
1 INTRODUCTION

Currently, Android system is facing a very serious
threat of malicious software (Hu Y B et al, 2014).
This part of the malicious application is the attacker
with a bad purpose and specialized production, trick
users to be taken after the malicious operations. And
part is normally used by attackers secondary packag-
ing, namely in the application of the normal inser-
tion of malicious code, then re-compile and package,
upload to the app store, by the original normal appli-
cation directory to the user to cheat to entice users to
the fooled.

In addition, except for the two package, the appli-
cation may also be anti-compiler. The attacker can
steal the core code of the application by anti compil-
er, and obtain the core technology of the software
author (Li Y P et al, 2015). Then it makes the au-
thor's intellectual property rights be infringed upon
by selling the core technology or the copy of the ap-
plication.

Besides, for some paid applications, the attacker,
after the anti compiler application, can also break

the framework of the payment. This enables the us-
ers to bypass the paid links and direct access to what
it wants. As a result, the author suffer economic
losses.

Moreover, some applications will generate users'
privacy data, such as chatting applications, e-mail
applications and so on. The main purpose is to steal
the users' privacy data (Feng X et al, 2015). Alt-
hough Android security mechanism can be very
good to prevent malicious programs to hack into
other applications, once the malicious application
cheat root privileges, then the data is completely ex-
posed in front of malicious applications (Liu W et al,
2014). So we should find out ways to enhance the
security of the software to ensure the rights of the
software author and the security of the users.

2 STRENGTHENING SCHEME DESIGN

In order to deal with these threats, this paper puts
forward the application of reinforcement. The flow
chart is shown in Figure 1.

Study on Reinforcement Technology of Application in Android Terminal

Chao Zhou, Haitao Jiang, Jing Guo, Wei Huang & Jinming Chen
State Grid Jiangsu Electric Power Research Institute, Nanjing 210000, China

ABSTRACT: Android system is the most widely used smart phone operating system at present. As the An-

droid system is a Linux based open source operating system, so anyone can operate it on the smart terminal,

which brings serious security problems. A security reinforcement scheme for mobile applications based on

the Android platform is proposed. Demonstration and implementation of this program is conducted. Rein-

forcement algorithm proposed mainly uses the encryption, dynamic loading, code confusion, JNI program-

ming, integrity verification and database encryption technology, which from various angles, protects the in-

terests of application developers and users.

KEYWORD: android; mobile terminal security; application reinforcement

4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016)

© 2016. The authors - Published by Atlantis Press 208

Fig. 1 The overall flow chart of strengthening scheme

Fig. 2 Running load flow

The reinforcement scheme proposed in this paper

is mainly divided into the following aspects:
a. The procedure is divided into four modules,

namely: class.dex, class.dex.jar, function.so and de-
crytApp.so. Class.dex is puppet DEX file, and it is
mainly responsible for the integrity of the program
verification, class.dex.jar decryption and dynamic
loading. Class.dex.jar is a real DEX file, which is
used to achieve the main functions of the program

(Nie J H et al, 2011). Function.so is a dynamic link
library, which provides the underlying core logic
functions for the program. DecrytApp.so is used for
class.dex.jar decryption.

b. Code confusion for java files, resistance to re-
verse engineering.

c. Encryption and dynamic load class.dex.jar file.
When the program is running, load the puppet
class.dex file, decrypt the class.dex.jar file, and then

209

use the dynamic load method to load the DEX file.
d. Use JNI to prepare the decryption library de-

crytApp.so and the underlying core logic func-
tion.so.

e. Join the integrity check-in after partial class.dex
file function. When the program is running, first run
the integrity check code to check whether the pro-
gram has been tampered with or be packaged two
times. If you find the wrong check results, it will be
directly out of running.

Figure 2 describes the process of loading the An-
droid application through the consolidation process.

From Figure 2 we can see, load class.dex at first,
run the integrity of the verification code. If the pro-
gram is found to be tampered, then the program run-
ning stops. If the correct call decrytApp.so to de-
crypt the class.dex.jar, the DEX file is decryption.
Using dynamic loading mechanism to load a DEX
file in the Dalvik virtual machine, to achieve the
main function of the program, and call function.so
function library to realize the program's underlying
core functions, thus completing the program opera-
tion.

3 FEASIBILITY ANALYSIS OF
STRENGTHENING SCHEME

Application of reinforcement scheme requires de-
velopers to obey certain rules of application devel-
opment. It will cause some changes to the original
development of the developers, of which the main
influence is JNI programming technology and dy-
namic loading technology (Song J et al, 2016). In
the application of the reinforcement scheme, the ap-
plication of the core algorithm and complex logic
using C/C++ language, and then use the NDK An-
droid development tools compiled into a dynamic
link library, and finally the upper level code calls
through the JNI technology. Because the C/C++
program is compiled to generate a binary file and it
is very difficult to reverse, so in order to get a higher
security we can make the core algorithm written in
C/C++ language (Enck W et al, 2011). Theoretically
speaking, for Google company's official launch of
the JNI+NDK development technology, the feasibil-
ity of the reinforcement scheme in this regard can be
guaranteed.

The dynamic loading technology is used in the
encryption technology. Because there are some limi-
tations of JNI+NDK Technology, the vast majority
of an application is developed by using the Java lan-
guage. Only the core algorithm and time consuming
logic will be used in JNI+NDK technology devel-
opment (Yuan F et al, 2013). In order to prevent this
part of the core code from being reverse, core
strengthening program is coded into class.dex.jar
encrypted file, and the runtime is first decrypted.
And then use dynamic loading technique in the load-

ing code. Dynamic loading process is used in Java's
reflection, and it is not confused with the core code.

In order to verify the feasibility of strengthening
scheme, the paper tests two small Android applica-
tion. After running several tests, it is found that An-
droid applications use the normal execution after re-
inforcement program.

4 EFFECT OF REINFORCEMENT SCHEME ON
APPLICATION PERFORMANCE

As the application of the reinforcement scheme uses
a number of additional safety techniques, it is neces-
sary to test the performance of the reinforcement
scheme in the application of operational efficiency.
The test is mainly carried out from three aspects,
namely: the influence of the strengthening scheme
on the application starting time, the influence of the
strengthening scheme on the application execution
time, and the effect of the reinforcement scheme on
the application file size.

4.1 The influence of the strengthening scheme on
the application starting time

The starting time of the application before and after
reinforcement is shown in Figure 3.

0

100

200

300

400

500

600

S
ta

rt
-u

p
 t
im

e
/m

s

 Before reinforcement

 After reinforcement

text1 text2 text3 text4 text5

Fig. 3 Comparison of starting time before and after reinforce-
ment

The application of the reinforcement scheme will be
carried out at the start of the integrity check and de-
crypt the class.dex.jar file, so the application will re-
duce the efficiency of the start.

4.2 The influence of the strengthening scheme on
the application execution time

The application execution time before and after rein-
forcement is shown in Figure 4.

210

0.0

0.5

1.0

1.5

e
x
e

c
u

ti
o

n
 t
im

e
/s

 Before reinforcement

 After reinforcement

text1 text2 text3 text4 text5

Fig. 4 Comparison of application execution time before and af-
ter reinforcement

The implementation of specific features of the re-

inforcement program requires the JNI to call the un-
derlying dynamic link library, and therefore will in-
crease the cost of this part of the time. Figure 4
shows that the execution time of the application will
increase significantly after reinforcement.

4.3 The effect of the reinforcement scheme on the
application file size

The file size of the application before and after rein-
forcement is shown in Figure 5.

0

20

40

60

fi
le

 s
iz

e
/K

B

 Before reinforcement

 After reinforcement

text1 text2 text3 text4 text5

Fig. 5 Comparison of file size before and after reinforcement

The reinforcement scheme will generate the dy-

namic link library file and the encrypted
class.dex.jar file, so the volume will become large
compared with the original application. Figure 5
shows that, after reinforcement, volume is increased
by an average of 50% or so, but it is just a simple

test application, a relatively small volume. So in
fact, the normal application volume increased by is
not very obvious.

5 CONCLUSION

From the test results, the use of the reinforcement
scheme and the application of the volume, starting
time and the execution time are increased, which
shows that the reinforcement scheme will have a
certain impact on the efficiency of the application.
However, in the test, a simple Android program is
taken as an example, there is no too much func-
tion, and therefore it cannot be a complete assess-
ment of the impact on the operational efficiency of
the reinforcement scheme applied in the actual envi-
ronment. In addition, taking the actual environment
into account, application volume itself will be rela-
tively large, and the function is more complex. Its
starting time and the execution time will be longer
than that in the test data. Thus, it is necessary to
strengthen the proposal to create the effect of actual
data. Therefore, from the comprehensive point of
view, the effect of the reinforcement scheme is still
in the acceptable range.

REFERENCES

Enck W, Octeau D, Mcdaniel P, et al. A study of android ap-

plication security[C]// Usenix Conference on Security.

USENIX Association, 2011:1175-1175.

Feng X, Lin J, Jia S. The Research on Security Reinforcement

of Android Applications[C]// 2015 4th International Confer-

ence on Mechatronics, Materials, Chemistry and Computer

Engineering. Atlantis Press, 2015.

Hu Y B, Wang C X, Yuan Jie. Design and Realization of a

Mobile Application System for Electric Distribution Net-

work Rush Repair[J]. Jiangsu Electrical Engineering, 2014,

33(3):49-51.

Liu W, Wang S, Zhou Y, et al. An android intelligent mobile

terminal application: Field data survey system for forest

fires[J]. Natural Hazards, 2014, 73(3):1483-1497.

Li Y P, Ji C Y Fan G X. Designing of Mobile Marketing Sys-

tem Based on the Internet of Things Technique[J]. Jiangsu

Electrical Engineering, 2015, 34(5):80-84.

Nie J H, Zhou X H, Yan-Wei Y U, et al. Android Security Re-

inforcement Technology[J]. Computer Systems & Applica-

tions, 2011.

Song J, Zhang M, Han C, et al. Towards fast repackaging and

dynamic authority management on Android[J]. Wuhan Uni-

versity Journal of Natural Sciences, 2016, 21(1):1-9.

Yuan F, Xiao L, Ltd D. Modeling of Android Application Se-

curity Testing[J]. Netinfo Security, 2013.

211

