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Abstract The ultra-low resolution underwater terrain

maps of the Arctic region reduce the localization and

navigation accuracy of the underwater vehicle relying on

terrain-aided navigation. In this paper, we study the navi-

gation ability of Autonomous Underwater Vehicles

(AUVs) under the ultralow-resolution terrain map. Firstly,

the low-resolution map is transformed into a continuous

map by bilinear interpolation. Then, a Terrain-Aided

Navigation (TAN) system based on the Particle Filter (PF)

is constructed to estimate the state of AUV position by

particles. Particles of a random distribution of fixed vari-

ance can effectively track targets. However, a fixed vari-

ance distribution is not well adapted to many different

situations. To improve navigation accuracy and robustness,

fuzzy logic is used to estimate the distribution variance of

particles under the current terrain gradient dynamically.

The simulation results show that our proposed Fuzzy-PF

TAN system is robust under various current disturbance

situations. The position error of our system is within a map

resolution unit of 500 m.

Keywords Terrain-aided navigation � Particle filter �
Fuzzy logic � The arctic

1 Introduction

The Arctic region is rich in underwater minerals, diverse

organisms, and shipping resources with great development

potential. The collection and analysis of underwater

information is conducive to the development of Arctic

resources. AUV has been widely used in the detection and

collection of underwater information. Localization and

navigation ability is important to the working efficiency

and recovery success rate of AUV. At present, the common

localization and navigation methods of AUV are a com-

bined GPS/INS localization and acoustic method [1].

However, the Arctic is covered with ice and snow all year-

around, which makes GPS unavailable. Using the inertial

sensor alone will cause the error accumulation without

boundary, and the magnetic field in the polar region

changes strongly, which will affect the accuracy of the

electronic compass and further increase the accumulated

error [2].

In the environment with ice, using natural environment

information on navigation will reduce the bad impact on

polar harsh environment. There are some research results

of the navigation of gravity [3], current [4], magnetic [5],

and terrain navigation [6]. The gravity sensor normally has

a large scale and is not suitable for underwater applica-

tions. The accuracy of current navigation and magnetic

field navigation is low. Terrain-aided navigation only uses

the range sensor to obtain the altitude data, which can

achieve a better localization accuracy. It has been widely

used in aircraft [7, 8], space landers, and underwater

vehicles [9] because it does not need the aid of external

sensors. TAN is suitable for AUV to navigate underwater

for a long time.

TAN uses collected terrain data to compare with the

prior map and to determine the current position through
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calculation. In TAN, Kalman Filter (KF) [10], Point Mass

Filter (PMF) [11], and PF [2] are widely studied. Kalman

Filter is mainly used to deal with the linear system and the

observed variance conforms to the Gaussian distribution. It

has the advantage of fast computing. Extended Kalman

Filter (EKF) and Unscented Kalman Filter (UKF) algo-

rithm uses the pseudo-linear mechanism to solve the non-

linear system, but it is still required that the observations

conform to the Gaussian distribution. Point Mass Filter can

solve the non-linear non-Gaussian problem by using the

mesh to approximate the posterior non-Gaussian distribu-

tion. In [11, 13], TAN is constructed based on PMF, and

good results are obtained. However, the calculation of

every divided cell in the posterior distribution will con-

sume large energy, and there is no effective mechanism to

inhibit divergence. Different from PMF, PF uses the par-

ticles of random distribution to approximate the posterior

distribution. It does not need to mesh with the whole

posterior region. PF has advantages in calculating energy

consumption, and the classical PF has a resampling

mechanism to suppress divergence. Recently, there are

many successful research works of using PF-TAN system

in underwater vehicles. Papers [2, 14, 15] report the prac-

tical application of PF-TAN, which shows that the PF can

achieve high precision under the 10 m and 50 m resolution

maps. By some methods, PF can achieve good robustness

[16]. However, the newly published terrain map resolution

in the Arctic region is only 500 m [17]. The low-resolution

map will increase the uncertainty of observation.

In particle filter, the search range of particles is

determined by the process noise or variance, and the

search range of particles affects the accuracy of naviga-

tion and positioning. If the scope of particle search is

large, the accuracy of localization becomes poor. If the

scope of particle search is small, it is easy to fall into

local optimum under the condition of ultralow-resolution

map, and losing the tracking ability. In practice, the

seafloor terrain has both rough areas with rich terrain

features and flat areas with weak features, and in the

rough areas, a smaller search area should be set to

achieve high-precision localization, while in the flat areas,

a larger search area should be set to avoid falling into a

local optimum position.

In addition, AUVs often have limited spatial move-

ment direction and are usually under actuated, making

the motion control and path tracking more difficult

[18, 19]. If the AUV falls into the wrong localization and

cannot adjust and jump out in time, it will lead to a

major failure [20]. Therefore, it is necessary to improve

the localization and navigation accuracy and reduce the

probability of AUV entering into the wrong localization

area.

Fuzzy logic simulates human operation experience. It

sets suitable parameters according to different situations to

achieve better control results. Fuzzy logic has been widely

used solve the parameter optimization problem of the

particle filter algorithm. In [21], fuzzy logic is used to

dynamically adjust the process noise and particle numbers,

effectively filters out the disturbance in different environ-

ments, and improves the accuracy of target recognition. In

[22], fuzzy logic is used to infer the posterior probability

distribution function of Bayesian filtering, improving the

sampling accuracy. In this study, the dynamic adjustment

method of process noise of particle filter based on fuzzy

logic is proposed.

2 Terrain-Aided Navigation

The essence of TAN is to fuse the dead reckon results and

observation estimation. The motion model, observation,

and map all affect the fusion results. In PF, process noise

determines the range of random particle distribution and

indirectly affects the convergence and accuracy of filter.

Map accuracy and observation noise affect the distribution

of particle weight.

2.1 Motion Model

This paper focuses on studying of localization ability of

AUV in a horizontal plane, and a simplified 3-Dof motion

model is constructed. Define ½v;w� as the translational

velocity and angular rate of AUV with respective to the

body coordinate system, ½x; y; h� as the pose of AUV in the

global coordinate system, and h is heading angle.

AUV motion model schematic is shown in Fig. 1. When

there is an angular rate, the AUV rotates around the point O

by a radius v=wj j, which is defined as a positive counter-

clockwise rotation. The motion model is shown in Eq. (1).

The model is convenient for noise analysis.

Fig. 1 AUV motion model
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2.2 Process Noise

The motion of AUV is mainly affected by two factors: one

is the disturbance of its velocity and angular rate; the other

is the disturbance of external environment such as sea

current. Therefore, the process noise is divided into body

noise and environmental disturbance noise, as shown in

Eqs. (2and 3), where the superscript ^ represents the cor-

responding value with noise.
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In Eq. (2), N represents the normal distribution, and

ai; i ¼ 1; 2; 3; 4ð Þ is the constant coefficient. In Eq. (3), r2x
is the variance of x direction, and r2y is the variance of

y direction.

2.3 Terrain Map

The area of the Arctic is mostly flat and the small part is

steep. To verify the navigation ability under different types

of terrain, the map with longitude range [- 162.5�,

160.19�] and latitude range [75.27�, 76.3�] is selected as a

study area. The map scale is [140, 60] km. The region

contains both steep areas and flat areas, as shown in Fig. 2.

The resolution of the terrain map is 500 m, but the

normal cruising speed of AUV is not more than 1 m/s. The

direct application of a low-resolution map may lead to a

large navigation error. Therefore, in this paper, bilinear

interpolation is used to obtain the altitude information of

the map cells. Equation (4) is the interpolation algorithm.

f ðx;yÞ¼
f Q11ð Þ

5002
x2� xð Þ y2� yð Þþ

f Q21ð Þ

5002
x� x1ð Þ y2� yð Þ

þ
f Q12ð Þ

5002
x2� xð Þ y� y1ð Þþ

f Q22ð Þ

5002
x� x1ð Þ y� y1ð Þ

;

ð4Þ

where f Qij

� �

; i; j ¼ 1; 2ð Þ is the altitude value of four

points around the AUV, and xi; yj
� �

; i; j ¼ 1; 2ð Þ is point

coordination around the AUV. The relative position rela-

tionship of each point is shown in Fig. 3.

Fig. 2 Terrain map of the study area

Fig. 3 Bilinear interpolation
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3 Fuzzy-Particle Filter of TAN

TAN filtering system mainly includes a fuzzy logic mod-

ule, particle filter module, and gradient analysis module.

According to the input altitude information, the particle

filter matches with the seabed terrain map and get the

position with the highest matching value. The fuzzy logic

module calculates the reasonable process noise value

according to the gradient and the gradient change rate

information calculated by the gradient analysis module,

and then transmits the process noise to the particle filter

module.

The block diagram of TAN filtering system is shown in

Fig. 4.

3.1 Particle Filter

The Sequential Importance Resampling (SIR) is used to

fusion data. The SIR Particle Filter algorithm is shown in

Fig. 5, in which
P

m is the process variance in two direc-

tions of x and y, usually it is a fixed value. In this study,
P

m will be dynamically adjusted by fuzzy logic.

In the Particle Filter, the systematic resampling tech-

nique is used in the resampling process because of the great

performance. Gaussian likelihood estimation is used for

calculating particles weight p zk x
i
k

�

�

� �

.

3.2 Fuzzy Logic

The fuzzy logic is designed to infer the process noise value

of the present state. Terrain gradient and gradient rate is set

as the input, process noise as the output. According to the

operation experience, the following basic logic exists.

IF the current terrain gradient is large, THEN set small

process noise.

IF the current terrain gradient is small, THEN set large

process noise.

The altitude changes in real time. When the gradient

value is large and gradient rate tends to slow down, the

process noise should be increased in time; otherwise, it is

easy to cause tracking loss. When the gradient is small and

gradient rate tends to change greatly, the process noise

should be reduced in time to increase the tracking

accuracy.

According to the above basic logic, we use the input

subset with a 7-degree division Sin ¼ NB;NM;NS; ZO;f
PS;PM;PBg, corresponding to the change from negative to

positive of gradient and gradient rate, and use output subset

with 7-degree division Sout ¼ SS; S; SM;M;ML; L; LLf g,
corresponding to the change from small to large of process

noise. The triangle membership function is used for input

and output, as shown in Fig. 6, and the rule table is shown

in Table 1.

4 Simulation

4.1 Parameter Setup

To analyze the influence of filter parameters on navigation

performance, different process variances are selected. For

process variance, only the variance caused by the external

environment is changed, while the variance coefficient

a1; a2; a3; a4ð Þ remains unchanged. The values

a1; a2; a3; a4ð Þ are 0:1; 0:1; 0:001; 0:1ð Þ. The selection of

parameters takes full account of the actual situation, that is,

for the velocity term, the disturbance generated by the

velocity component is large, while for the angular rate

term, the disturbance generated by the speed and the

angular rate is large, but because the value of the velocity is

relatively large, the coefficient cannot be too large.

According to experience, the process noise generated by

the body should be fall within 50% of the true value.

For the observation noise, AUV is set to sail at a fixed

depth, ignoring the noise difference caused by water depth

difference, and a fixed standard deviation value of 5 m is

used. The reason is that in the actual scene, the general

altimeter can only detect the range of about 200 m.

For fuzzy logic, according to the gradient of arctic ter-

rain, the domain of gradient is [- 25,25], and the domain

of gradient rate is [- 25,25]. The output process noise

range is [1, 7]. See Table 2 for specific parameter settings.

The direction of ocean current disturbance is in positive of

X and Y axis.

Fig. 4 TAN filter system
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Fig. 5 Algorithm of SIR Particle Filter

Fig. 6 Degree of membership

Table 1 Control rules

Process noise Gradient

NB NM NS ZO PS PM PB

Gradient rate

NB SS S S SM ML L LL

NM S S SM M L ML ML

NS S SM M ML L ML SM

ZO S M ML LL ML M S

PS SM ML L ML M SM S

PM ML ML L M SM S S

PB LL L ML SM S S SS
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In Table 2, the highlight black parameter is the default

simulation parameter.

We use a dual core 2.6 GHz CPU for the calculation.

The average simulation setting time is 30000 s, and the

filter operates once per second. Each calculation contains

1000 particle iterations. Under the MATLAB platform, the

average running time is 23 s, that is the average running

time of each step is 7.6 9 10-4 s, the calculation time is

very short, and it has a better real-time performance.

4.2 Results

Figure 7 shows the filter process noise versus the variance

of the AUV localization in the absence of external current

disturbance, when body noise is applied on AUV alone.

The black line in the figure is the simulation result in the

rough area and the red line is the simulation result in the

flat area. It can be seen from the figure that as the process

noise of the filter increases, there is an overall trend of

increasing localization variance. One possible reason is that

the process noise affects the search range of the particles,

and a large particle distribution reduces the localization

accuracy. It can also be seen from the figure that the overall

variance in the flat area is greater than the variance in the

uneven region because the measurements in the flat region

are low differentiation to allow accurate regression of the

filtering process. We can see that variance has a significant

impact on localization accuracy.

Figures 8, 9 show the navigation results under different

process noise settings with the 0.1 m/s current disturbance.

We can see that there is no linear relationship between the

navigation accuracy and the standard deviation of process

noise. When the standard deviation is 1, the particle search

range is small. Thus, the correct area cannot be sampling

Table 2 Simulation parameters Parameters Values

Forward speed 0.5 m/s

Map resolution 500 m

Operating depth 0 m

PF calculating frequency 1 Hz

Current disturbance dx; dyð Þ (0.1 m/s,0.1 m/s), (0.15 m/s,0.15 m/s)

a1; a2; a3; a4ð Þ 0:1; 0:1; 0:001; 0:1ð Þ

Process noise standard deviation [1–6] m

Measurement noise standard deviation 5 m

Particle number 1000

Initial posture [20 km, 20 km, 0�], [60 km, 10 km, 0�]

Gradient range [- 20,20]

Gradient rate range [- 20,20]

Process noise range [1, 7]

Fig. 7 AUV localization variance with different particle filter process

noise

Fig. 8 AUV path under different process noise, with 0.1 m/s current

disturbance
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effectively, resulting in the loss of the real value. Conse-

quently, the maximum navigation error exceeds 1000 m.

When the standard deviation of process noise is 2 or 3, the

PF shows good tracking ability, as the noise matches the

gradient of the map. When the standard deviation is as

larger as 4, 5, or 6, the tracking error will be larger because

the correct area cannot be searched intensively. Fuzzy-PF

logic can generate reasonable process noise dynamically

and show good tracking results.

Figures 10, 11 show the navigation results under dif-

ferent process noise settings with the 0.15 m/s current

disturbance. We can see that the process noise settings of 2

and 3 which show good tracking results under the 0.1 m/s

current disturbance become worse under the current dis-

turbance of 0.15 m/s. The maximum tracking error exceeds

1000 m and has exceeded 2 map units. When the process

noise is 4, a better tracking process occurs. However, when

reaching the top of the steep area, the top area is suddenly

flat, and the gradient rate is small, as shown in Figs. 2b and

12, resulting in tracking failure. The path generated by

Fuzzy-PF logic also shows good tracking results. We rep-

resent the characteristics of the terrain as the inner product

of the gradient and gradient rate. The process noise is

negatively related to the inner product of gradient and

gradient rate, as shown in Fig. 13. When the inner product

is large, the process noise is small, and the opposite is large

according to the fuzzy logic.

Figure 14 depicts the relationship between the local-

ization variance under different filter noise as well as

current interference. It can be seen from the figure that

under the same filter noise condition, the effect of 0.1 m/s

current interference on the localization variance is greater

Fig. 9 Path error under different process noise, with 0.1 m/s current

disturbance

Fig. 10 AUV path under different process noise, with 0.15 m/s

current disturbance

Fig. 11 Path error under different process noise, with 0.15 m/s

current disturbance

Fig. 12 Altitude and gradient rate in the path
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than that of the effect of 0.15 m/s interference, due to the

greater effect of stronger currents on position. The use of

fuzzy logic produces smaller localization variance. The

localization variance in the 0.1 m/s disturbance conditions

is similar to the localization variance produced at 0.15 m/s

disturbance, as shown by the black dotted line and the red

dashed line in the figure. Under the condition of 0.1 m/s

current disturbance, when the noise is 2, the result is

greater than that produced by fuzzy logic because the

condition is already a more optimal result by noise 2. It can

be seen that using fuzzy logic produces good results most

of the time, but not all cases are better than the results of a

fixed noise setting.

Figure 15 shows the tracking results of Fuzzy-PF logic

and common PF in flat terrain area. The simulation starts at

[60,000,10,000] m position and moves along the x-axis

under the current disturbance of 0.1 m/s. It can be seen that

the tracking results of the two methods both are very poor,

with the tracking error close to the error of dead reckoning

estimation. Due to a lack of terrain features, the weight of

each particle has no significant difference between each

other. Consequently, the system lost the ability to follow

the path.

5 Conclusion

In this paper, based on the classical SIR particle filter

method, a TAN system is built, and the tracking perfor-

mance of the particle filter under the low-resolution map is

studied. The process noise is categorized into body noise

and external environment noise. The external factors such

as current disturbance are included in the external envi-

ronment disturbance, which is convenient to study the

influence of key disturbance factors such as current. For the

map with a resolution of 500 m, the method of bilinear

interpolation is used to obtain the middle altitude value.

The application of fuzzy logic to generate appropriate

process noise parameters makes the search process of

particle filter more reasonable, thus improving the navi-

gation accuracy of TAN. The simulation results show that

TAN based on Fuzzy-PF logic not only has a good tracking

accuracy, but also has great robustness under different

ocean current disturbance. However, in the flat area, a lack

of gradient information of terrain results in bad localization

that is close to the dead reckon navigation. The simulation

results provide reference for the practical application of the

Fuzzy-PF TAN system.

Fig. 13 The inner product of gradient and gradient rate vs process

noise, with 0.15 m/s current disturbance

Fig. 14 Variance of localization under different noise

Fig. 15 Navigation error in flat area
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