smart-dust projects. According to statistics, there are more
than 500 companies or research institutions that are using
TinyOS in academic research or commercial development.
This is because it is open source and it has been suc-
cessfully transplanted to a lot of hardware platforms and is
more sophisticated in using. Another reason is there is an
active development group for the TinyOS.

TinyOS is designed for Wireless Sensor Network, and it
is a lightweight, low-power embedded operating system.
The programming language of TinyOS is NesC with mo-
dular design method. The use of modular design makes it
capable to adapt to the diversity of hardware and makes the
applications reuse the general software services and
abstract. TinyOS is a typical Wireless Sensor Network
Operating System. Its structure, principles and implement-
tation methods is a good reflection of the WSN’s features.

The following is an introduction of it, and the focus of
analysis is its scheduling mechanism.

1.2 System Architecture of TinyOS

TinyOS is developed for the embedded System with

high concurrency and scarce hardware resources. Its
runtime environment is based on the components and is
made in NesC language supporting the Wireless Sensor
Network architecture.

TinyOS runs on the sensor node “mote” primarily and
the battery supplies power for the mote whose internal and
external storage are limited. In order to achieve a higher
concurrency in using limited memory and processing
power, TinyOS introduces the mode of combining task
with event, and have the following characteristics [25,26];

(1) The layer-component architecture, the so-called
layer-component, divides the component into different layers
according to the components’ correlation level to hardware.
The bottom layer deals with hardware-related operation,
the top layer is a user-defined component in application,
and the mediate layer implements the abstract of hardware.
In this sense, TinyOS provides an optional Component
Library in fact.

(2) TinyOS adopts event-based concurrency model.
Event is corresponding to the emergency case such as
external interrupts, and it can preempt tasks (task is the
process of dealing with backstage computation), or other
events and take preference to execute. So, from the
macroscopic view, between task, and event (as well as
between event and event) are moving forward simulta-
neously that is, achieving the concurrent of task and event
(or different events).

(3) TinyOS adopts the running mode based on Finite

DOI : 10.3745/JIPS.2009.5.3.135

Copyright ⓒ 2009 KIPS (ISSN 1976-913X)

Manuscript received March 10, 2009; revised July 1, 2009;
accepted August 25, 2009.
Corresponding Author: ZHAO Zhibin
* College of Information Science and Engineering, Northeastern University

China ({zhaozhibin,gaofuxiang}@ ise.neu.edu.cn).

136 Study on Preemptive Real-Time Scheduling Strategy for Wireless Sensor Networks

State Automata. Each resource corresponds to each com-
ponent, which is just the description form of the Finite
State Automata. Components migration rapidly between
states by using command and event, and several Finite
State Automata can share the same runtime environment.
Another advantage of using Finite automata running mode
is putting hardware running mode into software running
mode very naturally. Just as components of hardware
respond to the state changes of the pins, components in
TinyOS respond to the commands and events (Event is
equivalent to input, and the command is equivalent to the
output).

(4) In TinyOS there is a widespread use of phased-
operation, which is dividing the longer operation into some
relatively short ones to avoid busy-waiting. The premise of
this division is the beginning and end of the operation can
be separated in time domain.

The framework of TinyOS is shown in Fig 1, in order to
providing favorable modular structure that supports the
diversity in wireless sensor designing and application, the
system is composed by component-based pattern, and pri-
marily consists of master components (including the sche-
duler), application components, system service components
and hardware abstraction components.

Hardware abstraction components implement the abst-
raction of wireless sensor hardware platform, including the
sensor subsystem, the wireless communication subsystem,
the input/output devices and the power control system on
the bottom layer. These abstractions shield details of the
underlying hardware for the upper layer, and simplify the
system’s transplantation. System Services components are
composed of three parts including communication services,
sensor services and power management. In these three
parts, the components of communication services support
data transmission protocol and the control of wireless com-
munication module; the sensor service components support

Fig. 1. the framework of TinyOS

analog-digital conversion and data collection of various
sensor modules; power management components support
the power-state control of processor, wireless communi
cation module, sensor module and other components. Appli-
cation components are defined by user in line with specific
application, and fulfill specific application-related functions
and strategies. The control components fulfill the control
procedure of the whole operation system, and primarily
carry on the wireless sensor’s initialization and the main-
tenance of system run time status.

1.3 Analysis of the FIFO scheduling strategy in

TinyOS

TinyOS adopts the two-level concurrent models based

on the combination of tasks and event-driven[8].

1.3.1 Task Mechanism of TinyOS
(1) Tasks are equal and there is no concept of priority

and no preemption between tasks. All tasks share one
executing space, which saves the memory overhead in run
time.

(2) Tasks are managed by a circular task queue in system,
and the task scheduling follows FIFO mode. Tasks are
scheduled by the simple FIFO queue. Resources are
distributed beforehand, and currently there can only be
seven waiting tasks in the queue. The task-processing
model is shown in Fig 2. The size of the task list in the
figure is eight. There are three tasks in the queue.

(3) If the task queue is null and there is no events
occurring, then the processor will enter into SLEEP mode
automatically, and will be woken up by hardware inter-
ruption event subsequently. This is conducive to saving
energy of system.

Fig. 2. the scheduling srategy of TinyOS

ZHAO Zhibin and GAO Fuxiang 137

Task is defined by user application, and can be created
by applications or event handlers. A task is created by the
keyword “Task”, and the specific grammar of definition is:
task void myTask(){……}。After creating the task, it will
be posted to the queue by the TOS_post function. The
procedure is shown in Fig 3. The task scheduler in the core
scheduling algorithm returns as soon as it puts the task into
the task queue, and the task will be carried out. When the
task queue is vacant, the task can be submitted. The
submission is only inserting a function pointer into the
queue. As shown in Fig 4, TOSH_run_next_task()
function takes charge of taking out the task which the
TOS_sched_full points to from the queue and carrying it
out. Kernel calls TOSH_run_next_task() function in an
infinite loop and carries out all the mission functions in
sequence as long as the queue is not empty.

Fig. 3. the function of TOS_post

1.3.2 Event-driven Mechanism of TinyOS
Events are generated by hardware interruption (MCU

external interruptions, timer interruptions, etc) directly or
indirectly. When receiving event, TinyOS will execute the
event handler corresponding to the event immediately.
Event can preempt the running task. It is an asynchronous,
time response fast executive mode.

In the TinyOS scheduling mechanism, the task
mechanism is not a real-time one. It makes some more
important or more real-time tasks not be completed before
the deadline and leads to packet-loss, overload, decline of
the throughput etc. So it is applicable to non-preemptive,
non-time-critical application. Event handler can preempt
the current running task and this can be applicable to time-
critical application. However, interruption sources that
generate events are extremely limited, and unable to meet
the multi-mission and real-time application.

Fig. 4. the function of TOSH_run_next_task

1.3.3 Disadvantage of FIFO Scheduling Mechanism in

TinyOS
Though TinyOS is widely used and receives consi-

derable recognition, it does not mean that TinyOS can
apply to all WSN application. Practically, in some situa-
tions, TinyOS does not work very well and may present
overload, causes the conditions of task-loss, communica-
tion throughput declining and can not guarantee real-time.

138 Study on Preemptive Real-Time Scheduling Strategy for Wireless Sensor Networks

On the other hand, some of the WSN applications, such
as forest fire alarm, automatic letter distribution system and
multimedia WSN need real-time data transmission. To
transfer data in time, we must schedule tasks in a real-time
way.

In WSN, the typical three missions for node are:
receiving packets waiting to be forwarded, forwarding
packets it receives, processing local sensing data and
sending it out. The number of the node’s tasks depends on
the node data-handling manner. If node just sends the raw
data to the BS, most of the tasks will be communication
routing mission; if node sends data to BS after collecting
local data and processing the data, the local data-pro-
cessing tasks will be more. When the tasks to be processed
exceed the node’s processing capacity, the overload will
happen. For the former case, if the frequency of node
sending data is excessive high, or network density is too
large resulting in excessive communication tasks, overload
may occur; for the latter, if the number of local data to be
processed is excessive large, or the occurring frequency of
local task is too high, it will also lead to overload.

In addition, when the interruption occurs on a very high
frequency, leading to that CPU is too busy in processing
interruption to execute other tasks, there will also be an
overload. When the processing speed of system tasks is
lower than the frequency of tasks occurring, the task queue
(Currently, only 7 tasks can be stored) will be stuffed up
soon. It will lead to task losses. As for the local sensor
acquisition rate, we can artificially control, for instance,
decreasing the sampling frequency. However, for the
happening of communication routing tasks, it is not easy to
interfere artificially. At this time, if the overload occurs, it
will result in the declining of packet throughput directly.
Occurrence of this phenomenon is mainly due to that
packet sending and receiving is restricted to the local tasks.
When the occurring frequency of local task is too high, the
task queue will be stuffed up soon, then tasks of trans-
mitting or receiving could be lost, resulting in packet loss.
Moreover, if the local task’s running time is too long, tasks
of transmitting or receiving packet have to wait a long time
for processing, thereby reducing the communication rate.

Additionally, the following occasions, TinyOS’s sche-
duling strategy may also lead to problems.

(1) Certain tasks (such as encryption and decryption
mission in security applications) have very long imple-
menting time. If some real-time missions enter the task
queue after the task at this time, the real-time will be
affected. For the receiving and transmitting of packets, the
baud rate will be affected.

(2) When the occurring frequency of local task is high,
the task queue will be stuffed up at a short time, other tasks

could be lost; besides, if there are many local tasks (such as
several channels collect data at the same time, then there
will be many local tasks), this will also affect the normal
communications.

(3) When a certain task in the queue is blocked or per-
forms abnormally because of suddenness, it will affect the
subsequent task’s running, even cause the system go down.

1.4 Analysis on Improved Scheduling Policies in

WSNOS

As analysis above, the simple queue scheduling policy

adopted by TinyOS will result in overload, task loss, low
packet throughput, etc, under certain circumstances. In
addition, TinyOS merely builds fundamental scheduling
framework, which only implements soft real time instead
of hard real time and thus impedes the overall reliability of
the embedded system. Meanwhile, there remains the need
to design a multitasking system due to poor throughput and
CPU utilization caused by the adoption of single task kernel.

For example, in a multimedia WSN for forest fire
monitoring, once a smoke and temperature sensing node
reports alarm, video nodes are waked up. From then on,
much data needs to be transferred in a hard real time way.

In order to achieve real-time schedule, priority based
preemptive scheduling policy is often used. According to
application requirements many priority-based multitasking
scheduling algorithms are put forward, one of which may
be that, for example, each composing phase of the
communication route should work timely to ensure other
tasks finish properly. Equipping TinyOS with multitasking
will enhance response speed. Analysis to several typical
improvement strategies is shown below.

Tasks scheduling strategy in WSN will decide whether
the nodes finish the tasks in time or not. Nodes in WSN not
only are necessary to sense and transmit data, but also to
forward data for other nodes.

Priority-based task scheduling strategy [9], which is
designed to avoid important task to be lost in system,
divides tasks into three types: sending data packet,
transmitting data packet, and sensing local data according
to the functions of different tasks in network. Therefore, it
guarantees the more important task to be run in a priority
way. Thus, throughput of the system is improved.

This scheduling strategy does not behave well to meet
the requirement of real-time. Firstly, it may drop the task
before running because the task has exceeded the deadline;
secondly, because of non-preemption, the short-time tasks
may be blocked to wait for the long-time ones and it leads
to the overload for short-time tasks.

Philip Levis and Cory Sharp have implemented Earliest

ZHAO Zhibin and GAO Fuxiang 139

Deadline First, EDF [10], which is widely used in real-time
system.

Preemptive EDF strategy is the most optimal scheduling
for single processor scheduling strategy. That is, if
preemptive EDF can’t schedule a set of tasks in single
processor, other scheduling strategy can’t either. Substan-
tively, it is a dynamic process. The algorithm allows a
relatively short task to be a preferential one, which makes
the system flexible and real-time performance improved.
However, the overload problem has become drawbacks of
the algorithm, which limits the utility of the algorithm.

Rate monotonic scheduling strategy-RM[11,12] is a kind
of fixed-priority scheduling strategy. Once the priority of
one task is identified according to its periodicity, it will not
change with time. A task in smaller periodicity has higher
priority. The author of [13] has proved the RM to be the
best. And, RM can schedule tasks set while other fixed-
priority strategies can.

Fixed-priority strategy is suitable for wireless sensor
network operating system, because it needs to be scheduled
one time before running. This fixed-priority will be able to
ensure the cyclical behavior, and the tasks are scheduled
only in one queue. RM's flaw is the lack of flexibility due
to its unchanged in running time. Therefore it is not
suitable for working during running.

This paper proposes a real-time scheduling strategy for
wireless sensor networks to enhance the communication
throughput and reduce the overload. RTS adopts two-layer
priority scheduling strategy according to the demand for
real-time analysis, and solves the real-time task scheduling
problems in WSN commendably.

2. Real-time task scheduling and the two-layer priority

In RTS, tasks are divided into two priorities, static

priority and dynamic priority. To ensure real-time and
major network packets in the wireless network transmitted
reliably. First of all, in accordance with the function of task,
it adopts the two relatively static level of priority, which
will not change as the time passes, belonging to the fixed
priority. Secondly, tasks deadline and run time are the two
constraints of dynamic priority, which ensures the relia-
bility of real-time task.

2.1 Determine the static priority

In a sensor network, the number of tasks on a node

depends on the node how to deal with data. If nodes only
send raw data to the base station directly, most tasks are
communication routing ones; If nodes sense and process

data locally and then send them to base station, most tasks
are the local data-processing ones. When the tasks waiting
to be processed are more than node’s capacity, overload
will happen. For the former, overload will happen if the
frequency of node sending data is too high or the density of
nodes in the network is too large; for the latter, it also will
happen if local data waiting to be processed is excessive or
the frequency of local tasks is too high.

As shown in table 1, we divide the tasks into network
communication routing tasks and local data processing
tasks, and give the tasks two relatively static priorities,
high and low. Network communication routing tasks is
prior to local data processing tasks.

Table 1. static priority of tasks

Task classification Task function
Static

priority
Network
communication
routing tasks

Sending, receiving and transferring
network data, or response to
network command

high

Sensing and processing data low

Complicated procedure in dealing
with data, for example, coding

low

local data
processing tasks

Short, cycle system task low

The static priority of tasks is in top-layer priority. Tasks

in low or high static priority are set by different priorities
in bottom-layer, as shown in Table 2.

The tasks with high static priority in their top-layer
priority have dynamic priority in their bottom-layer priority,
but the ones with low static priority in their top level
priority have fixed priority in their bottom-layer priority.

Table 2. two- layer priority of tasks

Task Top-layer priority Bottom-layer priority

Task1 High static priority Dynamic priority

Task 2 Low static priority Fixed priority

2.2 Determine the dynamic priority

When new task comes, its attributes such as arriving

time, running time and relative deadline will be submitted.
We decide task’s dynamic priority by the attributes
mentioned above. The determination of dynamic priority is
shown in Table 3.

140 Study on Preemptive Real-Time Scheduling Strategy for Wireless Sensor Networks

Table 3. the dynamic priority of tasks

Task Running time Relative deadline Dynamic priority

Task1 Short Small Highest

Task2 Long Small Higher

Task3 Short Large Lower

Task4 Long Large Lowest

2.3 Determine the fixed priority

We also divide different fixed priority according to

arriving time, running time and relative deadline. What
different from dynamic priority is the fixed priority is
determined by execution periodicity and running time for
periodic tasks. For non-periodic tasks, the fixed priority is
determined by relative deadline and running time. Fixed
priority is determined only when tasks are initialized.

2.4 Schedulability analysis

Tasks in system are triggered by events. Due to arriving

time of task can not be predicted, the schedulability can
only be dynamicly detected when task arrives. Assume that
there is a set of dynamic tasks, T={t1，t2，…，tn },
ti=<arrive_timei, run_timei, periodi, Deadlinei, pri_statici,
interruptedi，SPi>, which are schedulable, independent
and preemptive and running on processor. They have been
sorted by two-layer priority strategy. At one moment, a
new task tnew reaches the system, let’s examine the
schedulability of the new task set T’=T∪{tnew}. According
to the definition of schedulability, if the new task set is
schedulable, every task in the set must finish before its
deadline, namely, satisfy the condition of finish_timei>
deadlinei, where deadlinei=arrive_timei+deadlinei. Considering
the randomness and preemptive, the finishing time ti of a
task which could change along with arriving of new task is
a function of time t, fi(t). The new task set is sorted by
deadline in descending, T'={t1，t2，…，tj，tnew，tj+1，
…，tn}. When new task arrived, it will not seize the
execution of which has higher priority, but will affect the
schedulability of task having lower priority. So, we just
have to detect the schedulability of tnew and those behind it.
Given at time r, the remaining time for each task is Ci(t),
and the task’s completion time is the sum of computing
time for all tasks having higher priority and its own
computing time, as shown in formula (1)

1

() ()
i

i jf t C t= ∑

(1)

We can obtain the schedulability detecting theorem for

dynamic task set: the new task set after new task arriving is
schedulable, its necessary and sufficient condition is: for
all tasks ti∈{tnew，tj+1，…，tn}, they have to satisfy
formula (2)

1

() () _
i

i j i if t C t arrive time deadline= < +∑

(2)

Considering formula (3),

1() () ()i i if t f t C t−= + (3)

Dynamic testing can be carried out on a rolling basis,

which has computing complexity: O(n). If we use EDF to
schedule periodic tasks, the necessary and sufficient con-
dition for schedulability is shown in formula (4).

1

1
n

i

i

runtime
period

≤∑

(4)

This formula shows that U≈1 for EDF algorithm and the

utilization ratio of processor is as high as 100%. EDF is the
optimized dynamic, preemptive priority scheduling algorithm
for single-processor real-time system, that is, for any real-
time task set, once there is a algorithm for scheduling, EDF
will be there. It is worth nothing that, EDF will adjust the
priority only when task instance is ready. Because in other
moments, task instance sorted by deadline will not change,
that is to say the arrangement between task’s priority is fixed.

3. Scheduling strategy for real-time tasks

3.1 Scheduling while task queue is vacant

If there is more space, new task & task5 will be inserted

to queue rear. We don’t think about the static priority and
use fixed priority to guarantee the task with lower static
priority. This schedule will ease the starving case in local
data processing. The fixed priority for every task is shown
in Table 4 and task queue with fixed priority is shown in
Fig. 5. In the queue, fixed priority is sorted but static priority
is not. &task2 arrives thirdly, and &task4 is the second.

ZHAO Zhibin and GAO Fuxiang 141

Table 4. two-layer priority of tasks in the queue

task Static priority Fixed priority

&task2 1 2

&task1 1 2

&task4 0 3

&task3 1 3

&task5 0 4

Fig. 5. tasks sorted by fixed priority in the queue

3.2 Scheduling when task queue is full

First of all, we need sort the task by static priority

(steady sorting, in case to upset fixed priority sorting). In
task queue, the two-layer priority for each task is shown in
Table 5. The full task queue with sorted two-layer priority
is shown in Fig. 6.

Then we judge the static priority and fixed priority of
current task and rear task separately. If the two-layer
priority of current task is higher than the rear, exchange
them. Then, insert the rear task into appropriate location of
the queue. At last, abandon current task.

Fig. 6. tasks sorted by two-layer priority while the queue is full

Table 5. two-layer priority of tasks in the queue

tasks Static priority Fixed priority

&task2 1 2

&task4 1 2

&task3 1 2

&task5 1 5

&task8 1 4

&task6 0 3

&task7 0 6

&task1 0 7

4. Experiment and evaluation

In this paper, the task scheduling strategy simulation is

examined on TinyOS’s simulation platform --TOSSIM.
In order to evaluate RTS task scheduling strategy, the

algorithm is simulated on the following aspects, compared
with TinyOS’s own task scheduling strategy FIFO and task
scheduling algorithm EDF proposed by Levis.

(1) Communication throughput: communication through-
put is the node capacity to send, receive and transmit
packets.

(2) Dropping ratio of overtime task: the main study is
the evaluation of RTS on scheduling performance in the
events of instantaneous overload.

(3) Response time: response time is the time span from
submitting task to completing task. In this paper, the real-
time performance of RTS is evaluated through the average
response time for different types of task. Then it is
compared with FIFO and EDF on the average response
time of the same tasks.

In this paper, 100 nodes are deployed randomly in the
250m×250m monitoring area and BS is located at (45, 45).

4.1 Evaluation of communication throughput

The throughput results of sending packets after using

FIFO, EDF and RTS three task-scheduling strategies are
shown in Fig. 7.

It can be concluded that with the implementation time of
local task increasing, the number of packets sent per
second declines sharply for FIFO strategy. Finally, only
one packet per second and at this point most tasks in task
queue are local data-processing tasks. The performance is
improved significantly for EDF scheduling algorithm. The

142 Study on Preemptive Real-Time Scheduling Strategy for Wireless Sensor Networks

throughput for packets

0

1

2

3

4

5

6

7

8

0 5 10 15 20 25 30 35 40
task running time (ms)

n
u
m
b
e
r

o
f

d
a
t
a

p
a
c
k
e
t
s

/
s FIFO EDF RTS

Fig. 7. throughput for sending packets under 8Hz local

task/local task runtime

average number of packets is larger than four, implement-
ting preferentially the sending task whose deadline is
relatively early in task queue. Compared with EDF sche-
duling strategy, the number of packets sent per second is
basically steady and is improved obviously, which is at
least 6. This type of task is implemented before local tasks,
regardless of whether the tasks of sending packets are prior,
which makes it sure that the sending throughput is im-
proved efficiently.

4.2 Dropping ratio of overtime task

As shown in Fig. 8, FIFO has bad performance in real-

time aspect, whose rate uncommonly rises along with
utilization rate of processor. Fortunately, EDF scheduling
strategy has been improved in real-time aspect, but when
utilization rate goes up to a certain level, instantaneous
overload problems will rise and cause the rate to increase
obviously. Although RTS adopts preemptive EDF to solve

 dropping ratio of overtime task

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

utilization rate of processor

d
r
o
p
p
i
n
g

r
a
t
i
o

o
f

o
v
e
r
t
i
m
e

t
a
s
k
(
%
)

FIFO

EDF

RTS

Fig. 8. dropping ratio of overtime task

high static priority tasks, the most dropped tasks caused by
instantaneous overload are those in lower priority. Tasks in
lower priority use monotonous task scheduling strategy in
fixed priority. It can ease instantaneous overload phenol-
menon effectively. Thus, in RTS, task set’s dropping rate
doesn’t go up obviously though the utilization rate of
processor rising. Miss rate about overtime task is always
under 10% during the entire testing process, in other words,
90% tasks can execute before their deadline.

4.3 Response time

As shown in Fig. 9, four classes of tasks, which use EDF

scheduling strategy, have a little shorter average response
time than those who use FIFO. This can’t show that EDF
has any superiority in responding real-time task. However,
when using RTS scheduling strategy, sending and
transferring tasks which have higher static priority will be
handled firstly, so they can be responded in time; sensing
data and complicated handling which have lower static
priority will also run orderly according to fixed priority.
These two aspects reduce the response time extremely than
other two scheduling strategies. To sum up, RTS guaran-
tees the system good real-time performance.

0

50

100

150

200

 sending task transfrring task data sensing complicated handling

a
v
e
ra

g
e

re

p
o
n
s
e

t
i
m
e
（

m
s
）

RTS EDF FIFO

Fig. 9. the average response time of different tasks

5. Conclusion

RTS scheduling strategy proposed in this paper reserves

the advantage of high utilization ratio of processor in EDF
scheduling strategy. According to RTS, the task with high
static priority will be responded and executed prior to other
task. At the same time, RTS absorbs the high efficiency of
RM in dealing with instantaneous overload problem.
Therefore instantaneous overload, which is often happened

ZHAO Zhibin and GAO Fuxiang 143

to low-priority tasks, is solved in RTS.
Through analysis of the experimental results, RTS

scheduling strategy has good performance in communi-
cation throughout, dropping ratio of overtime task, and
response to real-time task. It is valuable in the field of task
scheduling in wireless sensor network OS. It is an
exploration for WSN real-time research.

Acknowledgement

This work is supported in part by the National Basic

Research Program of China (973 Program) under grant No.
2006CB303000, the National Nature Science Fund of
China under grant No. 60873199.

References

[1] MantisOS [EB/OL]. http://mantis.cs.colorado.edu. 2007
-6-1.

[2] S. Bhatti, J. Carlson, H.Dai, et al. MANTIS OS: an
embedded multithreaded operating system for
wireless micro sensor platforms[J], Mobile Networks
and Applications, 2005, 10(4): 563-579.

[3] SOS[EB/OL]. http://nesl.ee.ucla.edu/projects/sos/. 2007
-6-1.

[4] Han C, Kumar R, Shea R, et al. A dynamic operating
system for sensor networks[A], Proceedings of the
3ed International Conference on Mobile Systems,
Applications and Servives[C], 2005: 163-176.

[5] A. Dunkels, B Gronvall, T Voigt. Contiki--a light-
weight and flexible operating system for tiny net-
worked sensor[A], Proceedings of The 29th Annual
IEEE International Conference on Local Computer
Networks[C], 2004: 455-462.

[6] TinyOS[EB/OL], http:// www.tinyos.net, 2007-6-1.
[7] Farshchi S, Nuyujukian P, Pesterev A, et al. A

tinyOS-based wireless neural sensing, archiving, and
hosting system[A], Proceedings of 2nd international
IEEE/ EMBS conference on neural engineering [C],
2005, 671-674.

[8] Hill J, Szewczyk R, Woo A, et al. System architecture
directions for networked sensors[J], Operating Sys-
tems Review, 2000, 34(5): 93-104.

[9] Venkita Subramonian, Huang-Ming Huang, Seema
Datar, et al. Priority scheduling in TinyOS – A case
study[R], Technical Report WUCSE, Washington
University in St. Louis, 2002, Dec.

[10] Kargahi Mehdi, Movaghar Ali. A method for per-

formance analysis of earliest-deadline-first scheduling
policy[J], Journal of Supercomputing, 2006, 37(2),
197-222.

[11] Naghibzadeh, M. A modified version of rate-
monotonic scheduling algorithm and its' efficiency
assessment[A], Proceedings of the Seventh IEEE
International Workshop on Object-Oriented Real-
Time Dependable Systems[C], 2002, 289-294.

[12] Lopez J, Garcia M, Diaz J, et al. Utilization bounds
for multiprocessor rate-monotonic scheduling[J] ,
Real-Time Systems, 2003, 24(1): 5-28.

[13] Baruah S K, Haritsa J R. Scheduling for Overload in
Realtime Systems[J], IEEE Transactions on Com-
puters, 1997, 46(9): 1014-1018.

[14] Silva de Oliveira, da Silva Fraga, J. Fixed priority
scheduling of tasks with arbitrary precedence
constraints in distributed hard real-time systems[J],
Journal of Systems Architecture, 46(11), Sept. 2000,
991-1004.

[15] Philip Levis, Nelson Lee, Matt Welsh, et al. TOSSIM:
Accurate and Scalable Simulation of Entire TinyOS
Applications[A], Proceedings of the first international
conference on embedded networked sensor systems
[C], 2003, 126-137.

144 Study on Preemptive Real-Time Scheduling Strategy for Wireless Sensor Networks

ZHAO Zhi-Bin
He was born in 1975. He received a
Ph.D. degree in Computer Software
and Theory from Northeastern Univ. in
2007. He has been a senior lecturer at
Institute of Computer Software and
Theory, Northeastern
Univ. since 2006. He is a CCF member.

His current research areas are distributed database and
wireless sensor network.

GAO Fuxiang
He was born in 1961. He received a
Ph.D. degree in Computer Application
from Northeastern Univ. in 2006. He
has been a professor at Northeastern
Univ. since 1996. His research interests
are in the area of embedded Internet,
Internet security, multimedia Internet.

